
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FASP: FAST AND ACCURATE STRUCTURED PRUNING
OF LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

The rapid increase in the size of large language models (LLMs) has significantly
escalated their computational and memory demands, posing challenges for effi-
cient deployment, especially on resource-constrained devices. Structured pruning
has emerged as an effective model compression method that can reduce these
demands while preserving performance. In this paper, we introduce FASP (Fast
and Accurate Structured Pruning), a novel structured pruning framework for LLMs
that emphasizes both speed and accuracy. FASP employs a distinctive pruning
structure that interlinks sequential layers, allowing for the removal of columns in
one layer while simultaneously eliminating corresponding rows in the preceding
layer without incurring additional performance loss. The pruning metric, inspired
by Wanda, is computationally efficient and effectively selects components to prune.
Additionally, we propose a restoration mechanism that enhances model fidelity by
adjusting the remaining weights post-pruning. We evaluate FASP on the OPT and
LLaMA model families, demonstrating superior performance in terms of perplexity
and accuracy on downstream tasks compared to state-of-the-art methods. Our
approach achieves significant speed-ups, pruning models such as OPT-125M in
17 seconds and LLaMA-30B in 20 minutes on a single NVIDIA RTX 4090 GPU,
making it a highly practical solution for optimizing LLMs.

1 INTRODUCTION

Large language models (LLMs) have profoundly transformed various aspects of daily life in recent
times, showcasing remarkable capabilities across diverse applications, including machine translation,
conversational agents, text generation, as well as image and video synthesis (OpenAI, 2023; Meta
AI, 2023; Gemini Team et al., 2023; Arefeen et al., 2024; Li et al., 2024). However, the increasing
size of these models imposes substantial demands on computational and GPU memory resources,
creating significant barriers to the deployment of advanced LLMs. This challenge becomes even
more pronounced when considering the deployment of LLM technologies on mobile devices, such as
smartphones, particularly in light of the rising trend driven by the release of advanced AI capabilities
like Apple intelligence (Apple Inc, 2024). In light of these challenges, the compression of LLMs has
become a critical requirement to mitigate the resource demands associated with their deployment,
thereby enhancing their accessibility and operational efficiency across diverse platforms.

Pruning techniques represent one of the most prevalent methods for compressing LLMs (Frantar &
Alistarh, 2023; Sun et al., 2023; Ma et al., 2023a; Shen et al., 2024; Fang et al., 2024), effectively
reducing model size and computational demands while maintaining performance integrity. Among
the various pruning strategies, structured pruning stands out for its systematic approach of removing
entire components, such as neurons or channels, which directly enhances computational efficiency and
is compatible across diverse hardware platforms. In contrast, unstructured pruning targets individual
weights, necessitating support for sparse data structures and corresponding computational methods.
Similarly, semi-structured pruning often relies on specific hardware architectures, such as the 2:4
semi-structure utilized in NVIDIA’s Ampere architecture (Mishra et al., 2021). Additionally, the
inference acceleration achieved through semi-structured pruning is less effective than that obtained
with structured pruning at the same level of sparsity (Ashkboos et al., 2024). Therefore, this work
will concentrate on structured pruning.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

𝑊!

𝑊"

𝑊#

Attn
Map

Softmax

𝑊$%& 𝑊'(! 𝑊'("
𝑋

× +

A
ct
iv
at
io
n

+

𝑋′

× = × =→

Figure 1: Illustration of the proposed pruning structure on the OPT model. In this approach, columns
of Wfc2 are removed along with the corresponding rows of Wfc1 without impacting performance,
thanks to the inherited position mapping in matrix multiplication. The same principle applies to
columns of Wout and rows of WV , as well as the rows of WQ and WK .

