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ABSTRACT

The rapid increase in the size of large language models (LLMs) has significantly
escalated their computational and memory demands, posing challenges for effi-
cient deployment, especially on resource-constrained devices. Structured pruning
has emerged as an effective model compression method that can reduce these
demands while preserving performance. In this paper, we introduce FASP (Fast
and Accurate Structured Pruning), a novel structured pruning framework for LLMs
that emphasizes both speed and accuracy. FASP employs a distinctive pruning
structure that interlinks sequential layers, allowing for the removal of columns in
one layer while simultaneously eliminating corresponding rows in the preceding
layer without incurring additional performance loss. The pruning metric, inspired
by Wanda, is computationally efficient and effectively selects components to prune.
Additionally, we propose a restoration mechanism that enhances model fidelity by
adjusting the remaining weights post-pruning. We evaluate FASP on the OPT and
LLaMA model families, demonstrating superior performance in terms of perplexity
and accuracy on downstream tasks compared to state-of-the-art methods. Our
approach achieves significant speed-ups, pruning models such as OPT-125M in
17 seconds and LLaMA-30B in 20 minutes on a single NVIDIA RTX 4090 GPU,
making it a highly practical solution for optimizing LLMs.

1 INTRODUCTION

Large language models (LLMs) have profoundly transformed various aspects of daily life in recent
times, showcasing remarkable capabilities across diverse applications, including machine translation,
conversational agents, text generation, as well as image and video synthesis (OpenAI, 2023; Meta
AI, 2023; Gemini Team et al., 2023; Arefeen et al., 2024; Li et al., 2024). However, the increasing
size of these models imposes substantial demands on computational and GPU memory resources,
creating significant barriers to the deployment of advanced LLMs. This challenge becomes even
more pronounced when considering the deployment of LLM technologies on mobile devices, such as
smartphones, particularly in light of the rising trend driven by the release of advanced AI capabilities
like Apple intelligence (Apple Inc, 2024). In light of these challenges, the compression of LLMs has
become a critical requirement to mitigate the resource demands associated with their deployment,
thereby enhancing their accessibility and operational efficiency across diverse platforms.

Pruning techniques represent one of the most prevalent methods for compressing LLMs (Frantar &
Alistarh, 2023; Sun et al., 2023; Ma et al., 2023a; Shen et al., 2024; Fang et al., 2024), effectively
reducing model size and computational demands while maintaining performance integrity. Among
the various pruning strategies, structured pruning stands out for its systematic approach of removing
entire components, such as neurons or channels, which directly enhances computational efficiency and
is compatible across diverse hardware platforms. In contrast, unstructured pruning targets individual
weights, necessitating support for sparse data structures and corresponding computational methods.
Similarly, semi-structured pruning often relies on specific hardware architectures, such as the 2:4
semi-structure utilized in NVIDIA’s Ampere architecture (Mishra et al., 2021). Additionally, the
inference acceleration achieved through semi-structured pruning is less effective than that obtained
with structured pruning at the same level of sparsity (Ashkboos et al., 2024). Therefore, this work
will concentrate on structured pruning.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

𝑊!

𝑊"

𝑊#

Attn
Map

Softmax

𝑊$%& 𝑊'(! 𝑊'("
𝑋

× +

A
ct
iv
at
io
n

+

𝑋′

× = × =→

Figure 1: Illustration of the proposed pruning structure on the OPT model. In this approach, columns
of Wfc2 are removed along with the corresponding rows of Wfc1 without impacting performance,
thanks to the inherited position mapping in matrix multiplication. The same principle applies to
columns of Wout and rows of WV , as well as the rows of WQ and WK .

