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ABSTRACT

Latent variable models such as the Variational Auto-Encoders (VAEs) have shown
impressive performance for inferring expression patterns for cell subtyping and
biomarker identification from transcriptomics data. However, the limited inter-
pretability of their latent variables obscures deriving meaningful biological un-
derstanding of cellular responses to different external and internal perturbations.
We here propose a novel deep learning framework, EXPORT (EXPlainable VAE
for ORdinally perturbed Transcriptomics data), for analyzing ordinally perturbed
transcriptomics data that can incorporate any biological pathway knowledge in
the VAE latent space. With the corresponding pathway-informed decoder, the
learned latent expression patterns can be explained as pathway-level responses to
perturbations, offering direct interpretability with biological understanding. More
importantly, we explicitly model the ordinal nature of many real-world pertur-
bations into the EXPORT framework by training an auxiliary ordinal regressor
neural network to capture corresponding expression changes in the VAE latent
representations, for example under different dosage levels of radiation exposure.
By incorporating ordinal constraints during the training of our proposed frame-
work, we further enhance the model interpretability by guiding the VAE latent
space to organize perturbation responses in a hierarchical manner. We demon-
strate the utility of the inferred guided latent space for downstream tasks, such as
identifying key regulatory pathways associated with specific perturbation changes
by analyzing transcriptomics datasets on both bulk and single-cell data. Overall,
we envision that our proposed approach can unravel unprecedented biological in-
tricacies in cellular responses to various perturbations while bringing an additional
layer of interpretability to biology-inspired deep learning models.

1 INTRODUCTION

Transcriptomics data analysis, the study of gene expression patterns across different biological
and/or treatment conditions in complex systems, has undergone a transformative journey propelled
by advancements in sequencing technologies evolving from bulk to single-cell sequencing to spatial
transcriptomics (Li & Wang, 2021; Niyakan et al., 2023). The generated expression profiles are typ-
ically used in the context of cell type discovery and cellular development (Møller & Madsen, 2023;
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Niyakan et al., 2021). Of particular interest are the changes of expression patterns as responses to
ordinal perturbations, such as drug screening and radiation exposure at different dosage levels (Pei-
dli et al., 2024; Luo et al., 2022). The cellular responses to external stimuli are intricately linked to
the ordinal dosage of the stimulus, delineate dose-response curves that provide invaluable insights
into the dynamics of biological systems (Kana et al., 2023). Exploring and understanding how cel-
lular responses evolve across a spectrum of stimulus doses sheds light on the underlying cellular
mechanisms and paves the way for precision medicine approaches tailored to individualized dose-
dependent responses specifically in the context of disease and drug treatment (Bock et al., 2022;
Lotfollahi et al., 2019).

Deep generative models such as VAEs (Kingma & Welling, 2014) have shown their capabilities in
unraveling biological insights from large and heterogeneous perturbation-induced gene expression
profiles due to their model flexibility while keeping necessary changes to the inference procedure
relatively minimal (Kana et al., 2023; Lotfollahi et al., 2023). Despite these successes, VAEs suffer
from limited interpretability, making them ‘black boxes’ as the reasoning behind predictions as well
as the direct correspondence between input features, learned latent vectors and biological processes
is often unknown (Lopez et al., 2023). Numerous approaches have been proposed to address the
lack of interpretability in deep generative models. For example, disentanglement-promoting VAEs
infer disentangled latent representations where one latent unit represents one generative factor of
data variability while being invariant to other generative factors (Chen et al., 2018). However, these
methods often compromise the quality of the latent variables for downstream analysis tasks (Kim-
mel, 2020). In computational biology, a recent alternative approach incorporates pathway knowl-
edge to directly modify the VAE architecture, where the neuron connections mirror the user-provided
gene-pathway maps and the hidden layers consist of nodes capturing the biological pathway-level
activities such as VEGA (Seninge et al., 2021), pmVAE (Gut et al., 2021) and scETM (Zhao et al.,
2021) models. (Details in Appendix A.)

Despite the enhanced model interpretability achieved by the pathway informed VAEs when analyz-
ing perturbation-induced transcriptomics data, existing state-of-the-art (SOTA) tools oversimplify
the graded biological response dynamics in ordinal perturbations by categorical modeling of stim-
ulus induction levels and ignoring the ordinality (Seninge et al., 2021; Gut et al., 2021). As the
perturbation dosage levels are ordered and there are different inter-class importance for each pair of
dosage levels, without accounting for the ordered nature of dose-dependent effects, trained models
may lead to imprecise prediction of cellular response patterns to ordinal perturbations.

