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Abstract

Image classification systems inherit biases from uneven001
group representation, e.g., blond hair disproportionately002
associated with females in face datasets, reinforcing stereo-003
types. A recent approach leverages the Stable Diffusion004
model to generate balanced training data, but these mod-005
els often struggle to preserve the original data distribution.006
In this work, we explore multiple diffusion-finetuning tech-007
niques, e.g., LoRA and Dreambooth, to generate images008
that more accurately represent specific training groups by009
learning directly from their samples. We propose Clus-010
tered Dreambooth, clustering group images and training011
separate models for clusters to handle intra-group diver-012
sity. Using these models, we generate images uniformly013
across groups to pretrain a classification model, followed014
by finetuning on real data. Experiments on multiple bench-015
marks demonstrate that the studied finetuning approaches,016
especially Clustered DreamBooth, outperform vanilla Sta-017
ble Diffusion on average and achieve results comparable018
to state-of-the-art debiasing techniques like Group-DRO,019
while surpassing them as the dataset bias severity in-020
creases.021

1. Introduction022

Image classification models often exhibit harmful biases,023
posing significant risks for real-world deployment [17, 30,024
35]. Biases stem from dataset imbalances; e.g., in CelebA,025
blond females outnumber blond males, causing misclassi-026
fication. While numerous debiasing techniques have been027
proposed [13, 18, 25], mitigating bias becomes increasingly028
difficult when dataset imbalances become severe. With the029
recent breakthroughs in image generation using diffusion030
models like Stable Diffusion [23], we pose a critical ques-031
tion: Can we harness the generative power of these models032
to create images that facilitate the training of fair classifica-033
tion systems, even in the presence of extreme dataset bias?034

We first leverage the vanilla Stable Diffusion (SD) [23]035
to train fair classification models by combining class and036
bias labels in the prompts (e.g., “photo of a blond037
male person”). However, we find that the generated im-038

ages often diverge from the original data distribution due to 039
the stochastic nature of diffusion models [27]. They may 040
also fail to follow prompt instructions precisely. Attempts 041
to prompt SD to generate ‘waterbird on land’ images often 042
produce water backgrounds, even when explicitly instructed 043
otherwise. Generation quality improves with specific, de- 044
tailed prompts, as demonstrated by FFR [20], which uses 045
exact bird names and background descriptions. However, 046
without precise domain knowledge about the dataset, such 047
prompts risk producing irrelevant or out-of-distribution im- 048
ages. This limitation motivates us to explore methods 049
that can generate in-distribution images by directly learning 050
from the dataset. To address these challenges, we explore 051
LoRA-based finetuning [8] and DreamBooth [24], which 052
finetune Stable Diffusion on specific training groups. Addi- 053
tionally, we introduce Clustered Dreambooth, which clus- 054
ters images within each group and trains separate Dream- 055
booth models on each cluster to better capture intra-group 056
variations. Using these methods, we generate group- 057
balanced synthetic images to pretrain a classification model, 058
followed by finetuning on real data. Our contributions: 059
• We explore diffusion models and finetuning mechanisms 060

like LoRA and Dreambooth to generate group-specific 061
images for fair classification. We then propose Clustered 062
Dreambooth, which clusters group images and trains sep- 063
arate Dreambooth models on each cluster to better capture 064
intra-group variations. 065

• We generate group-balanced synthetic images to pretrain 066
a classification model, followed by finetuning only the 067
softmax on real data. 068

• Extensive experiments on fairness benchmarks demon- 069
strate that our methods outperform existing approaches, 070
particularly under severe dataset biases where they beat 071
traditional methods like Group-DRO [25] by a large mar- 072
gin. 073

2. Related Work 074

Bias Mitigation. Bias mitigation falls into two categories: 075
known and unknown biases. For known biases, where 076
spurious attributes are predefined, methods include worst- 077
group optimization (GroupDRO [25]), last-layer retrain- 078
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ing [13], and semi-supervised approaches with partial bias079
annotations [11, 18]. For unknown biases, dual-branch net-080
works [15, 18] and contrastive methods [32, 33] refine fea-081
ture representations by clustering same-class samples and082
identifying pseudo bias labels.083
Data Augmentation using Generative Models. Gener-084
ative models have been widely used for data augmenta-085
tion [3, 4, 16, 29, 36]. Early works used GANs [6], while086
recent methods employ diffusion models. DA-Fusion [29]087
uses Textual Inversion [5] to generate augmentations, while088
DiffuseMix [10] combines natural and generated images to089
combat adversarial attacks.090
Generative Models for Debiasing. Generative models091
have also been used for debiasing classification systems [2,092
20, 22, 26]. GAN-based approaches [2, 22] synthesize bias-093
conflicting samples to augment training data. Diffusion-094
based methods utilise pre-trained models adapted to gen-095
erate group-balanced images. FFR [20] generates group-096
balanced images from Stable Diffusion and finetunes clas-097
sifiers with real data. We extend this by leveraging LoRA098
and Dreambooth to generate in-distribution images directly099
from training groups.100

3. Problem Statement and Methodology101

3.1. Preliminaries102

The goal of this work is to train fairer image classification103
models using synthetic data from diffusion models. Let X104
be the set of real training images, where each xi ∈ X is105
associated with a class label yi ∈ Y , a bias label ai ∈ A,106
and a group label gi ∈ G where gi = (yi, ai). A model107
f : X → Y is optimized to classify the images, consising108
of: a) Feature encoder e, pretrained on a large dataset, and109
b) Classifier c, finetuned with e to learn class labels. This110
model is usually trained using the Cross-Entropy (CE) loss111
(see supplementary A.1). Bias arises when training data112
is imbalanced across groups, leading to disparities in test113
performance across groups.114

3.2. Generating Synthetic Images115

With advancements in generative modeling [23, 28], we ex-116
plore their potential for training fair classifiers by generat-117
ing images that reflect the training distribution and enhance118
minority group generalization.119
Vanilla Stable Diffusion (SD). We generate images from120
each group g = (y, a) by specifying only y and a in the121
prompts. Since these generations are independent of train-122
ing data, domain mismatches or misinterpretations may oc-123
cur as mentioned before.124
LoRA-based Finetuned Stable Diffusion. To align gener-125
ations with training data, we finetune an SD model on each126
group g, training on l = min |g| : g ∈ G randomly selected127
samples. Images are then generated using prompts specify-128
ing y and a.129