Several existing structured pruning methods have shown varying effectiveness in optimizing LLMs.
For example, LLM-Pruner (Ma et al., 2023a) employs structured pruning to selectively remove
non-critical coupled structures based on gradient information, and it requires a fine-tuning step to
recover the performance of the pruned models, which may take several hours. SliceGPT (Ashkboos
et al., 2024) replaces each weight matrix with a smaller dense matrix, thereby reducing the embedding
dimension of the network. However, this approach requires the application of principal component
analysis for each linear layer, which can be time-consuming. Additionally, it introduces two auxiliary
transformation matrices in each decoder block, which mitigates the overall effectiveness of the
pruning. FLAP (An et al., 2024) formulates structured importance metrics and adaptively searches for
a globally compressed model. Although it is relatively efficient, it often compromises performance.
Shen et al. (2024) introduces a neural architecture search-based approach (denoted as NASLLM
hereafter) to identify subnets of the original LLMs and implements a reformation algorithm to rectify
the inherited weights. However, due to its searching nature, this method can be time-consuming.

Given the limitations of current structured pruning methods, particularly concerning time efficiency
and the performance of pruned models, we propose a novel approach, FASP, that emphasizes both
speed and accuracy. First, we introduce an innovative pruning structure that connects two sequential
linear layers. This design enables the pruning of a subset of columns in the later layer, allowing for the
corresponding rows in the preceding layer to be removed without adversely impacting performance.
Inspired by Wanda (Sun et al., 2023), we develop a pruning metric for selecting columns to prune,
which is both simple and efficient. Finally, we implement an effective restoration mechanism to
recover the performance of the pruned model by leveraging inherited weights, thereby enhancing
overall model fidelity.

We conduct comprehensive experiments on the OPT (Zhang et al., 2022) and LLaMA (Touvron
et al., 2023) model families, comparing the proposed FASP against state-of-the-art techniques. Our
results demonstrate that FASP achieves superior performance in terms of perplexity and accuracy
on downstream tasks across these models. Specifically, we evaluate the pruning time for models of
varying sizes, finding that FASP requires approximately 17 seconds to prune the OPT-125M model
and about 20 minutes for the LLaMA-30B model on a single NVIDIA RTX 4090 GPU, highlighting
substantial improvements in pruning speed. These findings emphasize the advantages of our method
in practical applications, showcasing its potential to optimize LLMs efficiently while maintaining
high performance.

2 BACKGROUND AND RELATED WORK

Pruning techniques in neural networks can be broadly categorized into unstructured and structured
pruning. Unstructured and semi-structured pruning remove individual weights or partial substructures
of a model to reduce its size. These methods, such as SparseGPT (Frantar & Alistarh, 2023),
Wanda (Sun et al., 2023), FPSTAPruner (Zhao et al., 2024) and MaksLLM (Fang et al., 2024), often
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achieve high sparsity levels without severely degrading model performance. However, they come with
practical limitations. Unstructured pruning may provide limited computational speedup and memory
savings due to its irregular sparsity structure and the necessity of storing indices. Additionally,
the inference of semi-structured sparsified LLMs typically requires specialized hardware, such as
NVIDIA’s Ampere architecture GPUs (Mishra et al., 2021), which restricts their applicability in
real-world scenarios.

In contrast, structured pruning entirely removes substructures from rows or columns in the weight
matrices to attention heads, layers, or blocks. This results in direct memory savings and inference
speedups that are achievable on any hardware, making it more practical for deployment. However,
structured pruning imposes stricter constraints on what can be pruned, and the model’s performance
typically degrades more significantly. To compensate for this, retraining is traditionally required to
restore the model’s accuracy (Ma et al., 2023b). Retraining, though, is computationally expensive and
time-consuming, particularly for LLMs. This makes pruning with retraining less feasible in practice,
especially in scenarios requiring fast model adaptation and deployment. Given these challenges,
there is a growing need for structured pruning methods that avoid retraining while maintaining model
performance. Recent research has focused on developing such methods to improve the practicality of
pruning large-scale models.

