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ABSTRACT

Large Language Models (LLMs) are exhibiting emergent human-like abilities and
are increasingly envisioned as the foundation for simulating a specific communi-
cation style, behavioral tendencies, and personality traits. However, current eval-
uations of LLM-based persona simulation remain limited: most rely on synthetic
dialogues, lack systematic frameworks, and lack analysis of the capability require-
ment. To address these limitations, we introduce TwinVoice, a comprehensive
benchmark for assessing persona simulation across diverse real-world contexts.
TwinVoice encompasses three dimensions: Social Persona (public social inter-
actions), Interpersonal Persona (private dialogues), and Narrative Persona (role-
based expression). The ability of LLMs in persona simulation is further decom-
posed into six fundamental capabilities, including opinion consistency, memory
recall, logical reasoning, lexical fidelity, persona tone, and syntactic style. Experi-
mental results reveal that while advanced models achieve moderate accuracy, they
remain insufficient in sustaining consistent persona simulation, especially lacking
the capability of syntactic style and memory recall. Our data, code, and eval-
uation results are available at https://anonymous.4open.science/r/
TwinVoice-B08E.

1 INTRODUCTION

Large Language Models (LLMs) are rapidly evolving from basic text generators into human-like
agents (Bubeck et al., 2023; Wei et al., 2022; Chang et al., 2024). Existing studies have shown
that the most advanced LLMs are capable of producing text indistinguishable from human writ-
ing (Jones & Bergen, 2025; Jones et al., 2025; Jones & Bergen, 2024). Consequently, the research
focus is shifting toward a highly specific challenge: Can we construct “digital twins” of specific
individuals that are indistinguishable from themselves? To address this challenge, the primary tech-
nical path is through LLM-based persona simulation, which replicates a person’s unique style of
talking, behavior, and personality (Shanahan et al., 2023; Park et al., 2023) based on their data.
LLM-based persona simulation is supposed to unlock a series of applications, including highly per-
sonalized assistants (Ma et al., 2023; Li et al., 2025a), social simulations (Li et al., 2023; Ran et al.,
2025), healthcare (Barricelli et al., 2020), and marketing (Hornik & Rachamim, 2025). Despite
growing interest in creating digital twins with LLM-based persona simulation, its current ability
remains unexplored due to the lack of systematic evaluation (Toubia et al., 2025; Zhou et al., 2025).

To address this issue, current evaluations have tried to test LLM’s ability in imitating and predicting
human behaviors. For example, BehaviorChain (Li et al., 2025b) evaluates continuous persona-
based behavior by requiring models to iteratively predict the next action given persona profile and
history, with performance degrading as chains lengthen. Human Simulacra and PersoBench assess
human-likeness and personalized response quality, while other studies probe persona-driven deci-
sion making, counterfactual adherence, and large-scale dynamic profiling (Xie et al., 2025; Afzoon
et al., 2024; Xu et al., 2024; Kumar et al., 2025; Jiang et al., 2025). However, those evaluation
benchmarks face limitations in both their scope and granularity. On the one hand, the predominant
reliance on synthetic dialogues (Shen et al., 2023; Tu et al., 2024) prevents benchmarks from captur-
ing the rich expression of human identity across diverse real-world contexts (Scope Limitation). On
the other hand, current benchmarks are often evaluated based on an LLM’s accuracy in predicting
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Figure 1: The conceptual framework of TwinVoice: (Left) The evaluation is structured across
three core dimensions that represent distinct aspects of identity expression: Social Persona (pub-
lic facing), Interpersonal Persona (private interaction), and Narrative Persona (fictional scenarios).
The LLMs are prompted with a person’s historical context to simulate their behavior. The LLM’s
ability for persona simulation is categorized into six fundamental capabilities. (Right) Experimen-
tal results averaged over three dimensions are presented.
human behavior, leaving a critical gap in understanding the fundamental capabilities—such as mem-
ory, reasoning, and lexical fidelity—that a model must possess for authentic simulation (Granularity
Limitation).

To bridge the gap between the vision of digital twins and the current capabilities of persona simula-
tion, we introduce TwinVoice, a comprehensive benchmark designed for realistic and fine-grained
persona evaluation (see Table 1 for a comparison with prior persona-simulation benchmarks; “per-
sona size” denotes the number of distinct, independent personas per benchmark). To address the
scope limitation, TwinVoice is grounded in both real-world and synthetic data across three comple-
mentary dimensions in persona simulation (see Figure 1): Social Persona, Interpersonal Persona,
Narrative Persona. The Social Persona dimension leverages real-world social media data to eval-
uate a public-facing identity, while the Interpersonal Persona dimension utilizes multi-session
dialogue data to assess a more private, relational self. While these two dimensions are grounded
in authentic digital footprints, the Narrative Persona is designed to complement such data with
fictional scenarios to test behaviors and narrative consistency in more diverse contexts. Address-
ing the granularity limitations of holistic accuracy evaluations, we shift from end-to-end scoring to
capability-level assessment. Building on psycholinguistic evidence that language conveys both what
people say and how they say it (Pennebaker et al., 2003), we group persona fidelity into Mindset
Coherence and Linguistic Expression. Mindset Coherence assesses the logical and factual con-
sistency of the content, including Opinion Consistency (Zaller, 1992), Memory Recall (Clark &
Brennan, 1991), and Logical Reasoning (Kahneman, 2011). Linguistic Expression evaluates the
language’s stylistic form, encompassing Lexical Fidelity (Mehl et al., 2006; Koppel et al., 2009),
Persona Tone (Brown, 1987), and Syntactic Style (Biber, 1995). To obtain objective, low-variance
accuracy with controlled distractors, we use a discriminative multiple-choice setting. To capture the
open-ended persona consistency required by real digital twins, we adopt a generative setting and
evaluate outputs with an LLM-as-a-Judge in ranking and scoring modes, with a human agreement
check (see Sections 5.3 and 5.4).

Table 1: A comparison of TwinVoice with Prior LLM Persona-Simulation Benchmarks.

Benchmark Persona
Size

Real-World
Sourcing

Multiple
Dimensions

Multi-Paradigm
Evaluation

Human
Baseline

Fine-Grained
Capabilities

Multilingual
Coverage

Human Simulacra (Xie et al., 2025) 11 ✗ ✗ ✗ ✓ ✗ ✗

BehaviorChain (Li et al., 2025b) 1,001 ✓ ✗ ✓ ✗ ✗ ✗

PersonaEval (Zhang et al.) 130 ✓ ✓ ✗ ✓ ✓ ✗

PERSONAMEM (Jiang et al., 2025) 20 ✗ ✓ ✓ ✗ ✓ ✗

TwinVoice OURS 4,553 ✓ ✓ ✓ ✓ ✓ ✓

We test a series of state-of-the-art LLMs on TwinVoice and reveal several key insights into current
capabilities and limitations in persona simulation with LLMs. On discriminative accuracy, GPT-
3.5-Turbo averages 47.5%, while advanced models reach 71.2% for GPT-5 and 76.2% for Claude-
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Sonnet-4 (Anthropic, 2025). In the generative setting with an LLM-as-a-Judge, GPT-5 (OpenAI,
2025) leads with 48.5% judged accuracy and a 2.13 pairwise score, with Claude-Sonnet-4 close at
47.9% and 2.12. To validate the Judge and clarify model versus human performance, we conduct
two targeted human annotations: (i) a discriminative Dimension 1 subset of 50 items, and (ii) a
generative evaluation for ranking and scoring. In the discriminative study, majority vote accuracy is
66.0%, GPT-5 reaches 60.0%, and model versus human agreement is high (κ=0.634). In the genera-
tive study, human versus Judge agreement is high as well (κ=0.646 for ranking; Spearman ρ=0.591
for scores). As for dimensions, performance is highest under the Narrative persona, while Social and
Interpersonal lag. Across capabilities, models perform best on Lexical Fidelity and Opinion Con-
sistency and worst on Persona Tone and Memory Recall. Performance dispersion across LLMs is
large for all capabilities, indicating high discriminative power. These patterns will guide subsequent
research and upgrades to LLM persona simulation.

Contributions of this work are threefold: (1) We introduce TwinVoice, a comprehensive benchmark
for evaluating LLM-based persona simulation across multiple real-world scenarios with systematic
competency decomposition; (2) We develop novel evaluation methodologies combining discrimi-
native assessment with LLM-as-Judge for generative tasks; and (3) We provide extensive empirical
analysis showing the limitations of the most advanced LLMs in person simulation and offer crucial
insights for advancing personalized AI systems.

2 RELATED WORK

2.1 PERSONALIZED AGENTS AND DIGITAL TWINS

The construction of digital twins, virtual replicas of specific individuals, is an emerging challenge in
AI (Shanahan et al., 2023; Park et al., 2023). Originating in engineering as counterparts to physical
systems (Grieves & Vickers, 2017), the concept now extends to AI agents that capture a person’s
communication style, preferences, and personality. Recent efforts have operationalized this vision
across diverse domains. Examples include reviving anime characters (Li et al., 2023), simulating
agent societies from novels (Ran et al., 2025), and evaluating impersonation of writing styles and
memories (Shi et al., 2025). Applications have been explored in healthcare (Barricelli et al., 2020),
marketing (Hornik & Rachamim, 2025), and through industry systems like SecondMe (Shang et al.,
2024) for lifelong personal modeling. While these human-centered digital twins promise highly
personalized chatbots (Ma et al., 2023; Li et al., 2025a) and ubiquitous computing applications (Fast
et al., 2016), prior research has often focused narrowly on style imitation, overlooking the broader
competencies required for authentic persona simulation.

2.2 DATASETS, BENCHMARKS, AND EVALUATION FOR PERSONA SIMULATION

Progress in this area depends on high-quality datasets and benchmarks. Recent resources have be-
gun to fill this gap, offering diverse evaluation protocols. Benchmarks have been developed from
large-scale surveys of human traits (Toubia et al., 2025; Chen et al., 2025), persona-based behavior
chains (Li et al., 2025b), psychology-guided agent evaluations (Xie et al., 2025), persona-driven
decision-making tasks (Afzoon et al., 2024; Xu et al., 2024), and multi-party dialogue role iden-
tification (Zhou et al., 2025). More recent work explores challenging settings like counterfactual
simulation (Kumar et al., 2025) and dynamic user profiling (Jiang et al., 2025).

