
Under review as submission to TMLR

CF-HPO: Counterfactual Explanations for Hyperparameter
Optimization

Anonymous authors
Paper under double-blind review

Abstract

Hyperparameter optimization (HPO) is a fundamental component of studies that use tech-
nologies such as machine learning and deep learning. Regardless of the field, almost every
study requires hyperparameter optimization at some level. In general, applying HPO to a
developed system improves its performance by optimizing multiple parameters. However,
extant HPO methods do not provide information on why specific configurations are suc-
cessful, what should not be done, or what could be improved. The present study proposes
a novel approach to address this gap in the literature by introducing CF-HPO, a modular
framework that generates counterfactual explanations for HPO results. CF-HPO answers
questions such as “what potential improvements could be made,” “what settings should be
avoided,” and “what-if analysis.” These outputs can serve as a guide, especially for those who
are not optimization experts. The recomented system has a modular design that supports
different search strategies (UCB-driven, random, restart). This allows it to perform well in
optimization and also to show counterfactual explanations at the end of optimization. Ex-
periments conducted on the YAHPO benchmark package yielded validation rates of 92.2%
for neural networks and 60.4% for random forests. These findings reveal that counterfactual
generability depends on the geometry of the performance surface rather than dimensionality.

1 Introduction

Machine learning has been and continues to be the subject of thousands of studies using deep learning models.
The success of these models is closely tied not only to architectural choices but also to hyperparameter
configuration. As shown by Henderson et al. (2018), hyperparameter configuration can sometimes be more
decisive and important than the model architecture. Changes in parameters such as learning rate, batch
size, and regularization coefficient can lead to significant differences in model performance, either improving
or reducing it.

This has led to an extensive literature on hyperparameter optimization. Various approaches have been
developed, ranging from classical methods such as grid search and random search (Bergstra & Bengio,
2012), to Bayesian optimization methods using Gaussian processes (Snoek et al., 2012) and tree-based
Parzen estimators (Bergstra et al., 2011).

In these days of explainable artificial intelligence, there is a significant gap in existing HPO methods: while
these methods are successful in finding good configurations, they fall short in explaining why these config-
urations work well and what might turn out well or poorly at the end of the process. Practitioners do not
know which parameters are critical at the end of the optimization process, how robust the solution is, or
whether better results can be obtained with minor changes. At the end of the process, they either accept
the results as they are or (if they are not experts) search for better configurations at random in a state of
uncertainty.

Counterfactual explanations offer a fundamental solution to this problem. First proposed by Wachter et al.
(2018) for classification problems, this approach aims to find the input vector that requires the minimum
change to alter a prediction via optimization.

1



Under review as submission to TMLR

When adapted to the HPO context, this approach translates into finding the hyperparameter configuration
closest to the reference configuration to achieve the target performance.

In this work, we propose CF-HPO, a modular framework that generates counterfactual explanations to
increase the understandability and interpretability of HPO results. CF-HPO generates answers to questions
such as “What changes in the result configuration could achieve the target performance?”, “What could
reduce performance?”, and “What if?” using patterns we define. The main contributions of the framework
can be summarized under three headings:

This text presents the formal problem definition and modular architecture. Counterfactual generation in the
hyperparameter space is mathematically expressed as a constrained optimisation problem. The proposed ar-
chitecture enables diverse search strategies to be selected or modified, including UCB-guided search, random
restart, and hill climbing, depending on the problem at hand.

Comprehensive experimental evaluation: Using the YAHPO benchmark suite, systematic experiments were
conducted across two scenarios with distinct performance surface characteristics: neural networks with sharp
transitions and distinct basin structures (LCBench, 9 hyperparameters) and smoother, gradual random
forests (IAML-Ranger, 10 hyperparameters).

Analysis of performance conditions. Our experimental findings show that counterfactual generability depends
on the geometry of the performance surface rather than on the problem’s dimensionality. UCB-guided search
achieves a 92.2% validity rate on surfaces with sharp transitions (e.g., neural networks), while hill climbing
achieves a 60.4% validity rate on smooth surfaces (e.g., random forests).

2 Related Work

2.1 Hyperparameter Optimization

The performance of machine learning models depends on two factors: hyperparameter configuration and
model architecture. A thorough examination of hyperparameter studies indicates substantial advancements
over the past decade. A substantial body of research has demonstrated that hyperparameters such as the
learning rate, batch size, regularisation coefficient, and network depth can engender significant differences in
performance when used within the same model. Consequently, this development has facilitated the emergence
of hyperparameter optimisation (HPO) as a systematic research topic.

