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Abstract

Current out-of-distribution detection approaches usually present special require-1

ments (e.g., collecting outlier data and hyperparameter validation) and produce2

side effects (classification accuracy drop and slow/inefficient inferences). Recently,3

entropic out-of-distribution detection has been proposed as a seamless approach4

(i.e., a solution that avoids all the previously mentioned drawbacks). The entropic5

out-of-distribution detection solution comprises the IsoMax loss for training and6

the entropic score for out-of-distribution detection. The IsoMax loss works as a7

SoftMax loss drop-in replacement because swapping the SoftMax loss with the8

IsoMax loss requires no changes in the model’s architecture or training proce-9

dures/hyperparameters. In this paper, we propose to perform what we call an10

isometrization of the distances used in the IsoMax loss. Additionally, we propose11

to replace the entropic score with the minimum distance score. Our experiments12

showed that these simple modifications increase out-of-distribution detection per-13

formance while keeping the solution seamless.14

1 Introduction15

Neural networks have been used in classification tasks in many real-world applications [4]. In such16

cases, the system usually needs to be able to identify whether a given input belongs to any of the17

classes on which it was trained. Hendrycks & Gimpel [9] called this capability out-of-distribution18

(OOD) detection and proposed datasets and metrics to allow standardized performance evaluation19

and comparison. However, current OOD detection solutions still present limitations (e.g., special20

requirements and side effects) that prevent a more general use of OOD detection capabilities in21

practical real-world applications [27] (Table 1).22

First, OOD detection solutions commonly present hyperparameters that usually presume access to23

out-of-distribution samples to be defined [23, 22, 19, 18, 3]. A consequence of presuming access to24

OOD samples to validate hyperparameters and using the same distribution to evaluate OOD detection25

results is producing overestimated performance estimations [32]. To avoid unrealistic access to OOD26

samples and overestimated performance, Lee et al. [19] proposed to validate hyperparameters using27

adversarial samples. However, this requires the generation of adversarial examples. Moreover, this28

procedure requires the determination of hyperparameters (e.g., maximum adversarial perturbation)29

typically unknown when dealing with novel datasets. Similar arguments hold for solutions based on30

adversarial training [8, 17, 21, 14, 18], which also result in higher training time. Approaches based31

on the generation of adversarial examples or the use of adversarial training may also have limited32

scalability when dealing with large images such as those presented in the ImageNet [2].33
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Table 1: Out-of-distribution detection approaches: special requirements and side effects.

Approach
Special Requirement Side Effect

Hyperparameter Outlier Slow/Inefficient Classification
Tuning Data Inference Accuracy Drop

ODIN [23] Required Not Required Present Not Present

Mahalanobis [19] Required Not Required Present Not Present

ACET [8] Required Not Required Not Present Present

Outlier Exposure [10] Not Required Required Not Present Not Present

Generalized ODIN [11] Required Not Required Present Present

Gram Matrices [30] Not Required Not Required Present Not Present

Scaled Cosine [34] Not Required Not Required Not Present Present

Energy-based [25] Required Required Not Present Not Present

Entropic (Seamless) [27, 26] Not Not Not Not
IsoMax + Entropic Score Required Required Present Present

Entropic (Seamless) [ours] Not Not Not Not
IsoMaxI + MinDistance Score Required Required Present Present

Many solutions make use of the so-called input preprocessing technique introduced in ODIN [23].34

However, the use of the mentioned technique increases at least four times the inference delay and35

power consumption [27] since a combination of a first forward pass, backpropagation operation, and36

second forward pass is required [23, 19, 11, 3] for a single useful inference. Actually, approaches37

that may be applied directly to pretrained models and altogether avoid training or fine-tuning the38

model [23, 19, 30] usually produce inefficient inferences and/or additional computational complexity39

to perform OOD detection [26, Section IV, D]. From a practical point of view, this is a drawback, as40

inferences may be performed thousands or millions of times in the field. Hence, such approaches may41

be prohibitive (not sustainable) from environmental [31]1 and real-world cost-based perspectives.42