Despite this growing landscape, evaluations remain fragmented and often rely on synthetic data,
limiting their ecological validity. This highlights the need for a unified framework to advance digital
twin research rigorously. Our TwinVoice benchmark addresses these limitations by leveraging real-
world social media, conversational, and fictional data to provide authentic and systematic evaluation
across multiple persona dimensions.

3 TASK FORMULATION

3.1 PROBLEM DEFINITION

TwinVoice evaluates LLMs’ ability to simulate human personas through a unified task paradigm that
captures the essence of digital twin functionality. Formally, we define the persona simulation task
as follows:

3
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Yes!!! Lakers are my favorite!!!

Discriminative:
a. Model picks the most persona-consistent one

b. Metric: Accuracy(%)

– correct if model picks the ”self voice”

No, I don’t watch basketball   

Damn! MIA lose…   

I prepared for my final >_<   

Yep !!! Lakers win !!!

No, I don’t watch basketball

Damn! MIA lose…

I prepared for my final >_<

Generative-Ranking:
a. Model generates ”twin voice”

b. Judge picks the most persona-consistent one

c. Metric: Accuracy(%) 

– correct if judge picks the ”twin voice”

Generative-Scoring:
a. Model generates ”twin voice”

b. Judge rates the similarity of “twin voice”

- by opinion consistency, logical/factual fidelity, 

and stylistic similarity

c. Metric: Similarity Score(1-5) 

– higher score means more similarity

self twin
Yep !!! Lakers win !!!

No. How about you?

Yep !!! MIA win !!!
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3

A.

B.

C.

D.

A.

B.

C.

D.

twin A

twin B

twin Cdistractor

distractor

distractor

distractor

distractor

distractor

Ground truth: Yes!!! Lakers are my favorite!!!

History (H) : post, dialog, character profile…
“I love watching NBA!!! especially Lakers games!!!”
“I don’t believe cryptocurrency!!!”

Stimulus(s)
“Did you watch the finals between Lakers and MIA yesterday?”

…
Input

Tasks

Ground truth: Yes!!! Lakers are my favorite!!! Ground truth: Yes!!! Lakers are my favorite!!!

Figure 2: TwinVoice experiment evaluation overview: Top: The LLMs are prompted with a
specific persona’s history and tasked with a stimulus. Bottom: Three evaluation protocols: Dis-
criminative: the model chooses among A–D, one of which is the ground truth persona behavior.
Generative-Ranking: the model writes and an LLM-as-Judge selects the best candidate, yielding
Acc.(Gen). Generative–Scoring: the model writes and the Judge rates similarity on opinion, logic,
and style, yielding Score(Gen).

Given a persona’s historical data H = {h1, h2, . . . , hn} and a current stimulus s, the history is in-
stantiated per dimension (Social, Interpersonal, or Narrative) as social posts, multi-session conver-
sations, or narrative materials, respectively. The objective is to generate a response r that maximally
approximates the ground truth response r∗ that the original persona would produce in stimulus s,
which can be formulated as an optimization problem:

r∗ = argmax
r

P (r|H, s, θpersona), (1)

where θpersona represents the latent persona characteristics learned from historical data H. The eval-
uation objective is to assess how well an LLM M can approximate this optimal response:

Score = fsim(M(H, s), r∗), (2)

where fsim denotes a similarity function that measures persona consistency across multiple dimen-
sions.

TwinVoice instantiates this general framework across three dimensions, each defined by its history
source and interaction stimulus:

Persona Dimensions

Social Persona. In this dimension, H consists of a user’s historical social media posts
Hsocial = {h(social)

1 , h
(social)
2 , . . . , h

(social)
m }, and the stimulus s represents a new post requir-

ing a response. The challenge lies in maintaining stylistic consistency and opinion alignment
in public discourse.
Interpersonal Persona. Here, H comprises multi-session conversational history Hinter =

{h(inter)
1 , h

(inter)
2 , . . . , h

(inter)
k } where each h

(inter)
i represents a dialogue session. The

stimulus s is a new utterance from a conversation partner, requiring the model to gener-
ate contextually appropriate responses while maintaining conversational authenticity and
memory-grounded consistency.
Narrative Persona. In this dimension, H encompasses character background information
and behavioral records Hnarra = {h(narra)

1 , h
(narra)
2 , . . . , h

(narra)
l } where each h

(narra)
i de-

notes either background information or a prior action. The stimulus s describes a narrative
scenario requiring character reaction, testing the model’s ability to maintain role-based ex-
pression fidelity.

Across all three settings, we adopt a capability-centric evaluation rather than a single holistic score.
The decomposition and scoring criteria are detailed in Section 4.2.
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3.2 EVALUATION METHODOLOGIES

To balance objectivity and ecological validity, we pair a discriminative multiple-choice evalu-
ation (objective, low-variance accuracy under controlled distractors) with a generative evalua-
tion (open-ended persona fidelity via LLM-as-a-Judge in ranking and scoring).

3.2.1 DISCRIMINATIVE EVALUATION

The discriminative evaluation transforms the generation task into a multiple-choice selection prob-
lem. For each test instance (s, r∗), we construct a candidate set C = {r∗, r1, r2, r3} where r∗ is
the ground truth response and {r1, r2, r3} are distractors. The evaluated LLM must select the most
persona-consistent response from the shuffled candidate set.

The construction of distractors varies across dimensions to ensure realistic evaluation scenarios:

Distractor Construction

Social Persona: Distractors are sampled from authentic responses by other users to similar
posts, preserving topical relevance while introducing stylistic and opinion variations.
Interpersonal Persona: Distractors are selected from real conversational responses in sim-
ilar contexts, maintaining conversational appropriateness while differing in personal charac-
teristics.
Narrative Persona: Distractors are generated using advanced LLMs with alternative char-
acter interpretations, ensuring narrative coherence while diverging from the target persona’s
behavioral patterns.

Discriminative evaluation provides direct accuracy measurements:

Accuracy =
1

N

N∑
i=1

1[M(Hi, si) = r∗i ], (3)

where N is the total number of test instances and 1[·] is the indicator function.

3.2.2 GENERATIVE EVALUATION

While discriminative evaluation offers clear interpretability, real-world digital twin applications re-
quire open-ended generation capabilities. Our generative evaluation employs LLM-as-a-Judge Gu
et al. (2024); Ye et al. (2025) protocols to assess response quality along multiple dimensions.

We implement two distinct judging approaches:

Scoring-based Evaluation. The judge model rates generated responses against ground truth using
structured evaluation criteria. Given a stimulus s, generated response rgen, and ground truth r∗, the
judge assigns a score on a 1–5 scale based on three key dimensions: opinion consistency, logical
coherence, and stylistic fidelity. The scoring rubric emphasizes faithful persona replication, with
higher scores awarded to responses that demonstrate comprehensive alignment across all dimen-
sions.

Ranking-based Evaluation. The judge identifies the most persona-consistent response from a can-
didate set containing the generated response and the same distractors used in discriminative evalu-
ation. This approach mirrors discriminative evaluation while leveraging the judge’s nuanced under-
standing of persona consistency.

The generative evaluation score is computed as:

Scoregen =
1

N

N∑
i=1

Judge(rgen,i, r
∗
i , si), (4)

where Judge(·) represents either the scoring or ranking function implemented by GPT-5.

5
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4 BENCHMARK CONSTRUCTION

4.1 DATA PRE-PROCESSING

Social Persona. We constructed this dataset from the PChatbot Chinese microblog corpus (Qian
et al., 2021). To mitigate noise and ensure each evaluation instance is meaningful, we started with
8,045 samples and applied our PCCD (Persona-Clarity and Choice-Distinctiveness) framework. We
filtered for users with rich histories (average reply length of more than 10 characters; Type-Token
Ratio not in the bottom 20th percentile) and for tasks with unambiguous choices (response option
cosine similarity less than 0.95). We then ranked the remaining samples by a persona-choice align-
ment score, calculated as the similarity to the true response minus the similarity to the most similar
distractor, to select the final 2,000 high-quality instances.

Interpersonal Persona. We used the Pushshift Telegram corpus (Baumgartner et al., 2020) to
evaluate memory-grounded consistency. Our curation process followed a multi-stage filtering funnel
to distill a high-quality message set from 438,975 raw messages. We first selected high-activity users
(active in three or more channels with 500 or more total messages and 100 or more per channel). We
then processed their messages by removing short utterances of fewer than 5 tokens, retaining only
the top 10% most informative instances by TF-IDF, and applying semantic deduplication (similarity
threshold of 0.90), resulting in 6,150 messages. From these, we extracted 2,500 multilingual tasks
(including several languages like EN, RU, ES, PT), using GPT-5 to generate challenging distractors
to ensure the task tests deep persona understanding rather than superficial cue matching. We also
incorporated users’ cross-channel chat history as memory to test for consistency across different
social contexts.

Narrative Persona. We selected eight novels from the Project Gutenberg corpus (Project Guten-
berg, 1971–) to test the model’s ability to mimic the speaking styles of the given characters. From
these novels, we extracted 1,187 speech segments covering more than 50 characters. To obtain these
data, we first segmented each novel into short, indexed chunks, and from each chunk we extracted at
most one utterance together with its context. We then matched the speakers to the list of main char-
acters, whose profiles contained their personality traits, goals, motivations, and utterance histories.
Once we finished collecting these speeches, each accompanied by the relevant profile and context,
we constructed our test dataset, which included both multiple-choice questions and open-ended gen-
erative tasks. For the former, we paired each extracted utterance with three distractor options created
based on the personalities of the other main characters. For the latter, we provided the context to the
model and let it generate the most plausible utterance under the given circumstances.

4.2 CAPABILITY DECOMPOSITION

Guided by psycholinguistic evidence that language simultaneously conveys what people say (con-
tent) and how they say it (style) (Pennebaker et al., 2003), we coarsely group persona fidelity into
two complementary dimensions: mindset coherence and linguistic expression. This view is con-
sistent with stable individual differences in language documented across psychology and linguistics
and their computational operationalizations (Costa & McCrae, 1992; Biber, 1991; Stamatatos, 2009;
Neuman, 2016; Li et al., 2016). We then instantiate these dimensions with six fundamental capa-
bilities: mindset coherence comprises Opinion Consistency (Zaller, 1992), Memory Recall (Clark
& Brennan, 1991), and Logical Reasoning (Kahneman, 2011), whereas linguistic expression com-
prises Lexical Fidelity (Mehl et al., 2006; Koppel et al., 2009), Persona Tone (Brown, 1987), and
Syntactic Style (Biber, 1995).

