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Abstract

Precipitation nowcasting is a critical spatio-temporal prediction task for society to prevent
severe damage owing to extreme weather events. Despite the advances in this field, the
underlying complex and stochastic nature of this task still poses challenges to previous
approaches. Specifically, deterministic models produce blurry predictions while generative
models suffer from poor accuracy. In this paper, we present a simple yet effective model
architecture termed STLDM, which learns the latent representation from end to end along-
side both the Variational Autoencoder and the conditioning network. Experimental results
across multiple radar datasets demonstrate that the proposed STLDM is more effective and
superior to the state of the art.

1 Introduction

Precipitation nowcasting is a short-term prediction task for precipitation events over a specific region, based
on weather data such as radar and satellite observations. An accurate and timely nowcasting is crucial to
society, such that we could take preventive actions to mitigate potential economic loss and other adverse
impacts due to extreme weather. Traditionally, meteorologists utilized algorithmic methods such as optical-
flow methods (Pulkkinen et al., 2019) and the guidance from numerical weather prediction (NWP) models
on this nowcasting task.
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Figure 1: This demonstrates that deterministic models
result in blurry predictions while generative models
suffer from the issue of inaccurate predictions. Our
proposed STLDM is capable of forecasting accurate
predictions while maintaining a nice appearance.

With the emergence of deep learning, data-driven
models have been extensively explored on the task
of modeling the spatio-temporal patterns of precip-
itation events. Despite the lack of interpretabil-
ity, these deep learning approaches often outper-
form traditional methods in terms of accuracy and
efficiency. These deep learning approaches can be
broadly categorized into two main research cate-
gories: video prediction (Shi et al., 2015; 2017;
Gao et al., 2022b), which models the 4D spatio-
temporal trend with a ground truth observation
for performance evaluation; and video generation
(Zhang et al., 2023; Leinonen et al., 2023; Gao et al.,
2023), which adopts generative models to synthesize
the target data distributions with less consideration
to the alignment to the ground truth and more em-
phasis on the visual fidelity.

Recent works highlight the challenges posed by the
stochastic nature of precipitation nowcasting due to
the inherent unpredictability of open systems. De-
terministic models, in particular, tend to capture
the global motion trend well with the missing of details at the micro-level, resulting in blurry predictions
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over longer lead times. This leads to the difficulty in practical forecasting operations (Ravuri et al., 2021).
On the other hand, generative models are capable of modeling micro-level weather phenomena through the
objective of simulating the data distribution, which tolerates the nature of stochasticity, thereby producing
realistic and sharp forecasts (Zhang et al., 2023; Leinonen et al., 2023; Gao et al., 2023). However, they
often suffer from low accuracy in predicting large-scale weather events. In summary, both these approaches
could only achieve either high accuracy (deterministic models) or high visual quality (generative models) as
shown in Figure 1.

In this paper, we first re-formulate the precipitation nowcasting task into two subtasks in order: Forecasting
and Enhancement based on the observations above. First, a Translator with the same architecture as
deterministic models is implemented to accomplish the forecasting task, ie, roughly forecast the upcoming
precipitation events, Y . The objective here is to obtain an approximate global motion trend of the future.
Then, a diffusion model is used to fine-grain the first estimation by the Translator, Y , by introducing it as
the conditional variable such that the global motion trend of generated samples is constrained well. In order
to achieve a faster sampling speed, we mitigate this sampling process to the latent space.

Therefore, we propose and present a novel and simple Spatio-Temporal Latent Diffusion Model – STLDM
for these re-formulated objectives, thereby effectively handling the stochasticity in precipitation nowcasting.
STLDM consists of three modules: a Variational AutoEncoder, a Translator (aka Conditioning Network),
and a Latent Denoising Network. Besides that, we train STLDM in a manner from end to end to further
encourage the incorporation among all modules. The experimental results show that STLDM is capable of
achieving the state-of-the-art performance on both pixel accuracy and visual fidelity, outperforming most
diffusion-based models. The contributions of this work are summarized as follows:

• We re-formulate the precipitation nowcasting task into: Forecasting and Enhancement in sequence.
Based on this, we propose STLDM, a simple yet efficient model utilizing the Latent Diffusion Model.

• To the best of our knowledge, this is the first work that trains a Latent Denoising Network alongside
a Variational AutoEncoder and a Conditioning Network in the precipitation nowcasting task.

• Our STLDM achieves state-of-the-art performance on multiple real-life radar echo datasets across
most evaluation metrics while offering faster sampling speeds compared to other diffusion-based
models.