To address current limitations, we propose EXPORT (EXPlainable VAE for ORdinally perturbed
Transcriptomics data), an interpretable VAE model with a biological pathway informed architecture,
to analyze ordinally perturbed transcriptomics data. Specifically, the low-dimensional latent repre-
sentations in EXPORT are ordinally-guided by training an auxiliary deep ordinal regressor network
and explicitly modeling the ordinality in the training loss function with an additional ordinal-based
cumulative link loss term (Pedregosa et al., 2017). To highlight the capability of our EXPORT in
properly encoding perturbed transcriptomics data in an explainable latent space and accurately iden-
tifying pathway modules that are differentially affected by dose-dependent perturbations, we have
applied EXPORT to two real-world perturbed transcriptomics data by bulk and single-cell sequenc-
ing from radiation exposure and chemical induction experiments. Our experimental results demon-
strate that EXPORT indeed helps unravel the biological intricacies of cellular response mechanisms
to ordinal perturbations.

2 METHODOLOGY

2.1 MODEL OVERVIEW

EXPORT analyzes transcriptomics data (Y ), under perturbations of the ordinal dosage vector (D).
It also integrate biological pathway annotations as inputs as indicated in Figures 1.A and B.

VEGA Architecture The encoder-decoder neural network architecture is inspired by VEGA to
achieve interpretability leveraging existing gene pathway databases (Seninge et al., 2021). Specif-
ically, the decoder is a sparse single-layer neural network whose wirings are mirroring the user-
provided gene-pathway annotation maps to help reconstruct normalized gene expressions, Ŷ , based
on the pathway-constrained latent representations. The encoder is composed of two layers of fully
connected nodes with the input number of features being the same as the number of genes in the tran-
scriptomics dataset and the number of its first layer output features set to be 800. The latent space,
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Figure 1: The EXPORT workflow to analyze ordinally perturbed transcriptomics data. EXPORT re-
quires: A) perturbed gene expression data and the ordinal dosage levels of the applied perturbations,
as well as B) biological pathway annotations. C) EXPORT model architecture mainly constitutes of
a fully connected encoder, a masked linear decoder integrating pathway annotations, and an ordinal
regressor network.

Z, with its dimension set to be the number of extracted pathways from the pathway database, plus
one additional fully connected node to capture additional data variability. This choice of the VAE
architecture in EXPORT enforces the encoding of the prior biological knowledge that genes work
together in coordination in pathways while the deep neural network encoder and decoder capture
nonlinear high-order gene-gene interactions (Details in Appendix E).

Compositional Decoder To guide the VAE latent space to capture the intricacies of transcrip-
tomics responses to ordinal perturbations, we integrate an ordinal regessor network taking the low-
dimensional latent representations Z as inputs to recover the dosage values (D̂). This innovative
superposition architecture employs a compositional decoder capable of flexibly incorporating aux-
iliary information related to the transcriptomics data. In our case, the architecture comprises two
decoders: the first decoder Ŷ = D1(Z) is dedicated to reconstructing the transcriptomics data,
while the second decoder D̂ = D2(Z) aims at learning the ordinal dosage vector using the same
latent representation. Given the independence of each decoder, any available supplementary infor-
mation can be seamlessly assimilated into the modeling framework.

2.2 TRAINING

Following the standard VAE implementations (Kingma & Welling, 2014), the objective to be maxi-
mized during training is the evidence of lower bound (ELBO), which is based on the reconstruction
loss as well as the Kullblack-Leibler (KL) divergence loss:

ELBO = Eq(Z|Y,ϕ)[log p(Y |Z, θ)]− KL(q(Z|Y, ϕ) || p(Z|θ)), (1)

where ϕ and θ are the learnable variational inference and neural network parameters. Additionally,
in EXPORT, as we expect that the latent space Z represents a biological pathway activity in the data
to analyze, the variational distribution q(Z|Y, ϕ) is modeled as a multivariate normal distribution:

q(Z|Y, ϕ) = N (µϕ(Y ),Σϕ(Y )). (2)
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This choice of the variational distribution is common and has proven to work well in previous bulk
and single-cell transcriptomics studies (Seninge et al., 2021; Lotfollahi et al., 2019).