Another harmful common side effect is the so-called classification accuracy drop2 [34, 11]. In such43

cases, higher OOD detection performance is achieved at the expense of a drop in the classification44

accuracy compared with models trained using the usual SoftMax loss (i.e., the combination of the45

SoftMax activation and the cross-entropy loss [24]). From a practical perspective, this situation is46

undesired because the detection of out-of-distribution samples may be a rare event. At the same time,47

the classification is the main aim of the designed system [1].48

Hsu et al. [11] proposed to use the in-distribution validation set to avoid the need for accessing49

OOD samples to determine the hyperparameters required by the solution. However, considering that50

CIFAR10 and CIFAR100 do not have separated sets for validation and testing, the results may also be51

overestimated because the validation sets used to define the hyperparameters were reused for OOD52

detection performance estimation. A more realistic OOD detection performance estimation could53

have been achieved by removing the in-distribution validation set from in-distribution training data.54

However, this would probably produce an even higher classification accuracy drop. Additionally, the55

solution proposed in [11] is expensive and not environment-friendly, as it uses input preprocessing56

and, consequently, produces slow and energy-inefficient inferences [27, 26]. Recently, many OOD57

detection approaches have used additional/extra/outlier data [10, 25, 5]. The Gram matrices solution58

calculates values produced by the model during inference [30] to perform OOD detection.59

In some cases, an ensemble of classifiers is used [35]. For deep ensembles, Lakshminarayanan60

et al. [17] proposed an ensemble of same-architecture models trained with different random initial61

weights. Some proposals required model structural changes to tackle OOD detection [37], and62

certain trials used uncertainty or confidence estimation/calibration techniques [13, 20, 28, 16, 33].63

However, Bayesian neural networks used in most of these are usually harder to implement and require64

1https://www.youtube.com/watch?v=KnOpWgUCtaM
2In this paper, we consider that an approach does not present classification accuracy drop if it always presents

a classification accuracy higher or less than one percent (1%) lower than SoftMax-loss-trained models.
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much more computational resorces to train. Moreover, computational constraints usually require65

approximations that compromise the performance, which is also affected by the prior distribution66

used [17]. For example, MC-dropout uses pretrained models with dropout activated during the test67

time. An average of many inferences is used to perform a single decision [6].68

The entropic out-of-distribution detection approach, which is composed of the IsoMax loss for training69

and the entropic score for OOD detection, avoids all mentioned special requirements and side effects70

[27]. Indeed, no hyperparameter tuning is required because the entropic scale is a global constant71

kept equal to ten for all combinations of datasets and models. Even if we call the entropic scale a72

“hyperparameter”, the IsoMax does not involve hyperparameter tuning, as the same constant value of73

entropic scale is used in all situations. This is possible because Macêdo et al. experimentally showed74

in [27, Fig. 3] and in [26, Section IV, A] that the OOD detection performance presents a well-behaved75

dependence on the entropic scale regardless of the dataset and model. No additional/extra/outlier76

data are necessary. Models trained using IsoMax loss produce inferences as fast and energy-efficient77

as the inferences produced by SoftMax-loss-trained networks. The OOD detection requires only a78

speedy entropy calculation. Finally, no classification accuracy drop is observed.79

Contributions Our contribution in this paper is threefold: First, in addition to minor changes, we80

perform what we call an isometrization of the feature-prototype distances used by the IsoMax loss.81

We call our modified version of IsoMax the isometric isotropy maximization loss or isometric IsoMax82

loss (IsoMaxI loss). Second, we propose to use the minimum feature-prototype distance as the score83

to perform OOD detection. Considering that the minimum feature-prototype distance is calculated84

to perform the classification, the OOD detection task presents essentially zero computational cost85

because we simply reuse this value as the score to perform OOD detection. Third, in addition to86

experimental evidence, we provide insights into why a combination of training using the isometric87

distances provided by IsoMaxI and performing OOD detection using the minimum distance scores88

produces a substantial performance increase in OOD detection compared to IsoMax combined with89

the entropic score. Our approach keeps the solution seamless (i.e., it avoids the previously mentioned90

special requirements and side effects) while significantly increasing the OOD detection performance.91