2 Related Works

2.1 Precipitation Nowcasting as a Spatio-Temporal Task

Precipitation nowcasting is commonly interpreted as a spatio-temporal predictive task to predict the next
N output frames, Ŷ1:N , given M input frames, X1:M . It is formulated as:

arg max
Ŷ1,...,ŶN

p(Ŷ1, ..., ŶN | X1, ..., XM ) (1)

Based on this formulation, various deep learning models that consider spatio-temporal features have been
proposed. ConvLSTM (Shi et al., 2015), which integrates convolution layers into LSTM cells in an encoder-
forecaster architecture, is the first method proposed for this task. Later, PredRNN (Wang et al., 2017)
introduced a novel structure, the ST-LSTM unit, to extract spatio-temporal features and model future
frames in a zigzag memory flow. Building on this foundation, several modifications have been proposed,
including Memory In Memory (MIM) (Wang et al., 2019), the gradient highway (Wang et al., 2018), and
reversed scheduled sampling (Wang et al., 2023).

Following the success of Transformers and their attention mechanisms in natural language processing (NLP)
tasks (Vaswani et al., 2017) and vision processing tasks (Dosovitskiy et al., 2021), several Transformer-based
models have been deployed to capture the long-term spatio-temporal features of this nowcasting task. For
instance, Cuboid attention in Earthformer (Gao et al., 2022b) and Feature Extraction Balance Module in
Rainformer (Bai et al., 2022) are proposed to extract and model both the global and local rainfall features.
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In parallel, recent works have also explored CNN-based models for this spatio-temporal modeling task, like
SimVP (Gao et al., 2022a) and TAU (Tan et al., 2023a). Both works adopt a U-Net-like structure, ie.
Encoder-Translator-Decoder with Spatial Encoder and Decoder. SimVP and TAU introduced Inception
modules and Temporal Attention Unit as translators, respectively, to learn the temporal evolution. These
works are primarily composed of convolution operations, demonstrating their efficiency and remarkable
performance.

However, neither of these works can produce sharp predictions for long lead times due to the stochastic nature
of this task. To address this issue, several loss functions were proposed as alternatives to the conventional L2
loss, such as SSL (Chen et al., 2020) and FACL (Yan et al., 2024). Meanwhile, probabilistic models have been
employed to capture the spatio-temporal features by estimating the conditional distribution of the future
frames to have ensemble predictions with high visual fidelity, such as GANs (Ravuri et al., 2021; Chang
et al., 2022; Zhang et al., 2023) and variational autoencoders (VAEs) (Denton & Fergus, 2018; Franceschi
et al., 2020). However, these models are often criticized for their training instability and potential for mode
collapse.

2.2 Diffusion-based Models

Diffusion models (DMs) (Ho et al., 2020) have demonstrated high visual fidelity in image generation (Saharia
et al., 2022; Ramesh et al., 2022) and video generation (Ho et al., 2022; Yang et al., 2023; Voleti et al., 2022),
and are now being deployed to precipitation nowcasting. Unlike GANs, DMs are optimized with a likelihood
objective (Kingma & Gao, 2023) which do not suffer from mode collapse. However, they are computationally
expensive and have longer inference times. Several techniques have been proposed to accelerate the sampling
process, such as DDIM (Song et al., 2021) and progressive distillation (Salimans & Ho, 2022).

Besides that, applying the denoising process in the latent space, Latent Diffusion Model (LDM) is also a
panacea to the issue of heavy computational resources. LSGM (Vahdat et al., 2021), the first LDM with
an end-to-end training scheme for both VAE and LDM, demonstrated prominent performance in image
generation tasks and provided a solid theoretical analysis. Later, follow-up works (Rombach et al., 2022) de-
composed this framework into a two-stage process: pre-training a VAE followed by training LDM, showcasing
its effectiveness in conditional generation tasks with lower computational demands. Almost all LDM-related
works in precipitation nowcasting have adopted this two-stage training framework.

LDCast (Leinonen et al., 2023) employs AFNO blocks in a conditional LDM to predict the evolution of radar
echo movement via the denoising process. Similarly, PreDiff (Gao et al., 2023) incorporates prior knowledge
through a knowledge-control network to ensure the outputs align with prior knowledge and replaces the
U-Net-style architecture in the latent space with Earthformer to capture complex spatio-temporal features.

Although these diffusion-based models could produce predictions with high visual quality, they often suffer
from the issue of low accuracy. To address this, recent works have attempted to achieve both high visual
quality and high accuracy via the cooperation between deterministic models and DMs. DiffCast (Yu et al.,
2024) treats this nowcasting task as a combination of trend prediction (handled by deterministic models)
and local stochastic (handled by DMs); while CasCast (Gong et al., 2024) introduces a cascaded modeling
approach that combines deterministic models with Casformer.

In summary, DiffCast runs the denoising process in the pixel space, which leads to a longer inference time.
Conversely, DMs in LDCast, PreDiff, and CasCast are deployed in the latent space with a pre-trained VAE.
This approach is proven to be computationally efficient, but the independence to train every module limits
the model’s generative capability, as every module is trained with the corresponding objectives. It may be
possible to improve the model performance via training all components from end to end.