Several existing structured pruning methods have shown varying effectiveness in optimizing LLMs.
For example, LLM-Pruner (Ma et al., 2023a) employs structured pruning to selectively remove
non-critical coupled structures based on gradient information, and it requires a fine-tuning step to
recover the performance of the pruned models, which may take several hours. SliceGPT (Ashkboos
et al., 2024) replaces each weight matrix with a smaller dense matrix, thereby reducing the embedding
dimension of the network. However, this approach requires the application of principal component
analysis for each linear layer, which can be time-consuming. Additionally, it introduces two auxiliary
transformation matrices in each decoder block, which mitigates the overall effectiveness of the
pruning. FLAP (An et al., 2024) formulates structured importance metrics and adaptively searches for
a globally compressed model. Although it is relatively efficient, it often compromises performance.
Shen et al. (2024) introduces a neural architecture search-based approach (denoted as NASLLM
hereafter) to identify subnets of the original LLMs and implements a reformation algorithm to rectify
the inherited weights. However, due to its searching nature, this method can be time-consuming.

Given the limitations of current structured pruning methods, particularly concerning time efficiency
and the performance of pruned models, we propose a novel approach, FASP, that emphasizes both
speed and accuracy. First, we introduce an innovative pruning structure that connects two sequential
linear layers. This design enables the pruning of a subset of columns in the later layer, allowing for the
corresponding rows in the preceding layer to be removed without adversely impacting performance.
Inspired by Wanda (Sun et al., 2023), we develop a pruning metric for selecting columns to prune,
which is both simple and efficient. Finally, we implement an effective restoration mechanism to
recover the performance of the pruned model by leveraging inherited weights, thereby enhancing
overall model fidelity.

We conduct comprehensive experiments on the OPT (Zhang et al., 2022) and LLaMA (Touvron
et al., 2023) model families, comparing the proposed FASP against state-of-the-art techniques. Our
results demonstrate that FASP achieves superior performance in terms of perplexity and accuracy
on downstream tasks across these models. Specifically, we evaluate the pruning time for models of
varying sizes, finding that FASP requires approximately 17 seconds to prune the OPT-125M model
and about 20 minutes for the LLaMA-30B model on a single NVIDIA RTX 4090 GPU, highlighting
substantial improvements in pruning speed. These findings emphasize the advantages of our method
in practical applications, showcasing its potential to optimize LLMs efficiently while maintaining
high performance.

2 BACKGROUND AND RELATED WORK

Pruning techniques in neural networks can be broadly categorized into unstructured and structured
pruning. Unstructured and semi-structured pruning remove individual weights or partial substructures
of a model to reduce its size. These methods, such as SparseGPT (Frantar & Alistarh, 2023),
Wanda (Sun et al., 2023), FPSTAPruner (Zhao et al., 2024) and MaksLLM (Fang et al., 2024), often

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

achieve high sparsity levels without severely degrading model performance. However, they come with
practical limitations. Unstructured pruning may provide limited computational speedup and memory
savings due to its irregular sparsity structure and the necessity of storing indices. Additionally,
the inference of semi-structured sparsified LLMs typically requires specialized hardware, such as
NVIDIA’s Ampere architecture GPUs (Mishra et al., 2021), which restricts their applicability in
real-world scenarios.

In contrast, structured pruning entirely removes substructures from rows or columns in the weight
matrices to attention heads, layers, or blocks. This results in direct memory savings and inference
speedups that are achievable on any hardware, making it more practical for deployment. However,
structured pruning imposes stricter constraints on what can be pruned, and the model’s performance
typically degrades more significantly. To compensate for this, retraining is traditionally required to
restore the model’s accuracy (Ma et al., 2023b). Retraining, though, is computationally expensive and
time-consuming, particularly for LLMs. This makes pruning with retraining less feasible in practice,
especially in scenarios requiring fast model adaptation and deployment. Given these challenges,
there is a growing need for structured pruning methods that avoid retraining while maintaining model
performance. Recent research has focused on developing such methods to improve the practicality of
pruning large-scale models.