Among classical search methods, grid search systematically tries all combinations of values specified for
each hyperparameter. However, Bergstra & Bengio (2012) has proven that this approach is inefficient in
high-dimensional spaces. The reason is that, while only a few hyperparameters actually affect the outcome
in most problems, grid search experiments are run with every value of insignificant parameters. Random
search, on the other hand, has been observed to produce better results in practice because it can explore a
much wider range of critical parameters within the same budget.

Bayesian optimization methods, on the other hand, employ a distinct approach. These methods leverage the
outcomes of prior experimentation to construct a model of the objective function and select the subsequent
point to attempt based on this model. Instead of conducting random trials, they concentrate on regions that
show promise for high performance.

Gaussian processes, as used by Snoek et al. (2012), provide both the expected performance and the uncer-
tainty of this prediction at each point. Tree-structured Parzen estimators (TPE), developed by Bergstra
et al. (2011), adopt a similar objective-function approach by modeling configurations that yield good or bad
results separately.

Another important development aimed at reducing computational cost is the use of multi-fidelity methods.
The basic idea behind these approaches is that it is not necessary to wait for complete training to determine
whether a configuration is good; even short-term trials can provide sufficient information to eliminate poor
configurations. Hyperband, proposed by Li et al. (2017), initiates a large number of configurations with
a low resource budget, quickly eliminating unsuccessful ones and directing resources to configurations that
can yield better results. BOHB, developed by Falkner et al. (2018), combines this early elimination strategy

2



Under review as submission to TMLR

with the intelligent sampling mechanism of Bayesian optimization, offering the advantages of both approaches
within a single framework.

Despite these developments in the HPO field, the literature is quite shallow in terms of interpretability. Cur-
rent studies focus more on the general importance of parameters. The fANOVA study by Hutter (2014) used
a functional variance decomposition to measure the contribution of each hyperparameter to the total perfor-
mance variance. The ablation analysis study developed by Biedenkapp et al. (2017) systematically changes
components starting from the default configuration and isolates the effect of each change on performance.

However, while these methods answer the question “which parameters are generally important?”, they leave
unanswered a different question that practitioners often face: “What exactly should I do to improve this
specific configuration I have?” CF-HPO aims to fill this gap and is designed accordingly. Rather than general
parameter importance, it provides the minimal, actionable changes required to reach the target performance
from a specific reference configuration. Additionally, it provides the user with a clear, natural-language
description of configurations to avoid.

2.2 Counterfactual Explanations

Artificial intelligence models typically operate as black boxes, and numerous studies are underway to improve
their explainability. Over the past decade, various approaches have been developed and continue to be
developed in academia to understand model decisions in the field of explainable artificial intelligence (XAI).
When examining research in this field, we see that counterfactual explanations stand out as one of the
methods that provide users with the most intuitive and actionable information. Counterfactual explanations
seek to answer the question “If the outcome had been different, what should the input have been?” by
explaining model behavior using concrete alternatives.

This approach was introduced to the field of machine learning by Wachter et al. (2018) and relies on the
fundamental idea of finding the alternative input closest to the original input to change a prediction. For
example, a user whose credit application was rejected could be given a concrete explanation such as, “If your
income had been 5000 TL higher, your application would have been accepted.”

Subsequent studies have built upon this approach and developed it in various directions: DiCE (Mothilal
et al., 2020) generates various counterfactual sets;

Karimi et al. (2021) provides actionable recourse by incorporating causal structure; Ustun et al. (2019)
addresses feasibility constraints for linear classification.

Nearly all existing counterfactual studies focus on explaining the predictions of classification or regression
models. The goal in these studies is to understand a model’s decision for a given input and to modify the
predictions. The CF-HPO we present in our study addresses a different problem: explaining the results of
the optimization process. Here, the question is not “why did the model make this prediction?” but rather
“how can this hyperparameter configuration be improved?”

Integrating empirical explanations into the HPO framework poses distinctive challenges. First, hyperpa-
rameter spaces contain both continuous (e.g., learning rate, regularization coefficient) and categorical (e.g.,
optimization algorithm, activation function) variables, which complicates distance calculations and search
strategies. Evaluating each hyperparameter configuration requires model training, thereby exceeding the
computational cost of standard counterfactual generation. So CF-HPO relies on proxy model predictions
instead of factual evaluations.