3 Methodology

In this section, we first demonstrate the background of diffusion models. Then, we revisit and reformulate
the objective of the precipitation nowcasting task. Lastly, we propose and present a Spatio-Temporal Latent
Diffusion Model – STLDM in detail, including its training loss function and each component in STLDM.
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3.1 Preliminary

3.1.1 Diffusion Models

Diffusion Models (DMs) (Ho et al., 2020) learn the data distribution, p(x), by modeling the reverse diffusion
process from Gaussian noise, xT , using corrupted samples, xt, with their corresponding diffusion step, t.
The forward diffusion process, which gradually adds noise from t = 1 to t = T , is defined as:

q(xt+1|xt) = N (xt;
√

1− βtx
t, βtI), (2)

where βt ∈ (0, 1) increases monotonically over t.

The reverse diffusion process iteratively removes noise, starting from pure Gaussian noise, xT , is formulated:

pθ(xt−1|xt) = N (xt−1; µθ(xt, t), σ2
t I), (3)

with the parameterized posterior mean function, µθ is defined as:

µθ(xt, t) = 1
√

αt
(xt − βt√

1− ᾱt
ϵθ(xt, t)), (4)

where αt = 1 − βt, ᾱt =
∏t

s=1 αs and ϵθ(xt, t) is a trainable denoising function that estimates the noise at
the diffusion step, t. The network parameters, θ are optimized by minimizing the diffusion loss, Ldiffusion as
formulated as:

Ldiffusion = γ(t)||ϵ− ϵθ(
√

ᾱtx
0 +
√

1− ᾱtϵ, t)||2, (5)
where γ(t) is the weighting function.

3.1.2 Classifier-Free Guidance

To balance the trade-off between sample quality and diversity during generation, guidance is introduced
during sampling to ensure that the generated sample is constrained with the given conditional variables, c.
Inspired by GANs, Classifier Guidance (Dhariwal & Nichol, 2021) is initially implemented by incorporating
the gradient of a trained classifier into the diffusion score during sampling.

Later, Classifier-Free Guidance (CFG) (Ho & Salimans, 2022) was proposed as an alternative without an ex-
ternal classifier. Instead, an "implicit classifier" is achieved by jointly training a conditional and unconditional
diffusion model. CFG is achieved by modifying the diffusion score, ϵ̃(xt, c) during sampling as:

ϵ̃(xt, c) = ϵ(xt, c)− w(ϵ(xt, ϕ)− ϵ(xt, c)), (6)

where w refers to the guidance strength, and the null sign ϕ indicates the unconditional case.

3.2 Proposed Approach and Details

In this part, we first reformulate the Precipitation Nowcasting task stated in Equation 1 and derive the
corresponding loss function for the proposed STLDM. Later, we describe each component in the proposed
STLDM.

3.2.1 Task Reformulation

With introducing the intermediate variables, Y 1:N , the form of the conditional probability, p(Ŷ1:N |X1:M ) in
Equation 1 could be rewritten in:

p(Ŷ1:N |X1:M ) =
∫

p(Y 1:N |X1:M )p(Ŷ1:N |Y 1:N , X1:M )dY 1:N , (7)

where Ŷ1:N and Y 1:N represent the decoded radar frames of both the predictions from the Latent Denoising
Network and Translator, respectively, with the given input radar frames, X1:M . The details can be found in
Appendix B.
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The first term in Equation 7 indicates the Forecasting task of the first estimation, Y 1:N with the given input
radar frames, X1:M ; while the second term represents the Visual Enhancement task conditioned on both
the first estimation, Y 1:N and input radar frames, X1:M . This motivates us to reformulate the precipitation
nowcasting task into two different sub-tasks in sequence: Forecasting and Enhancement.

3.2.2 Derivation of Loss Function
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Figure 2: Top: Model architecture of the proposed STLDM, consisting of a Variational Autoencoder
({E ,D}), a Conditioning Network (aka Translator) Ψθ, and a Spatio-Temporal Latent Denoising Network
Dθ. The input radar frames are denoted as X1:M ; while the decoded of both the final prediction after denois-
ing from pure Gaussian Noise, zT

1:N , and the first estimation, z̄1:N are denoted as Ŷ1:N and Y 1:N respectively.
Bottom: The structure of Dθ and every sub-modules included inside it. "L-Spatial Attention" stands for
Linearized Spatial Attention.

Here, we derive the corresponding loss function of the proposed Spatio-Temporal Latent Diffusion Model
(STLDM) as shown in Figure 2. Briefly speaking, the input radar frames, X1:M is first encoded by Spatial
Encoder, E , then Translator, Ψθ does the first estimation, Y 1:N and the Latent Denoising Network, Dθ

further enhance its visual quality and obtain the final prediction, Ŷ1:N .