Dreambooth. To improve resemblance between training 130
and generated images, we use Dreambooth [24], a text-to- 131
image model that imitates objects or concepts from a small 132
image set. It finetunes a pretrained text-to-image model by 133
learning a unique identifier (e.g., “[V]”) such that on in- 134
ference time, if the model is queried by that identifier (e.g., 135
“photo of a [V] dog”), it generates new images of 136
the given object. Likewise, we sample 100 images from 137
each training group, and train a separate Dreambooth model 138
h on the same, where the prompt is of the form “photo of 139
a [V] y”. 140

Clustered Dreambooth. Dreambooth expertises in learn- 141
ing a concept from 3 − 5 images. However, a training 142
group like Blond Male consists of images of many indi- 143
viduals sharing a common trait, hair color. To avoid over- 144
whelming a single Dreambooth model, we cluster the CLIP 145
embeddings [21] of images in each group. Let kgD denote 146
the number of clusters, where D and g refer to the training 147
dataset and a group in D respectively. We train a pool of 148
Dreambooth models Hg = {hg

1, h
g
2, h

g
3, · · · , h

g
kg
D
} on the 149

obtained clusters. We implement Clustered-Dreambooth 150
(i.e., the Dreambooth pool Hg) using LoRA-based finetun- 151
ing [9], which ensures lesser, feasible training time. Finally 152
the trained models are utilized to generate images for each 153
g. For simplicity, we assume equal kgD for each group g, 154
and denote the number of clusters as kD for the rest of the 155
paper. 156

3.3. Stage 1: Training with the Generated Images 157
Once the generative models are trained with the individ- 158
ual data groups, we generate M images from each group 159
g using Vanilla SD, LoRA-finetuned SD and Dreambooth. 160
For Clustered Dreambooth, we generate M cl

D images from 161
each cluster in a group belonging to dataset D, such that 162
the total number of images generated from the group is 163
M cl

D × kD = M . We use a CLIP [21]-based filter to rank 164
and select the top m relevant images per group. 165

CLIP-based Filtering. To find the most relevant images, 166
we apply a CLIP score in two ways for each image I . 167

1. CLIP-Label(I,pc) : We compute the image-text simi- 168
larity of I with a prompt pc, of the format “Photo of 169
a {c}”, where c is the class label. 170

2. CLIP-Centroid(I, z̄g): To ensure chosen images re- 171
semble the group g, we compute the centroid of CLIP 172

embeddings, z̄g = 1
Mg

∑Mg

i=1 z
g
i , where Mg is the group 173

size, and zgi is the ith image embedding. We calculate 174
the CLIP similarity between each generated image and 175
its corresponding group centroid. 176

The final scoring function becomes a combination of 177
CLIP-Label(I, pc) and CLIP-Centroid(I, z̄g): 178

179
CLIP-Score(I, pc, z̄g) = α.CLIP-Label(I, pc)+ 180

(1− α).CLIP-Centroid(I, z̄g) (1) 181
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Figure 1. Overview of the studied pipeline. In Stage 1, we generate images uniformly from each group (e.g., non-blond female (g1),
non-blond male (g2), blond female (g3), blond male (g4)) using the approaches in Section 3.2 and train a classification model f pre with CE
and SupCon losses. In Stage 2, we finetune only the linear classifier on the original dataset. Finally, we compare WGA and AGA across
methods, showing Clustered Dreambooth outperforms others.

where α is a hyperparameter. After selecting the top-ranked182
images from each group, a classification model f is trained183
on these group-balanced synthetic images. This balanced184
pretraining enables f pre to learn fair representations.185

3.4. Stage 2: Finetuning with Original Data186

After pretraining on group-balanced synthetic data, we187
adapt the model to real data through finetuning.188
Last Layer Retraining with Real Data. To prevent bias189
reintroduction, we finetune only the classification layer cpre190
of the pretrained model f pre, freezing the feature encoder191
epre. To address any class imbalance, each finetuning batch192
samples classes uniformly. We refer to this method as193
LLRall, and the finetuned model as ffine. Unlike FFR, which194
fine-tunes the entire model, our approach reduces hyper-195
parameter dependency. Figure 1 illustrates our two-stage196
method on CelebA [1].197

We train both stages using a weighted sum of CE loss198
and Supervised Contrastive (SupCon) loss [12] (see supple-199
mentary A.1).200

4. Experiments and Results201

We evaluate diffusion model variants on three datasets and202
analyze their performance. Implementation details and de-203
sign choices are elaborated upon in the supplementary ma-204
terial (see section A.2).205

4.1. Datasets For Evaluation 206

Waterbirds [25] consists of bird images labeled as waterbird 207
or landbird, with background bias, only a few waterbird im- 208
ages have land background and vice-versa. CelebA [1] con- 209
tains 202, 599 face images; we use Blond Hair as the tar- 210
get attribute, which exhibits gender bias. UTKFace [34] in- 211
cludes 20, 000 face images annotated with age, gender, and 212
ethnicity; we use gender as the target and age as the bias at- 213
tribute. We report worst-group (WGA) and average-group 214
(AGA) accuracies following prior work [14, 25], addition- 215
ally evaluating methods under varying bias severity, includ- 216
ing extreme cases with a bias ratio of 0.999. This setting is 217
particularly challenging for traditional debiasing methods, 218
as they often struggle to maintain performance under severe 219
bias. Methods used for generation under the severe bias ra- 220
tio (0.999) scenario are further detailed in supplementary 221
section A.5. 222

4.2. Key Results 223

Table 1 presents WGA and AGA across datasets, showing 224
generative models’ effectiveness in mitigating bias. Clus- 225
tered Dreambooth achieves the highest WGA across bench- 226
marks, outperforming other generative approaches and tra- 227
ditional debiasing methods like Group-DRO by captur- 228
ing intra-group variations. Under severe bias conditions 229
(bias ratio = 0.999), traditional debiasing methods expe- 230

3



CVPR
#26

CVPR
#26

CVPR 2025 Submission #26. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Table 1. Final Classification Performance on the Original Dataset and Bias Ratio 0.999 variant using Vanilla SD, LoRA, Dreambooth, and
Clustered Dreambooth across three datasets. While LoRA, Dreambooth, and Clustered Dreambooth achieve worst group accuracy (WGA)
comparable to state-of-the-art debiasing methods like GDRO [25] and SELF [14] on the original datasets, they significantly outperform
these methods in the high bias-ratio setting. Results are averaged over three random seeds. † denotes implementation using existing
codebases. The best and second-best scores are marked in bold and underlined, respectively.

Dataset Method
Synthetic

Data?