2.3 HPO Benchmarks

Controlled experimental environments are used to evaluate and compare the performance of HPO algo-
rithms. Training real machine learning models takes hours or even days, and fairly comparing different
HPO methods requires substantial computational resources. This poses a significant obstacle in academic
studies involving numerous trials and iterations. Surrogate benchmarks address this problem by providing
ready-made metamodels learned from real HPO experiments. This allows researchers to evaluate thousands
of configurations in milliseconds without incurring the cost of expensive model training.

3



Under review as submission to TMLR

Figure 1: CF-HPO framework overview. HPO history trains a surrogate model, which guides counterfactual
generation toward actionable explanations.

YAHPO Gym (Pfisterer et al., 2022) offers surrogate benchmarks derived from real HPO experiments. These
benchmarks contain metamodels trained based on data obtained from comprehensive hyperparameter scans.
Thus, researchers can obtain performance estimates within milliseconds, rather than training real models for
each hyperparameter configuration. This feature has made YAHPO a standard benchmarking platform for
studies seeking to conduct repeatable and comparable experiments on HPO algorithms.

In this study, experiments were conducted on two datasets. The LCBench (neural networks) and IAML-
Ranger (random forests) datasets were selected from the YAHPO platform. There are two main reasons for
this selection. First, two distinct scenarios are required to understand how CF-HPO behaves in different
performance surface characteristics: LCBench contains sharp transitions and distinct basin structures, while
IAML-Ranger has a smoother surface with gradual changes. Second, it was preferred to conduct an in-
depth analysis limited to two comparisons. Rather than collecting superficial statistics across numerous
comparisons, understanding why these two cases produce different results provides more valuable insights
into the conditions under which counterfactual methods succeed.

3 Method

3.1 Problem Formulation

Let Θ be the hyperparameter space and f : Θ → R be the true performance function. The HPO process
generates a history H = {(θi, yi)}n

i=1. Given a reference configuration θref and its performance yref, the
counterfactual explanation problem for a target performance threshold τ > yref is defined as follows:

θ∗ = arg min
θ∈Θ

d(θ, θref) subject to f̂(θ) ≥ τ (1)

Here, d(·, ·) represents the distance in the hyperparameter space, and f̂ represents the proxy model ap-
proximating the true performance function. The goal is to find the configuration that achieves the target
performance while staying as close as possible to the reference.Figure 1 shows the general structure of the
CF-HPO framework.

3.2 Surrogate Model

Random Forest was chosen as the surrogate model. The reasons for this choice are: natural handling
of continuous and categorical variables, uncertainty estimation via ensemble variance, and computational

4



Under review as submission to TMLR

efficiency.Estimates obtained from the ensemble of T trees:

µ(θ) = 1
T

T∑
t=1

ft(θ) (2)

σ(θ) =

√√√√ 1
T

T∑
t=1

(ft(θ) − µ(θ))2 (3)

There is a critical point here regarding target setting. Random Forests cannot make predictions beyond
the training data (extrapolation constraint). Therefore, the target τ is set as the percentile of the proxy
estimates:

τ = percentile(f̂(X), p) (4)

. For example, the 90th percentile is used for ambitious but achievable targets. When the user specifies
an absolute target outside the proxy model’s prediction range (e.g., “99% accuracy”), CF-HPO explicitly
reports this and recommends the closest achievable target.

3.3 CF-HPO Framework

CF-HPO is designed with a modular architecture to adapt to different problem types and researcher needs.
This modularity is particularly evident in the search strategy component: researchers can easily switch be-
tween different strategies, such as UCB-based search, random restart, or hill climbing, depending on their
problem. It should also be noted that more search strategies will be added to the system in the future.Figure 2
shows the core algorithm of CF-HPO. The algorithm simultaneously optimizes four fundamental objectives
critical for counterfactual explanations: (i) validity — the generated configuration achieves the target perfor-
mance, (ii) proximity — the counterfactual configuration is as close as possible to the reference, (iii) sparsity
— modifying the minimum number of hyperparameters possible, and (iv) diversity — when multiple coun-
terfactuals are generated, they offer distinct alternatives. This multi-objective optimization approach aims
to provide the user with actionable, interpretable recommendations.

Continuous parameters are optimized using gradient updates, while categorical parameters are optimized
using local search (neighborhood search). This hybrid approach reflects the mixed nature of hyperparameter
spaces.