We start with the conditional hierarchical VAE loss function over L variational layers (Vahdat & Kautz,
2020):

LELBO = Eq(z|x)[− log p(x|z)] + DKL(q(z1|x)||p(z1)) +
L∑

l=2
DKL(q(zl|x, z<l)||p(zl|z<l)), (8)

We interpret our proposed STLDM as a 3-Layer VAE and derive its corresponding loss function, LELBO by
doing the following substitutions: z1 ← zx, z2 ← z̄1:N , z3 ← zT

1:N and z4 ← z1:N , where zx is the latent
representation of the radar frames and zT

1:N is the pure Gaussian Noise with mean of 0 and standard deviation
of 1.
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LELBO = Eq(zx|x)[− log p(x|zx)] (A)
+ DKL(q(zx|x)||p(zx)) (B)
+ DKL(q(z̄1:N |x, zx)||p(z̄1:N |zx)) (C)
+ DKL(q(zT

1:N |x, zx, z̄1:N )||p(zT
1:N |zx, z̄1:N )) (D)

+ DKL(q(z1:N |x, zx, z̄1:N , zT
1:N )||p(z1:N |zx, z̄1:N , zT

1:N )) (E)

Term A corresponds to a typical reconstruction loss term, LMSE, to minimize the difference between the
reconstructed radar frames and the ground truth. As mentioned above, the global motion of the prediction
from the deterministic model has a good alignment with the ground truth. Therefore, to enable the final
prediction, Ŷ1:N has the same global motion alignment, we propose a constraint loss term, LC for regulating
the first estimation, z̄1:N which also acts as the conditioning vector on the denoising network, Dθ. Hence,
this loss term consists of two terms: a typical Mean Squared Error loss for VAE and a constraint loss term
on Translator (aka Conditioning Network), Ψθ.

Eq(zx|x)[− log p(x|zx)] = ||X1:M+N − X̂1:M+N ||2︸ ︷︷ ︸
LMSE

+ ||Y1:N − Y 1:N ||2︸ ︷︷ ︸
LC

, (9)

where X1:M+N is the concatenation of both the input radar frames and the ground truth, and Y1:N is the
ground truth itself, while any notations withˆmean the prediction from STLDM.

Term B represents a regular KL-divergence loss term for constraining the distribution of the encoded latent
representation by the encoder E , N (µθ, σθ) is similar to the Standard Gaussian distribution, N (0, 1):

DKL(q(zx|x)||p(zx)) = DKL(N (µθ, σθ)||N (0, 1)) = 1
2[σ2

θ + µ2
θ − 1− log σθ], (10)

while Term C is also a KL-divergence loss term for restricting the distribution of the first estimated latent
representation, N (z̄1:N , σ̄1:N ) has a similar pattern as a Standard Gaussian distribution, N (0, 1):

DKL(q(z̄1:N |x, zx)||p(z̄1:N |zx)) = DKL(N (z̄1:N , σ̄1:N )||N (0, 1)) = 1
2[σ̄2

1:N + z̄2
1:N − 1− log σ̄1:N ], (11)

The loss term presented in Term D is represented as a Prior Loss that ensures the disrupted latent represen-
tation, zT

1:N , through Equation 2. In both the formulation of DDPM and LDM with pre-trained VAE, this
loss term would be dropped as it is irrelevant to the denoising network itself. However, this matters for our
proposed STLDM with the end-to-end tuning framework, and it is defined as:

DKL(q(zT
1:N |x, zx, z̄1:N )||p(zT

1:N |zx, z̄1:N )) = DKL(N (
√

ᾱT z1:N , (1− ᾱT ))||N (0, 1)), (12)

where z1:N is the encoded latent representation of the ground truth radar frames, Y1:N .

Following the previous work (Kingma & Gao, 2023), the last loss terms stated in Equation 5 could be further
defined and expressed as a general diffusion loss function for the latent denoising network:

DKL(q(z1:N |x, zx, z̄1:N , zT
1:N )||p(z1:N |zx, z̄1:N , zT

1:N )) = γ(t)||ϵ− ϵθ(
√

ᾱtz1:N +
√

1− ᾱtϵ, t)||2 (13)

In summary, the derived loss function for our proposed STLDM consists of VAE reconstruction loss, KL-
divergence regularization loss, Conditioning regularization loss, Prior loss, and a diffusion loss.

3.2.3 Components of STLDM

Our proposed Spatio-Temporal Latent Diffusion Model (STLDM) consists of three main components: a
Variational AutoEncoder {E ,D}, a conditioning network (aka Translator) Ψθ and a latent denoising network
Dθ. Its details are illustrated in Figure 2. Further, the model performance is improved with the technique
of CFG. Since CFG involves both the conditional case (c = z̄1:N ) and the unconditional case (c = ϕ) during
the inference, we jointly train the latent denoising network, Dθ, on both cases with the provided algorithm
in (Ho & Salimans, 2022).
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Variational AutoEncoder, {E ,D} learns the spatial mapping between the radar image, Xt and its
corresponding latent variables, zt. Specifically, the encoder E transforms the input radar image, Xt, from
pixel space to the latent space; while the decoder D reconstructs the predicted latent variables back from
the encoded latent space to the pixel space. We denote the encoded radar image in the latent space as
zt ∼ E(Xt) and its reconstructed radar image be X̂t ∼ D(zt).