Original Dataset Bias Ratio 0.999 Average Performance

Worst Average Worst Average Worst Average

Waterbirds

ERM # 63.7 88.0 29.0 66.7 46.3 77.3

FFR† [20] ! 69.5 84.0 57.3 84.2 63.4 84.1

Vanilla SD ! 74.6±2.90 80.5±0.34 69.9±0.70 80.1±0.13 72.2 80.3

LoRA-finetuning ! 86.5±3.81 89.9±0.76 61.5±0.40 84.0±0.11 74.0 87.0

Dreambooth [24] ! 89.3±0.75 90.1±0.50 82.4±0.25 88.3±0.22 85.9 89.2

Clustered Dreambooth ! 88.1±0.92 90.2±0.11 84.2±0.46 88.5±0.14 86.0 89.3

GDRO† [25] # 91.4 93.5 23.5 65.5 57.4 79.5

SELF† [14] # 93.0 94.0 25.5 64.2 59.2 79.1

CelebA

ERM # 47.8 94.9 31.7 67.3 39.7 81.1

FFR† [20] ! 68.9 85.7 22.8 47.7 45.9 66.7

Vanilla SD ! 76.4±1.27 84.2±0.37 77.1±0.42 84.7±0.67 76.7 84.4

LoRA-finetuning ! 82.3±1.51 87.2±0.56 73.5±2.83 83.2±0.29 77.9 85.2

Dreambooth [24] ! 82.1±0.00 87.9±0.32 78.8±0.21 84.6±0.19 80.4 86.2

Clustered Dreambooth ! 84.1±0.63 88.4±0.19 81.8±0.35 85.9±0.28 82.9 87.1

GDRO† [25] # 88.9 92.9 27.2 75.2 58.0 84.0

SELF† [14] # 83.9 91.1 45.6 95.4 64.7 93.2

UTKFace

ERM # 74.3 84.5 31.0 48.9 52.6 66.7

FFR† [20] ! 67.4 81.4 55.0 68.0 61.2 74.7

Vanilla SD ! 62.0±3.89 83.3±0.92 67.8±1.27 82.7±0.61 64.9 83.0

LoRA-finetuning ! 68.6±3.91 85.6±0.76 64.5±2.59 82.4±0.26 66.5 84.0

Dreambooth [24] ! 57.9±3.91 80.9±0.76 66.9±2.59 77.1±0.26 62.4 79.0

Clustered Dreambooth ! 76.0±1.22 83.5±0.35 60.5±1.22 80.8±0.35 68.2 82.1

GDRO† [25] # 81.6 85.9 30.5 50.3 56.0 68.1

SELF† [14] # 65.9 82.3 0.6 50.5 33.3 66.4

rience significant performance degradation, while genera-231
tive methods, particularly Clustered Dreambooth, remain232
robust due to their inherent imagination abilities. This ro-233
bustness is attributed to the diversity of synthetic images234
generated by clustering within groups, which helps miti-235
gate the impact of extreme dataset imbalances. On UTK-236
Face, vanilla Stable Diffusion slightly outperforms others.237
Overall, our results demonstrate that Clustered Dreambooth238
not only enhances fairness but also maintains strong perfor-239
mance across varying bias severities, making it a promising240
approach for training fair classifiers. We also conduct fur-241
ther experiments highliting the effectiveness of generative242
methods and its nuances like time complexity in the supple-243
mentary material.244

5. Conclusion 245

In this work, we explored the use of diffusion models and 246
their finetuning mechanisms, such as LoRA and Dream- 247
booth, to generate group-specific synthetic images for train- 248
ing fair classification models. We introduced Clustered 249
Dreambooth, which clusters group images and trains sep- 250
arate Dreambooth models on each cluster to better capture 251
intra-group variations. Extensive experiments on multiple 252
fairness benchmarks demonstrated that our methods outper- 253
form existing approaches, particularly under severe dataset 254
biases showing that it is possible to train robust classifiers 255
that remain effective even in highly imbalanced settings us- 256
ing generative models. Future work will focus on improving 257
generative diversity and unsupervised methods that do not 258
require group labels, enabling automatic group detection. 259

4



CVPR
#26

CVPR
#26

CVPR 2025 Submission #26. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

References260

[1] CelebA dataset. http://mmlab.ie.cuhk.edu.hk/261
projects/CelebA.html. 3, 2, 4, 6262

[2] Jaeju An, Taejune Kim, Donggeun Ko, Sangyup Lee, and263
Simon S Woo. Aˆ 2: Adaptive augmentation for effectively264
mitigating dataset bias. In Proceedings of the Asian Confer-265
ence on Computer Vision, pages 4077–4092, 2022. 2266

[3] Shekoofeh Azizi, Simon Kornblith, Chitwan Saharia, Mo-267
hammad Norouzi, and David J Fleet. Synthetic data from268
diffusion models improves imagenet classification. arXiv269
preprint arXiv:2304.08466, 2023. 2270

[4] Xuefeng Du, Yiyou Sun, Jerry Zhu, and Yixuan Li. Dream271
the impossible: Outlier imagination with diffusion models.272
Advances in Neural Information Processing Systems, 36,273
2024. 2274

[5] Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patash-275
nik, Amit H Bermano, Gal Chechik, and Daniel Cohen-276
Or. An image is worth one word: Personalizing text-to-277
image generation using textual inversion. arXiv preprint278
arXiv:2208.01618, 2022. 2, 7279

[6] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing280
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and281
Yoshua Bengio. Generative adversarial networks. Commu-282
nications of the ACM, 63(11):139–144, 2020. 2283

[7] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,284
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a285
two time-scale update rule converge to a local nash equilib-286
rium. Advances in neural information processing systems,287
30, 2017. 6288

[8] Edward Hu et al. Lora: Efficient fine-tuning of large models.289
Hugging Face Blog, 2021. Accessed: 2025-03-06. 1290

[9] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-291
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen.292
Lora: Low-rank adaptation of large language models. arXiv293
preprint arXiv:2106.09685, 2021. 2294

[10] Khawar Islam, Muhammad Zaigham Zaheer, Arif Mah-295
mood, and Karthik Nandakumar. Diffusemix: Label-296
preserving data augmentation with diffusion models. In Pro-297
ceedings of the IEEE/CVF Conference on Computer Vision298
and Pattern Recognition (CVPR), pages 27621–27630, 2024.299
2300

[11] Sangwon Jung, Sanghyuk Chun, and Taesup Moon. Learn-301
ing fair classifiers with partially annotated group labels. In302
Proceedings of the IEEE/CVF Conference on Computer Vi-303
sion and Pattern Recognition, pages 10348–10357, 2022. 2304