One line of work focuses on pruning larger components of LLMs. For instance, FinerCut (Zhang
et al., 2024) prunes entire attention or feed-forward network blocks through a greedy algorithm that
exhaustively evaluates and removes the blocks with minimal impact on the model’s output. Similarly,
ShortGPT (Men et al., 2024) removes entire decoder layers to achieve sparsity. Another direction
focuses on pruning the weights of the linear layers in LLMs. SliceGPT (Ashkboos et al., 2024)
introduces a rotation-based pruning method where the weights are first rotated by orthogonal matrices
derived from principal component analyses (PCA) of the activations and the less important portions
of the weights are pruned. However, this method introduces additional memory and computation
overhead, as the orthogonal matrices must be stored to transform the residual connections during
inference. Moreover, SliceGPT’s pruning strategy solely relies on the activations and thus requires a
large calibration dataset and high precision (64-bit) for PCA calculations, making it computationally
expensive and memory-intensive. FLAP (An et al., 2024) proposes a novel pruning metric that
measures the stability of the channels to determine which parts of the network to prune. A bias update
mechanism is then used to compensate for the pruned parts. However, FLAP does not update the
remaining weights after pruning, which contains much more parameters than the bias vector. Thus,
incorporating bias-only compensation misses vast opportunities to remedy the performance loss due
to pruning. NASLLM (Shen et al., 2024) explores network architecture search (NAS) methods for
finding optimal subnets within LLMs and employs the alternating direction method of multipliers
(ADMM) to determine the optimal updates for the remaining weights. However, these involve slow
and inefficient search iterations, requiring approximately 5 hours to prune the LLaMA-7B model, as
reported in the paper.

3 METHODOLOGY

In this section, we first provide a detailed overview of the proposed pruning structure. Next, we discuss
the pruning metric inspired by Wanda. Finally, we introduce our efficient restoration mechanism for
the pruned weights, aimed at enhancing overall model fidelity.

3.1 PRUNING STRUCTURE

Consider a 2-layer perceptron with weights W1 ∈ Rn×p and W2 ∈ Rm×n along with biases b1 ∈ Rn

and b2 ∈ Rm, given an input activation X ∈ Rp×q , the forward pass can be expressed as follows:

f(X) = W2(σ(W1X + b1)) + b2, (1)

where σ(·) is an element-wise activation function such as ReLU.

In this setup, each row of W1 is directly associated with the corresponding column of W2. Specifically,
the i-th row of W1 connects to the i-th column of W2, reflecting the influence of the i-th hidden unit
on the output:

fi(X) = W2[:, i] · σ (W1[i, :]X + b1[i]) + b2, (2)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

where W2[:, i] ∈ Rn×1 represents the i-th column of W2 and W1[i, :] ∈ R1×m represents the i-th
row of W1. In structured pruning, pruning the i-th column of W2 eliminates the contribution from
the i-th hidden unit, resulting in the following output equation:

fi(X) = 0m×1 · σ (W1[i, :]X + b1[i]) + b2 = b2. (3)

Consequently, we can also remove the i-th row of W1 and i-th element of b1. The output computation
simplifies to:

f(X) = W ′
2 (σ(W

′
1X + b′1)) + b2, (4)

where W ′
2 represents W2 with the i-th column removed , W ′

1 denotes W1 with the i-th row removed,
and b′1 signifies b1 with the i-th element eliminated. Conversely, if we prune the i-th row of W1, the
i-th column of W2 can also be removed directly.

Therefore, we can achieve efficient structured pruning by leveraging the inherent connections between
the two sequential layers. This approach not only simplifies the model but also preserves performance,
as it eliminates unnecessary computations without compromising the model’s expressive capability.

As illustrated in Figure 1, the OPT architecture (Zhang et al., 2022) features decoder blocks that
typically consist of self-attention mechanisms followed by feed-forward networks, which include two
fully connected layers denoted by Wfc1 and Wfc2 . Consequently, we can apply our pruning strategy
by pruning the i-th column of Wfc2 while simultaneously removing the i-th row of Wfc1 and the
i-th element of bfc1 .

In LLaMA (Touvron et al., 2023), fully connected layers are also present within the down, gate,
and up layers. We denote their weights as follows: Wdown ∈ Rd×ddown , Wgate ∈ Rddown×d, and
Wup ∈ Rddown×d. The forward pass through these layers can be described as:

fup(X) = WupX,

fgate(X) = WgateX,

fdown(X) = Wdown (fup(X)⊙ σ(fgate(X))) ,

(5a)
(5b)
(5c)

where ⊙ is the element-wise product. Therefore, when pruning the i-th column of Wdown, we can
simultaneously eliminate the i-th row of both Wup and Wgate without incurring additional performance
loss, while achieving a gain in sparsity.