2.2.1 CUMULATIVE LOGISTIC LINK MODEL FOR ORDINAL REGRESSION

In order to explicitly model the ordinal nature of perturbations in real-world experiments to un-
derstand transcriptomics responses by guiding the encoding into meaningful pathway-constrained
latent representations in EXPORT, we adopt a proportional odds model, one of the first models de-
signed explicitly for ordinal regression problems but lately is recognized as a member of a wider
family of models known as cumulative link (CL) models (McCullagh, 1980; Vargas et al., 2020).
CL models predict probabilities of groups of contiguous ordinal categories, taking the ordinal scale
into account. When analyzing transcriptomics data under ordinal perturbations in EXPORT, assum-
ing that we have M different perturbation levels D ∈ D = {D1,D2, ...,DM} where there is natural
ordering of D1 ≺ D2 ≺ ... ≺ DM , cumulative probabilities P (D ≺ Dm|Z) are estimated, which
can be directly related to the following standard probability terms:

p(D ⪯ Dm|Z) = p(D = D1|Z) + ...+ p(D = Dm|Z),

p(D = Dm|Z) = p(D ⪯ Dm|Z)− p(D ⪯ Dm−1|Z),
(3)

where m = 2, ...,M − 1 and considering that p(D ⪯ DM |Z) = 1 and p(D = D1|Z) = p(D ⪯
D1|Z). The CL model projects the latent variables into a one-dimensional space using the mapping
function f(·) and then a set of thresholds {c0, c1, c2, ..., cM−1, cM}, where c0 = −∞ and cM =
+∞, estimated from the data, is used to partition the projection into the different ordinal levels.
Specifically, the dosage level Dm is predicted if and only if f(Z) ∈ [cm−1, cm]. Finally, in the
proportional odds model or alternatively the cumulative logistic link model used in our EXPORT
framework, we have the following general model form:

logit[p(D ⪯ Dm|Z)] = log
p(D ⪯ Dm|Z)

1− p(D ⪯ Dm|Z)
= cm − f(Z), (4)

where m = 1, ...,M − 1. Lastly, the cumulative logistic link model loss function is given by its
negative likelihood, that is,

LCL =

{ −log(σ(c1 − f(Z)) if m = 1;
−log(σ(cm − f(Z))− σ(cm−1 − f(Z))) if 1 < m < M ;

−log(1− σ(cM−1 − f(Z))) if m = M.
(5)

The overall training loss for the pathway-informed supervised VAE model in EXPORT can be de-
rived by integrating the VAE reconstruction loss term in Equation (1) and the ordinal-based cu-
mulative link loss expressed in Equation (5) as the supervised learning to guide the learning of
dose-dependent transcriptomics response to perturbations:

LTot = KL(q(Z|Y, ϕ) || p(Z|θ))− Eq(Z|Y,ϕ)[log p(Y |Z, θ)] + α ∗ LCL, (6)

where α is a coefficient hyperparameter on the cumulative link loss controlling the effect of ordi-
nal deep regression in training the overall model in EXPORT. The training methodology proposed
herein can be conceptualized as an extension of the VEGA model, characterized by its generalization
capabilities. Specifically, when the hyperparameter α is set to 0, the training paradigm asymptoti-
cally aligns with the unsupervised learning framework established by the VEGA model. Conversely,
a non-zero value of α introduces the capability to allow the ordinal characteristics of perturbations
to guide the learning of deep latent representations to better reflect cellular responses to perturba-
tions. This flexibility enhances the model’s ability to capture and represent complex data structures
effectively.

3 RESULTS
In our experiments with EXPORT model, we apply it to two real-world transcriptomics datsets
on both bulk and single-cell resolutions ordinally perturbed with radiation exposure and chemical
induction. In the following paragraphs we present our main findings:

EXPORT latent space captures ordinality of transcriptomic response to radiation exposure.

In our first experiment, we investigate the capability of EXPORT in resolving the human cell line re-
sponse to radiation exposures at different levels. For this purpose, we analyze the publicly available
radiation exposure microarray gene expression data (Nosel et al., 2013) (Detailed in Appendix B).
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Figure 2: UMAP embedding of the latent representations learned by the EXPORT model trained on
the radiation exposure data with the samples colored by A) ordinal dosage labels, B) dosage levels,
and C-D) EXPORT-inferred activity heatmaps of two common top differentially activated pathways
in the comparison of zero versus low and high dosage level samples.