[12] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna,305
Yonglong Tian, Phillip Isola, Aaron Maschinot, Ce Liu, and306
Dilip Krishnan. Supervised contrastive learning. Advances307
in Neural Information Processing Systems, 33:18661–18673,308
2020. 3, 1309

[13] Polina Kirichenko, Pavel Izmailov, and Andrew Gordon Wil-310
son. Last layer re-training is sufficient for robustness to spu-311
rious correlations. arXiv preprint arXiv:2204.02937, 2022.312
1, 2313

[14] Tyler LaBonte, Vidya Muthukumar, and Abhishek Kumar.314
Towards last-layer retraining for group robustness with fewer315
annotations. arXiv preprint arXiv:2309.08534, 2023. 3, 4316

[15] Jungsoo Lee, Eungyeup Kim, Juyoung Lee, Jihyeon Lee, and 317
Jaegul Choo. Learning debiased representation via disentan- 318
gled feature augmentation. Advances in Neural Information 319
Processing Systems, 34:25123–25133, 2021. 2 320

[16] Giovanni Mariani, Florian Scheidegger, Roxana Istrate, 321
Costas Bekas, and Cristiano Malossi. Bagan: Data augmen- 322
tation with balancing gan. arXiv preprint arXiv:1803.09655, 323
2018. 2 324
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Harnessing Diffusion-Generated Synthetic Images for Fair Image Classification

Supplementary Material

We organize this appendix as follows. We begin with411
details on the loss functions used to train our classifica-412
tion pipeline (subsection A.1), elaboration about the im-413
plementation details and some design choices (subsec-414
tion A.2), followed by the data split for the UTKFace415
dataset [34](subsection A.3). Next, we describe the cluster-416
ing process used to implement the Clustered Dreambooth417
pipeline (subsection A.4), the method used for generation418
under the sever bias ratio scenario (subsection A.5) and the419
prompts used for generating images from different diffu-420
sion model variants (subsection A.6). We then present key421
ablations on our design choices in subsection A.7, where422
we demonstrate the importance of the CLIP-Score intro-423
duced in eq. 2 (subsection 3.3 in the main paper), ana-424
lyze various strategies for the classification finetuning stage,425
and examine the impact of selecting different proportions426
of synthetic images for pretraining. Additionally, we dis-427
cuss the roles of CE and SupCon losses in the classification428
pipeline. We conclude with an analysis of hyperparame-429
ter effects during pretraining with group-balanced synthetic430
data (subsection A.8), an evaluation of representation simi-431
larity between Clustered Dreambooth images and real data432
(subsection A.9), a report on worst-group classification per-433
formance after the pretraining stage (subsection A.10), and434
qualitative examples of images generated by different meth-435
ods explored in this work (subsection A.11).436

A. Experiments - Extended Details437

A.1. Loss Function for the Two-Stage Pipeline438

Recall that our two stage pipeline is trained by a weighted439
combination of the Cross-Entropy (CE) loss and the Super-440
vised Contrastive (SupCon) loss. We define both of them441
formally here. Given the set of training images X , where442
each xi ∈ X is associated with a class label yi ∈ Y , the CE443
loss is defined as:444

LCE =
1

|X |

|X |∑
i=1

|Y|∑
j=1

−pij log p̂ij (2)445

where [pi1, pi2, · · · , pi|Y|] is the one-hot vector representa-446
tion of yi and [p̂i1, p̂i2, · · · , p̂i|Y|] is the corresponding soft-447
max vector, obtained from the model classification model f448
(see Section 3.1 in the main paper).449

The SupCon loss encourages the model to learn450
more discriminative features by promoting greater sep-451
aration between samples from different classes. We452
consider a mini-batch of size B of features denoted as453
{e(x1), e(x2), · · · , e(xB)} and corresponding class labels454

as {y1, y2, . . . , yB} (e is the feature encoder). Let us con- 455
sider the current sample with index j, and the set of positive 456
examples from the mini-batch by Pj : {i ∈ B s.t. yi = 457
yj}. Similarly, the set of negative examples is denoted by 458
Nj : {i ∈ B s.t. yi ̸= yj}. The SupCon loss [12] for a 459
image xj is defined as, 460

Lsup-con =
∑
j∈B

−1

|Pj |
∑
p∈Pj

log
exp(e(xj)

T
e(xp)/τ)∑

n∈Nj

exp(e(xj)
T
e(xn)/τ)

,

(3) 461
We set the temperature τ = 1 for all experiments as we
do not find any significant improvements by changing its
value. The final loss function becomes a combination of the
CE loss and SupCon loss:

L = β.LCE + (1− β)Lsup-con

where β = 0.5 for all experiments. 462

Table 2. Classification Performance vs Time Complexity
Tradeoff for the generative-based methods, averaged across all
datasets and both bias ratios. While Clustered Dreambooth incurs
high time complexity, it is the best performing method on average,
followed by Dreambooth and LoRA-finetuning.

Method Time Complexity WGA AGA

Vanilla SD O(1) 71.3 82.6
LoRA-finetuning O(|GD|) 72.8 85.4
Dreambooth O(|GD|) 76.2 84.8
Clustered Dreambooth O(|GD|.kD) 79.1 86.2

A.2. Implementation Details and Design Choices 463

We use SD v1.4 for all variants, generating M = 5000 im- 464
ages per group. Images are ranked using the CLIP-Score 465
(eq. 1), and the top 75% are selected. A ResNet-50 model 466
is pretrained on synthetic data and finetuned on real data 467
for 20 epochs using SGD. Hyperparameters are uniformly 468
set across datasets. We analyze the tradeoff between per- 469
formance and time complexity as well (Table 2). While 470
Clustered DreamBooth incurs higher time complexity, it 471
achieves the best overall performance. The method used 472
for generating images for the severse bias ratio case is dis- 473
played in Figure 2 and explained further in A.5. 474

A.3. UTKFace Splits 475

Following previous works [19, 20], we deliberately intro- 476
duce biases into the UTKFace dataset [34], wherein we use 477
Gender as the target attribute and Age as the bias attribute 478
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Figure 2. Image Generation Pipeline for Bias Ratio= 0.999.
For approaches that finetune SD on training images, bias-
conflicting samples (e.g., Blond Males in CelebA) are generated
using diffusion models trained on bias-aligned images (e.g., Blond
Females). Here, we omit the V token in Dreambooth prompts for
more accurate target group generation.