Next, we examine a self-attention block, which comprises four linear layers: WQ ∈ Rd×d, WK ∈
Rd×d, WV ∈ Rd×d, and WO ∈ Rd×d. The forward pass through these layers is described as follows:

Q = WQX, K = WKX, V = WVX,

Attn = softmax

(
QKT

√
d

)
V,

OUT = WO(Attn).

(6a)

(6b)

(6c)

Therefore, since WO and WV interact, we can remove the i-th column of WO and subsequently
eliminate the i-th row of WV . Additionally, WQ and WK interact through their rows due to the term
QK⊤, allowing us to remove the corresponding rows from both matrices.

However, our experiments (see Section 4.2) demonstrate that removing rows from WQ and WK

significantly degrades the performance of the pruned model. Consequently, we opt not to prune these
two layers; instead, we increase the sparsity level of the other layers uniformly to satisfy the overall
sparsity requirements.

3.2 PRUNING METRIC

As shown in Figure 2, consider a linear layer with weights W ∈ Rm×n and the corresponding
input activations X ∈ Rn×p. For each individual weight, Wanda (Sun et al., 2023) evaluates its
importance by calculating the product of its magnitude and the norm of the corresponding input
feature. Specifically, the score for the weight Wi,j is defined as follows:

Sij = |Wij | ·
∥∥X(:,j)

∥∥
2
, (7)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Wanda for Unstructured Pruning

4 0 1
3 -2 -1
-3 1 0

-1
-3
2

1 2 8 3

W

||X||!

4 0 8
3 4 8
3 2 0

3
9
6

S = W ⋅ 𝑋 !

Modified Wanda for Structured Pruning

4 0 1
3 -2 -1
-3 1 0

-1
-3
2

1 2 8 3

W

||X||!

S = W ⋅ 𝑋 !

4 0 8
3 4 8
3 2 0

3
9
6

10 6 16 18
SUM

Figure 2: Illustration of the modified Wanda’s metric for structured pruning, which removes the
columns of W where the corresponding columns in S have smaller column-wise sums.

where | · | represents the absolute value operator and
∥∥X(:,j)

∥∥
2

evaluates the ℓ2-norm of j-th column
of X The final score is computed by the product of these two scalar values.

Inspired by Equation 7, we extend this metric to structured pruning scenarios. Instead of comparing
the magnitudes of individual elements in S to determine which weights to prune, we compute the
column-wise sums of S and use these results for pruning decisions. Specifically, we remove the entire
columns of W where the corresponding columns in S exhibit smaller column-wise sums.

The computational complexity of our metric primarily arises from the element-wise products and
sums, yielding a complexity of O(mn), making it significantly efficient. In comparison, other
importance scores guiding pruning decisions, such as SparseGPT (Frantar & Alistarh, 2023) and
Pruner-Zero (Dong et al., 2024), have higher computational demands. SparseGPT requires an
additional step to estimate the Hessian matrix, resulting in a complexity of O(mn2+n3). Meanwhile,
Pruner-Zero relies on gradient information to compute the importance score, necessitating a backward
pass, which is computationally intensive.

In addition to its computational efficiency, we will demonstrate the pruning performance of this
metric in the subsequent section on experimental results, highlighting its robustness and superiority.
Together, these factors underscore the efficacy and efficiency of our proposed metric for structured
pruning.

3.3 RESTORATION OF THE PRUNED WEIGHTS

After identifying the columns to be deleted for the down and out projection operators, we address
the problem of optimally updating the remaining weights to compensate for the pruning loss. Let
W ∗ ∈ Rm×n represent the pruned weight matrix of the down/out projection operator under sparsity s,
with non-zero columns indexed by the set M ∈ {0, 1, . . . , n−1}n(1−s). Additionally, let W ∈ Rm×n

be the dense weight matrix and X ∈ Rn×p the activations from the preceding layer. The problem
can be formulated as the following least-squares optimization:

min
W∗

:,M∈Rm×(n·(1−s))

1

2

∥∥∥W ∗
(:,M)X(M,:) −WX

∥∥∥2
F
.