Similar to IsoMax loss, IsoMaxI works as a SoftMax loss drop-in replacement, as no procedures92

other than regular neural network training are required.93

2 Isometric Distances and Minimum Distance Score94

Isometric Distances Consider an input x applied to a neural network that performs a parametrized95

transformation fθ(x). Moreover, consider pjφ be the learnable prototype associated with the class j.96

Additionally, let the expression ‖fθ(x)−pjφ‖ represent the nonsquared Euclidean distance between97

fθ(x) and pjφ. Finally, consider pkφ as a learnable prototype associated with the correct class for the98

input x. Hence, we write the IsoMax loss [27] for a batch of N examples using the equation below:99

LIsoMax = − 1

N

N∑
k=1

log

 exp(−Es‖fθ(x)−pkφ‖)∑
j

exp(−Es‖fθ(x)−pjφ‖)

 (1)

In the above equation, the Es represents the entropic scale. From Equation (1), we observe that100

the distances from IsoMax loss are given by the expression D= ‖fθ(x)−pjφ‖. During inference,101

probabilities calculated based on these distances are used to produce the negative entropy, which102

serves as a score to perform OOD detection. However, as the features fθ(x) are unnormalized,103

examples with low norms are unjustifiably favored to be considered OOD examples since they tend104

to produce high entropy. Additionally, as the weights pjφ are unnormalized, examples from classes105

that present prototypes with low norms are unjustifiably favored to be considered OOD examples for106

the same reason.107

Hence, we propose to replace fθ(x) with its normalized version given by f̂θ(x)=fθ(x)/‖fθ(x)‖.108

Additionally, we propose to replace pjφ with its normalized version given by p̂jφ=pjφ/‖p
j
φ‖. The109

expression ‖v‖ represents the 2-norm of a given vector v.110
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Table 2: Classification accuracy of models trained using SoftMax, IsoMax, and IsoMaxI losses.
In addition to avoiding classification accuracy drop compared with SoftMax-loss- and IsoMax-loss-
trained networks, IsoMaxI-loss-trained models show higher OOD detection performance (Table 3).

Model Data Train Accuracy (%) [↑] Test Accuracy (%) [↑]
SoftMax Loss / IsoMax Loss / IsoMaxI Loss

DenseNetBC100
CIFAR10 99.9 / 99.9 / 99.9 95.4 / 95.2 / 95.2
CIFAR100 99.9 / 99.0 / 99.9 77.5 / 77.5 / 76.8
SVHN 96.9 / 97.6 / 97.1 96.6 / 96.6 / 96.6

ResNet110
CIFAR10 99.9 / 99.9 / 99.9 94.5 / 94.6 / 94.6
CIFAR100 99.5 / 99.9 / 99.8 72.7 / 74.1 / 73.9
SVHN 99.8 / 99.9 / 99.5 96.7 / 96.9 / 96.9

However, while the distances in the original IsoMax loss may vary from zero to infinity, the distance111

between two normalized vectors is always equal to or lower than two. To avoid this unjustifiable and112

unreasonable restriction, we introduce the distance scale ds, which is a scalar learnable parameter.113

Naturally, we require the distance scale to always be positive by taking its absolute value |ds|.114

The feature normalization makes the solution isometric regardless of the norm of the features produced115

by the examples. The distance scale is class independent, as it is a single scalar value regularly116

learnable during training. The weight normalization and the class independence of the distance scale117

make the solution isometric regarding all classes. Hence, the proposed distance is isometric because118

it produces an isometric treatment of all features, prototypes, and classes. Therefore, we can write119

the expression for the isometric distances used by the IsoMaxI loss as:120

DI = |ds| ‖f̂θ(x)−p̂jφ‖ (2)