Annotation follows a prompt-aligned rubric: for each instance, annotators choose exactly one pri-
mary capability and independently assess all six capabilities as true or false under strict criteria.
Capabilities are non-orthogonal by design, so multiple capabilities can be true while a single pri-
mary label captures the best-fit signal. Full instructions, criteria, and prompt excerpts appear in
Appendix B, with seed examples and the JSON output format for reproducibility.

6
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Table 2: Dataset statistics across three dimensions. Each instance corresponds to a unique persona
(#Users = #Instances). Avg = average; Gen = generative; Disc = discriminative. The instruction
template is counted into Token counts.

Dimension Instances Avg history turns Avg prompt tokens (Disc) Avg prompt tokens (Gen)

Social Persona 2000 15.0 1371.1 1215.2
Interpersonal Persona 2500 30.0 1163.5 1139.4
Narrative Persona 1187 15.7 934.3 910.7

Table 3: Benchmark results for Digital Twin models: We evaluate models using three distinct
metrics: Acc. (%) is the accuracy on the discriminative task. Acc. (Gen) (%) is the accuracy where
a generative model’s output is evaluated via multiple choice questions by a Judge. Score (Gen) is a
pairwise comparison score against the ground truth for generative outputs by a Judge. Higher values
indicate better performance. The best result and the second best result are in Bold and underlined,
respectively.

Dimension 1 Dimension 2 Dimension 3 Average
Model / Tasks Acc.

(%)
Acc.

(Gen)(%)
Score
(Gen)

Acc.
(%)

Acc.
(Gen)(%)

Score
(Gen)

Acc.
(%)

Acc.
(Gen)(%)

Score
(Gen)

Acc.
(%)

Acc.
(Gen)(%)

Score
(Gen)

LLM

GPT-3.5-Turbo 34.9 26.0 2.57 41.2 40.1 1.53 66.3 46.2 1.98 47.5 37.4 2.03
Qwen2.5-14B 36.2 30.1 2.56 49.6 42.0 1.56 60.5 44.6 1.68 48.8 38.9 1.93
GPT-4o-mini 35.3 26.9 2.61 39.2 41.3 1.50 63.1 46.5 1.91 45.9 38.2 2.01
GPT-OSS-20B 39.1 24.1 2.39 63.3 46.0 1.47 43.9 48.0 1.77 48.8 39.4 1.88
DeepSeek-V3 42.6 34.1 2.77 70.0 52.7 1.51 81.0 48.6 1.90 64.5 45.1 2.06
GPT-5-Chat 46.9 38.7 2.73 77.4 54.0 1.63 89.4 52.9 2.03 71.2 48.5 2.13
Claude-Sonnet-4 53.9 37.5 2.67 84.4 52.9 1.67 90.2 53.4 2.02 76.2 47.9 2.12

5 EXPERIMENTS

5.1 OVERALL RESULTS AND KEY FINDINGS

We evaluate digital twin fidelity across Social, Interpersonal, and Narrative personas in two settings:
a discriminative multiple-choice task and a free form generative task. Generative outputs are eval-
uated by GPT-5-as-a-Judge using ranking and 1 to 5 scoring. Dataset scale and prompt budgets are
in Table 2, main results in Table 3, capability trends in Figure 3, and text similarity metrics in Ta-
ble 5. Strong models, notably GPT-5-Chat and Claude-Sonnet-4, lead across settings, yet free form
generation remains harder than the discriminative formulation, with strengths in Lexical Fidelity
and Opinion Consistency and weaknesses in Persona Tone and Memory Recall. The GPT-5 Judge
shows high agreement with human annotations, and BLEU-1, METEOR, and BERT-Score provide
complementary evidence. Overall, the results point to remaining gaps in persona tone realization
and in recalling and using persona-specific details during generation.

5.2 CAPABILITY-WISE ANALYSIS

We analyze performance at the capability level within our framework and present the results in
Figure 3, aggregating discriminative accuracy with the two generative Judge protocols (ranking and
scoring).

Three patterns emerge. First, model ranking is broadly aligned across capabilities: systems that
lead on one capability tend to lead elsewhere. Second, aggregate strengths and weaknesses are sta-
ble—models score highest on Lexical Fidelity and Opinion Consistency, and lowest on Persona Tone
and Memory Recall. Third, individual models show distinct comparative advantages; for example,
DeepSeek-V3 approaches GPT-5 on Lexical Fidelity despite trailing on others. Across capabilities,
the spread between LLMs is large, showing high discriminative power of the benchmark.
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Figure 3: Performance across six capabilities. Each panel shows one capability. For each model,
bars give scores on the three dimensions—Social, Interpersonal, and Narrative. Purple diamonds
indicate the mean across the three dimensions for that model. The y-axis is the average over the
three evaluation protocols: discriminative, generative ranking, and generative scoring. The gray
dashed line denotes chance level (25%).

Table 4: Agreement of GPT-5 as a Judge against human annotations and inter-annotator reliability.
Task Agreement GPT-5 vs. human Inter-annotator reliability

Ranking (four choice) 0.646κ 0.673κ

Scoring (one to five) 0.591ρ 0.605ρ

Symbols: κ is Cohen kappa for categorical labels and ρ is Spearman correlation for ordinal scores. Sample
size is 50.

5.3 GENERATIVE EVALUATION

5.3.1 LLM-AS-A-JUDGE: SCORING AND RANKING

We assess generative outputs with two Judge protocols introduced earlier, scoring (from 1 to 5)
and ranking, and we aggregate their outcomes as Acc.(Gen) and Score(Gen). Full results appear in
Table 3, with prompt templates and rubrics in Appendix A.

Key results are as follows: GPT-5-Chat attains the strongest aggregate generative perfor-
mance (Acc.(Gen) 48.5%, Score(Gen) 2.13), closely followed by Claude-Sonnet-4 (47.9%, 2.12).
DeepSeek-V3 is competitive and achieves the best Score(Gen) on the Social Persona dimension
(2.77), despite trailing the leaders on other dimensions. Compared with discriminative evaluation,
generative performance is systematically lower across models, underscoring the added difficulty of
free-form persona simulation and the substantial headroom for improvement.

5.3.2 RELIABILITY OF THE JUDGE AND HUMAN STUDY

We validate the LLM-as-a-Judge methodology with a human study. Three expert annotators evalu-
ated a stratified sample of 50 items per judging mode (ranking and scoring), following our instruction
set (Appendix E). Annotators worked independently and were blinded to each other’s labels.

Agreement between GPT-5-as-a-Judge and humans is reported in Table 4 and is comparable to hu-
man inter-annotator reliability: for ranking, Cohen’s κ is 0.646 (GPT-5 vs. human) versus 0.673 (hu-
man–human); for scoring, Spearman’s ρ is 0.591 (GPT-5 vs. human) versus 0.605 (human–human).
These results indicate that the Judge is reliable, while the human inter-annotator agreement supports
the quality and consistency of our annotation protocol.
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Table 5: Objective metrics for Digital Twin models. We evaluate the generative outputs against
the ground truth using three distinct metrics. BLEU-1 ↑ measures unigram precision. METEOR
↑ considers precision, recall, and synonymy. BERT-Score ↑ measures semantic similarity using
contextual embeddings. Higher values are better for all metrics. Bold numbers denote the best
result and underlined numbers denote the second best in each column.

Dimension 1 Dimension 2 Dimension 3 Average

Model / Tasks BLEU-1
↑

METEOR
↑

BERT-
Score
↑

BLEU-1
↑

METEOR
↑

BERT-
Score
↑

BLEU-1
↑

METEOR
↑

BERT-
Score
↑

BLEU-1
↑

METEOR
↑

BERT-
Score
↑

LLM

GPT-3.5-Turbo 16.03 15.50 62.96 24.76 22.52 81.54 12.06 12.86 84.10 17.62 16.96 76.20
Qwen2.5-14B 17.68 15.38 63.25 26.09 23.76 81.57 11.67 11.92 83.99 18.48 17.02 76.27
GPT-4o-mini 15.94 15.19 62.89 23.48 21.38 81.26 12.50 13.34 84.13 17.31 16.64 76.09
GPT-OSS-20B 14.55 12.87 61.90 20.67 19.20 81.17 10.81 10.59 84.36 15.34 14.22 75.81
DeepSeek-V3 16.85 15.49 63.25 26.86 25.21 82.65 11.11 11.58 84.12 18.27 17.43 76.67
GPT-5-Chat 18.67 14.09 63.26 27.18 25.30 82.67 11.54 11.59 84.27 19.13 16.99 76.73
Claude-Sonnet-4 18.68 18.14 64.19 25.22 23.45 82.14 12.38 13.12 84.37 18.76 18.24 76.90

Table 6: Discriminative evaluation against a reference standard

Task Accuracy Agreement (κ)

GPT-5 Human mean Human vote Model vs human Inter-annotator

Discriminative 0.60 0.64 0.66 0.634 0.690

Human mean is the average across individual annotators. Majority vote accuracy evaluates the ag-
gregated vote by annotators. Agreement uses Cohen kappa κ. Sample size is 50.

5.3.3 TEXT SIMILARITY METRICS

To provide an objective reference, we also evaluate free-form generations with standard text similar-
ity metrics—BLEU-1, METEOR, and BERT-Score—and report results in Table 5. Averaged over
the three dimensions, Claude-Sonnet-4 attains the best BERT-Score (76.90) and METEOR (18.24),
while GPT-5-Chat achieves the best BLEU-1 (19.13). The resulting model ranking is broadly con-
sistent with our judge-based evaluation, offering cross-validation. These metrics primarily reflect
lexical overlap and local paraphrase rather than opinion alignment, reasoning trajectories, or per-
sona tone. Therefore, we treat them as complementary evidence to judge-based results.