One line of work focuses on pruning larger components of LLMs. For instance, FinerCut (Zhang
et al., 2024) prunes entire attention or feed-forward network blocks through a greedy algorithm that
exhaustively evaluates and removes the blocks with minimal impact on the model’s output. Similarly,
ShortGPT (Men et al., 2024) removes entire decoder layers to achieve sparsity. Another direction
focuses on pruning the weights of the linear layers in LLMs. SliceGPT (Ashkboos et al., 2024)
introduces a rotation-based pruning method where the weights are first rotated by orthogonal matrices
derived from principal component analyses (PCA) of the activations and the less important portions
of the weights are pruned. However, this method introduces additional memory and computation
overhead, as the orthogonal matrices must be stored to transform the residual connections during
inference. Moreover, SliceGPT’s pruning strategy solely relies on the activations and thus requires a
large calibration dataset and high precision (64-bit) for PCA calculations, making it computationally
expensive and memory-intensive. FLAP (An et al., 2024) proposes a novel pruning metric that
measures the stability of the channels to determine which parts of the network to prune. A bias update
mechanism is then used to compensate for the pruned parts. However, FLAP does not update the
remaining weights after pruning, which contains much more parameters than the bias vector. Thus,
incorporating bias-only compensation misses vast opportunities to remedy the performance loss due
to pruning. NASLLM (Shen et al., 2024) explores network architecture search (NAS) methods for
finding optimal subnets within LLMs and employs the alternating direction method of multipliers
(ADMM) to determine the optimal updates for the remaining weights. However, these involve slow
and inefficient search iterations, requiring approximately 5 hours to prune the LLaMA-7B model, as
reported in the paper.

3 METHODOLOGY

In this section, we first provide a detailed overview of the proposed pruning structure. Next, we discuss
the pruning metric inspired by Wanda. Finally, we introduce our efficient restoration mechanism for
the pruned weights, aimed at enhancing overall model fidelity.

3.1 PRUNING STRUCTURE

Consider a 2-layer perceptron with weights W1 ∈ Rn×p and W2 ∈ Rm×n along with biases b1 ∈ Rn

and b2 ∈ Rm, given an input activation X ∈ Rp×q , the forward pass can be expressed as follows:

f(X) = W2(σ(W1X + b1)) + b2, (1)

where σ(·) is an element-wise activation function such as ReLU.

In this setup, each row of W1 is directly associated with the corresponding column of W2. Specifically,
the i-th row of W1 connects to the i-th column of W2, reflecting the influence of the i-th hidden unit
on the output:

fi(X) = W2[:, i] · σ (W1[i, :]X + b1[i]) + b2, (2)

3
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where W2[:, i] ∈ Rn×1 represents the i-th column of W2 and W1[i, :] ∈ R1×m represents the i-th
row of W1. In structured pruning, pruning the i-th column of W2 eliminates the contribution from
the i-th hidden unit, resulting in the following output equation:

fi(X) = 0m×1 · σ (W1[i, :]X + b1[i]) + b2 = b2. (3)

Consequently, we can also remove the i-th row of W1 and i-th element of b1. The output computation
simplifies to:

f(X) = W ′
2 (σ(W

′
1X + b′1)) + b2, (4)

where W ′
2 represents W2 with the i-th column removed , W ′

1 denotes W1 with the i-th row removed,
and b′1 signifies b1 with the i-th element eliminated. Conversely, if we prune the i-th row of W1, the
i-th column of W2 can also be removed directly.

Therefore, we can achieve efficient structured pruning by leveraging the inherent connections between
the two sequential layers. This approach not only simplifies the model but also preserves performance,
as it eliminates unnecessary computations without compromising the model’s expressive capability.

As illustrated in Figure 1, the OPT architecture (Zhang et al., 2022) features decoder blocks that
typically consist of self-attention mechanisms followed by feed-forward networks, which include two
fully connected layers denoted by Wfc1 and Wfc2 . Consequently, we can apply our pruning strategy
by pruning the i-th column of Wfc2 while simultaneously removing the i-th row of Wfc1 and the
i-th element of bfc1 .