Solving this optimal update problem is particularly challenging for unstructured sparsity, as it
necessitates repeatedly solving linear systems for each row of W ∗. However, due to the column-wise
sparsity structure, the optimal solution W ∗

(:,M) can be efficiently obtained by computing the following
normal equation once, where the term δI with δ > 0 is added to enhance numerical stability:

W ∗
(:,M) = WXX⊤

(M,:)

(
X(M,:)X

⊤
(M,:) + δI

)−1

. (8)

It is noteworthy that NASLLM (Shen et al., 2024) proposes solving this problem via ADMM, which
requires pre-computing the term (XX⊤+ρI)−1 for the ADMM iterations, where ρ is the augmented
Lagrangian penalty parameter. However, the computational complexity of obtaining this inverse is
already equivalent to that of computing equation 8, not to mention the additional complexity of the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

subsequent iteration steps. Furthermore, ADMM is an iterative algorithm that converges slowly as it
approaches the optimal solution, inevitably facing a trade-off between efficiency and accuracy. In
contrast, our proposed restoration method is both accurate and efficient.

4 EXPERIMENTS

In this section, we validate the performance and efficiency of FASP through comprehensive experi-
ments. We begin by detailing our experimental settings, followed by a comparison of perplexity and
zero-shot results for the pruned models obtained via FASP and various baseline methods, as well as
the time taken for pruning.

Models and baseline methods. We compare FASP with state-of-the-art methods including
SliceGPT (Ashkboos et al., 2024), NASLLM (Shen et al., 2024), FLAP (An et al., 2024), and
LLM-Pruner (Ma et al., 2023b) on the LLaMA (Touvron et al., 2023) and OPT (Zhang et al.,
2022) families with sizes ranging from 125m to 30B downloaded from HuggingFace’s Transformers
library (Wolf et al., 2019).

Datasets and benchmarks. We evaluate the perplexity of the models under various sparsity pruned
by 128 randomly drawn calibration samples from the WikiText2 (Merity et al., 2016) dataset with
the 2048 sequence length. Additionally, following the settings in (An et al., 2024; Ma et al., 2023b;
Shen et al., 2024), we compare the zero-shot accuracy on standard common reasoning datasets
including BoolQ (Clark et al., 2019), PIQA (Bisk et al., 2020), HellaSwag (Zellers et al., 2019),
WinoGrande (Sakaguchi et al., 2021), OpenbookQA (Mihaylov et al., 2018), ARC-easy and ARC-
challenge(Clark et al., 2018).

Implementation details. We implement FASP using the PyTorch framework (Paszke et al., 2019) and
perform pruning on NVIDIA RTX 4090 GPUs, each equipped with 24GB of memory. To evaluate
its performance, we utilize the official implementations of SliceGPT and FLAP. Since the code for
NASLLM has not been released, we rely on the results reported in their paper for comparison. For
LLM-Pruner, which necessitates a costly fine-tuning process to recover performance, we directly
reference the results provided by the NASLLM authors. Our observations indicate that, on a single
GPU, FASP can effectively prune 30B-level LLMs, while SliceGPT is limited to pruning models up
to 13B due to the high memory requirements associated with PCA computations and the storage of
additional orthogonal matrices.

4.1 MAIN RESULTS

Perplexity and zero-shot results. We present the perplexity results for the pruned OPT and LLaMA
models of various sizes on WikiText in Tables 2 and 3, as well as in Figures 3 and 4. The data
and figures consistently demonstrate that FASP outperforms LLM-Pruner, SliceGPT, NASLLM,
and FLAP. We were unable to obtain the perplexity results for SliceGPT and NASLLM on the
LLaMA-30B model, as SliceGPT requires more memory than the RTX 4090 GPU can provide for
pruning, while the code for NASLLM is not available. Additionally, the zero-shot results for the
pruned LLaMA-7B models are presented in Table 4, where FASP outperforms the best baseline
method by 1.54% and 1.77% at 10% and 20% sparsity levels, respectively.