5.4 HUMAN VS. MODEL PERFORMANCE

We benchmark human performance on the Social Persona discriminative task. Three expert anno-
tators labeled a stratified set of 50 items following our guidelines (Appendix E). Because persona
simulation involves long contexts and implicit cues, we do not treat human accuracy as a strict upper
bound.

Table 6 compares models to human baselines. GPT-5-Chat reaches 0.60 accuracy, below the human
mean of 0.64 and the majority-vote aggregate of 0.66. Agreement with humans is high but short of
human–human reliability: Cohen’s κ is 0.634 for model vs. human and 0.690 for inter-annotator
agreement.

These results indicate that state-of-the-art models approach human reliability on this discriminative
formulation yet still trail aggregated human judgments, leaving measurable headroom. Given that
humans are imperfect simulators in this setting, we view these numbers as practical reference points
rather than hard ceilings.

Summary of Findings. Across three persona dimensions and two task formulations, strong mod-
els (GPT-5-Chat, Claude-Sonnet-4) lead consistently, yet free-form persona simulation remains no-
tably harder than multiple-choice selection. Capability analysis pinpoints style control and memory
recall as primary bottlenecks, while lexical fidelity and opinion consistency are comparatively ro-
bust. GPT-5-as-a-Judge provides reliable, scalable assessment that aligns with human judgments,
and text-similarity metrics offer complementary confirmation. Across settings, results exhibit sub-
stantial variance between models without evident ceiling effects. There remains clear headroom in
three areas: maintaining persona coherence over extended contexts and across sessions, producing
a persona-consistent tone, and recalling and using persona-specific facts during generation.
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6 CONCLUSIONS AND DISCUSSIONS

This paper addressed the evaluation of LLM-based persona simulation by introducing TwinVoice.
Built on real-world and fictional data from three dimensions, TwinVoice aims at testing LLMs’ abil-
ity in persona simulation by decomposing it into six capabilities of mindset coherence and linguistic
expression. Our extensive evaluation of state-of-the-art models reveals a crucial gap: while lead-
ing models like GPT-5-Chat and Claude-Sonnet-4 show improved accuracy over their predecessors,
their performance still falls significantly short of human-level capabilities. We also find that LLMs
are adept at mimicking surface-level linguistic styles, they consistently fail to maintain long-term
consistency, particularly in memory recall and opinion stability. By establishing the first fine-grained
baselines in this domain, TwinVoice not only exposes the key limitations of current models but also
provides a clear roadmap towards personalized AI and digital twins built with LLMs.

Rationale for Three Dimensions. TwinVoice is constructed based on Social, Interpersonal, and
Narrative personas to balance realism, coverage, and privacy. Social and Interpersonal tracks are
built on real interaction traces because evaluating digital twins requires performance in authentic
public and private contexts; synthetic or model-generated corpora alone underestimate the difficulty
of sustaining identity over long horizons. For Narrative persona, full real-world narrative streams are
hard to obtain and raise privacy concerns; we therefore use curated fiction to probe role-consistent
expression under controlled, ethically tractable settings.

Evaluation Design. Digital twins must go beyond constrained selection to produce
persona-consistent language under open prompts. We therefore pair a discriminative multiple-choice
protocol (with carefully constructed, topically plausible distractors) with a generative protocol that
assesses free-form responses using two LLM-as-a-Judge variants (ranking and scoring) along opin-
ion consistency, logical/factual fidelity, and stylistic similarity. Judge reliability is supported by a
human study with three expert annotators: GPT-5-as-a-Judge reaches agreement close to human
inter-annotator levels (ranking κ≈0.646 vs. 0.673; scoring ρ≈0.591 vs. 0.605).

Usability, Reproducibility, and Robustness. We release precise task definitions, prompts, and data
paths so researchers can plug in fine-tuning, RAG, long-term memory, or multi-agent controllers on
the same inputs. For generation, we fix temperature=0.0 and publish decoding settings, seeds,
and candidate-construction scripts; we log model build identifiers where available and release raw
outputs to mitigate closed-API drift. Social Persona derives from PChatbot; to reduce leakage we
enforce semantic distinctiveness in choice sets and apply persona–choice alignment filters, and we
plan annual refreshes to retire suspect items. With parallelism set to 10, end-to-end evaluation per
model per dimension completes within 2 hours on our setup.

Coverage and Limitations. TwinVoice currently spans three dimensions and five languages: So-
cial (Chinese), Interpersonal (English, Spanish, Portuguese, Russian), and Narrative (English). De-
spite this breadth, language balance within each dimension remains imperfect, and phenomena
such as code-switching and dialectal variation are underrepresented. Future releases will expand
per-dimension language coverage and diversify domains where consented and de-identified data are
available.

Maintenance and Outlook. We will maintain TwinVoice with annual updates to address poten-
tial contamination, accommodate new model behaviors, and extend language and domain coverage.
Planned upgrades include longer-horizon tasks that jointly stress memory and opinion stability, ad-
versarial tone/stance confounders for robustness, and, where ethically permissible, additional di-
mensions and task types. All releases will be versioned, with code and results publicly available for
reproducibility.
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ETHICS STATEMENT

We follow standard ethical guidelines for dataset usage, evaluation, and model deployment. All
datasets used in this paper are publicly available under their original licenses, and we removed
personally identifiable information (PII) where applicable. No human subjects experiments were
conducted beyond voluntary annotation; annotators (if any) received fair compensation and pro-
vided informed consent. We prohibit misuse of our benchmark and models for profiling or harmful
decision making about individuals. Third-party models/APIs used in our experiments comply with
their terms of service. Upon acceptance, we will release our code, prompts, and evaluation scripts
with a research license and a model card detailing limitations and appropriate use.

REPRODUCIBILITY STATEMENT

We enable independent re-implementation of our evaluation by disclosing all essential ingredients
in the paper and appendices:

• Prompts & Protocols: Full templates for the discriminative MCQ task, generative persona
imitation, and LLM-as-a-Judge (ranking and scoring), together with the 1–5 scoring rubric
aligned with opinion, logic/facts, and style.

• Data Construction Recipes: Step-by-step textual recipes for all three dimensions, includ-
ing sources and filtering thresholds (e.g., average reply length > 10, bottom-20% TTR
removal, option cosine similarity < 0.95 for Social; token-length cleaning < 5, TF–IDF
top-10% selection, and semantic deduplication at 0.90 for Interpersonal), and the rules used
to form distractors.

• Dataset Statistics: Per-dimension instance counts and summary statistics as reported in
the main text.

• Evaluation Definitions: Exact metrics and equations (e.g., Accuracy and Scoregen) used
throughout.

• Model Usage: The list of model families evaluated and our access window (06/2025–
09/2025). We set the decoding temperature to 0 (temperature=0); all other generation
hyperparameters (e.g., top p, max tokens, presence/frequency penalties) used provider de-
faults.

All experiments are inference-only (no supervised training). With these disclosed materials, readers
can re-implement the pipeline and obtain comparable results under the same inputs and judging
criteria.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

REFERENCES

Saleh Afzoon, Usman Naseem, Amin Beheshti, and Zahra Jamali. Persobench: Benchmarking
personalized response generation in large language models. arXiv preprint arXiv:2410.03198,
2024.

Anthropic. Introducing claude 4. URL: https://www.anthropic.com/news/claude-4,
May 2025. Official announcement of the Claude 4 model family, including Opus 4 and Sonnet 4.

Barbara Rita Barricelli, Elena Casiraghi, Jessica Gliozzo, Alessandro Petrini, and Stefano Valtolina.
Human digital twin for fitness management. IEEE Access, 8:26637–26664, 2020. doi: 10.1109/
ACCESS.2020.2971576.

Jason Baumgartner, Savvas Zannettou, Megan Squire, and Jeremy Blackburn. The pushshift tele-
gram dataset, 2020. URL https://arxiv.org/abs/2001.08438.

Douglas Biber. Variation across speech and writing. Cambridge university press, 1991.

Douglas Biber. Dimensions of register variation: A cross-linguistic comparison. Cambridge Uni-
versity Press, 1995.

Penelope Brown. Politeness: Some universals in language usage, volume 4. Cambridge university
press, 1987.
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A EVALUATION PROTOCOLS AND FULL PROMPTS

This appendix details our evaluation protocols and the full instruction templates used across multiple
data forms, including public social interactions, interpersonal messaging, and narrative dialogue.
We adopt a unified instruction design and provide template variants for different data shapes when
needed. Unless otherwise noted, the LLM-as-a-Judge component is instantiated with GPT-5.

A.1 SCOPE AND ALIGNMENT WITH COMPETENCIES

Our evaluation comprises (1) discriminative multiple-choice selection and (2) generative evaluation,
including persona imitation (free-form generation) and LLM-as-a-Judge assessment via ranking and
scoring. The judge scoring rubric is organized along three pillars—Opinion Consistency, Logical &
Factual Fidelity, and Stylistic Similarity—which align with the six fundamental capabilities defined
in the main text. We offer equivalent template variants per evaluation mode to fit different data
shapes; metrics and scoring criteria remain identical across variants.

A.2 UNIFYING INSTRUCTIONS AND PLACEHOLDERS

We use a single instruction family per evaluation mode. Differences are limited to how inputs are
presented. We standardize placeholders as follows:

• {history}: persona-establishing prior content by the same user or character.
• {context}: the situation/post/message/scene the user or character is responding to (re-

placing earlier {anchor} or {anchor post}).
• {ground truth reply} or {groundtruth response}: the human-written reply.
• {lmut reply} or {generated content}: the model-generated reply to be evalu-

ated.

A.3 DISCRIMINATIVE EVALUATION (MULTIPLE-CHOICE SELECTION)

Canonical template (General).
Discriminative Selection Prompt (General)

Your task is to act as a specific social media user, becoming their
digital twin.

Note: All provided text (history, context, choices) is in the
original language of the data. You must analyze the user’s style
directly within that language.

Based on the user’s reply history, think and respond with their
mindset, tone, and style.

Your reply history:
(Note: ‘‘Context’’ is another user’s post/message, and ‘‘UserReply

’’ is your own reply.)
{history}

Now, you see a new context message:
‘‘{context}’’

Below are 4 candidate replies. Which one is most likely something
you would say?