In LLaMA (Touvron et al., 2023), fully connected layers are also present within the down, gate,
and up layers. We denote their weights as follows: Wdown ∈ Rd×ddown , Wgate ∈ Rddown×d, and
Wup ∈ Rddown×d. The forward pass through these layers can be described as:

fup(X) = WupX,

fgate(X) = WgateX,

fdown(X) = Wdown (fup(X)⊙ σ(fgate(X))) ,

(5a)
(5b)
(5c)

where ⊙ is the element-wise product. Therefore, when pruning the i-th column of Wdown, we can
simultaneously eliminate the i-th row of both Wup and Wgate without incurring additional performance
loss, while achieving a gain in sparsity.

Next, we examine a self-attention block, which comprises four linear layers: WQ ∈ Rd×d, WK ∈
Rd×d, WV ∈ Rd×d, and WO ∈ Rd×d. The forward pass through these layers is described as follows:


Q = WQX, K = WKX, V = WVX,

Attn = softmax

(
QKT

√
d

)
V,

OUT = WO(Attn).

(6a)

(6b)

(6c)

Therefore, since WO and WV interact, we can remove the i-th column of WO and subsequently
eliminate the i-th row of WV . Additionally, WQ and WK interact through their rows due to the term
QK⊤, allowing us to remove the corresponding rows from both matrices.

However, our experiments (see Section 4.2) demonstrate that removing rows from WQ and WK

significantly degrades the performance of the pruned model. Consequently, we opt not to prune these
two layers; instead, we increase the sparsity level of the other layers uniformly to satisfy the overall
sparsity requirements.

3.2 PRUNING METRIC

As shown in Figure 2, consider a linear layer with weights W ∈ Rm×n and the corresponding
input activations X ∈ Rn×p. For each individual weight, Wanda (Sun et al., 2023) evaluates its
importance by calculating the product of its magnitude and the norm of the corresponding input
feature. Specifically, the score for the weight Wi,j is defined as follows:

Sij = |Wij | ·
∥∥X(:,j)

∥∥
2
, (7)

4
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Figure 2: Illustration of the modified Wanda’s metric for structured pruning, which removes the
columns of W where the corresponding columns in S have smaller column-wise sums.

where | · | represents the absolute value operator and
∥∥X(:,j)

∥∥
2

evaluates the ℓ2-norm of j-th column
of X The final score is computed by the product of these two scalar values.

Inspired by Equation 7, we extend this metric to structured pruning scenarios. Instead of comparing
the magnitudes of individual elements in S to determine which weights to prune, we compute the
column-wise sums of S and use these results for pruning decisions. Specifically, we remove the entire
columns of W where the corresponding columns in S exhibit smaller column-wise sums.

The computational complexity of our metric primarily arises from the element-wise products and
sums, yielding a complexity of O(mn), making it significantly efficient. In comparison, other
importance scores guiding pruning decisions, such as SparseGPT (Frantar & Alistarh, 2023) and
Pruner-Zero (Dong et al., 2024), have higher computational demands. SparseGPT requires an
additional step to estimate the Hessian matrix, resulting in a complexity of O(mn2+n3). Meanwhile,
Pruner-Zero relies on gradient information to compute the importance score, necessitating a backward
pass, which is computationally intensive.

In addition to its computational efficiency, we will demonstrate the pruning performance of this
metric in the subsequent section on experimental results, highlighting its robustness and superiority.
Together, these factors underscore the efficacy and efficiency of our proposed metric for structured
pruning.

3.3 RESTORATION OF THE PRUNED WEIGHTS

After identifying the columns to be deleted for the down and out projection operators, we address
the problem of optimally updating the remaining weights to compensate for the pruning loss. Let
W ∗ ∈ Rm×n represent the pruned weight matrix of the down/out projection operator under sparsity s,
with non-zero columns indexed by the set M ∈ {0, 1, . . . , n−1}n(1−s). Additionally, let W ∈ Rm×n

be the dense weight matrix and X ∈ Rn×p the activations from the preceding layer. The problem
can be formulated as the following least-squares optimization:

min
W∗

:,M∈Rm×(n·(1−s))

1

2

∥∥∥W ∗
(:,M)X(M,:) −WX

∥∥∥2
F
.