The decoder neural connections in our EXPORT model, mirror the gene-pathway mappings in the
KEGG database when analyzing this radiation exposure data (Appendix B). After mapping the ac-
tual radiation dosage values of 121 samples in the dataset to the ordinal labels from 0 to 6, we train
an EXPORT model for 200 epochs to embed the gene expression data into a ordinality-preserving
and interpretable lower-dimensional pathway-constrained latent space. Figures 2.A and .B display
the UMAP (Uniform Manifold Approximation and Projection) (McInnes et al., 2020) embedding
of the derived latent representations by the corresponding EXPORT model. These visualizations
illustrate that EXPORT’s learned latent space effectively captures the gradual changes in cellular
transcriptomic response to radiation exposure across different ordinal levels with embedded points
ordered hierarchically based on assigned ordinal labels.

Furthermore, to identify the KEGG pathways that are differentially activated under either low-dose
or high-dose radiation exposure, compared to samples with no radiation exposure, we have applied
the Bayesian hypothesis testing procedure that has been implemented in EXPORT as described in
Appendix C. Intersecting the top 5 differentially activated pathways in zero versus low-dose and
high-dose exposure sample groups respectively, we find two common KEGG pathways: Natural
killer cell mediated cytotoxicity and Graft-versus-host disease. Both pathways have been reported
previously as pathways involved in radiation exposure experiments confirming the reliability of EX-
PORT in inferring the pathway activity scores (Luo et al., 2022). Notably, these two pathways ranked
low in the unsupervised version of EXPORT that does not integrate the ordinal dosage labels when
deriving latent representations of pathway responses, highlighting the importance of the ordinal re-
gression module in analyzing ordinally perturbed transcriptomics data. (Detailed in Appendix D.1).

A)
𝛼 = 0 (VEGA) 𝛼 = 1𝑒3 𝛼 = 1𝑒6 𝛼 = 1𝑒9

B) C) D)

Figure 3: Ablation study on the ordinal regression module in EXPORT.
Ablation study for the ordinal regression module in EXPORT. To assess the ordinal regressor
network’s effectiveness in capturing ordinality of dose-dependent responses in the EXPORT de-
rived latent space, we conduct detailed ablation experiments, encompassing the modifications of
the cumulative link loss hyperparameter coeffcient α in Equation (6). As depicted in Figure 3, the
results indicate that EXPORT is unable to capture any ordinal structure in the latent space with
an α = 0, which is equivalent to the unsupervised learning framework established by the VEGA
model (Seninge et al., 2021). Furthermore, we observe that gradually increasing the α hyperparam-
eter in the EXPORT loss function helps the corresponding trained models to resolve the inherent
ordinality in dose-dependent transcriptomics response to radiation exposures, highlighting the ne-
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Figure 4: UMAP embedding of the latent representations learned by the EXPORT model trained
on the TCDD-induction snRNA-seq data with the cells colored by A) ordinal dosage labels, and
B-E) EXPORT-inferred activity heatmaps of four common top differentially activated pathways in
the comparison of high versus low and zero dosage level samples. F) Top five genes with the highest
decoder weight magnitudes in each of the pathways.

cessity of have the ordinal regressor network and the cumulative link loss for ensuring inference
of ordinal-preserving latent space by EXPORT. (Additional ablation study on ordinal regression
network replacement with a classifier one is presented in Appendix D.2)

EXPORT resolves the hepatic response to ordinal TCDD induction at single-cell resolution.

To further assess EXPORT’s ability to capture interpretable and ordinally preserved low-dimensional
representations of large single-cell transcriptomics datasets, we apply it to chemically per-
turbed single-nuclei RNA sequencing (snRNA-seq) data from mouse liver cells (Details in Ap-
pendix B) (Nault et al., 2022). The dataset includes mouse liver cells treated with varying doses of
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Our goal is to understand dose-dependent responses
of hepatocyte-portal cells among other cell types in the dataset. After preprocessing and assigning
ordinal dosage labels, we train an EXPORT model with decoder neural connections reflecting gene-
pathway relationships from the mouse Wikipathways database (Martens et al., 2020) for 50 epochs
(Appendix B). Figure 4.A depicts the UMAP embedding of learned latent representations by EX-
PORT, organized based on ordinal TCDD-induction dosage labels, showcasing EXPORT’s ability
to unveil ordinally preserved and biologically meaningful latent spaces in this large-scale perturbed
transcriptomics dataset at single-cell resolution.