Returning to Equation (1), we can write the expression for the IsoMaxI loss as follows:121

LIsoMaxI = − 1

N

N∑
k=1

log

 exp(−Es |ds| ‖f̂θ(x)−p̂kφ‖)∑
j

exp(−Es |ds| ‖f̂θ(x)−p̂jφ‖)

 (3)

Applying the entropy maximization trick (i.e., the removal of the entropic scoreEs for inference) [27],122

we can write the expression for the IsoMaxI loss probabilities used during inference for performing123

OOD detection when using the entropic score [27]:124

PIsoMaxI (y
(i)|x) =

exp(− |ds| ‖f̂θ(x)−p̂iφ‖)∑
j

exp(− |ds| ‖f̂θ(x)−p̂jφ‖)
(4)

Different from IsoMax loss where the prototypes are initialized to a zero vector, we initialized all125

prototypes using a normal distribution with a mean of zero and standard deviation of one. This126

approach is necessary because we normalize the prototypes when using IsoMaxI loss. The distance127

scale is initialized to one. We add no hyperparameters to the solution.128

Minimum Distance Score Motivated by the desired characteristics of the isometric distances used129

in IsoMaxI , we propose to use what we call the minimum distance as the score for performing OOD130

detection. Naturally, the minimum distance score for the IsoMaxI is given by:131

SMinDistance=min
j

(
‖f̂θ(x)−p̂jφ‖

)
(5)

4



Table 3: Fair comparison of seamless approaches: No hyperparameter tuning, no addi-
tional/extra/outlier data, no classification accuracy drop, and no slow/inefficient inferences.
SoftMax+ES means training using SoftMax loss and performing OOD detection using the entropic
score (ES). IsoMax+ES means training using IsoMax loss and performing OOD detection using
the entropic score (ES). IsoMaxI+MDS means training using IsoMaxI loss and performing OOD
detection using minimum distance score (MDS). The best results are in bold (0.5% tolerance).

Model Data
(training)

OOD
(unseen)

Out-of-Distribution Detection:
Seamless Approaches.

TNR@TPR95 (%) [↑] AUROC (%) [↑]
SoftMax+ES / IsoMax+ES / IsoMaxI+MDS (ours)

DenseNetBC100

CIFAR10
SVHN 33.2 / 77.0 / 97.2 86.9 / 96.6 / 99.5
TinyImageNet 59.8 / 88.0 / 92.5 94.2 / 97.8 / 98.6
LSUN 69.5 / 94.5 / 95.3 95.9 / 98.8 / 99.1

CIFAR100
SVHN 24.9 / 23.4 / 78.6 81.9 / 88.6 / 96.5
TinyImageNet 23.7 / 49.1 / 85.6 78.8 / 92.6 / 97.6
LSUN 24.4 / 63.0 / 83.4 77.9 / 94.7 / 97.4

SVHN
CIFAR10 83.7 / 94.1 / 95.3 96.9 / 98.5 / 99.1
TinyImageNet 90.0 / 97.0 / 98.3 98.1 / 99.1 / 99.7
LSUN 88.4 / 96.8 / 97.8 97.8 / 99.1 / 99.7

ResNet110

CIFAR10
SVHN 37.8 / 73.0 / 83.6 89.6 / 95.1 / 97.3
TinyImageNet 43.7 / 73.7 / 75.5 90.6 / 95.9 / 96.0
LSUN 52.1 / 82.8 / 86.3 92.8 / 96.9 / 97.7

CIFAR100
SVHN 15.4 / 18.7 / 30.7 67.5 / 84.7 / 85.8
TinyImageNet 18.8 / 26.3 / 42.9 73.5 / 84.5 / 87.9
LSUN 21.3 / 30.2 / 46.9 76.4 / 87.1 / 89.4

SVHN
CIFAR10 68.6 / 80.4 / 72.0 91.7 / 95.2 / 93.3
TinyImageNet 71.7 / 84.4 / 83.1 93.1 / 95.8 / 96.2
LSUN 69.1 / 80.4 / 76.3 91.8 / 94.3 / 94.3