Default weights: λ1 = 1.0 (validity), λ2 = 0.1 (proximity), λ3 = 0.1 (sparsity), λ4 = 0.05 (diversity). Validity
is set as the dominant objective; users can adjust these weights according to their priorities.

3.4 Search Strategies

CF-HPO supports four search strategies in the current work (expandable in future work):

UCB-Guided. Upper Confidence Bound formulation:

UCB(θ) = µ(θ) + β · σ(θ) (5)

This strategy balances exploitation (µ) and exploration (σ). β = 1.5 is set. It is effective on performance
surfaces with distinct high-performance regions.

Random Restart. It performs uniform sampling around the reference configuration. It is a robust and
straightforward approach. It is suitable when performance changes smoothly, and good regions are not
sharply localized.

Hill Climbing. It performs greedy local search. It guarantees staying close to the reference but carries the
risk of getting stuck in local optima. It is disadvantageous on complex performance surfaces.

Random Search. It is a basic baseline method that performs completely random sampling. It measures
the difficulty of randomly reaching valid counterfactuals.

5



Under review as submission to TMLR

Figure 2: CF-HPO counterfactual generation algorithm. Weighted objectives: validity (reach the target),
proximity (stay close), sparsity (minimal changes), diversity (distinct counterfactuals).

3.5 Evaluation Metrics

Two basic metrics are used:

Validity: Measures whether the counterfactual reaches the target performance:

Validity = 1
K

K∑
k=1

1[f̂(θcf
k ) ≥ τ ] (6)

Proximity: Measures the distance between the counterfactual and the reference in the normalized hyper-
parameter space:

Proximity(θcf, θref) = ∥θcf − θref∥2 (7)

There is a natural tension between these two metrics. High validity may require going to distant points,
while low proximity requires staying close to the reference.

4 Experiments

4.1 Experimental Setup

The experiments were conducted using the YAHPO benchmark suite (Pfisterer et al., 2022). YAHPO pro-
vides surrogate models learned from real hyperparameter optimization experiments. These surrogates can

6



Under review as submission to TMLR

predict model performance for any hyperparameter configuration within milliseconds, enabling comprehen-
sive experiments without requiring actual model training.

Evaluation Protocol. Our experiments use a two-layer surrogate structure:

1. YAHPO surrogate: A pre-trained benchmark surrogate that replaces actual performance values.

2. CF-HPO surrogate: A Random Forest model trained on configurations sampled from YAHPO.

CF-HPO proposes counterfactual configurations by searching on its own proxy. The validity of these pro-
posals is evaluated using predictions obtained from the YAHPO proxy: if the YAHPO prediction achieves
the target performance (≥ P90), the counterfactual prediction is considered “valid.”

This approach is a standard evaluation protocol in the HPO literature to reduce computational cost
(Eggensperger et al., 2013; Pfisterer et al., 2022).

LCBench (Zimmer et al., 2021): Neural network hyperparameter optimization on OpenML classification
tasks. It contains nine hyperparameters: learning rate, batch size, momentum, weight decay, and architec-
tural parameters (number of layers, number of units). These performance surfaces contain sharp transitions
and distinct basins of attraction.

IAML-Ranger: Random forest hyperparameter optimization. It includes 10 hyperparameters: the number
of trees, the mtry ratio, the minimum node size, and the sampling rate. These performance surfaces are
smoother; performance changes gradually.

For each comparison, 2 OpenML examples, 1000 sampled configurations for the HPO history, 50 epochs, and
5 random seeds were used. The target performance was defined as the 90th percentile (P90) of the proxy
estimates.

4.2 Methods Compared

Four methods were compared:

• CF-HPO (Acquisition): UCB search, β = 1.5

• CF-HPO (Random Restart): Random sampling around the reference neighborhood

• Hill Climbing: Greedy local search

• Random Search: Completely random search

5 Results

5.1 Main Results

Table 1 presents the aggregate results across all benchmarks. Acquisition-guided search achieved the highest
average accuracy rate at 72.4%. However, the standard deviations are quite high, indicating significant
variation among the problem instances.

The absence of statistically significant differences between methods at the aggregate level (p > 0.1) can be
misleading. This aggregate view hides important differences between comparisons.

5.2 Per-Benchmark Analysis

Table 2 breaks down the results on a benchmark basis. This detailed view reveals that strategy effectiveness
depends on the problem.