Similar to our radiation exposure data analysis experiment, we group the cells into three different
categories of high, low and zero TCDD induction levels (Appendix B) and perform differential
pathway activity analysis for the results obtained by EXPORT (Appendix C). Intersecting the top
5 differentially activated pathways in high versus zero-dose and low-dose TCDD induction sample
groups respectively, we find four common pathways: Estrogen metabolism, Fatty acid omega ox-
idation, Aflatoxin B1 metabolism and Tryptophan metabolism. All these four pathways have been
previously reported as known well-established pathways involved in hepatic responses to TCDD
in mice such as Cholico et al. (2021), Friedrich et al. (2021), Zhu et al. (2008) and Zhu et al.
(2021) supporting evidences for activation of Fatty acid omega oxidation, Tryptophan metabolism,
Estrogen metabolism and Aflatoxin B1 metabolism pathways after TCDD induction.

Additionally, using EXPORT’s interpretability within the decoder structure, we examine the inferred
decoder weights to highlight genes’ impact on pathway activity scores. Specifically, we extract
the top five genes with the highest weight magnitude for the four common differentially activated
pathways. In Figure 4.F, we observe well-known markers of TCDD-induced hepatotoxicity, such as
genes from the cytochrome P450 family (Cyp1a1 and Cyp1a2), repeatedly appearing among the top
five genes with the highest EXPORT decoder weights (Zhu et al., 2021; Lindros et al., 1997).
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In summary, EXPORT effectively captures validated biological insights from inferred model pa-
rameters, demonstrating its ability to analyze perturbed single-cell transcriptomics data and capture
cellular dose-response patterns.

4 CONCLUSIONS
This study introduces EXPORT, a novel interpretable and ordinality-preserving VAE model for em-
bedding ordinally perturbed transcriptomics data. Compared to existing pathway-informed VAE
models, EXPORT infers a more ordinality-aware latent space through auxiliary ordinal regressor
network training. One limitation is its focus on single transcriptomics data modality. Future research
will explore EXPORT’s potential for multi-omics data integration to uncover unprecedented cellular
dose-dependent response intricacies. Despite this limitation, our extensive experiments demonstrate
EXPORT’s capability in capturing biologically significant regulatory mechanisms, making it a ro-
bust and interpretable model to accelerate perturbation biology development.
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A RELATED WORK

VEGA (Seninge et al., 2021). The VAE enhanced by gene annotations (VEGA) model utilizes
prior knowledge of gene pathway modules for designing a sparse linear decoder network to obtain
an interpretable latent space in VAEs and subsequently detect active pathway modules from mod-
els trained on perturbed transcriptomics data. Despite addressing the interpretability concern, this
model treats perturbations as categorical variables and overlooks the ordinal nature of perturbations.

pmVAE (Gut et al., 2021). Similar as the VEGA model architecture, pmVAE has masked linear
decoder networks to achieve interpretability. However, unlike VEGA, pmVAE trains multiple VAEs,
each incorporating prior information of one pathway module for detecting changes to stimuli. As in
VEGA, pmVAE oversimplifies the estimation of dose-dependent responses by ignoring the ordinal
relationships of perturbations.

scETM (Zhao et al., 2021). The single-cell embedded topic model (scETM) uses topic modeling
to adjust for potential batch effects and utilizes an encoder network that infers cell type mixtures
and a linear decoder based on matrix tri-factorization that incorporates pathway knowledge to dis-
cover interpretable cellular response embeddings while integrating single-cell transcriptomics data
from different treatment conditions. scETM suffer from lack of ordinal adjustments when analyzing
ordinally perturbed transcriptomics data and thus, hierarchical ordinal relationships are also lost in
the inferred latent space.