Pruning time. We compare the time required to prune LLaMA models among FASP and the baseline
methods, as shown in Table 1. For NASLLM and LLM-Pruner, the only reported time is for pruning
the LLaMA-7B model, which takes 5 hours and 3 hours on a single NVIDIA A100 GPU, respectively.
The results for FLAP, SliceGPT, and FASP are obtained using NVIDIA RTX 4090 GPUs. Our
findings show that FASP, which demonstrates the best pruning effectiveness, is several magnitudes
faster than NASLLM and LLM-Pruner, approximately 10× faster than SliceGPT, and as efficient as
FLAP in terms of pruning time.

Inference speedup. We evaluate the inference speedup of LLMs pruned by FASP on the NVIDIA
RTX 4090. The OPT-2.7B model, pruned to 30% sparsity by FASP, achieves a 16% increase in
end-to-end inference speed in our current implementation. We anticipate that this speedup can be
further enhanced through more advanced programming techniques.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Method LLaMA-7B LLaMA-13B LLaMA-30B
NASLLM 300min - -
LLM-Pruner 180min - -
SliceGPT 44min 68min 211min
FLAP 5min 8min 22min
FASP (ours) 4min 6min 20min

Table 1: Comparison of pruning times: FASP outperforms state-of-the-art methods.

Method Sparsity OPT-125M OPT-1.3B OPT-2.7B
Dense 0% 27.66 14.63 12.47
SliceGPT 10% 35.31 16.74 14.10
NASLLM 10% 30.97 15.51 13.32
FASP (ours) 10% 28.53 14.80 12.42
SliceGPT 20% 54.88 20.17 16.81
NASLLM 20% 44.12 19.23 16.44
FASP (ours) 20% 30.55 15.64 14.19
SliceGPT 30% 84.16 28.53 24.12
NASLLM 30% 80.84 26.82 23.48
FASP (ours) 30% 34.67 17.81 15.11

Table 2: WikiText perplexity (↓) of pruned OPT models under various sparsity. FASP drastically
outperforms state-of-the-art methods.

4.2 ABLATION STUDIES

We assess the effectiveness of our pruning structure design through the ablation experiment presented
in Table 5. In this experiment, we compare the results obtained from pruning all operators’ columns
using evenly distributed sparsity, with column selection performed by Wanda and optimal update,
against those from the default setting of FASP. In the latter, the pruned rows and columns are correlated,
and the k and q projections are skipped as described in Section 3.1. Our findings demonstrate that
our pruning structure yields significantly better results.

Additionally, we evaluate the effectiveness of our strategy of not pruning the WQ and WK layers
from the self-attention mechanism on OPT-125M, as detailed in Table 6. The row labeled Pruning
WQ and WK indicates the results obtained by pruning the rows of WQ and the corresponding rows of
WK , applying evenly distributed sparsity across layers. In contrast, the row labeled FASP reflects our
default setting, where WQ and WK remain unpruned, and the sparsity is scaled to ensure consistent
overall sparsity. Our observations reveal that pruning the rows of WK and their corresponding rows

0 5 10 15 20 25 30
Sparsity (%)

14

16

18

20

22

24

26

28

30

Pe
rp

le
xi

ty
 o

n
W

ik
iTe

xt
-2

-ra
w

Perplexity of Pruned OPT-1.3B under Various Sparsities
SliceGPT
NASLLM
FASP (ours)
Dense

(a) Perplexity-vs-sparsity on OPT-1.3B.

0 5 10 15 20 25 30
Sparsity (%)

12

14

16

18

20

22

24

Pe
rp

le
xi

ty
 o

n
W

ik
iTe

xt
-2

-ra
w

Perplexity of Pruned OPT-2.7B under Various Sparsities
SliceGPT
NASLLM
FASP (ours)
Dense

(b) Perplexity-vs-sparsity on OPT-2.7B.

Figure 3: Comparative analysis of sparsity versus perplexity across different methods for OPT-1.3B
and OPT-2.7B models on WikiText dataset.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 5 10 15 20 25 30
Sparsity (%)

6

8

10

12

14

16

Pe
rp

le
xi

ty
 o

n
W

ik
iTe

xt
-2

-ra
w

Perplexity of Pruned LLaMA-7B under Various Sparsities
SliceGPT
FLAP
LLM-Pruner
NASLLM
FASP (ours)
Dense

(a) Perplexity-vs-sparsity on LLaMA-7B.