Solving this optimal update problem is particularly challenging for unstructured sparsity, as it
necessitates repeatedly solving linear systems for each row of W ∗. However, due to the column-wise
sparsity structure, the optimal solution W ∗

(:,M) can be efficiently obtained by computing the following
normal equation once, where the term δI with δ > 0 is added to enhance numerical stability:

W ∗
(:,M) = WXX⊤

(M,:)

(
X(M,:)X

⊤
(M,:) + δI

)−1

. (8)

It is noteworthy that NASLLM (Shen et al., 2024) proposes solving this problem via ADMM, which
requires pre-computing the term (XX⊤+ρI)−1 for the ADMM iterations, where ρ is the augmented
Lagrangian penalty parameter. However, the computational complexity of obtaining this inverse is
already equivalent to that of computing equation 8, not to mention the additional complexity of the

5
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subsequent iteration steps. Furthermore, ADMM is an iterative algorithm that converges slowly as it
approaches the optimal solution, inevitably facing a trade-off between efficiency and accuracy. In
contrast, our proposed restoration method is both accurate and efficient.

4 EXPERIMENTS

In this section, we validate the performance and efficiency of FASP through comprehensive experi-
ments. We begin by detailing our experimental settings, followed by a comparison of perplexity and
zero-shot results for the pruned models obtained via FASP and various baseline methods, as well as
the time taken for pruning.

Models and baseline methods. We compare FASP with state-of-the-art methods including
SliceGPT (Ashkboos et al., 2024), NASLLM (Shen et al., 2024), FLAP (An et al., 2024), and
LLM-Pruner (Ma et al., 2023b) on the LLaMA (Touvron et al., 2023) and OPT (Zhang et al.,
2022) families with sizes ranging from 125m to 30B downloaded from HuggingFace’s Transformers
library (Wolf et al., 2019).

Datasets and benchmarks. We evaluate the perplexity of the models under various sparsity pruned
by 128 randomly drawn calibration samples from the WikiText2 (Merity et al., 2016) dataset with
the 2048 sequence length. Additionally, following the settings in (An et al., 2024; Ma et al., 2023b;
Shen et al., 2024), we compare the zero-shot accuracy on standard common reasoning datasets
including BoolQ (Clark et al., 2019), PIQA (Bisk et al., 2020), HellaSwag (Zellers et al., 2019),
WinoGrande (Sakaguchi et al., 2021), OpenbookQA (Mihaylov et al., 2018), ARC-easy and ARC-
challenge(Clark et al., 2018).

Implementation details. We implement FASP using the PyTorch framework (Paszke et al., 2019) and
perform pruning on NVIDIA RTX 4090 GPUs, each equipped with 24GB of memory. To evaluate
its performance, we utilize the official implementations of SliceGPT and FLAP. Since the code for
NASLLM has not been released, we rely on the results reported in their paper for comparison. For
LLM-Pruner, which necessitates a costly fine-tuning process to recover performance, we directly
reference the results provided by the NASLLM authors. Our observations indicate that, on a single
GPU, FASP can effectively prune 30B-level LLMs, while SliceGPT is limited to pruning models up
to 13B due to the high memory requirements associated with PCA computations and the storage of
additional orthogonal matrices.

4.1 MAIN RESULTS

Perplexity and zero-shot results. We present the perplexity results for the pruned OPT and LLaMA
models of various sizes on WikiText in Tables 2 and 3, as well as in Figures 3 and 4. The data
and figures consistently demonstrate that FASP outperforms LLM-Pruner, SliceGPT, NASLLM,
and FLAP. We were unable to obtain the perplexity results for SliceGPT and NASLLM on the
LLaMA-30B model, as SliceGPT requires more memory than the RTX 4090 GPU can provide for
pruning, while the code for NASLLM is not available. Additionally, the zero-shot results for the
pruned LLaMA-7B models are presented in Table 4, where FASP outperforms the best baseline
method by 1.54% and 1.77% at 10% and 20% sparsity levels, respectively.