B DATASET DETAILS

For benchmarking and validating our proposed EXPORT model, we use two transcriptomics datasets
with different characteristics. The first dataset encompasses microarray gene expression data from
human cell lines exposed to a varying range of radiation doses. In our second experiment we select
a transcriptomics dataset at single-cell resolution from mouse liver cell lines treated with 2,3,7,8-
tetrachlorodibenzo-p-dioxin (TCDD) at different dosage levels. In this section, we provide charac-
teristic details of the two transcriptomics datasets analyzed with EXPORT as well as the pathway
databases chosen in this manuscript:

B.1 TRANSCRIPTOMIC DATASETS

B.1.1 RADIATION EXPOSURE DATASET

The radiation exposure dataset is derived from a study conducted by Nosel et al. (2013) encom-
passing microarray gene expression data from human cell lines exposed to varying radiation doses.
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Figure 5: Hepatocyte-portal cells characteristics extracted from the snRNA-seq data perturbed with
TCDD at different dosage levels. A) The UMAP embeddings of the preprocessed hepatocyte-portal
cells gene expression profiles colored by their corresponding induced TCDD dosage levels. B) Bar
plot visualization of the hepatocyte-portal cell number distribution across different dosage levels.

This dataset is publicly available in the Gene Expression Omnibus (GEO) database with the acces-
sion number GSE43151. GSE43151 consisting of a total of 121 blood samples, where five healthy
male donors provided 400 mL venous peripheral blood samples each. These conditions cover a
wide range of radiation doses, spanning from low to high intensities. Before we conduct the ordi-
nal dose-response analysis using EXPORT, the dataset is preprocessed by R GAGE package (Luo
et al., 2009). The preprocessing steps include filtering and normalizing all 121 samples present in
the dataset. Specifically, in the filtering step, we filter out probes that were undetected in at least
75% of the samples which leads us to having total 10, 875 probes after the filtering step. These pre-
processing steps are crucial for ensuring a robust and reliable dataset for subsequent analyses with
EXPORT and enabling more accurate identification of relevant molecular mechanisms governing
the radiation dose-response in human cell lines.

This radiation exposure gene expression data encompasses a spectrum of doses spanning from 0.005
Gy to 0.5 Gy. In order to perform differential pathway activity analysis using EXPORT on this
dataset, following the instructions described in Luo et al. (2022), we have categorized samples based
on their radiation exposure levels to three main sets of ‘zero radiation’, ‘low-dose radiation’ (0.005
Gy to 0.1 Gy), and ‘high-dose radiation’ (0.5 Gy). Table 1 summarize the radiation exposure gene
expression data characteristics.

Dose Dose Level Ordinal Dose Label Number of Samples
0 Gy Zero 0 18

0.005 Gy Low 1 16
0.01 Gy Low 2 18
0.025 Gy Low 3 18
0.05 Gy Low 4 17
0.1 Gy Low 5 18
0.5 Gy High 6 16

Table 1: Summary statistics of the radiation exposure gene expression dataset GSE43151.

B.1.2 TCDD DOSE-DEPENDENT RESPONSE SINGLE-NUCLEI RNASEQ (SNRNA-SEQ)
DATASET

To showcase the capability of EXPORT in unraveling the ordinal intricacies of perturbed transcrip-
tomics data on single-cell resolution, we select the single nuclei RNA sequencing (snRNA-seq) data
of mouse liver cells gavaged with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) at doses of 0.01,
0.03, 0.1, 0.3, 1, 3, 10, or 30 µg/kg (Kana et al., 2023; Nault et al., 2022). This dataset is publicly
available in the Gene Expression Omnibus (GEO) under the accession number GSE184506. A to-
tal of 131,613 nuclei are sequenced in this dataset. As due to the uneven expression of the TCDD
canonical receptor, the aryl hydrocarbon receptor (AhR), the hepatic responses to TCDD vary across
different cell types in the liver and also within cell types (such as hepatocytes), in our analysis with
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EXPORT, we only consider cells from hepatocyte-portals (Kana et al., 2023). This leads to selection
of 57,284 nuclei expression profiles from hepatocyte-portal cell types.

Following the instructions in Kana et al. (2023), we preprocess the data using the scanpy.pp
package. Specifically, the cell expression vectors are normalized to the median total expression
counts for each cell. Then, the cell counts are then log transformed with a pseudo-count of 1 and
finally, we select the top 5,000 most highly variable genes. Figure 5.A shows the UMAP embed-
ding of all hepatocyte-portal cells after preprocessing steps colored by their corresponding TCDD
dose-induction levels. Additionally, the distribution of cell numbers across different TCDD dosage
levels is demonstrated in Figure 5.B. Additionally, Table 2 summarizes the TCDD induction gene
expression data characteristics.