Conditioning Network/Translator, Ψθ learns the temporal evolution from the input encoded input
frames X1:M to the target output frames Y1:N in the latent space. Following the success of SimVP-V2,
we employ its Gated Spatio-Temporal Attention (gSTA) module (Tan et al., 2023b), which relies solely on
convolution operations, as Ψθ to model the underlying relation between X1:M and Y1:N in the latent space.
We denote this prediction as a first estimation, z̄1:M , and its decoded output as the first estimation, Y 1:N .

Latent Denoising Network, Dθ is a conditional latent diffusion model that generates probabilistic
predictions with conditioning on the latent prediction by Ψθ. To effectively capture the spatio-temporal
features, we decouple the spatio-temporal attention mechanism in Dθ into spatial attention and temporal
attention modules. To optimize the computation, a linear variant of spatial attention (Katharopoulos et al.,
2020) which reduces the complexity from O(N2d) to O(Nd2) is implemented for every Downsampling and
Upsampling blocks, where N and d are the number of sequences and their projected dimension respectively.
Briefly speaking, the difference between this linearized variant and a standard attention is the operation
order among query Q, key K, and value V as shown below:

AStandard =
(

ϕ(Q)ϕ(K)
)

ϕ(V ); ALinear = ϕ(Q)
(

ϕ(K)ϕ(V )
)

, (14)

This proposed STLDM is trained from end to end with the objective mentioned in Section 3.2.2.

4 Experiments

4.1 Experimental Settings

We evaluate the performance and effectiveness of our proposed STLDM with several deterministic models
serving as baselines, together with various diffusion-based models designed for precipitation nowcasting: LD-
Cast (Leinonen et al., 2023), PreDiff (Gao et al., 2023), and DiffCast (Yu et al., 2024), on three real-life
radar datasets: SEVIR (Veillette et al., 2020), HKO-7 (Shi et al., 2015), MeteoNet (Larvor et al., 2020). To
alleviate the computation cost, we downscale the spatial size of data to 128 × 128 while without changing
their temporal dimension.

4.1.1 Dataset

SEVIR (Veillette et al., 2020) is a curated and spatial-temporally aligned dataset that captures the
weather events consisting of five different modalities in the US from 2017 to 2019. Each weather event
consists of an image sequence spanning four hours with a time interval of 5 minutes, covering the region with
the geographical size of 384km×384km in the US. The data range of the frames is set to [0−255]. Following
previous work (Gao et al., 2022b), we specifically select the Vertically Integrated Liquid (VIL) channel and
formulate the task to predict the next 12 frames (60 minutes) with the given 13 frames (65 minutes). We
span the data collected from June to December 2019 as the test set, while the remaining as the training set.

HKO-7 (Shi et al., 2015) is a meteorological dataset that contains the sequences of observed Constant
Altitude Plan Position Indicator (CAPPI) radar reflectivity at an altitude of 2km, covering the region with
a radius of 256km centered at Hong Kong. The data are collected from 2009 to 2015 with a time interval
of 6 minutes. The data range of the frames is set to [0 − 255]. Following previous work (Yan et al., 2024),
we formulate this task as predicting the future radar echoes up to 2 hours (20 frames) based on the past 30
minutes (5 frames). We sample the collected data from 2009 to 2014 as the training set, while the rest is
allocated to the test set.
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MeteoNet (Larvor et al., 2020) is an open-source meteorological dataset that consists of both satellite and
radar observations with 5 5-minute interval in France. The data covers geographical areas: the Northwestern
and Southeast quarters of France, with the observation size of 550km× 550km from 2016 to 2018. The data
range of the frames is set to [0− 70]. Like the HKO-7 dataset, we formulate this task to forecast the next 20
frames (100 minutes) of radar echoes based on the provided 5 frames (25 minutes) of radar echoes. Following
previous work (Yu et al., 2024), we select the data specifically from Northwestern France and filter out the
noisy precipitation events. The data collected from June to December 2018 serves as the test set, while the
rest are used as the training set.

4.1.2 Evaluation

Following previous works (Gao et al., 2023; Yu et al., 2024; Yan et al., 2024), various commonly used forecast-
ing skill scores, such as Critical Success Score (CSI) and Heidke Skill Score (HSS), are reported to evaluate
the forecasting skill of the models. CSI, also known as Intersection-over-Union (IoU), measures how accurate
the model prediction is after labeling pixels of both prediction and observation into 0/1 with a specific thresh-
old. The reported CSI is computed by averaging multiple selected thresholds, ie. {16, 74, 133, 160, 181, 219}
for SEVIR, {84, 117, 140, 158, 185} for HKO-7 and {12, 18, 24, 32} for MeteoNet. With the toleration of
spatial deviation, averaged CSIs with the pool sizes of 4 and 16, which correspond to medium and large
spatial tolerance, are measured as well. Besides that, HSS is a skill score that assesses the model’s ability to
predict multiple precipitation events after considering the actual distribution of corresponding thresholds as
mentioned above.