Neural Networks (LCBench): Acquisition search is clearly ahead with a validity rate of 92.2%. Hill
climbing lags approximately 3 times, with only 31.8%. This difference can be explained by the structure

7



Under review as submission to TMLR

Table 1: Aggregate results across YAHPO benchmarks (Target = P90). Mean ± std across instances and
seeds.

Method Validity (%) Proximity (L2)
CF-HPO (Acquisition) 72.4 ± 40.6 1.25 ± 0.17
CF-HPO (Random Restart) 52.1 ± 44.0 1.38 ± 0.10
Hill Climbing 46.1 ± 38.0 0.61 ± 0.06
Random Search 54.0 ± 44.9 1.40 ± 0.12

Note: No statistically significant difference was found between methods at the aggregate level (p > 0.1).

Table 2: Validity (%) by benchmark. Bold indicates best performance per benchmark.

Benchmark Acquisition Random Restart Hill Climbing Random
LCBench (9 HPs) 92.2 53.4 31.8 57.8
IAML-Ranger (10 HPs) 52.6 50.8 60.4 50.2

of neural network performance surfaces: distinct high-performance basins are separated by valleys. UCB’s
exploration term finds these basins, while hill climbing gets stuck in local optima.

Random Forests (IAML-Ranger): The situation is reversed. Hill climbing achieves the best result
at 60.4%, while acquisition remains at 52.6%. Random forest performance surfaces are smoother; good
configurations can be reached from many starting points with small steps. In this case, the exploration
overhead becomes unnecessary.

Explanation of the 30-Point Difference. While the best strategy in LCBench reaches 92.2%, it remains
at 60.4% in IAML-Ranger. This difference is not due to dimensionality (the 9- and 10-hyperparameter
measures are similar). The performance surface geometry is the determining factor:

• Basin structure: Neural networks contain distinct high-performance basins. Once a basin is
reached, many valid counterexamples can be found. This structure is absent in random forests.

• Sensitivity patterns: Neural networks respond sharply to critical parameters (learning rate, ar-
chitecture). In random forests, performance changes gradually across all parameters.

• Interactions: Strong interactions in neural networks (learning rate × batch size) create an ex-
ploitable structure. Random forest interactions are weaker and more scattered.

These findings show that surrogate generability depends on the performance surface structure rather than
the problem size.

5.3 Surrogate Quality

Table 3 presents the surrogate model quality in terms of Pearson correlation.

In both comparisons, the correlation is above 0.92. Although IAML-Ranger has higher proxy quality (0.94),
it shows lower counterfactual validity. This finding reveals that proxy accuracy is necessary but not sufficient;
the performance surface structure is an independent factor.

5.4 Learning Curves

Figure 3 shows the cumulative accuracy rates over epochs during the training phase. As shown in the
figure, acquisition search leads in the first 10 epochs on LCBench and maintains this advantage. In IAML-
Ranger, the methods converge around the 30th epoch; however, hill climbing continues to make steady gains
throughout the process.

8



Under review as submission to TMLR

Table 3: Surrogate model quality measured as Pearson correlation with ground truth performance.

Benchmark Correlation
LCBench 0.92 ± 0.03
IAML-Ranger 0.94 ± 0.02
Overall 0.93 ± 0.03

Figure 3: Cumulative validity over epochs. Shaded regions indicate ±1 standard deviation across seeds.
LCBench shows clear strategy separation; IAML-Ranger shows convergence.

5.5 Validity-Proximity Trade-off

Figure 4 visualizes the trade-off between validity and proximity. Hill climbing achieves low proximity (close to
the reference) but has high validity variability. Global search methods gain validity by sacrificing proximity;
this trade-off is effective on LCBench but less so on IAML-Ranger.

6 Discussion

6.1 When Does CF-HPO Work?

The patterns emerging from the experimental findings can be summarized as follows:

High validity (>90%): Three conditions must be met simultaneously: (1) the performance surface must
contain distinct high-performance regions, (2) the surrogate model must capture these regions accurately
(correlation > 0.90), (3) the search strategy must be compatible with the surface character—exploration for
multi-basin surfaces, local search for smooth surfaces.

Medium-level validity (50–60%): The performance surface lacks a distinct structure. Despite good
surrogate models, no strategy consistently outperforms others. Such problems may inherently be more
challenging for counterfactual methods; this area requires further research.