Pruning time. We compare the time required to prune LLaMA models among FASP and the baseline
methods, as shown in Table 1. For NASLLM and LLM-Pruner, the only reported time is for pruning
the LLaMA-7B model, which takes 5 hours and 3 hours on a single NVIDIA A100 GPU, respectively.
The results for FLAP, SliceGPT, and FASP are obtained using NVIDIA RTX 4090 GPUs. Our
findings show that FASP, which demonstrates the best pruning effectiveness, is several magnitudes
faster than NASLLM and LLM-Pruner, approximately 10× faster than SliceGPT, and as efficient as
FLAP in terms of pruning time.

Inference speedup. We evaluate the inference speedup of LLMs pruned by FASP on the NVIDIA
RTX 4090. The OPT-2.7B model, pruned to 30% sparsity by FASP, achieves a 16% increase in
end-to-end inference speed in our current implementation. We anticipate that this speedup can be
further enhanced through more advanced programming techniques.

6
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Method LLaMA-7B LLaMA-13B LLaMA-30B
NASLLM 300min - -
LLM-Pruner 180min - -
SliceGPT 44min 68min 211min
FLAP 5min 8min 22min
FASP (ours) 4min 6min 20min

Table 1: Comparison of pruning times: FASP outperforms state-of-the-art methods.

Method Sparsity OPT-125M OPT-1.3B OPT-2.7B
Dense 0% 27.66 14.63 12.47
SliceGPT 10% 35.31 16.74 14.10
NASLLM 10% 30.97 15.51 13.32
FASP (ours) 10% 28.53 14.80 12.42
SliceGPT 20% 54.88 20.17 16.81
NASLLM 20% 44.12 19.23 16.44
FASP (ours) 20% 30.55 15.64 14.19
SliceGPT 30% 84.16 28.53 24.12
NASLLM 30% 80.84 26.82 23.48
FASP (ours) 30% 34.67 17.81 15.11

Table 2: WikiText perplexity (↓) of pruned OPT models under various sparsity. FASP drastically
outperforms state-of-the-art methods.

4.2 ABLATION STUDIES

We assess the effectiveness of our pruning structure design through the ablation experiment presented
in Table 5. In this experiment, we compare the results obtained from pruning all operators’ columns
using evenly distributed sparsity, with column selection performed by Wanda and optimal update,
against those from the default setting of FASP. In the latter, the pruned rows and columns are correlated,
and the k and q projections are skipped as described in Section 3.1. Our findings demonstrate that
our pruning structure yields significantly better results.

Additionally, we evaluate the effectiveness of our strategy of not pruning the WQ and WK layers
from the self-attention mechanism on OPT-125M, as detailed in Table 6. The row labeled Pruning
WQ and WK indicates the results obtained by pruning the rows of WQ and the corresponding rows of
WK , applying evenly distributed sparsity across layers. In contrast, the row labeled FASP reflects our
default setting, where WQ and WK remain unpruned, and the sparsity is scaled to ensure consistent
overall sparsity. Our observations reveal that pruning the rows of WK and their corresponding rows
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Figure 3: Comparative analysis of sparsity versus perplexity across different methods for OPT-1.3B
and OPT-2.7B models on WikiText dataset.
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Figure 4: Comparative analysis of sparsity versus perplexity across different methods for LLaMA-7B
and LLaMA-13B models on WikiText dataset.