A. {a}
B. {b}
C. {c}
D. {d}
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Please respond in the following JSON format. In the ‘‘reasoning’’
field, use the first-person perspective (‘‘I’’) to explain your
choice.

‘‘‘json
{{
"predicted_comment": "A",
"reasoning": "Explain, from my perspective as the user, why I

would choose this option."
}}
‘‘‘

Alternative template (Dimension 2: Interpersonal Messaging).
Discriminative Selection Prompt (Messaging Variant)

You are given a user’s reply history and 4 candidate replies to a
context message. Only one of the replies was actually written by
this user. The other three were written by different users

replying to the same context message.
Your task is to choose the most likely reply written by the same

user, based on writing style, tone, and expression habits. Focus
on how the user typically speaks, their phrasing, and how they

respond emotionally or humorously.

User’s Historical Conversations:
{history}

Current Context Message:
‘‘{context}’’

Candidate Replies:
A. {a}
B. {b}
C. {c}
D. {d}

Please respond in the following JSON format:
‘‘‘json
{{
"predicted_comment": "A",
"reasoning": "Explain why this option best matches the user’s

style."
}}
‘‘‘

Distractor Generation for Discriminative Data (Dimension 3: Narrative).
Distractor Writer Prompt (Narrative Variant)

You are a precise persona-grounded writer.
Given one TARGET speaker (whose original utterance is the correct

answer) and THREE OTHER characters, write EXACTLY THREE
distractor lines that those other characters would plausibly say
in this context.

Return ONLY this JSON:
{{
"distractors":[
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{{"text":"...", "by":"<OtherCharacterName>"}},
{{"text":"...", "by":"<OtherCharacterName>"}},
{{"text":"...", "by":"<OtherCharacterName>"}}

]
}}

Context (narration BEFORE anyone speaks):
"""{context_text}"""

TARGET (do NOT imitate in distractors):
- name: {target_name}
- traits: {t_traits}
- goals: {t_goals}
- details: {t_details}
- history: {t_history}

THREE OTHER characters (write one distractor for each; must sound
like them):

1) name: {o1_name}
traits: {o1_traits}
goals: {o1_goals}
details: {o1_details}
history: {o1_history}

2) name: {o2_name}
traits: {o2_traits}
goals: {o2_goals}
details: {o2_details}
history: {o2_history}

3) name: {o3_name}
traits: {o3_traits}
goals: {o3_goals}
details: {o3_details}
history: {o3_history}

Rules (STRICT):
- Context fit: Each distractor must be logically possible GIVEN the

context (time/place/people/danger level). Do NOT introduce
facts that contradict the context (e.g., saying ‘‘it’s calm’’
when the scene is a chase or fire).

- Persona fit: Each distractor must match the specified OTHER
character’s traits/goals/details AND be consistent with their
history. Do NOT copy, paraphrase, or stylistically mimic the
TARGET.

- History use: Use the OTHER character’s UtteranceHistory to guide
tone, stance, formality, and typical verbs; NEVER copy any
sentence from history verbatim. Avoid the TARGET’s pet phrases
or signature moves.

- Style \& length: Keep 1 short line per distractor, in the book’s
tone/era (no modern slang/emojis). Prefer 8--28 words;
comparable length to a typical line in this book. Natural
punctuation (commas/semicolons/em dashes) is OK.

- Voice: No stage directions, no ‘‘X said,’’ no speaker names in
the line. The content should read as the spoken line itself.

- Uniqueness: The three distractors must be meaningfully different
in stance/wording; no near-duplicates.

- Safety checks:
* If any distractor contradicts the context, resembles the TARGET’

s voice, copies history verbatim, or breaks style/length
constraints, REWRITE it.

* Output EXACTLY three items; no extra keys or commentary.

Output ONLY the JSON object described above.
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Notes.

• Placeholders are standardized: {history}, {context}, and option texts {a}, {b}, {c},
{d}. In narrative data, the distractor writer prompt is used to construct options and is not
itself a judging template.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

A.4 GENERATIVE EVALUATION: PERSONA IMITATION (FREE-FORM GENERATION)

Canonical template (General, text-only output).
Generative Persona Imitation Prompt (General)

You are acting as a digital twin of a specific social media user.
Your task is to analyze the user’s posting history to understand

their personality, tone, vocabulary, and style.
All provided text (history, context) is in the original language of

the data. You must analyze and respond in that language.

Here is the user’s posting history:
(Note: ‘‘Context’’ is a post/message by someone else, and ‘‘

UserReply’’ is the user’s own reply to it.)
---
{history_text}
---

Now, you must imitate this user’s persona perfectly and write a new
reply to the following message.

Respond ONLY with the text of the reply. Do not add any extra
explanations, greetings, or surrounding text.

Message to reply to:
‘‘{context}’’

Variant (Dimension 2: Messaging, JSON output).
LMUT Prompt (Messaging Variant, JSON Output)

You are acting as a digital twin of a specific messaging app user.
Your task is to analyze the user’s messaging history to understand

their personality, tone, vocabulary, and style.
Different provided text (history, context, message) may use

different language. You must analyze and respond in the same
language as the provided text.

Here is the user’s messaging history:
(Note: ‘‘Context’’ is a message by someone else, and ‘‘UserReply’’

is the user’s own reply to it.)
---
{history_text}
---

Now, you must imitate this user’s persona perfectly and write a new
reply to the following message.

Please include your response in the following JSON format:
{{"generated_content": "your reply text here"}}
You may include thinking process or other content, but make sure to

include the JSON format with the generated_content field.

Message to reply to:
‘‘{context}’’

Variant (Dimension 3: Narrative, single-line JSON).
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Digital Twin Line Generation (Narrative Variant)

You are the digital twin of the TARGET speaker in a literary
dialogue dataset.

Your job: write ONE new reply that this TARGET would plausibly say
in the exact scene below, matching their historical voice and
habits.

### Inputs
- TARGET speaker: {speaker}
- Scene context (preceding narration \& situation, NOT the speaker’

s own words):
"""{context}"""
- (Optional) TARGET’s conversation history snippets (style anchors)

:
{history_block}

### Hard requirements (STRICT)
1) Language \& Era: Match the book’s tone/era (no modern slang/

emojis). If the scene reads like 19th-century prose, mimic that
diction.

2) Persona Fit: Keep the TARGET’s typical formality, sentence
length, cadence, favorite turns of phrase (use hints from
history if provided).

3) Scene Consistency: The line must be logically possible given the
context. Do NOT introduce new facts/characters/locations. No

meta-commentary.
4) Length \& Shape: One spoken line only (no stage directions, no

speaker tag). Prefer 8--28 words unless the scene clearly calls
for a very short assent/command.

5) No Copying: Do NOT copy any exact sentence from the dataset.
Paraphrase in the TARGET’s voice.

6) Output format: Return ONLY a JSON object:
{{
"generated_content": "<the single line>"

}}

Now produce the JSON with your single-line reply.

Notes.

• Use {context} as the reply trigger across all variants. The narrative variant mandates a
single-line JSON output.
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A.5 LLM-AS-A-JUDGE: RANKING-BASED EVALUATION

Canonical template (JSON + concise reasoning).
Judge Ranking Prompt (General)

You are an expert evaluator of writing style. Your task is to
compare several candidate replies against a known ‘‘Reference
Reply’’ written by a specific user.

Your goal is to identify which candidate is the most similar to the
reference in terms of **style, tone, vocabulary, sentiment, and
topic**.

This is the Reference Reply (the ground truth written by the user):
---
{ground_truth_reply}
---

These are the **Candidate Replies**:
{candidate_replies_text}

Now, determine which single candidate is the closest match to the
Reference Reply.

You MUST respond ONLY with a JSON object in the following format.
Do not include any other text.

The reasoning should be concise, limited to 2--3 sentences.

‘‘‘json
{{
"choice": "The letter of the best matching candidate (e.g., ’A’, ’

B’, ’C’, or ’D’)",
"reasoning": "A brief explanation for your choice, focusing on the

stylistic similarities."
}}
‘‘‘

Letter-only MAP Prompt (Dimension 3: Narrative).
MAP Prompt (Narrative Variant, Letter Only)

You are a strict classifier. Output ONLY a single letter (A/B/C/D).
Choose the option that best matches the style, tone, vocabulary,

and stance of the Generated Reply.

[Options]
A. {A}
B. {B}
C. {C}
D. {D}

[Generated Reply]
{pred}

Output exactly one letter: A, B, C, or D.

Notes.

• Ranking supports two outputs: a JSON object with brief reasoning (general) and a letter-
only output (narrative variant).
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A.6 LLM-AS-A-JUDGE: SCORING-BASED EVALUATION

Canonical template (applies as-is).
Judge Scoring Prompt (All Variants)

You are a meticulous and objective evaluator for a digital twin
benchmark. Your task is to assess how well a ‘‘Generated Reply’’
replicates a ‘‘Ground Truth Reply’’ for a given interaction.

The ‘‘Ground Truth Reply’’ is the single, undisputed gold standard.
Your entire evaluation must be based on comparing the ‘‘

Generated Reply’’ against it.

The evaluation rests on three key pillars:
1. **Opinion Consistency**: Does the ‘‘Generated Reply’’ express

the exact same core opinion, stance, and sentiment as the ‘‘
Ground Truth’’?

2. **Logical \& Factual Fidelity**: Is the ‘‘Generated Reply’’
based on the same reasoning and facts as the ‘‘Ground Truth’’?
It must not introduce new, unsupported information or follow a
different logical path.

3. **Stylistic Similarity**: How closely does the ‘‘Generated Reply
’’ match the ‘‘Ground Truth’’ in terms of writing style?
* **Lexical**: Use of similar vocabulary, slang, or emojis.
* **Tone**: Capturing the same tone (e.g., humorous, sarcastic,

empathetic, proud).
* **Syntactic**: Similarity in sentence structure, length, and

degree of formality.

---
SCORING RUBRIC (1--5 Scale):

- **5: Perfect Replication**: The ‘‘Generated Reply’’ is a perfect
match across all three pillars (Opinion, Logic/Factual, Style).
It feels like a natural, alternative expression from the same
user. A perfect substitute for the ground truth.