Besides that, we also report two perceptual-related metrics: Structural Similarity Index Measure (SSIM) and
Learned Perceptual Image Patch Similarity (LPIPS). SSIM is to evaluate the model’s prediction in terms of
scores in pixel-wise image structure; while LPIPS is to assess the visual quality of predictions by measuring
the distance between each pair of prediction and observation encoded by a pre-trained model.

To judge the model efficiency during the inference, we report their prediction time per sample, Tsample, on
a single RTX3090 GPU. We further report the required sampling steps (aka denoising steps), N for those
diffusion-based models, specifically LDCast, PreDiff, DiffCast, and STLDM.

4.2 Compared to the State-of-the-Art

To verify the performance of our STLDM, we report three diffusion-based probabilistic models: LD-
Cast (Leinonen et al., 2023), PreDiff (Gao et al., 2023), and DiffCast (Yu et al., 2024) as baselines. Both
LDCast and PreDiff run the diffusion process in the latent space, while DiffCast is composed of a deter-
ministic model and a diffusion model running in the pixel space. The performance of these probabilistic
models, including STLDM, is evaluated among 10 ensemble predictions. Additionally, various determinis-
tic models: ConvLSTM (Shi et al., 2015), PredRNN (Wang et al., 2017), SimVP (Gao et al., 2022a) and
Earthformer (Gao et al., 2022b) are reported here as reference.

In Table 1, it is noted that STLDM is capable of achieving the best performance for most evaluation metrics,
especially in the HKO-7 dataset. Our STLDM always achieves the best performance in terms of LPIPS,
which is a deep-learning-based perceptual metric. This is supported by the visualization shown in Figure 3
that STLDM has the prediction that is the most similar to the ground truth perceptually. However, STLDM
could not consistently have the best performance in all metrics across both the MeteoNet and SEVIR
datasets, such as SSIM and CSI. Detailed visualizations on different datasets are shown in Figure 11, 12
and 13 respectively.

Since we adopted the latent-diffusion design as well as the model architecture, STLDM does not require a
large number of sampling steps, enabling it to be 10X faster than DiffCast on the SEVIR dataset and 40X
faster than DiffCast on both the HKO-7 and MeteoNet datasets. Note that for models like DiffCast, the
inference time scales exponentially with the image resolution. Hence, this efficiency gap between DiffCast
and STLDM will be even larger for data with higher resolution. Besides that, we also observed that those
latent-diffusion related works: LDCast, PreDiff, and our STLDM have a consistent sampling time across
different benchmarks, and STLDM is still the most efficient among them.
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Table 1: Performance comparison on multiple precipitation nowcasting benchmarks: SEVIR, HKO-7, and
MeteoNet. The best score among all models is highlighted in bold, while the best score among the prob-
abilistic models, including ours, is underlined. The inference time, T , on a single RTX3090 GPU and the
sampling steps, N , of those diffusion models are reported as well.

Dataset Model Metrics
Tsample NSSIM↑ LPIPS↓ CSI-m↑ CSI4-m↑ CSI16-m↑ HSS↑

SE
V

IR

ConvLSTM 0.7216 0.3025 0.3458 0.3411 0.3607 0.4467 0.03 -
PredRNN 0.7238 0.2708 0.3553 0.3702 0.4153 0.4621 0.15 -
SimVP 0.7209 0.2793 0.3788 0.3803 0.4160 0.4920 0.01 -
Earthformer 0.7102 0.3254 0.3556 0.3533 0.3838 0.4611 0.02 -
LDCast 0.5772 0.2906 0.2193 0.2898 0.4598 0.2995 4.26 50
PreDiff 0.6279 0.2217 0.3276 0.4271 0.6096 0.4498 73.09 1000
DiffCast 0.6979 0.1948 0.3580 0.4555 0.6281 0.4751 5.20 250
STLDM 0.7183 0.1929 0.3804 0.4662 0.6178 0.5024 0.51 20

H
K

O
-7

ConvLSTM 0.5987 0.3184 0.2905 0.2628 0.2774 0.4076 0.03 -
PredRNN 0.5785 0.3131 0.2857 0.2872 0.3263 0.4026 0.15 -
SimVP 0.6039 0.3596 0.3020 0.2852 0.3115 0.4236 0.02 -
Earthformer 0.5864 0.3373 0.2817 0.2532 0.2704 0.3939 0.02 -
LDCast 0.6003 0.2322 0.2145 0.3122 0.5345 0.3165 4.75 50
PreDiff 0.5922 0.2391 0.2799 0.3787 0.5081 0.3973 70.80 1000
DiffCast 0.6198 0.1949 0.3013 0.4084 0.6084 0.4240 20.50 250
STLDM 0.6433 0.1943 0.3191 0.4413 0.6511 0.4447 0.55 20