Dose Dose Level Ordinal Dose Label Number of Cells
0 µg/kg Zero 0 7512

0.01 µg/kg Low 1 4971
0.03 µg/kg Low 2 6286
0.1 µg/kg Low 3 9094
0.3 µg/kg Low 4 8953
1 µg/kg High 5 6600
3 µg/kg High 6 5880
10 µg/kg High 7 6914
30 µg/kg High 8 1074

Table 2: Summary statistics of the hepatocyte-portal cells in TCDD induction snRNA-seq dataset
(GSE184506).

B.2 PATHWAY DATASETS

B.2.1 KEGG DATABASE FOR RADIATION EXPOSURE DATA ANALYSIS

Following the instructions in Luo et al. (2022), we have used the KEGG (Kyoto Encyclopedia of
Genes and Genomes) database to obtain a reliable set of known biological pathways to enhance our
EXPORT model’s explainability when analyzing the radiation exposure gene expression data (Kane-
hisa & Goto, 2000). KEGG is a collection of manually drawn pathway maps for understanding
high-level functions and utilities of biological systems. In our case, we have identified 343 path-
ways relevant to the gene expression dataset GSE43151 from the available 548 KEGG pathway
maps by discarding the pathways that do not contain any gene whose measurement was included in
GSE43151 radiation exposure gene expression dataset.

B.2.2 WIKIPATHWAY DATABASE FOR TCDD-INDUCTION DATA ANALYSIS

When analyzing the single-cell snRNA-seq gene expression data of mouse liver cells perturbed
with TCDD induction, we have used the 2024 mouse Wikipathways database to form the neural
connections in the EXPORT decoder structure (Martens et al., 2020). Specifically, the 2024 mouse
Wikipathways database consists of 202 pathways, which we have used their gene-pathway mappings
to mask the EXPORT VAE decoder D1 as described in the methodology section of the manuscript.

C DIFFERENTIAL PATHWAY ACTIVITY ANALYSIS

Differential pathway activity analyses are often of interest when analyzing perturbed transcriptomics
datsets of different treatment levels. Inspired by the Bayesian hypothesis testing procedure described
in Seninge et al. (2021) and Lopez et al. (2018), for the differential pathway activity analysis, we
implement a Bayes factor (BF) (Held & Ott, 2018) based hypothesis testing procedure in EXPORT.
Specifically, the posterior probabilities of mutually exclusive hypotheses are approximated through
repeated Monte Carlo sampling of the correspondingly derived EXPORT’s latent variable distribu-
tions. Then, BF values, the ratio of the hypothesis posteriors, are estimated to rank the pathways
differential activities. The sign of the corresponding BF indicates which of the null and alterna-
tive hypotheses is more likely, and its magnitude represents the significance level of the pathway
differential activity.
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D ADDITIONAL RESULTS

D.1 SUPERVISED VS. UNSUPERVISED MODELING

In this section, we provide additional differential pathway activity analysis results associated with
EXPORT and its simpler unsupervised version that does not incorporate the ordinal dosage labels
when analyzing the radiation exposure data. Figures 6 and 7, demonstrate the top 5 differentially
activated pathways when comparing zero versus high and low dosage sample groups respectively.
Additionally, EXPORT-derived Bayes factor values are indicated in the figures to show the signifi-
cance level of the differential activity for the corresponding pathways.

Furthermore, to showcase the necessity of ordinal regressor module presence in the EXPORT model
when analyzing the ordinally perturbed transcriptomics data, we repeat the differential pathway
activity analysis with the unsupervised version of EXPORT that does not incorporate the ordinal
dosage labels during the model training. Similarly, after training the unsupervised model we com-
pare zero dosage level group versus low and high dosage level sample groups using the differential
activity analysis implemented in EXPORT. Figures 8 and 9, demonstrate the top 5 differentially
activated pathways when comparing zero versus high and low dosage sample groups with EXPORT
unsupervised version respectively.