with 90% bias ratio. Particularly, we ensure that the num-479
ber of images in the training set for the different groups are:480
103, 934, 5730 and 636 for male adults, male children, fe-481
male adults and female children respectively. To binarize482
the Age attribute, ages ≤ 10 are considered as children, and483
those ≥ 20 are considered adults [19, 20]. Thus, the fe-484
males are biased towards older age, whereas the males are485
biased towards the children.486

A.4. Choice of Clusters for Clustered Dreambooth487

Recall that Clustered Dreambooth first clusters the images488
from a group into kD clusters (D is the dataset) and then489
trains Dreambooth [24] models on the individual clusters490
to ensure that each Dreambooth model is trained on simi-491
lar images. We choose kD based on the size of the small-492
est group in D, denoted by Mgs (gs represents the smallest493
group). To ensure that the Dreambooth models have enough494
images to train on for each cluster, we choose kD such that495
approximately atleast 20 samples are present per cluster in496
the smallest group, i.e., kD ≈ mgs

20 . However, for larger497
datasets, kD may become large as the smallest group grows498
in size, increasing the complexity of Clustered Dreambooth.499

Therefore, we choose KD to be min(
Mgs

20 , 20). Likewise,500
for Waterbirds [25] (Mgs = 56), we choose kD = 3, for501
CelebA [1] (Mgs = 1387), kD is fixed at 20, and for UTK-502
Face [34] (Mgs = 103), kD is set to 5. Note that kD is503
fixed for a single dataset for simplicity, i.e., it is same for504
groups other than the smallest group in the dataset, assum-505
ing that the intra-group variations are generally consistent506
across multiple training groups. Further optimization on the507
choice of kD is left as a future work.508

A.5. Generation method for varying bias severity509

For the scenarios where the dataset is severely biased, set-510
ting the bias ratio to 0.999 (i.e., 99.9% of training im-511
ages belong to bias-aligned groups), the diffusion models512
must generate images for minority groups to counteract513

bias severity. For Vanilla SD and FFR, images are gen- 514
erated by prompting with the bias label a and class la- 515
bel y. As LoRA-finetuned SD, DreamBooth, and Clus- 516
tered DreamBooth rely on the training group images, the 517
bias-conflicting images are generated using models trained 518
on bias-aligned groups (e.g., Blond Males are generated 519
from the model trained on Blond Females). Interestingly, 520
for the Dreambooth models, we find that during the bias- 521
conflicting sample generation, removing the learnt V token 522
from the prompt leads to more accurate depiction of the tar- 523
get group descriptions. On manual inspection, we find that 524
this way of transferring the style of one group into another 525
(described in Fig. 2) leads to images that visually follow 526
the distribution of the input data, while imitating the target 527
group. Generated images are filtered using the CLIP-Label 528
score with α = 1, as the minority groups lack sufficient 529
samples for the CLIP-Centroid computation. The classifier 530
is then pretrained on group-balanced synthetic images and 531
finetuned on the severely biased dataset for each method. 532

A.6. Prompts used for Generation 533

Here we present the prompts we used for each method and 534
dataset to generate images from every group. 535

Prompts for Vanilla SD [23]. For Waterbirds, the 536
prompt used is “photo of a {class-label} on 537
{bias-label}.”, where class-label can be land- 538
bird or waterbird, and bias-label can be land or water. 539
For UTKFace, the prompt used is “photo of a 540
{class-label} {bias-label}.”, where class-label 541
can be female or male, bias-label can be child or adult. 542
Finally, for CelebA, we use the following template: 543
“photo of a {bias-label} person with 544
blond hair” to generate males and females (i.e., the 545
bias-labels) with blond hair. For the non-blond class, we 546
prompt the model with “photo of a {bias-label} 547
person”, whereas we use a negative prompt having 548
‘blond hair’, to force the model to generate non-blond 549
males and females. As the vanilla SD is not finetuned on 550
our training sets, we use the same set of prompts for the 551
bias ratio 0.999 case. 552

Prompts for Finetuned Diffusion Models. For LoRA- 553
finetuning, we use prompts of the format ‘Photo 554
of a {class-label} on {bias-label}’ 555
for Waterbirds (class-label ∈ {waterbird, 556
landbird}, bias-label ∈ {water, land}), and 557
‘Photo of a {class-label} person who is 558
a {bias-label}’ for UTKFace (class-label 559
∈ {male, female}, bias-label ∈ {adult, 560
child}). For CelebA, the prompts used are: ‘Photo 561
of a non-blond {bias-label} person’ for the 562
class Non-Blond, and ‘Photo of a {bias-label} 563
person with blond hair’ for the class Blond, 564
where bias-label ∈ {male, female}. We use 565
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Table 3. Effect of CLIP-Score weighting parameter α on Clustered Dreambooth final worst group accuracies. We observe that setting
α = 1 outperforms α = 0, highlighting the effectiveness of CLIP based similarity between the textual form of the class label and the
images. Setting α = 0.5 (as reported in the main paper) works best for most datasets. Randomly selecting the images without using any
scoring functions is also seen to perform on par with the other settings, the performance is generally weaker. All scores are with respect to
the original versions of the datasets.

Selection
Method

Waterbirds CelebA UTKFace

WGA AGA WGA AGA WGA AGA

α = 1 87.0 89.9 83.8 87.9 72.7 84.5
α = 0 84.7 90.15 83.3 87.95 68.8 82.9
α = 0.5 88.1 90.2 84.1 88.4 76.0 83.5
Random sampling 84.9 90.4 81.1 87.0 73.0 84.62

the same set of prompts for Dreambooth [24] (i.e., single566
model per group) and Clustered Dreambooth. Recall that567
each of these methods learn specific tokens to represent568
the groups (or clusters in the groups in case of Clustered569
Dreambooth). We denote the learnt tokens by ‘[V]’.570
Likewise, for Waterbirds, we use the prompt “photo571
of a [V] bird”, where ‘[V]’ represents the learnt572
tokens by the model trained on the specific group or cluster.573
For UTKFace and CelebA, we find that providing the574
class-label in the prompt generates more accurate images.575
Hence, for UTKFace, the prompt is of the form “photo576
of a [V] {class-label} person”. For CelebA,577
the blond-class images are generated using “photo of578
a [V] person with blond hair”, whereas for579
the non-blond class, the prompt is “photo of a [V]580
person” with blond hair as the negative prompt.581