M
et

eo
N

et

ConvLSTM 0.7938 0.2203 0.3619 0.3687 0.4130 0.5056 0.02 -
PredRNN 0.8158 0.1419 0.3455 0.4904 0.5837 0.4810 0.16 -
SimVP 0.8134 0.1734 0.3858 0.4467 0.5746 0.5358 0.02 -
Earthformer 0.7806 0.2739 0.3401 0.3244 0.3488 0.4786 0.02 -
LDCast 0.7654 0.1691 0.2620 0.3658 0.5685 0.3904 4.76 50
PreDiff 0.7059 0.1543 0.2657 0.3854 0.5692 0.3782 70.80 1000
DiffCast 0.8167 0.1280 0.3831 0.4771 0.6335 0.5328 21.30 250
STLDM 0.8053 0.1275 0.3748 0.4921 0.6575 0.5233 0.51 20

4.3 Analysis and Ablation Study

To understand which component has the largest impact on STLDM’s performance, we conducted several
ablation studies, including the significance of the proposed loss term, LC , and different training strategies on
every component of STLDM. Furthermore, we explore another possibility to treat the visual enhancement
for every frame independently, rather than our current setting – Spatio-Temporal Visual Enhancement Task.
Same as the evaluation settings above, all ablation studies are conducted here with ten ensemble predictions.

4.3.1 Significance of Proposed Constraint Loss Term, LC

Table 2: Ablation study of the impact of LC on the performace of STLDM with the SEVIR dataset. A
better score is highlighted in bold.

Existence of LC
Metrics

SSIM↑ LPIPS↓ CSI-m↑ CSI4-m↑ CSI16-m↑ HSS↑
✗ 0.7244 0.2046 0.3569 0.4533 0.6030 0.4659
✓ 0.7183 0.1929 0.3804 0.4662 0.6178 0.5024

As mentioned in Section 3.2.2, LC is to constrain the final prediction, Ŷ1:N , such that it has the global motion
trend same as the first estimation, Ȳ1:N . With the absence of LC , the conditioning network, Ψθ, is trained
with KL-divergence in Term C and diffusion loss in Term E. Both these loss terms implicitly constrain the
prediction of Ψθ, resulting in the latent denoising network, Dθ, incapable of predicting the precipitation
events accurately.
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Figure 3: A set of sample predictions on the SEVIR test set. From top to bottom: Input, Ground truth,
SimVP, PreDiff, DiffCast, and STLDM. The red region of the last prediction frame is zoomed in for a clearer
comparison.

The claim above is verified with the comparison of the model performance with and without LC reported
in Table 2. From Table 2, these two cases have similar performance in terms of both SSIM and LPIPS,
corresponding to the visual assessment of prediction. The existence of LC during training improves all
forecasting skill scores: both CSI and HSS remarkably. This observation is validated by Figure 8 that
there is always over-prediction in the case that without the proposed constraint loss term, LC during the
training. This indicates that LC plays a crucial role in improving STLDM’s accuracy via constraining the
first estimation of Ψθ.

Consequently, explicitly constraining the conditioning network, Ψθ, with the proposed constraint loss, LC ,
generally improves the performance of STLDM as it ensures the correctness of its prediction.

4.3.2 Different Training Strategies

In this part, we investigate the impact of different training strategies on the performance of STLDM. Specif-
ically, other than our current end to end tuning strategy (Strategy C), we also report two more training
strategies that: Train every components individually (Strategy A), and Train the Latent Denoising Net-
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Table 3: Ablation study on different training strategies: Which model components are trained along with
the denoising network on the SEVIR dataset. A better score is highlighted in bold.

Strategy Components Trained Together Metrics
{E ,D} Ψθ Dθ SSIM↑ LPIPS↓ CSI-m↑ CSI4-m↑ CSI16-m↑ HSS↑

A ✗ ✗ ✓ 0.7086 0.2121 0.3809 0.4676 0.6209 0.5028
B ✗ ✓ ✓ 0.7173 0.1955 0.3822 0.4680 0.6209 0.5043
C ✓ ✓ ✓ 0.7183 0.1929 0.3804 0.4662 0.6178 0.5024
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Figure 4: Validation MSE and LPIPS of different training strategies of STLDM during the training process.

work, Dθ along with the Conditioning Network, Ψθ without further tuning on the pre-trained Variational
Autoencoder (Strategy B) here.

These two approaches share a common feature: they do not require further tuning of pre-trained VAE during
the training of the denoising network, Dθ, resulting in a lower GPU memory demand for model training.
Hence, these strategies are widely implemented due to their training efficiency. Additionally, having a pre-
trained Conditioning Network further reduces the demand for GPU memory and also benefits from a broader
pre-training dataset, leading to better generalization.