In the previous equation, |ds| was removed because it is a scale factor that does not change after132

the training is completed. The minimum distance is computed to perform the classification, as the133

predicted class is the one that presents the lowest feature-prototype distance. Therefore, when using134

this score, the OOD detection presents essentially zero latency and computational cost, as we simply135

reuse the minimum distance already calculated.136

3 Experiments137

To allow standardized comparison, we used the datasets, training procedures, and metrics that were138

established in Hendrycks & Gimpel [9] and adopted in many subsequent OOD detection papers139

[23, 19, 8]. We did not compare to approaches that produce classification accuracy drop (e.g.,140

[34, 11]), as this is a substantial limitation from a practical perspective [1]. The code to reproduce the141

results is available as supplementary material.142

We trained many 100-layer DenseNetBCs with growth rate k= 12 (i.e., 0.8M parameters) [12],143

110-layer ResNets [7]3, and 34-layer ResNets [7]4 on CIFAR10 [15], CIFAR100 [15], and SVHN144

[29] datasets with SoftMax, IsoMax, and IsoMaxI losses using the same procedures (e.g., initial145

learning rate, learning rate schedule, weight decay) presented in Lee et al. [19].146

We used SGD with the Nesterov moment equal to 0.9 during 300 epochs with a batch size of 64, and147

an initial learning rate of 0.1 with a learning rate decay rate equal to ten applied in the epoch number148

150, 200, and 250. The weight decay was 0.0001. We did not use dropout. We used a computer with149

CPU Intel i7-4790K, 4.00GHz, x64, octa-core, 32Gb RAM, and a GPU Nvidia GTX 1080 Ti.150

3https://github.com/akamaster/pytorch_resnet_cifar10
4https://github.com/pokaxpoka/deep_Mahalanobis_detector
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Table 4: Unfair comparison with approaches that use input preprocessing and produce
slow/inefficient inferences in addition to requiring validation using adversarial examples.
ODIN and Mahalanobis were applied to models trained using SoftMax loss. These approaches
present at least four times slower and less power efficient inferences [27], as they use input prepro-
cessing. Their hyperparameters were validated using adversarial examples. IsoMaxI+MDS (ours)
means training using IsoMaxI loss and performing OOD detection using minimum distance score
(MDS). The best results are in bold (0.5% tolerance).

Model
Data

(training)
OOD

(unseen)

Comparison with approaches that use
input preprocessing and adversarial validation.

AUROC (%) [↑] DTACC (%) [↑]
ODIN / Mahalanobis / IsoMaxI+MDS (ours)

DenseNetBC100

CIFAR10
SVHN 92.8 / 97.6 / 99.5 86.5 / 92.6 / 96.3
TinyImageNet 97.2 / 98.8 / 98.6 92.1 / 95.0 / 93.9
LSUN 98.5 / 99.2 / 99.1 94.3 / 96.2 / 95.2

CIFAR100
SVHN 88.2 / 91.8 / 96.5 80.7 / 84.6 / 90.0
TinyImageNet 85.3 / 97.0 / 97.6 77.2 / 91.8 / 91.6
LSUN 85.7 / 97.9 / 97.4 77.3 / 93.8 / 90.8

ResNet34

CIFAR10
SVHN 86.5 / 95.5 / 98.2 77.8 / 89.1 / 93.0
TinyImageNet 93.9 / 99.0 / 94.8 86.0 / 95.4 / 88.5
LSUN 93.7 / 99.5 / 96.6 85.8 / 97.2 / 91.0

CIFAR100
SVHN 72.0 / 84.4 / 88.3 67.7 / 76.5 / 82.6
TinyImageNet 83.6 / 87.9 / 90.5 75.9 / 84.6 / 84.4
LSUN 81.9 / 82.3 / 88.3 74.6 / 79.7 / 82.6