- **4: High Fidelity**: The Opinion and Logic/Factual pillars are
perfectly matched. There are only minor, subtle differences in
the Style pillar (e.g., a missing catchphrase, a slightly more
formal tone), but the reply is still an excellent imitation.

- **3: Core Alignment, Detail Loss**: The core Opinion is
consistent, but there’s a noticeable loss of detail in the Logic
or Style pillars. For example, the tone is flattened, or unique
phrasing is lost. The reply captures the ‘‘what’’ but not the

‘‘how’’. It feels more like a summary than a replication.

- **2: Partial Relevance, Major Deviation**: There is a major
failure in at least one of the three pillars. For instance, the
opinion is distorted (e.g., strong support becomes neutral), the
logic is completely different, or the style is entirely

mismatched.

- **1: Irrelevant or Contradictory**: The ‘‘Generated Reply’’ has
almost nothing in common with the ‘‘Ground Truth’’ or expresses
a contradictory opinion. A total failure of replication.

---
YOUR TASK:
You will be provided with the context message, the ground truth

reply, and the generated reply. User-generated content may be in
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different languages, but your analysis and final JSON output
must be in English. You MUST respond ONLY with a JSON object in
the following format. Do not include any other text or
explanations.

‘‘‘json
{{
"analysis": {{
"opinion_consistency": {{
"is_consistent": true,
"justification": "A brief justification for the consistency of

the opinion."
}},
"logical_factual_fidelity": {{
"is_faithful": true,
"justification": "A brief justification for the fidelity of the

logic and facts."
}},
"stylistic_similarity": {{
"similarity_level": "High/Medium/Low",
"justification": "A brief justification for the level of

stylistic similarity."
}}

}},
"final_score": "An integer score from 1 to 5",
"final_justification": "A concise, overall justification for the

final score, synthesizing the three pillars."
}}
Now, evaluate the following case:

Context Message:
‘‘{context}‘‘

Ground Truth Reply:
‘‘{ground_truth_reply}‘‘

Generated Reply to Evaluate:
‘‘{lmut_reply}‘‘

Notes.

• Inputs are standardized as {history}, {context}, {ground truth reply} (or
{groundtruth response}), and {lmut reply} (or {generated content}).

A.7 IMPLEMENTATION NOTE: JUDGE MODEL

We instantiate the LLM-as-a-Judge with GPT-5 for both ranking- and scoring-based evaluation,
unless otherwise specified. Ranking includes a letter-only variant for narrative data.
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B CAPABILITY ANNOTATION PROMPTS AND LABELING PROTOCOL

We annotate each example to identify which capability a model must primarily exercise to replicate
a user’s reply, while also recording the presence of all six capabilities. Each annotation unit contains
three elements: {history} (persona-establishing prior content), {context} (the situation the
user is replying to), and {groundtruth response} (the user’s actual reply). An expert LLM
performs the annotation to ensure consistency and structured outputs (we use GPT-5 with tempera-
ture set to 0).

Canonical Annotation Prompt.
Capability Annotation Prompt (Canonical)

\# ROLE AND GOAL
You are an expert linguistic and persona analyst. Your task is to

analyze user data to identify the core capabilities a generative
model would need to successfully create a ‘‘digital twin’’ of

the user. You will be given a user’s conversational history, a
new context they are replying to, and their actual response (‘‘
groundtruth’’).

\# INPUT DATA STRUCTURE
You will receive a JSON object for each annotation task with the

following structure:
- ‘‘context’’: The situation, post, or utterance the user is

responding to.
- ‘‘groundtruth\_response’’: The user’s actual, human-written

response to the ‘‘context’’.
- ‘‘history’’: A list of the user’s past posts and replies, which

establishes their persona.

\# CORE TASK: CAPABILITY ANNOTATION
Your task is twofold.
Part 1 is mandatory: You must first identify the single ‘‘primary\

_capability’’. This is the one capability that serves as the
best-fit or most representative label for the example, even if
the signal is weak. This choice is required for every single
data point.

Part 2 is for detail: After identifying the primary capability, you
will then perform a standard evaluation for all six

capabilities, marking ‘‘true’’ or ‘‘false’’ for each based on
the strict criteria. This allows for multiple capabilities to be
‘‘true’’.

\# CAPABILITY DEFINITIONS AND ANNOTATION CRITERIA
Evaluate each capability independently based on the refined

criteria below.

C1: Opinion Consistency
- Core Question: Does this response require explicitly reaffirming

a specific, previously-stated opinion?
- Label ‘‘true’’ if: The ‘‘groundtruth\_response’’ expresses a

clear opinion (e.g., support for a team, dislike for a policy)
that directly and unambiguously repeats or reinforces an opinion
explicitly stated in the ‘‘history’’.

- Do not label ‘‘true’’ for new opinions on new topics, even if
they seem plausible for the user, or for generic positive/
negative sentiment that isn’t tied to a specific, recurring
viewpoint.

- Choose as ‘‘primary\_capability’’ if: The core purpose of the
response is to state a known, consistent opinion.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

C2: Memory\_Recall
- Core Question: Does the response rely on shared context or

information from the history that an outside reader would not
fully understand?

- Label ‘‘true’’ if: The ‘‘groundtruth\_response’’ makes an
explicit or implicit reference to a past event, personal
information, or a previously established piece of context from
the ‘‘history’’.

- Do not label ‘‘true’’: If the response is entirely self-contained
and can be perfectly understood by anyone just by reading the

‘‘context’’.
- Choose as ‘‘primary\_capability’’ if: The response would be

confusing or lose its meaning without knowledge of the user’s
history. This is often a good default choice for very short,
context-dependent replies.

C3: Logical Reasoning
- Core Question: Does this response provide a justification or

explanation for a claim?
- Label ‘‘true’’ if: The ‘‘groundtruth\_response’’ contains a

rationale (e.g., using ‘‘because,’’ ‘‘since,’’ ‘‘so,’’ or
implying a cause-and-effect relationship), AND the user’s ‘‘
history’’ shows a pattern of them providing reasons for their
opinions.

- Do not label ‘‘true’’: If the response is a simple, unsupported
statement of fact or feeling.

- Choose as ‘‘primary\_capability’’ if: The response structure is
clearly ‘‘Claim + Justification’’.

C4: Lexical\_Fidelity
- Core Question: Does this response use a creative, personal, and

repeated signature word or phrase?
- Label ‘‘true’’ if: The ‘‘groundtruth\_response’’ uses a specific

word, phrase, or emoji pattern that is both repeated in the ‘‘
history’’ and idiosyncratic (not common slang).

- Do not label ‘‘true’’: For common slang or any single-use clever
phrase.

- Choose as ‘‘primary\_capability’’ if: The most noticeable feature
of the response is the use of a signature word/phrase.

C5: Persona\_Tone
- Core Question: Does the response use a specific, non-literal tone

(like sarcasm or deep irony) that is a core part of the user’s
persona?

- Label ‘‘true’’ only if: The history shows a recurring pattern of
a specific, non-literal tone AND the response is a clear
instance of that same tone.

- Do not label ‘‘true’’: If the two strict conditions are not both
met.

- Choose as ‘‘primary\_capability’’ if: The meaning of the response
is inverted or altered by a clear, persona-defining tone (e.g.,
obvious sarcasm).

C6: Syntactic\_Style
- Core Question: Does this response use a distinctive, repeated

structural pattern?
- Label ‘‘true’’ only if: The response uses a clear, repeated, and

non-standard stylistic pattern (e.g., habitual use of sentence
fragments, a unique punctuation signature).

- Do not label ‘‘true’’: For common conversational variations.
- Choose as ‘‘primary\_capability’’ if: The response is very simple

and its most defining characteristic is a structural quirk (e.g
., it’s just a single, fragmented phrase, which is a common
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pattern for the user). This can be a fallback for otherwise
simple responses.

\# INSTRUCTIONS \& OUTPUT FORMAT
1. Step 1: Determine the ‘‘primary\_capability’’ (Mandatory Choice)

.
- First, analyze all the data.
- To ensure a fair evaluation and eliminate any potential

ordering bias, you must give equal and independent
consideration to all six capabilities, regardless of their
order, before selecting the primary\_capability.

- Then, you MUST choose exactly one capability from the list (C1
--C6) that you consider the best fit.

- Use the ‘‘Choose as primary\_capability if...’’ guidelines to
help you decide. If no signal is strong, choose the one that
is the most plausible or least incorrect. For very generic
replies, ‘‘Memory\_Recall’’ or ‘‘Syntactic\_Style’’ are often
good candidates.

- This choice is not optional.

2. Step 2: Evaluate All Capabilities (Detailed Annotation).
- Now, go through each of the six capabilities (C1 to C6) one by

one, including the one you chose as primary.
- For each one, decide if the ‘‘groundtruth\_response’’ meets

the strict definition and assign ‘‘true’’ or ‘‘false’’.
- Provide a brief, one-sentence justification for every

capability you mark as ‘‘true’’.

3. Step 3: Format the Output.
- Your final output must be a single, valid JSON object with the

exact two-level structure shown below.
- The ‘‘primary\_capability’’ field MUST contain the string name

of your choice from Step 1. It cannot be null or empty.
- The ‘‘all\_evaluations’’ field MUST contain the detailed

boolean labels from Step 2.

‘‘‘json
{
"primary_capability": "Name_Of_The_Single_Best_Fit_Capability",
"all_evaluations": {
"Opinion_Consistency": { "label": false, "reasoning": "" },
"Memory_Recall": { "label": false, "reasoning": "" },
"Logical_Reasoning": { "label": false, "reasoning": "" },
"Lexical_Fidelity": { "label": false, "reasoning": "" },
"Persona_Tone": { "label": false, "reasoning": "" },
"Syntactic_Style": { "label": false, "reasoning": "" }

}
}
‘‘‘

Inputs for the prompt. We pass a single JSON object per example with three keys: history,
context, and groundtruth response. No length truncation is applied.
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C CAPABILITY DISTINGUISHING CASE STUDIES

This section presents case studies that illustrate how our six capabilities appear in practice. The
examples are drawn from our public social persona corpus (dimension 1). For readability we show
faithful translations and only the key slices. If any discrepancy arises, the original Chinese dataset
is authoritative. Explanatory remarks appear outside the boxes. Inside each box, ······ marks omitted
portions of longer cases.