0 5 10 15 20 25 30
Sparsity (%)

5

6

7

8

9

10

Pe
rp

le
xi

ty
 o

n
W

ik
iTe

xt
-2

-ra
w

Perplexity of Pruned LLaMA-13B under Various Sparsities
SliceGPT
FLAP
LLM-Pruner
NASLLM
FASP (ours)
Dense

(b) Perplexity-vs-sparsity on LLaMA-13B.

Figure 4: Comparative analysis of sparsity versus perplexity across different methods for LLaMA-7B
and LLaMA-13B models on WikiText dataset.

Method Sparsity LLaMA-7B LLaMA-13B LLaMA-30B
Dense 0% 5.68 5.09 4.10
LLM-Pruner 10% 7.46 6.38 -
SliceGPT 10% 7.00 6.43 -
NASLLM 10% 6.10 5.39 4.44
FLAP 10% 6.34 5.45 4.52
FASP (ours) 10% 5.94 5.31 4.46
LLM-Pruner 20% 11.97 10.05 -
SliceGPT 20% 8.71 7.55 -
NASLLM 20% 6.89 5.90 4.94
FLAP 20% 7.40 6.03 5.18
FASP (ours) 20% 6.48 5.74 4.93
LLM-Pruner 30% 18.58 22.36 -
SliceGPT 30% 15.95 9.79 -
NASLLM 30% 8.28 6.67 5.63
FLAP 30% 9.18 6.97 6.28
FASP (ours) 30% 7.50 6.46 5.51

Table 3: WikiText perplexity (↓) of pruned LLaMA models under various sparsity. FASP outperforms
state-of-the-art methods.

Method Sparsity BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Mean
Dense 0% 75.11 79.16 76.22 70.09 72.94 44.71 44.40 66.09
LLM-Pruner 10% 67.95 77.42 69.31 63.54 66.33 39.85 41.20 60.80
SliceGPT 10% 57.68 69.80 59.32 68.11 62.75 36.01 38.00 55.95
FLAP 10% 74.43 75.41 68.68 67.01 65.78 38.48 41.00 61.54
NASLLM 10% 74.37 76.88 70.71 67.56 68.39 40.10 39.20 62.46
FASP (ours) 10% 73.15 77.53 74.11 68.90 70.45 42.92 41.00 64.00
LLM-Pruner 20% 59.39 75.57 65.34 61.33 59.18 37.12 39.80 56.82
SliceGPT 20% 37.89 64.09 45.67 62.75 53.62 31.74 33.20 46.99
FLAP 20% 68.59 74.21 64.98 64.40 50.89 37.80 40.20 58.58
NASLLM 20% 70.98 74.92 67.29 64.64 64.23 36.52 39.40 59.71
FASP (ours) 20% 69.36 75.95 69.40 66.77 68.27 40.19 40.40 61.48

Table 4: Zero-shot results (accuracy, ↑) of the pruned LLaMA-7B models under various sparsity.
FASP outperforms state-of-the-art methods.

of WQ significantly diminishes the performance of the pruned model, thereby underscoring the
effectiveness of our pruning strategy.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

10% 20% 30%
Wanda 30.61 39.28 54.89
FASP 28.53 30.55 34.67

Table 5: WikiText perplexity (↓) of pruned LLaMA models under various sparsity.

10% 20% 30%
Pruning WQ and WK 44.13 61.62 83.65
FASP 28.53 30.55 34.67

Table 6: WikiText perplexity (↓) of pruned LLaMA models under various sparsity.

5 DISCUSSION

In this section, we reflect on the limitations of FASP. Despite its strengths, one limitation is the
decision to forgo pruning the rows of WQ and WK in the self-attention layers. While our experiments
demonstrated that pruning these layers degrades performance, future work could explore more
sophisticated strategies for dealing with these components, such as adaptive sparsity levels or selective
pruning criteria that may mitigate the performance loss.