Table 5: Unfair comparison of outlier exposure-enhanced SoftMax loss with IsoMax loss and
IsoMaxI loss without using extra data. SoftMaxOE+ES means training using SoftMax loss en-
hanced during training by using outlier exposure [10], which requires the collection of outlier data,
and performing OOD detection using the entropic score (ES). We used the same outlier data used in
[10]. In each case, we collected the same amount of outlier data as the number of training examples
present in the training set used to train SoftMaxOE. Despite being possible [26], the IsoMax loss and
IsoMaxI loss were not enhanced with outlier exposure to keep the solution seamless. IsoMax+ES
means training using IsoMax loss and performing OOD detection using the entropic score (ES).
IsoMaxI+MDS (ours) means training using IsoMaxI loss and performing OOD detection using
minimum distance score (MDS). The values of the performance metrics TNR@TPR95 and AUROC
were averaged over all out-of-distribution. The best values are in bold (0.5% tolerance).

Model
Data

(training)

Comparison of IsoMax loss variants without using extra data
with outlier exposure-enhanced SoftMax loss.

TNR@TPR95 (%) [↑] AUROC (%) [↑]
SoftMaxOE+ES / IsoMax+ES / IsoMaxI+MDS (ours)

DenseNetBC100
CIFAR10 93.8 / 84.1 / 95.0 98.5 / 97.3 / 99.1
CIFAR100 23.0 / 45.1 / 82.5 80.5 / 91.9 / 97.0

ResNet110
CIFAR10 92.6 / 76.5 / 81.8 98.0 / 96.0 / 97.0
CIFAR100 36.1 / 25.1 / 40.2 83.2 / 85.5 / 87.7
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(a)

(b)

Figure 1: (a) The no isometric distances used by the IsoMax loss make detecting out-of-distribution
examples difficult using the minimum distance score. Consequently, the minimum distance score
is not competitive with the entropic score in this case. (b) The isometric distances used by the
IsoMaxI loss make detecting out-of-distribution examples easy using the minimum distance score.
Consequently, the minimum distance score usually overcomes the entropic score in this situation.

We used resized images from the datasets TinyImageNet [2]5 and the Large-scale Scene UNderstand-151

ing dataset (LSUN) [36]5 following Lee et al. [19] to create out-of-distribution samples. We added152

these out-of-distribution images to the validation sets presented in the CIFAR10, CIFAR100, and153

SVHN to form the test sets and evaluate the OOD detection performance.154

We evaluated the OOD detection performance using the true negative rate at 95% true positive155

rate (TNR@TPR95), the area under the receiver operating characteristic curve (AUROC), and the156

detection accuracy (DTACC), which corresponds to the maximum classification probability over all157

possible thresholds δ:158

1−min
δ

{
Pin (o (x) ≤ δ)P (x is from Pin) + Pout (o (x) > δ)P (x is from Pout)

}
,

where o(x) is the OOD detection score. It is assumed that both positive and negative samples have159

an equal probability of being in the test set, i.e., P (x is from Pin) = P (x is from Pout). All the160

mentioned metrics follow the calculation procedures specified in Lee et al. [19].161

4 Results and Discussion162

Classification Accuracy Table 2 presents the classification accuracy results. It shows that IsoMaxI163

loss does not present classification accuracy drop compared to SoftMax loss or IsoMax loss for all164

datasets and models. We observe that the IsoMax loss variants present more than one percent (%1)165

better accuracy than the SoftMax loss when using ResNet110 on the CIFAR100 dataset.166

Out-of-Distribution Detection We report the results using the entropic score for SoftMax loss167

(SoftMax+ES), outlier exposure-enhanced SoftMax loss (SoftMaxOE+ES), and IsoMax loss (Iso-168

Max+ES) because it always overcame the maximum probability score and minimum distance score in169

5https://github.com/facebookresearch/odin
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these cases. For IsoMaxI , we report the values using the minimum distance score (IsoMaxI+MDS),170

as it usually overcame the maximum probability and the entropic score in this situation.171