Method Sparsity LLaMA-7B LLaMA-13B LLaMA-30B
Dense 0% 5.68 5.09 4.10
LLM-Pruner 10% 7.46 6.38 -
SliceGPT 10% 7.00 6.43 -
NASLLM 10% 6.10 5.39 4.44
FLAP 10% 6.34 5.45 4.52
FASP (ours) 10% 5.94 5.31 4.46
LLM-Pruner 20% 11.97 10.05 -
SliceGPT 20% 8.71 7.55 -
NASLLM 20% 6.89 5.90 4.94
FLAP 20% 7.40 6.03 5.18
FASP (ours) 20% 6.48 5.74 4.93
LLM-Pruner 30% 18.58 22.36 -
SliceGPT 30% 15.95 9.79 -
NASLLM 30% 8.28 6.67 5.63
FLAP 30% 9.18 6.97 6.28
FASP (ours) 30% 7.50 6.46 5.51

Table 3: WikiText perplexity (↓) of pruned LLaMA models under various sparsity. FASP outperforms
state-of-the-art methods.

Method Sparsity BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Mean
Dense 0% 75.11 79.16 76.22 70.09 72.94 44.71 44.40 66.09
LLM-Pruner 10% 67.95 77.42 69.31 63.54 66.33 39.85 41.20 60.80
SliceGPT 10% 57.68 69.80 59.32 68.11 62.75 36.01 38.00 55.95
FLAP 10% 74.43 75.41 68.68 67.01 65.78 38.48 41.00 61.54
NASLLM 10% 74.37 76.88 70.71 67.56 68.39 40.10 39.20 62.46
FASP (ours) 10% 73.15 77.53 74.11 68.90 70.45 42.92 41.00 64.00
LLM-Pruner 20% 59.39 75.57 65.34 61.33 59.18 37.12 39.80 56.82
SliceGPT 20% 37.89 64.09 45.67 62.75 53.62 31.74 33.20 46.99
FLAP 20% 68.59 74.21 64.98 64.40 50.89 37.80 40.20 58.58
NASLLM 20% 70.98 74.92 67.29 64.64 64.23 36.52 39.40 59.71
FASP (ours) 20% 69.36 75.95 69.40 66.77 68.27 40.19 40.40 61.48

Table 4: Zero-shot results (accuracy, ↑) of the pruned LLaMA-7B models under various sparsity.
FASP outperforms state-of-the-art methods.

of WQ significantly diminishes the performance of the pruned model, thereby underscoring the
effectiveness of our pruning strategy.
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10% 20% 30%
Wanda 30.61 39.28 54.89
FASP 28.53 30.55 34.67

Table 5: WikiText perplexity (↓) of pruned LLaMA models under various sparsity.

10% 20% 30%
Pruning WQ and WK 44.13 61.62 83.65
FASP 28.53 30.55 34.67

Table 6: WikiText perplexity (↓) of pruned LLaMA models under various sparsity.

5 DISCUSSION

In this section, we reflect on the limitations of FASP. Despite its strengths, one limitation is the
decision to forgo pruning the rows of WQ and WK in the self-attention layers. While our experiments
demonstrated that pruning these layers degrades performance, future work could explore more
sophisticated strategies for dealing with these components, such as adaptive sparsity levels or selective
pruning criteria that may mitigate the performance loss.

6 CONCLUSION

In this paper, we present FASP, a fast and accurate structured pruning method designed for LLMs.
By capitalizing on the inherent connections between sequential layers, FASP allows for efficient
pruning with minimal performance drop. Our proposed pruning structure and metric streamline
the pruning process, while the restoration mechanism effectively recovers model fidelity. Through
comprehensive experiments on the OPT and LLaMA model families, we demonstrate that FASP
significantly outperforms existing pruning techniques both in terms of speed and accuracy. Notably,
FASP is capable of pruning large-scale models like LLaMA-30B in a fraction of the time required by
other methods, while maintaining competitive performance on perplexity and zero-shot evaluation
tasks. These results highlight the potential of FASP to improve the deployment efficiency of LLMs
across diverse hardware platforms, including those with limited computational resources.
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