Prompts for Bias Ratio = 0.999 Scenario. The prompts582
used are similar to the case of the original dataset for each583
generation method. For UTKFace, we generate the female584
children faces from model(s) trained on the male children585
faces, and male adult faces from those trained on the fe-586
male adult faces. To enforce the model to generate cor-587
rect images from the bias-conflicting groups, we empha-588
size the class-label in the prompt by placing it inside589
double parenthesis. We also add the opposite class-label to590
the negative prompt with double parenthesis. For example,591
the generation prompt for female children is ‘Photo of592
a ((female)) person who is an child’, with593
an additional negative prompt ‘((male))”. For CelebA,594
we generate blond males from blond female models, and595
non-blond females from non-blond male models. For Wa-596
terbirds, we generate landbird on water images from land-597
bird on land models, whereas waterbird on land images are598
generated from waterbird on water images. Similar to the599
UTKFace case, we put double parenthesis in the prompts,600
but on the bias-label for these two datasets, with the601
opposite bias-label added to the negative prompts.602

A.7. Extended Ablation Studies 603

Here we present further ablation studies of the proposed ap- 604
proach as an extension to Section 4.4 in the main paper. 605

Role of The CLIP-Score. We have described the CLIP- 606
Score in eq. 2 (main paper, subsection 3.3), used to filter the 607
best 75% images out of the generated ones for each group. 608
We vary the weighting parameter α to understand the role 609
of the label-based score function CLIP-Label(I, pc) and the 610
group-centroid based score function CLIP-Centroid(I, z̄g). 611
Setting α = 1 denotes that the scoring function is only de- 612
pendent on CLIP-Label, whereas α = 0 denotes otherwise. 613
We present the results of these variants on the Clustered 614
Dreambooth pipeline in Table 3 (with respect to the orig- 615
inal dataset versions). Recall that the numbers reported in 616
the main paper correspond to α = 0.5. We also show a 617
baseline where from each group, images are selected ran- 618
domly instead of ranking them using the scoring function. 619
We observe that the performance of the pretrained model 620
trained on the images chosen by setting α = 1 always out- 621
performs its counterpart trained on images selected by set- 622
ting α = 0. However, in general, our choice of α = 0.5 623
works best across datasets. Random selection also performs 624
on par with the other variants, which shows that the gener- 625
ated images are mostly useful in training fairer classifiers, 626
however, their performances are lower than those involving 627
image selection with the CLIP-Score. 628

Direct Combination of Real and Synthetic Data. We ob- 629
serve two settings: a) Real+Group-Balanced Synthetic Im- 630
ages: Combine the entire real data and the group-balanced 631
synthetic images generated using Clustered Dreambooth, 632
b) Group-Balanced (Real+Synthetic) Images: Combine the 633
real and the synthetic data in such a way that the final im- 634
ages are group-balanced. For both settings, there is only a 635
single stage of training, with the combination of real and 636
synthetic images. Using the images obtained from each 637
stage, we train a classification model, and compare their 638
performances with the pretraining and finetuning stage of 639
the Clustered Dreambooth pipeline. Our experiments show 640
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that for Waterbirds and CelebA, the performance drops641
for both the settings compared to the Clustered Dream-642
booth pretraining and finetuning stages. UTKFace is an643
exception, where the worst group-accuracy is high for the644
Real+Group-Balanced Synthetic setting. However, the av-645
erage group accuracy drops, showing that the accuracy of646
the groups other than the worst group remains low. Over-647
all, we observe that our two stage approach is considerably648
more effective than the single stage alternatives (Table 4),649
justifying our choice in the main paper.650

Effect of Selection Percentage of Generated Images. In651
this subsection, we study the effect of selecting different652
percentages of top ranked images as per the CLIP-Score653
defined in eq. 2 (Section 3.3, main paper) on Waterbirds654
(both original and the severely biased variants) for Clus-655
tered Dreambooth. Investigating the classifier performance656
based on top 100%, 75% and 50% generated images, across657
both the dataset variants, we find that selecting the top 75%658
of the synthetic images appears to be more beneficial for659
performance, though we do not observe a drastic fall in660
scores with the other percentages as well. The results are661
shown in Table 5.662

Effect of the Loss Functions in Stage 1 and Stage 2663
Training. To train the classification model in the synthetic664
image pretraining stage and real image finetuning stage, we665
use a weighted combination of the CE and SupCon losses.666
Here, we show the importance of combining these losses667
in both stages, by demonstrating their effects on the perfor-668
mance of Clustered Dreambooth for Waterbirds and UTK-669
Face, in case of both the original dataset and the severely670
biased variant (see Tables 6 and 7 respectively). We find671
that while the effect of the SupCon loss is less pronounced672
for the original versions of both the datasets, its impact is673
clearly visible for the severely biased versions, especially674
for UTKFace. Recall that for Clustered Dreambooth, the675
images of the bias-conflicting samples are generated from676
the diffusion models finetuned on the bias-aligned images.677
The SupCon loss helps bring the samples of bias aligned678
and bias conflicting groups within the same class together679
in the feature space, thus facilitating improved learning of680
their representations, as the resultant bias-conflicting im-681
ages may deviate from the original data distribution as well682
as those of the generated bias-aligned samples.683

Group-Balanced Finetuning. After pretraining on gen-684
erated data, we finetune the classification layer on real685
data (LLRall) (see Section 3.3, main paper). To assess the686
benefits of group-balanced real data (sized to the smallest687
group), we explore: a) Last Layer Retraining with Balanced688
Real Data (LLRb): Finetuning only the classification layer689
using the balanced real dataset instead of the full biased set.690
b) Full Fine-Tuning with Balanced Real Data (FTb): Fine-691
tuning the entire network with the balanced real dataset.692
Results show that FTb is beneficial only for CelebA, likely693

due to its larger size compared to Waterbirds and UTKFace 694
(Table 8 for Clustered Dreambooth). In contrast, LLRb re- 695
duces worst group accuracy across all datasets, indicating 696
that finetuning on the entire dataset yields better perfor- 697
mance. 698

Figure 3. Variations in worst group accuracies (WGA) with
changing Hyperparameter values for the pretraining stage on
the CelebA [1] and Waterbirds [25] datasets. Apart from a drastic
fall at learning rate=1e − 5, we do not observe any significant
variation in the model performances across the observe range of
hyperparameters.