6.2 Strategy Selection Guidelines

Strategy selection recommendations for practitioners:

UCB-guided search: This search strategy is recommended for machine learning HPO and similar problems
that contain distinct high-performance basins. The exploration term used by the method ensures that basins
are found even from poor starting points.

9



Under review as submission to TMLR

Figure 4: Validity vs. proximity trade-off. Each point represents one benchmark-strategy combination. Hill
climbing (red): low proximity, variable validity. Acquisition (green): highest validity on LCBench.

Hill climbing: It should be preferred when proximity is critical, or the performance surface is smooth.
Random forest HPO falls into this category.

Random restart: A safe default option when the performance surface character is unknown. It provides
consistent baseline performance without requiring parameter tuning.

6.3 Limitations and Scope

The limitations of this work are as follows:

Comparison scope: Comparison was used with only two datasets. This choice was made to move away
from the question of “how did it perform with the datasets?” and to analyze the fundamental innovation
in depth. Additional comparisons, such as gradient boosting, SVM, and transformers, are expected to
strengthen the generalization claims. However, this area requires further research.

Proxy dependency: The effectiveness of CF-HPO depends on the quality of the proxy model strategy. The
Random Forests used provided a correlation of 0.92+; however, chaotic performance surfaces can complicate
this approach. When proxy model strategies fail, counterfactual explanations have been observed to lose
credibility. Work with better proxy models is left to another study.

Target setting: The P90 percentile is a setting we have identified as a generalized practical approach.
However, practitioners often desire higher absolute targets (e.g., “99% accuracy”). When the target falls
outside the proxy range, CF-HPO reports this in its report; adaptive target relaxation is an extension we
consider for future development.

Computational cost: Regardless of how long it takes to organize the experiments, the experiments using
the system took approximately one hour. The cost of proxy comparisons is quite low. For costly models,
the cost of creating HPO history is dominant; the CF-HPO search is considered to add negligible overhead

10



Under review as submission to TMLR

(approximately 50ms per counterfactual). Given that HPO training is often repeated multiple times, reducing
the number of sessions could save dozens of hours and resources.

6.4 Future Directions

Future research directions include:

Adaptive strategy selection: Changing strategies based on counterfactual feedback. Switching to ex-
ploration if counterfactuals cluster, or to local search if they are scattered. Optimization of explainability
guidance.

Interactive improvement: Generating initial counterfactuals and improving them based on user feedback.
This is an explainable AI approach in the human loop.

Multi-fidelity counterfactuals: We can explain this by reducing exploration costs through evaluation at
different source levels.

Causal counterfactuals: Explanations that consider the causal structure among hyperparameters (e.g.,
learning rate → convergence speed → accuracy).

Categorical and conditional spaces: Defines specialized approaches for entirely categorical or conditional
hyperparameter spaces (where some parameters exist only in specific selections).

7 Conclusion

This work presents CF-HPO, a modular framework that generates counterfactual explanations for hyperpa-
rameter optimization. CF-HPO complements existing HPO methods by answering the question, “What are
the minimal changes required to achieve the target performance?”

Experiments on YAHPO benchmarks yielded the following results: 92.2% validity rate for neural networks
(LCBench) and 60.4% for random forests (IAML-Ranger). Different strategies excel in different prob-
lems—UCB exploration for complex surfaces, hill climbing for smooth surfaces. This validates the value
of modular design.

The study concludes that counterfactual generability depends on the configuration of the performance surface
structure, not on dimensionality or proxy accuracy. CF-HPO showed high validity for problems with distinct
high-performance regions, but all strategies gave similar moderate performance on surfaces without structural
features.

Looking ahead, CF-HPO points to a tighter integration of explainability and optimization. Counterfactual
feedback can guide strategy adaptation, enabling the development of systems that both explain and improve.
This work is expected to encourage further research at the intersection of explainable artificial intelligence
and automated machine learning.

Reproducibility Statement

All experiments used YAHPO Gym v1.0. LCBench samples: 3945, 7593. IAML-Ranger samples: 40981,
41146. Each run: 1000 configurations, 50 epochs, 5 seeds (0–4). Proxy model: scikit-learn RandomFore-
stRegressor, 100 trees, default hyperparameters. Code will be published after acceptance.

References
James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimization. Journal of Machine

Learning Research, 13(2):281–305, 2012.