6 CONCLUSION

In this paper, we present FASP, a fast and accurate structured pruning method designed for LLMs.
By capitalizing on the inherent connections between sequential layers, FASP allows for efficient
pruning with minimal performance drop. Our proposed pruning structure and metric streamline
the pruning process, while the restoration mechanism effectively recovers model fidelity. Through
comprehensive experiments on the OPT and LLaMA model families, we demonstrate that FASP
significantly outperforms existing pruning techniques both in terms of speed and accuracy. Notably,
FASP is capable of pruning large-scale models like LLaMA-30B in a fraction of the time required by
other methods, while maintaining competitive performance on perplexity and zero-shot evaluation
tasks. These results highlight the potential of FASP to improve the deployment efficiency of LLMs
across diverse hardware platforms, including those with limited computational resources.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Yongqi An, Xu Zhao, Tao Yu, Ming Tang, and Jinqiao Wang. Fluctuation-based adaptive structured
pruning for large language models. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 10865–10873, 2024.

Apple Inc. Apple intelligence: Ai for the rest of us. https://www.apple.com/
apple-intelligence/, 2024. Accessed: 2024-09-30.

Md Adnan Arefeen, Biplob Debnath, and Srimat Chakradhar. Leancontext: Cost-efficient domain-
specific question answering using llms. Natural Language Processing Journal, 7:100065, 2024.

Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James
Hensman. Slicegpt: Compress large language models by deleting rows and columns. arXiv
preprint arXiv:2401.15024, 2024.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Peijie Dong, Lujun Li, Zhenheng Tang, Xiang Liu, Xinglin Pan, Qiang Wang, and Xiaowen Chu.
Pruner-zero: Evolving symbolic pruning metric from scratch for large language models. arXiv
preprint arXiv:2406.02924, 2024.

Gongfan Fang, Hongxu Yin, Saurav Muralidharan, Greg Heinrich, Jeff Pool, Jan Kautz, Pavlo
Molchanov, and Xinchao Wang. Maskllm: Learnable semi-structured sparsity for large language
models. arXiv preprint arXiv:2409.17481, 2024.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning, pp. 10323–10337. PMLR, 2023.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Junyi Li, Tianyi Tang, Wayne Xin Zhao, Jian-Yun Nie, and Ji-Rong Wen. Pre-trained language
models for text generation: A survey. ACM Computing Surveys, 56(9):1–39, 2024.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. Advances in neural information processing systems, 36:21702–21720, 2023a.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. arXiv preprint arXiv:2305.11627, 2023b.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you expect.
arXiv preprint arXiv:2403.03853, 2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Meta AI. Llama-3: Meta ai’s latest language model. https://ai.meta.com/blog/
meta-llama-3/, 2023.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

10

https://www.apple.com/apple-intelligence/
https://www.apple.com/apple-intelligence/
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko Stosic, Dusan Stosic, Ganesh Venkatesh,
Chong Yu, and Paulius Micikevicius. Accelerating sparse deep neural networks. arXiv preprint
arXiv:2104.08378, 2021.

OpenAI. Gpt-4 technical report. arXiv, pp. 2303–08774, 2023.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,
2021.

Xuan Shen, Pu Zhao, Yifan Gong, Zhenglun Kong, Zheng Zhan, Yushu Wu, Ming Lin, Chao
Wu, Xue Lin, and Yanzhi Wang. Search for efficient large language models. arXiv preprint
arXiv:2409.17372, 2024.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach for
large language models. arXiv preprint arXiv:2306.11695, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

Yang Zhang, Yawei Li, Xinpeng Wang, Qianli Shen, Barbara Plank, Bernd Bischl, Mina Rezaei, and
Kenji Kawaguchi. Finercut: Finer-grained interpretable layer pruning for large language models.
arXiv preprint arXiv:2405.18218, 2024.

Pengxiang Zhao, Hanyu Hu, Ping Li, Yi Zheng, Zhefeng Wang, and Xiaoming Yuan. A convex-
optimization-based layer-wise post-training pruner for large language models. arXiv preprint
arXiv:2408.03728, 2024.

11

	Introduction
	Background and Related Work
	Methodology
	Pruning Structure
	Pruning Metric
	Restoration of the Pruned Weights

	Experiments
	Main Results
	Ablation Studies

	Discussion
	Conclusion