C.1 OPINION CONSISTENCY

The user maintains a specific stance across contexts, namely choosing shows based on a favorite
actor and praising acting skill. The new reply preserves this granular stance rather than defaulting
to generic positivity.

Case 1: Opinion Consistency (user 527222)

Context. ······ “Tonight is the finale. Xiang Qian returns to the seaside house where he once
lived in hard times, surely full of feelings. Seeing Alisa in this moment is so beautiful, hope
they both have a good life.” ······
Key History. ······ “I watched this show for Huang Zitao, I think his acting is great.” ······
Ground Truth Reply. ······ “I watched it for Liu Tao, her acting is really getting better and
better.” ······

Why this shows Opinion Consistency: The historical pattern is watch for a specific actor and praise
that acting. The ground truth reply mirrors the same stance toward another named actor, preserving
topic granularity and evaluative angle.

C.2 MEMORY RECALL

The reply uses a nickname that is not introduced in the immediate context, presupposing shared
knowledge from prior interactions. Understanding the line fully requires recalling who that nick-
name refers to.

Case 2: Memory Recall (user 205470)

Context. ······ “Met a teacher who is a high level LEGO player, buys LEGO by the sack.” ······
Key History. ······ “When Dan jie builds LEGO she looks like a serious kid, always supporting
Dan jie.” ······
Ground Truth Reply. ······ “When she plays LEGO her eyes light up, still that adorable Wang
Sansui.” ······

Why this shows Memory Recall: The affectionate nickname Wang Sansui is not grounded in the
current context and relies on earlier persona knowledge to resolve the reference.
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C.3 LOGICAL REASONING

The user’s pattern is Observation then Deduction. In history, a physical observation supports an
inference. The reply replicates this approach by citing scene features to argue against an assumption.

Case 3: Logical Reasoning (user 369593)

Context. ······ “Do an ice drifting video. If it is not minus twenty or thirty degrees, do not show
off.” ······
Key History. ······ “There is no snow on the roof opposite, which shows the heat inside that
house is considerable.” ······
Ground Truth Reply. ······ “This river channel is quite narrow and there is a road next to it, so
it probably did not fall in from drifting on the ice.” ······

Why this shows Logical Reasoning: The reply marshals concrete observations (narrow channel,
road nearby) to support a causal judgment, matching the user’s habit of evidence based inference.

C.4 LEXICAL FIDELITY

A personal catchphrase recurs across contexts. The reply deploys the same idiosyncratic exclamation
seen in history, signaling a learned lexical signature.

Case 4: Lexical Fidelity (user 45899)

Context. ······ “Emirates Bling777 plane is encrusted with Swarovski crystals, the joy of the
rich is beyond imagination.” ······
Key History. ······ “OMG, for this kind of dog, give me a dozen and it is not too many.” ······
Ground Truth Reply. ······ “OMG, this, this, it is full of diamonds?! Maybe one will drop off
for me.” ······

Why this shows Lexical Fidelity: The same colloquial exclamation equivalent to OMG appears in
both history and reply, demonstrating consistent, user specific lexical choice.
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C.5 PERSONA TONE

The user favors playful hyperbole and adoring expressions that are nonliteral. The reply echoes that
tone with a different bodily metaphor, preserving the same stylistic stance.

Case 5: Persona Tone (user 270844)

Context. ······ “Group stage, Hai Lu’s acting is on point, those long legs are eye catching. Did
not expect such solid dance foundation, the high kicks are captivating.” ······
Key History. ······ “Listening made my ears pregnant, you all should listen, it is super good.
Hope my male god keeps getting better. Could you be my boyfriend, so shy.” ······
Ground Truth Reply. ······ “Hai Lu, your long legs had me staring at them the whole time,
haha, my nose is about to bleed.” ······

Why this shows Persona Tone: Both history and reply use exuberant, nonliteral bodily metaphors
(ears pregnant, nosebleed) as playful, adoring exaggerations that define the user’s persona.

C.6 SYNTACTIC STYLE

Beyond words and tone, the user’s structure features stacked, breathless exclamations with intensi-
fiers. The reply reproduces that sentence shape.

Case 6: Syntactic Style (user 108194)

Context. ······ “Sci fi fans, gather up. The film The Wandering Earth is set for Lunar New Year,
a concept poster has been released.” ······
Key History. ······ “Wow wow wow, I am truly so excited inside, really looking forward to it,
hahaha.” ······
Ground Truth Reply. ······ “Wow wow wow, look closely, this poster design really has such
a vibe, you could call it outstanding. This kind of movie theme is especially attractive, must
support.” ······

Why this shows Syntactic Style: The reply stacks short, exclamatory clauses with intensifiers and
colloquial particles, recreating the user’s distinctive, breathless rhythm observed in history.
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D RADAR CHARTS ACROSS THREE DIMENSIONS

We present capability-wise radar charts for the three persona dimensions: Dimension 1 (Social
Persona), Dimension 2 (Interpersonal Persona), and Dimension 3 (Narrative Persona). For each
dimension, we report four evaluation configurations: (i) Combined Average (aggregated across pro-
tocols), (ii) Discriminative (multiple-choice selection), (iii) Generative Ranking (LLM-as-a-Judge;
Acc.(Gen)), and (iv) Generative Scoring (LLM-as-a-Judge; Score(Gen), 1–5). Each radar covers six
capabilities: Opinion Consistency, Memory Recall, Logical Reasoning, Lexical Fidelity, Persona
Tone, and Syntactic Style.

D.1 SOCIAL PERSONA (DIMENSION 1)

Opinion Consistency
[0.338, 0.446]

Memory Recall
[0.328, 0.405]

Logical Reasoning
[0.247, 0.377]

Lexical Fidelity
[0.396, 0.553]

Persona Tone
[0.278, 0.426]

Syntactic Style
[0.372, 0.513]

0.308
0.369

0.431
0.492

0.553

GPT-5-Chat
Claude-sonnet-4

GPT-4o-mini
DeepSeek-V3

Qwen2.5-14b
GPT-3.5-turbo

GPT-OSS-20B

Figure 4: Dimension 1 (Social Persona): Combined Average radar over six capabilities (all labeled
capabilities). Aggregates across discriminative and generative protocols; higher is better along each
spoke.

Opinion Consistency
[0.350, 0.512]

Memory Recall
[0.363, 0.476]

Logical Reasoning
[0.307, 0.428]

Lexical Fidelity
[0.450, 0.708]

Persona Tone
[0.319, 0.499]

Syntactic Style
[0.375, 0.613]

0.388
0.468

0.548
0.628

0.708

GPT-5-Chat
Claude-sonnet-4

GPT-4o-mini
DeepSeek-V3

Qwen2.5-14b
GPT-3.5-turbo

GPT-OSS-20B

Figure 5: Dimension 1 (Social Persona): Discriminative evaluation radar (accuracy-based) across
six capabilities (all labeled capabilities). Shows multiple-choice persona matching performance;
higher is better.
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Opinion Consistency
[0.248, 0.374]

Memory Recall
[0.261, 0.371]

Logical Reasoning
[0.177, 0.355]

Lexical Fidelity
[0.300, 0.483]

Persona Tone
[0.235, 0.408]

Syntactic Style
[0.279, 0.475]

0.239
0.300

0.361
0.422

0.483

GPT-5-Chat
Claude-sonnet-4

GPT-4o-mini
DeepSeek-V3

Qwen2.5-14b
GPT-3.5-turbo

GPT-OSS-20B

Figure 6: Dimension 1 (Social Persona): Generative Ranking radar (LLM-as-a-Judge, Acc.(Gen))
across six capabilities (all labeled capabilities). Reflects relative imitation quality; higher is better.

Opinion Consistency
[0.376, 0.479]

Memory Recall
[0.315, 0.388]

Logical Reasoning
[0.257, 0.369]

Lexical Fidelity
[0.398, 0.509]

Persona Tone
[0.279, 0.415]

Syntactic Style
[0.436, 0.531]

0.312
0.367

0.421
0.476

0.531

GPT-5-Chat
Claude-sonnet-4

GPT-4o-mini
DeepSeek-V3

Qwen2.5-14b
GPT-3.5-turbo

GPT-OSS-20B

Figure 7: Dimension 1 (Social Persona): Generative Scoring radar (LLM-as-a-Judge, Score(Gen),
1–5) across six capabilities (all labeled capabilities). Captures absolute similarity to the ground
truth; higher is better.
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D.2 INTERPERSONAL PERSONA (DIMENSION 2)

Opinion Consistency
[0.312, 0.566]

Memory Recall
[0.311, 0.539]

Logical Reasoning
[0.319, 0.565]

Lexical Fidelity
[0.358, 0.577]

Persona Tone
[0.198, 0.455]

Syntactic Style
[0.270, 0.506]

0.274
0.350

0.425
0.501

0.577

GPT-5-Chat
Claude-sonnet-4

GPT-4o-mini
DeepSeek-V3

Qwen2.5-14b
GPT-3.5-turbo

GPT-OSS-20B

Figure 8: Dimension 2 (Interpersonal Persona): Combined Average radar over six capabilities (all
labeled capabilities). Aggregates across discriminative and generative protocols; higher is better
along each spoke.

Opinion Consistency
[0.441, 0.913]

Memory Recall
[0.375, 0.876]

Logical Reasoning
[0.456, 0.933]

Lexical Fidelity
[0.446, 0.968]

Persona Tone
[0.263, 0.679]

Syntactic Style
[0.306, 0.860]

0.404
0.545

0.686
0.827

0.968

GPT-5-Chat
Claude-sonnet-4

GPT-4o-mini
DeepSeek-V3

Qwen2.5-14b
GPT-3.5-turbo

GPT-OSS-20B

Figure 9: Dimension 2 (Interpersonal Persona): Discriminative evaluation radar (accuracy-based)
across six capabilities (all labeled capabilities). Shows multiple-choice persona matching perfor-
mance; higher is better.
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Figure 10: Dimension 2 (Interpersonal Persona): Generative Ranking radar (LLM-as-a-Judge,
Acc.(Gen)) across six capabilities (all labeled capabilities). Reflects relative imitation quality; higher
is better.