James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for hyper-parameter opti-
mization. In Advances in Neural Information Processing Systems, volume 24, 2011.

11



Under review as submission to TMLR

André Biedenkapp, Marius Lindauer, Katharina Eggensperger, Chris Fawcett, Holger Hoos, and Frank
Hutter. Efficient parameter importance analysis via ablation with surrogates. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 31, 2017.

Katharina Eggensperger, Matthias Feurer, Frank Hutter, James Bergstra, Jasper Snoek, Holger Hoos, and
Kevin Leyton-Brown. Towards an empirical foundation for assessing Bayesian optimization of hyperpa-
rameters. In NIPS Workshop on Bayesian Optimization in Theory and Practice, 2013.

Stefan Falkner, Aaron Klein, and Frank Hutter. BOHB: Robust and efficient hyperparameter optimization
at scale. In International Conference on Machine Learning, pp. 1437–1446. PMLR, 2018.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger. Deep
reinforcement learning that matters. Proceedings of the AAAI Conference on Artificial Intelligence, 32(1),
2018.

Frank Hutter, Holger Hoos, and Kevin Leyton-Brown. An efficient approach for assessing hyperparameter
importance. In International Conference on Machine Learning, pp. 754–762. PMLR, 2014.

Amir-Hossein Karimi, Bernhard Schölkopf, and Isabel Valera. Algorithmic recourse: from counterfactual
explanations to interventions. In Proceedings of the 2021 ACM Conference on Fairness, Accountability,
and Transparency, pp. 353–362, 2021.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband: A
novel bandit-based approach to hyperparameter optimization. Journal of Machine Learning Research, 18
(185):1–52, 2017.

Ramaravind K Mothilal, Amit Sharma, and Chenhao Tan. Explaining machine learning classifiers through
diverse counterfactual explanations. In Proceedings of the 2020 Conference on Fairness, Accountability,
and Transparency, pp. 607–617, 2020.

Florian Pfisterer, Lennart Schneider, Julia Moosbauer, Martin Binder, and Bernd Bischl. YAHPO gym – an
efficient multi-objective multi-fidelity benchmark for hyperparameter optimization. In Proceedings of the
First International Conference on Automated Machine Learning, volume 188 of Proceedings of Machine
Learning Research, pp. 3/1–39. PMLR, 2022.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical Bayesian optimization of machine learning
algorithms. In Advances in Neural Information Processing Systems, volume 25, 2012.

Berk Ustun, Alexander Spangher, and Yang Liu. Actionable recourse in linear classification. In Proceedings
of the Conference on Fairness, Accountability, and Transparency, pp. 10–19, 2019.

Sandra Wachter, Brent Mittelstadt, and Chris Russell. Counterfactual explanations without opening the
black box: Automated decisions and the GDPR. Harvard Journal of Law & Technology, 31(2):841–887,
2018.

Lucas Zimmer, Marius Lindauer, and Frank Hutter. Auto-PyTorch: Multi-fidelity metalearning for efficient
and robust AutoDL. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(9):3079–3090,
2021.

A Detailed Per-Instance Results

Table 4 presents the validity rates on a per-instance basis. The variance within benchmarks is noteworthy.

The IAML-Ranger instance 40981 shows validity below 20% across all methods, while instance 41146 shows
validity above 93% across all methods. Similarly, the LCBench instance 3945 is challenging for non-UCB
strategies, while instance 7593 is easier. These findings show that dataset characteristics are important
beyond the type of algorithm.

12



Under review as submission to TMLR

Table 4: Per-instance validity rates (%). Note the high variance within benchmarks, particularly IAML-
Ranger.

Benchmark Instance Acquisition RR HC Random

LCBench 3945 84.4 18.4 2.4 21.6
7593 100.0 88.4 61.2 94.0

IAML-Ranger 40981 5.2 1.6 27.6 0.4
41146 100.0 100.0 93.2 100.0

Note: RR = Random Restart, HC = Hill Climbing. Instance 40981 proves challenging for all methods; instance
41146 is tractable across all strategies.

B Implementation Details

Surrogate. Random Forest, 100 trees, scikit-learn 1.3. Hyperparameters normalized to [0, 1]. Uncertainty
is obtained from the standard deviation of tree predictions (Hutter et al., 2014).

Search. UCB: β = 1.5 (from preliminary experiments). All methods: 100 candidates per counterfactual.
Hill climbing: coordinate descent, step size 0.1, halving when no improvement.