A.8. Hyperparameters for Classification 699

While we do not experiment with hyperparameters during 700
classification, using a learning rate of 1e− 3, weight decay 701
of 1e−3, batch size of 128 and total epochs = 20, we assess 702
the variance of the classifier worst group performance on 703
the pretraining stage of CelebA [1] and Waterbirds [25] us- 704
ing the Clustered Dreambooth images. Specifically, we ex- 705
plore a set of learning rates : {1e−5, 1e−4, 1e−3, 1e−2}, 706
a range of weight decay values: {1e − 5, 1e − 4, 1e − 707
3, 1e − 2}, training epochs: {10, 20, 30, 40}, and batch 708
sizes: {32, 64, 128, 256}. We observe a drastic fall in ac- 709
curacy scores with learning rate = 1e− 5 for both datasets, 710
which is expected, considering the low value of the learn- 711
ing rate. While the classifier performance on Waterbirds 712
seems more consistent across hyperparameter values than 713
that on CelebA, we do not observe any significant variation 714
in model performance for different hyperparameters for any 715
of the examined datasets. We plot our findings in Fig. 3. 716

We next describe the hyperparameters used for synthetic 717
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Table 4. Classification Performance on Different Combinations of Real and Synthetic Data. We evaluate classification systems for
two cases: a) The entire real data + group-balanced synthetic images, b) Combination of real and synthetic data ensuring that the resultant
dataset is group-balanced. These cases are compared against the pretraining and finetuning stages reported in the main paper for the
Clustered Dreambooth pipeline. The experiment shows the two observed cases to be inadequate compared to our pipeline of pretraining
with synthetic data and finetuning with real data.

Selection Method Waterbirds CelebA UTKFace

WGA AGA WGA AGA WGA AGA

Real+Group-Balanced Synethic Images 77.9 88.4 48.3 83.2 74.8 82.5
Group-Balanced (Real+Synthetic) Images 79.1 88.5 46.7 82.4 70.4 82.0
Real Images (Finetuning Stage) 88.1 90.2 84.1 88.4 76.0 83.5

Table 5. Percentage of Synthetic Images selected for Stage 1
Training vs Performance for Clustered Dreambooth with respect
to Waterbirds. We find that across the moderate and severe bias
ratios, while scores do not vary drastically with selection percent-
ages, it is beneficial to choose the top 75% images, as it leads
to better performance than the other percentages across both the
dataset variants.

Selection
Percentage

Clustered Dreambooth Bias Ratio 0.999
WGA AGA WGA AGA

50% 86.4 89.8 82.5 88.1
75% 88.1 90.2 84.2 88.5
100% 88.1 90.0 81.8 87.2

Table 6. Role of the SupCon loss on the performance of Clus-
tered Dreambooth in case of Waterbirds, for both the original
and severely biased variants. Recall that β = 1 denotes only us-
ing the CE loss, while β = 0.5 refers to both losses having equal
weight. While the performance on the original dataset does not
show any significant change, the supcon loss improves accuracies
for the high bias ratio version of the dataset.

β
Waterbirds

Original
Waterbirds
Bias Ratio=0.999

Stage 1 Stage 2 WGA AGA WGA AGA

1 1 88.2 90.2 83.3 88.0
1 0.5 88.1 90.2 83.8 88.0
0.5 1 88.2 90.2 84.0 88.0
0.5 0.5 88.1 90.2 84.2 88.5

data generation. For all the facial datasets, we include718
a negative prompt that discourages the model to generate719
grayscale images. While training the Dreambooth models,720
we use the default set of hyperparameters for all datasets.721
For LoRA-finetuning, we use the r and α parameters of722
LoRA as 16, and use no learning rate scheduler. The model723
is finetuned for 200 training steps. For all diffusion based724
methods, we set guidance-scale = 7.5 and the number of725
timesteps to be 50, except Clustered Dreambooth for UTK-726
Face, where the number of timesteps is set to be 25, based727

Table 7. Role of the SupCon loss on the performance of Clus-
tered Dreambooth in case of UTKFace, for both the original and
severely biased variants. Recall that β = 1 denotes only using the
CE loss, while β = 0.5 refers to both losses having equal weight.
While the performance on the original dataset shows slight in-
creases, the supcon loss considerably improves accuracies for the
high bias ratio version of the dataset.

β
UTKFace
Original

UTKFace
Bias Ratio=0.999

Stage 1 Stage 2 WGA AGA WGA AGA

1 1 72.7 88.2 49.6 80.7
1 0.5 73.6 83.4 50.4 80.8
0.5 1 76.0 83.5 60.0 80.4
0.5 0.5 76.0 83.5 60.5 80.8

Table 8. Finetuning with group-balanced training data. Upon
manipulating the pretrained model with group-balanced training
data, with and without finetuning the feature encoder epre (FTb and
LLRb respectively), we find that they are generally not advanta-
geous, compared to LLRall. The only exception is CelebA, where
the WGA becomes 88.80% for FTb. CD: Clustered Dreambooth

Dataset Method WGA AGA

Waterbirds
CD + LLRall 87.8±0.46 90.2±0.14

CD + LLRb 87.4±0.31 90.2±0.12

CD + FTb 87.7±0.30 90.7±0.01

CelebA
CD + LLRall 85.0±0.35 88.6±0.28

CD + LLRb 83.9±1.36 88.2±0.28

CD + FTb 88.8±1.32 91.4±0.39

UTKFace
CD + LLRb 76.0±1.22 83.5±0.35

CD + LLRb 70.20±1.47 83.78±1.66

CD + FTb 74.6±2.55 83.8±0.20

on manual inspection. 728
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Table 9. Evaluation of FID (↓). The Clustered Dreambooth
images outperform those of the other generative methods for all
four groups of the CelebA dataset (Non-Blond Female (NF), Non-
Blond Male (NM), Blond Female (BF), Blond Male (BM)).

Method NF NM BF BM

Vanilla SD 128.57 133.53 78.06 92.48
FFR [20] 90.66 98.16 66.61 100.27
Dreambooth 71.02 69.18 47.04 58.51
Clustered Dreambooth 58.72 56.48 38.50 46.90

A.9. Quality of Representations learnt via Synthetic729
Data.730

To assess the similarities between the real and the gener-731
ated distributions for each of the investigated approaches,732
we determine the Fréchet Inception Distance (FID) [7] mea-733
sured between the generated images and real images of each734
group of CelebA. Notably, Clustered Dreambooth images735
outperform all competing methods by a large margin, point-736
ing to their similarity with the training images (see Table 9).737

A.10. Performance of Stage 1 pretraining on Test738
Data739

Recall that we pretrain the classification model on group-740
balanced synthetic images for each dataset. Evaluating on741
the test set, we find the worst group accuracy of such a742
model to be surprisingly high for the finetuned diffusion-743
based models, especially for Clustered Dreambooth, even744
without training the model on a single sample from the745
training set. This shows that the synthetic images resem-746
ble the real images closely. We present the results for the747
original training sets in Table 10.748