The Table 3 summarizes the results of the fair OOD detection comparison. In the mentioned table,172

all approaches are accurate (no classification accuracy drop), fast and power-efficient (inferences173

are performed without input preprocessing), and no validation is required to define hyperparameters.174

Additionally, no additional/extra/outlier data are needed. In most cases, IsoMaxI+MDS overcomes175

IsoMax+ES performance, regardless of the model, dataset, and out-of-distribution.176

The minimum distance score produces high OOD detection performance when combined with the177

IsoMaxI , which evidences that the isometrization of the distances indeed work in this case. However,178

the same minimum distance score produced low OOD detection performance when combined with179

the original IsoMax loss. The Fig. 1 provides an explanation for this fact.180

Table 4 summarizes the results of an unfair OOD detection comparison, as the methods present differ-181

ent requirements and produce distinct side effects. ODIN [23] and the Mahalanobis [19] approaches182

require adversarial samples to be generated to validate hyperparameters for each combination of183

dataset and model. Moreover, these approaches use input preprocessing, which makes inferences184

at least four times slower and at least four times less energy-efficient. Validation using adversarial185

examples may be a cumbersome procedure to be performed from scratch on novel datasets, as hyper-186

parameters such as optimal adversarial perturbations may be unknown in such cases. IsoMaxI+MDS187

does not present these special requirements and does not produce the mentioned side effects.188

Nevertheless, IsoMaxI+MDS provides higher performance than ODIN. Usually, this occurs by a189

large margin. In addition to the changes between the entropy maximization trick and temperature190

calibrations present in [27, 26], we emphasize that training with entropic scale affects the learning of191

all weights while changing the temperature during inference affects only the last layer. Hence, the fact192

that the proposed solution overcomes ODIN by a safe margin is additional evidence that the entropy193

maximization trick often produces much higher OOD detection performance than temperature cali-194

bration, even when the latter is combined with input preprocessing. Besides, the entropy maximization195

trick does not require access to validation data to tune the temperature. In addition to being seamless196

and avoiding the Mahalanobis approach drawbacks, IsoMaxI+MDS usually overcomes it in terms of197

AUROC and produces similar performance when considering the DTACC.198

Table 5 unfairly compares the performance of the proposed approach with the outlier exposure199

solution. Similar to IsoMax variants, the outlier exposure approach does not require hyperparameters200

tuning and produces efficient inferences. However, it requires collecting outlier data, while our201

approach does not. It is important to emphasize that outlier exposure may also be combined with202

IsoMax loss variants to increase the OOD detection performance further [26]. Nevertheless, in203

the mentioned table, we preferred to present the IsoMax loss variants without outlier exposure to204

show that the outlier exposure-enhanced SoftMax loss usually present lower OOD detection than205

IsoMaxI+MDS even without using outlier exposure.206

5 Conclusion207

In this paper, we improved the IsoMax loss by replacing its original distance with what we call208

the isometric distance. Additionally, we proposed a zero computational cost minimum distance209

score. The experiments showed that these modifications produce higher OOD detection performance210

while keeping desired benefits of IsoMax loss (absence of hyperparameters to tune, no reliance on211

additional/extra/outlier data, fast and power-efficient inference, and no classification accuracy drop).212

Similar to IsoMax loss, after training using the proposed IsoMaxI loss, we may apply inference-based213

approaches (e.g., Gram matrices, outlier exposure, energy-based) to the pretrained model to eventually214

increase even more the overall OOD detection performance. Therefore, instead of competitors, the215

OOD detection approaches that may be applied to pretrained models are actually complementary to216

our approach [27, 26]. Hence, there is no drawback in training a model using IsoMaxI loss instead217

of SoftMax loss or IsoMax loss, regardless of planning to subsequently use an inference-based OOD218

detection approach to increase the OOD detection performance further.219

In future works, considering its simplicity, we plan to verify whether our approach scales satisfactorily220

to large-scale image datasets such as ImageNet. We also intend to verify the performance of our221

solution using text datasets.222
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