Opinion Consistency
[0.144, 0.224]

Memory Recall
[0.114, 0.173]

Logical Reasoning
[0.064, 0.166]

Lexical Fidelity
[0.109, 0.191]

Persona Tone
[0.095, 0.177]

Syntactic Style
[0.104, 0.149]

0.096
0.128

0.160
0.192

0.224

GPT-5-Chat
Claude-sonnet-4

GPT-4o-mini
DeepSeek-V3

Qwen2.5-14b
GPT-3.5-turbo

GPT-OSS-20B

Figure 11: Dimension 2 (Interpersonal Persona): Generative Scoring radar (LLM-as-a-Judge,
Score(Gen), 1–5) across six capabilities (all labeled capabilities). Captures absolute similarity to
the ground truth; higher is better.
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D.3 NARRATIVE PERSONA (DIMENSION 3)
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Figure 12: Dimension 3 (Narrative Persona): Combined Average radar over six capabilities (all
labeled capabilities). Aggregates across discriminative and generative protocols; higher is better
along each spoke.
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Figure 13: Dimension 3 (Narrative Persona): Discriminative evaluation radar (accuracy-based)
across six capabilities (all labeled capabilities). Shows multiple-choice persona matching perfor-
mance; higher is better.
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Figure 14: Dimension 3 (Narrative Persona): Generative Ranking radar (LLM-as-a-Judge,
Acc.(Gen)) across six capabilities (all labeled capabilities). Reflects relative imitation quality; higher
is better.
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Figure 15: Dimension 3 (Narrative Persona): Generative Scoring radar (LLM-as-a-Judge,
Score(Gen), 1–5) across six capabilities (all labeled capabilities). Captures absolute similarity to
the ground truth; higher is better.
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E HUMAN ANNOTATION GUIDELINES

E.1 TASK BACKGROUND AND OBJECTIVES

This study aims to evaluate the performance of Large Language Models (LLMs) as judges in digital
twin tasks. To validate the reliability of model judgments, we need human annotators to indepen-
dently annotate selected data to establish a trustworthy benchmark.

The annotation task consists of three subtasks corresponding to different evaluation modes: discrim-
inative tasks, generative ranking tasks, and generative scoring tasks. Each annotator will annotate
the same 100 data samples to ensure consistency and comparability in evaluation.

Important Note: All provided content (anchor posts, reply history, choices) is in Chinese. You
should analyze and understand the content within the Chinese language context, but your reasoning
and annotations should be provided in English when specified.

E.2 DISCRIMINATIVE TASK ANNOTATION

E.2.1 TASK DESCRIPTION

In the discriminative task, you need to act as a specific social media user, becoming their digital
twin. Based on the given conversation history and anchor post, select the most appropriate reply
from four candidates that best matches the user’s personal style and language habits.

E.2.2 LLM PROMPT (USE THE SAME EVALUATION STANDARD)

The LLM uses the following prompt for this task. Please follow the same reasoning approach:

Your task is to act as a specific social media user, becoming their digital twin.
Note: All provided text (history, post, choices) is in Chinese. You must analyze the
user’s style directly within the Chinese language context.
Based on the user’s reply history, think and respond with their mindset, tone, and
style.
Your reply history: (Note: ”AnchorPost” is another user’s post, and ”UserReply”
is your own reply.)
Now, you see a new post: [anchor post]
Below are 4 candidate replies. Which one is most likely something you would
say?
Please respond by explaining your choice from the user’s perspective using ”I”.

E.2.3 EVALUATION CRITERIA

• Style Consistency: Does the reply maintain consistency with the user’s language style
demonstrated in conversation history?

• Tone Matching: Does the reply’s tone (formal/informal, humorous/serious, etc.) match
the user’s characteristics?

• Vocabulary Usage: Are the vocabulary choices and expressions consistent with the user’s
habits?

• Logical Coherence: Is the reply content logically related to the anchor post and historical
context?

E.2.4 ADDITIONAL HUMAN GUIDANCE

• Carefully read through the entire conversation history to understand the user’s communi-
cation patterns

• Pay attention to recurring phrases, greeting patterns, and emotional expressions
• Consider the user’s typical response length and level of detail
• Think from the user’s perspective: ”If I were this user, which response would I most likely

choose?”
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E.2.5 ANNOTATION METHOD

Please fill in the option number (0, 1, 2, or 3) that you consider most appropriate in the
human choice field, corresponding to the index position in the choices array.

E.3 GENERATIVE RANKING TASK ANNOTATION

E.3.1 TASK DESCRIPTION

In the generative ranking task, you need to identify which candidate reply is most similar to a
reference reply in terms of style, tone, vocabulary, sentiment, and topic.

E.3.2 LLM PROMPT (USE THE SAME EVALUATION STANDARD)

The LLM uses the following prompt for this task:

You are an expert evaluator of writing style. Your task is to compare several
candidate replies against a known ”Reference Reply” written by a specific user.
Your goal is to identify which candidate is the most similar to the reference in
terms of style, tone, vocabulary, sentiment, and topic.
Now, determine which single candidate is the closest match to the Reference Re-
ply. The reasoning should be concise, limited to 2-3 sentences, focusing on the
stylistic similarities.

E.3.3 EVALUATION CRITERIA

• Style Similarity: Lexical choices, sentence structure, formality level
• Tone Matching: Emotional tone, attitude, and mood
• Vocabulary Consistency: Use of similar words, phrases, or expressions
• Sentiment Alignment: Overall emotional orientation and sentiment
• Topic Relevance: Relevance and approach to the main topic

E.3.4 ADDITIONAL HUMAN GUIDANCE

• Focus on stylistic elements rather than factual content
• Look for subtle language patterns and preferences
• Consider both what is said and how it is said
• Compare the ”voice” and ”personality” reflected in each candidate

E.3.5 ANNOTATION METHOD

Please fill in the letter (A, B, C, or D) of the option you consider best matching in the
human choice field.

E.4 GENERATIVE SCORING TASK ANNOTATION

E.4.1 TASK DESCRIPTION

In the generative scoring task, you need to assess how well a generated reply replicates a ground
truth reply, providing a score from 1-5 based on comprehensive evaluation criteria.

E.4.2 LLM PROMPT (USE THE SAME EVALUATION STANDARD)

The LLM uses the following detailed evaluation framework:

You are a meticulous and objective evaluator for a digital twin benchmark. Your
task is to assess how well a ’Generated Reply’ replicates a ’Ground Truth Reply’
for a given social media post.
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The evaluation rests on three key pillars:
1. Opinion Consistency: Does the Generated Reply express the exact same

core opinion, stance, and sentiment as the Ground Truth?
2. Logical & Factual Fidelity: Is the Generated Reply based on the same rea-

soning and facts as the Ground Truth?
3. Stylistic Similarity: How closely does the Generated Reply match the

Ground Truth in terms of lexical, tone, and syntactic elements?

E.4.3 SCORING RUBRIC (1-5 SCALE)

• 5 - Perfect Replication: Perfect match across all three pillars. Feels like a natural, alterna-
tive expression from the same user.

• 4 - High Fidelity: Opinion and Logic/Factual pillars are perfectly matched. Only minor,
subtle differences in Style.

• 3 - Core Alignment, Detail Loss: Core opinion is consistent, but noticeable loss of detail
in Logic or Style pillars.

• 2 - Partial Relevance, Major Deviation: Major failure in at least one of the three pillars.
• 1 - Irrelevant or Contradictory: Almost nothing in common with the Ground Truth or

expresses contradictory opinion.

E.4.4 ADDITIONAL HUMAN GUIDANCE

• First identify the core opinion/stance in the ground truth reply
• Check if the generated reply maintains the same logical flow and reasoning
• Evaluate stylistic elements: word choice, sentence length, formality, emotional tone
• Consider the reply as a whole - would it serve as an acceptable substitute?
• Be objective and consistent across all annotations

E.4.5 ANNOTATION METHOD

Please fill in your score (1, 2, 3, 4, or 5) in the human score field.

E.5 GENERAL GUIDELINES AND NOTES

E.5.1 QUALITY ASSURANCE

• Read all conversation history carefully to understand the user’s communication patterns
• Maintain objectivity and consistency throughout the annotation process
• Avoid letting personal preferences influence your judgment
• Each data sample should be annotated independently
• When facing difficult decisions, choose the relatively best option
• Double-check for missing annotations or format errors after completion

E.5.2 LANGUAGE CONSIDERATIONS

• All content is in Chinese - analyze within the Chinese language context
• Pay attention to Chinese-specific expressions, internet slang, and cultural references
• Consider Chinese punctuation and writing conventions
• Understand the social media context and communication norms
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F USE OF LARGE LANGUAGE MODELS

F.1 SCOPE OF USE

LLMs assisted with (i) prompt drafting and refinement, (ii) minor code refactoring suggestions, (iii)
generating synthetic evaluation items (e.g., distractor options and candidate responses), and (iv) light
copy-editing of non-technical prose. LLMs did not originate novel claims, conduct final analyses,
or decide conclusions; all substantive results are author-verified.

F.2 MODELS AND ACCESS

We used the following LLMs via API/local inference: GPT-5-Chat (OpenAI), Claude-Sonnet-4
(Anthropic), DeepSeek-V3 (DeepSeek), GPT-4o-mini (OpenAI), GPT-3.5-Turbo (OpenAI), GPT-
OSS-20B (Open-source community), Qwen2.5-14B (Alibaba / Qwen Team). Access window:
06/2025–09/2025.

F.3 HUMAN OVERSIGHT

All LLM outputs were screened by the authors; items entering quantitative evaluation were validated
via deterministic scripts or double review.

F.4 REPRODUCIBILITY

We include the full evaluation prompts and protocols, the 1–5 scoring rubric, the textual recipes for
constructing multiple-choice questions, the data filtering thresholds per dimension, dataset sizes/s-
tatistics, and the evaluation equations and metrics. These disclosures are sufficient to re-implement
our evaluation.

F.5 DATA PRIVACY AND SAFETY

Only public data were processed; no PII or sensitive user data were sent to third-party services. We
complied with provider Terms of Service and applied toxicity/safety filters where applicable.

F.6 LIMITATIONS

LLM outputs may reflect training-data biases or hallucinations. We mitigated these via rule-based
validators and manual review; residual errors may remain.
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