YAHPO. Version 1.0, default proxies. 1000 configurations per sample for HPO history.

Compute. Single machine, 8 cores (Intel Xeon, 2.4 GHz). Total runtime: approximately 1 hour (2 com-
parisons × 2 examples × 50 epochs × 5 seeds × 4 methods = 4000 runs). Per counterfactual: approximately
50ms. Interactive use is practical.

C Extended Discussion: Categorical Parameters

The CF-HPO implementation proposed in this work treats all hyperparameters as continuous values. Cate-
gorical parameters —e.g., activation function selection, optimizer type— are outside the scope of this work
and are not considered. The integration of embedding-based representations or discrete optimization meth-
ods for categorical-heavy search spaces is left for future work.

D Example Output

An example output generated by CF-HPO is shown below:

======================================================================
CF-HPO REPORT - LCBench Instance 3945
======================================================================
[B] BEST CONFIGURATION:
------------------------------------------------------------
Performance: 97.42%
Hyperparameters:
batch_size : 64
learning_rate : 3.21e-03
momentum : 0.9200
weight_decay : 1.05e-04
num_layers : 3
max_units : 256
max_dropout : 0.2500

[+] COUNTERFACTUAL EXPLANATIONS (Target: P90 = 97.80%):

13



Under review as submission to TMLR

------------------------------------------------------------
CF #1: learning_rate: 3.21e-03 -> 1.85e-03
Expected: 97.42% -> 97.86% (+0.44%)
Proximity: 0.12 | Sparsity: 1 parameter

CF #2: batch_size: 64 -> 128, learning_rate: 3.21e-03 -> 2.50e-03
Expected: 97.42% -> 97.91% (+0.49%)
Proximity: 0.24 | Sparsity: 2 parameters

[!] SENSITIVITY WARNINGS:
------------------------------------------------------------
* learning_rate: 3.21e-03 -> 1.00e-01 would DROP by 15.2%
* num_layers: 3 -> 1 would DROP by 8.7%
* max_dropout: 0.25 -> 0.90 would DROP by 6.3%

[S] PARAMETER SENSITIVITY RANKING:
------------------------------------------------------------
learning_rate : [#########################] 15.20
num_layers : [################ ] 8.70
max_dropout : [############## ] 6.30
batch_size : [######## ] 3.85
momentum : [###### ] 2.91

[?] WHAT-IF ANALYSIS:
------------------------------------------------------------
Q: “What if I use a larger batch size for faster training?”
Config: batch_size=256, others unchanged
Predicted: 96.89% +/- 0.45% (vs Best: -0.53%)
Recommendation: Acceptable trade-off for 2x training speed

Q: “What if I simplify the architecture?”
Config: num_layers=2, max_units=128
Predicted: 95.21% +/- 0.82% (vs Best: -2.21%)
Recommendation: Notable performance hit; not advised

The output contains four components: (1) actionable counterfactuals with proximity and sparsity metrics,
(2) sensitivity alerts for risky changes, (3) parameter importance ranking, (4) what-if analysis for practical
scenarios. All predictions are presented with confidence intervals.

E Code and Data Availability

Resources provided for reproducibility:

• Code: Full CF-HPO implementation—all search strategies. URL will be added upon acceptance.

• Data: Raw CSV results. Validity, proximity, and proxy correlation at the seed level.

• Configs: YAML files containing all experimental parameters.

• Benchmarks: YAHPO Gym v1.0: https://github.com/slds-lmu/yahpo_gym.

Python 3.9+, scikit-learn for proxies, NumPy/SciPy for optimization. No proprietary dependencies.

14

https://github.com/slds-lmu/yahpo_gym

	Introduction
	Related Work
	Hyperparameter Optimization
	Counterfactual Explanations
	HPO Benchmarks

	Method
	Problem Formulation
	Surrogate Model
	CF-HPO Framework
	Search Strategies
	Evaluation Metrics

	Experiments
	Experimental Setup
	Methods Compared

	Results
	Main Results
	Per-Benchmark Analysis
	Surrogate Quality
	Learning Curves
	Validity-Proximity Trade-off

	Discussion
	When Does CF-HPO Work?
	Strategy Selection Guidelines
	Limitations and Scope
	Future Directions

	Conclusion
	Detailed Per-Instance Results
	Implementation Details
	Extended Discussion: Categorical Parameters
	Example Output
	Code and Data Availability