By investigating the differntial pathway activity results of the unsupervised version of EXPORT,
we notice that two KEGG pathways Natural killer cell mediated cytotoxicity and Graft-versus-host
disease which have been previously reported as pathways involved in the radiation exposure ex-
periments (Luo et al., 2022) are ranked low between KEGG pathways. Specifically, the Natural
killer cell mediated cytotoxicity and Graft-versus-host disease pathways are ranked 71 and 209 in
zero versus low dosage level sample groups comparison and ranked 149 and 210 in zero versus
high dosage level sample groups comparison based on calculated Bayes factor values among all 343
KEGG pathways included in this study highlighting the need for the ordinal regressor module and
its corresponding cumulative link loss implemented in EXPORT to achieve reliable results.

log! 𝐵𝐹 = 27.6 log! 𝐵𝐹 = 27.6 log! 𝐵𝐹 = 27.6

log! 𝐵𝐹 = 7.8 log! 𝐵𝐹 = 7.4

Figure 6: Top 5 identified differentially activated pathways with EXPORT in zero vs high radiation
experiments with EXPORT.

D.2 ORDINAL REGRESSION VS. MULTI-CLASS CLASSIFICATION

To highlight the importance of the ordinal regression network and the cumulative link loss function
utilized in EXPORT, we investigate an EXPORT alternative version in which the ordinal regres-
sor network and ordinal-based cumulative link loss are replaced with classifier network and cross
entropy loss function to do multi-class classification task that does not preserve ordinality of per-
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log! 𝐵𝐹 = 1.5 log! 𝐵𝐹 = 1.5

Figure 7: Top 5 identified differentially activated pathways with EXPORT in zero vs low radiation
experiments with EXPORT.

log! 𝐵𝐹 = 5.3 log! 𝐵𝐹 = 4.4 log! 𝐵𝐹 = 4.3

log! 𝐵𝐹 = 4.2 log! 𝐵𝐹 = 4.2

Figure 8: Top 5 identified differentially activated pathways with EXPORT in zero vs high radiation
experiments with EXPORT’s unsupervised version.

turbation dosage levels. Figure 10 visualizes the overall workflow of this alternative version of
EXPORT. For training this deep learning model we utilize the below loss function:

LTot = KL(q(Z|Y, ϕ)− Eq(z|Y,ϕ)[log p(Y |Z, θ)] + γ ∗ LCross−entropy, (7)

where γ is a a coefficient hyperparameter on the cross-entropy loss controlling the effect of classifier
in training the overall model. We investigate the latent space learned by this model by analyzing the
radiation exposure gene expression data. Similar to original EXPORT model setup, we train the
model for 200 epochs and change γ as well to see the effect of the cross entropy loss in the inferred
latent space. Figure 11 displays the latent space learned by this classification based EXPORT model
for different values of γ. In Figure 11.D which γ = 1e6 is used, we can see that the samples are
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Figure 9: Top 5 identified differentially activated pathways with EXPORT in zero vs low radiation
experiments with EXPORT’s unsupervised version.
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Figure 10: The architecture of EXPORT alternative model in which the ordinal regressor network is
replaced with a classifier.

clustered together according to their dosage levels but the ordinality is lost in the latent space. As
the ordinality is overlooked in the inferred latent space of this deep learning model and samples with
close dosage levels may have very different inferred pathway activities, performing any downstream
analysis such as differential pathway analysis lead to inaccurate results. This highlight the need
for the ordinal regressor network and cumulative link loss when analyzing the ordinally perturbed
transcriptomics data.

E TRAINING PROCEDURE DETAILS

Unless specified otherwise in the manuscript methodology section, we used the following hyperpa-
rameters for EXPORT: For EXPORT model training we used a learning rate of 1e-4 with the Adam
optimizer. The batch size was set to 128 for training EXPORT on TCDD-perturbed snRNA-seq
dataset. The KL divergence loss term in EXPORT total loss described in Equation 6 was weighted
with a factor β = 0.00005. The latent space dimension was defined by the number of biological
pathways used for the analysis, plus an additional fully connected node to capture additional vari-
ance. Specifically, the following dimensions were used in our experiments:
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Figure 11: UMAP embedding of latent space learned by EXPORT alternative models with different
γ hyperparameter values.

Radiation exposure dataset: 343 KEGG pathways + 1 FC node = 344
TCDD-perturbed snRNA-seq dataset: 202 Mouse Wikipathways + 1 FC node = 203
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