A.11. Qualitative Examples749

Images generated by different models of Clustered750
Dreambooth. Here, we show examples from four different751
clusters in each group in the CelebA dataset [1]. We see that752
some of these models, while preserving the characteristics753
of its group (e.g. gender and hair color), captures different754
attributes like age, skin color, profession, hair color shades,755
etc. These variations can be clearly seen in Fig. 4, where the756
clusters are seen to generate older people, children, young757
adults, people of fair or dark skin, people from Indian de-758
scent, etc for the various groups. Interestingly, for all groups759
in CelebA, we also find clusters representing sportspeople760
as well, some of which are shown in the figure.761
Vanilla SD failures in Waterbirds Vanilla SD models762
often fail to follow prompts accurately, perhaps because763
of inherent biases embedded in them. For example,764
when the model is instructed to generate ‘Photo of a765
waterbird on land’, many of the generated images766
have water in them, even when we set a negative prompt767

‘water’. This problem is highlighted in Fig. 5, where 768
more than 50% of the images have water in the images. 769
Moreover, while we agree that the generations are aesthi- 770
cally of high quality, the Waterbirds [25] dataset itself is cre- 771
ated by pasting bird images from the Caltech-UCSD Birds- 772
200-2011 (CUB) dataset [31] into images from the Place 773
dataset [37], which often gives the images from the origi- 774
nal dataset an unnatural look. Thus, this leads to a domain 775
mismatch between the training and generated images, ex- 776
plaining the lower worst group accuracies of Vanilla SD. 777
Failure cases of Clustered Dreambooth for UTKFace 778
(Bias Ratio 0.999). As observed in Table 1 (main pa- 779
per), Clustered Dreambooth’s performance suffers for the 780
severely biased version of UTKFace compared to other 781
methods. The worst group is Female Children, with an ac- 782
curacy of 60.5%, which is 15.5% lower than that of the orig- 783
inal data variant. We examine the reasons behind this per- 784
formance drop by manually inspecting the Female Children 785
images, and find that while many images are grayscale (in- 786
spite of having the word grayscale in the negative prompt), 787
some are of Male Children. Alarmingly, some images fail 788
to follow the training data domain, even though they cor- 789
rectly belong to Female Children. Such images get selected 790
by our CLIP-Score as they accurately reflect the group de- 791
scription, and in the absence of the training images for the 792
given group, we cannot compute the CLIP-Centroid Score 793
to ensure that the selected images are as close to the train- 794
ing data domain as possible. We believe such issues poten- 795
tially contribute towards the low worst group accuracies for 796
the UTKFace Female Children group. Example images are 797
shown in Fig. 6. 798
Generated Bias-Conflicting Samples from Clustered 799
Dreambooth (Bias Ratio = 0.999). Recall that for bias ra- 800
tio 0.999, bias-conflicting images are generated using mod- 801
els trained on bias-aligned groups (e.g., Blond Males are 802
generated from the model trained on Blond Females) for 803
LoRA-finetuning, Dreambooth and Clustered Dreambooth. 804
We present samples generated by the Clustered Dreambooth 805
from the bias-conflicting groups of each dataset in Fig. 7, 806
and observe that the generated images resemble the distri- 807
bution of the input dataset, while reflecting the requirements 808
of the target group. 809
Images generated by each Diffusion-based Mechanism. 810
Here, we show the images generated by a) Vanilla SD, 811
b) LoRA-finetuned SD, c) Dreambooth, and d) Clustered 812
Dreambooth for each of the datasets Waterbirds, CelebA 813
and UTKFace (all original versions), for each of the groups 814
present in them. Figures 8, 9 and 10 present the examples 815
for the three datasets (Waterbirds, CelebA and UTKFace) 816
respectively. 817
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Table 10. Classification Performance. We report the classifier performance for Stage 1 (Generative Images Pretraining) and Stage 2 (Real
Image Finetuning, denoted as LLRall) for Vanilla SD, Dreambooth, and Clustered Dreambooth on the three datasets (original version). For
Clustered Dreambooth, Stage 1 test accuracies are notably high across datasets.

Dataset Method
Stage 1 Stage 2

Worst Average Worst Average

Waterbirds

FFR† [20] 45.3 71.3 69.5 84.0
Vanilla SD [23] 65.4 79.9 74.6 80.5

LoRA finetuning [5] 82.3 89.3 86.5 89.9
Dreambooth [24] 85.7 89.5 89.3 90.1

Clustered Dreambooth 87.4 89.5 88.1 90.2

CelebA

FFR† [20] 48.9 75.3 68.9 85.7
Vanilla SD [23] 78.3 84.3 76.40 84.2

LoRA finetuning [5] 82.1 87.1 82.3 87.2
Dreambooth [24] 81.7 86.5 82.1 87.9

Clustered Dreambooth 83.9 88.0 84.1 88.4

UTKFace

FFR† [20] 66.1 77.5 67.4 81.4
Vanilla SD [23] 68.0 82.3 62.0 82.3

LoRA finetuning [5] 57.0 82.0 68.6 85.6
Dreambooth [24] 56.2 80.7 57.9 80.9

Clustered Dreambooth 66.9 83.0 76.0 83.5

Figure 4. Images generated from four different clusters of the CelebA groups. We note the different characteristics followed by the
images of a cluster for each group. We show two images per cluster and put the perceivable attributes seen in each cluster on the top (e.g.,
old age, young age, sportspersons and retro hairstyles for blond females).
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Figure 5. Waterbird on Land Images generated the vanilla Sta-
ble Diffusion 1.4. We note that the model often fails to follow the
prompt instruction, and many images contain water even when ex-
plicitly prohibiting it in the negative prompt.

Figure 6. Female Children images generated by Clustered
Dreambooth for the high bias variant of UTKFace. We note
that the model often generates grayscale images, out-of-domain
images, and also irrelevant ones.
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Figure 7. Bias Conflicting samples generated for Bias Ratio= 0.999 using Clustered Dreambooth. Here we note that even in the
absence of finetuned generative models for the bias-conflicting groups, the images generated from the models finetuned on the bias-aligned
groups closely tend to follow the distribution of the dataset, while maintaining the requirements of the target group.

Figure 8. Group-wise images for Waterbirds generated by Vanilla SD, LoRA-finetuned SD, Dreambooth and Clustered Dreambooth.

9



CVPR
#26

CVPR
#26

CVPR 2025 Submission #26. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 9. Group-wise images for CelebA generated by Vanilla SD, LoRA-finetuned SD, Dreambooth and Clustered Dreambooth.

Figure 10. Group-wise images for UTKFace generated by Vanilla SD, LoRA-finetuned SD, Dreambooth and Clustered Dreambooth.
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