From Table 3, we observed that these three approaches have similar performance in all forecasting skill scores,
with the case that Strategy B: Tuning denoising network, Dθ, along with the Conditioning Network, Ψθ,
has a slightly better performance. Furthermore, it is noted that our current training strategy, ie. Strategy
C: End-to-End Tuning yields the best performance in terms of perceptual metrics: SSIM and LPIPS, while
Strategy A: Tuning every component individually has the worst performance in those metrics.

Moreover, we study the training convergence of these approaches with the validation MSE and LPIPS
reported in Figure 9. From the plots in Figure 9, Strategy A with both pre-trained VAE and Ψθ has the
fastest convergence speed but fails to achieve those low metrics as the other approaches could. Our current
training setting, ie. Strategy C has a slightly better validation performance than Strategy B after the
training. This reveals that the collaboration among all components in STLDM is important in resulting
in better model performance, especially the cooperation between the Conditioning Network, Ψθ, and the
Latent Denoising Network, Dθ.

4.3.3 Can We Enhance Every Frames Independently?
Table 4: Ablation study on different kinds of visual enhancement tasks on the HKO-7 dataset. A better
score is highlighted in bold.

Types of Enhancement LPIPS↓ FVD↓ Tsample
Spatial 0.1878 241.17 0.4157

Spatio-Temporal 0.1943 87.14 0.5533
As mentioned in Section 3.2.1, we reformulate this nowcasting task as two sub-tasks: Forecasting and
Enhancement in sequence. In our current setting, we treat this visual enhancement task as a spatio-temporal

11



Under review as submission to TMLR

Gr
ou

nd
 Tr

ut
h

Sp
at

ia
l

t + 1

Sp
at

io
-Te

m
po

ra
l

t + 2 t + 3 t + 4 t + 5 t + 1 t + 2 t + 3 t + 4 t + 5

Figure 5: A set of sample predictions from STLDM with two different kinds of enhancement: Spatial and
Spatio-Temporal on the HKO-7 test set. The red region of the first five frames is zoomed in for a clearer
comparison.

enhancement task with a Spatial Temporal Latent Denoising Network, Dθ. Here, we explore another possible
interpretation as a spatial enhancement task by removing all Temporal Attention in Dθ. By treating every
frame independently, this approach provides a faster inference speed, thereby resulting in a shorter inference
time.

Other than the required inference time, Tsample on a single RTX3090 GPU, we report two metrics:
LPIPS (Zhang et al., 2018) and FVD (Unterthiner et al., 2019) for assessing the perceptual scores in spatial
and spatio-temporal, respectively, on the HKO-7 dataset in Table 4 as well. From Table 4, we observe
that treating this visual enhancement task frame-wisely enables a slightly better LPIPS score and a shorter
required inference time, Tsample. Our current STLDM treating this enhancement as a spatio-temporal en-
hancement task is capable of achieving a comparable score as the frame-wise setting, while with a better
FVD score, which considers temporal consistency as well. This is further been verified with the observations
on Figure 5 and 10 that the motion of the cloud in red bounded boxes in the settings of Spatial Visual
Enhancement task has a drastic change, resulting in the temporal inconsistency; while our current setting
and the ground truth share a similar cloud movement, ie. steady and slow. Therefore, it is crucial to treat
this visual enhancement task as a spatiotemporal enhancement to achieve a better temporal consistency.

5 Conclusion and Future Work

In this work, we propose a Spatio-Temporal Latent Diffusion Model, STLDM, which is a simple model
for precipitation nowcasting, based on the idea of reformulating this task into two sub-tasks in sequence:
Forecasting and Enhancement. STLDM is composed of three modules: a Variational AutoEncoder, a Condi-
tioning Network/Translator, and a Latent Denoising Network. Extensive experimental results demonstrate
that our proposed method outperforms existing techniques across multiple radar datasets, validating its
effectiveness. Besides that, we argue that introducing conditional regularization on the Translator during
training generally improves the model’s performance. Moreover, we also reveal that training the Latent
Denoising Network along with other components yields a better performance compared with the individual
training scheme on each of them. Lastly, we also emphasize that the significance of interpreting the visual
enhancement task as a spatio-temporal modeling is to have a better temporal consistency.

Limitation and future work. Although STLDM itself could achieve competitive performance, however,
it fails to accurately forecast those precipitation events that previously happened outside the observation
region or are driven by some unknown factors, such as the case shown in Figure 14. A possible solution to
this is to introduce a multi-modal such that could capture those precipitation events outside the observation
window. Besides that, we still have to retrain STLDM to fit into a radar dataset in a specific region. Even
though the precipitation events happen in different regions have their specific characteristic, but there are
underlying common features shared among them. Hence, our future direction is to explore a unified and
generalized multi-modal model across multiple benchmarks.
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A Model Architecture of STLDM

In this section, we specify the details of every component of STLDM: a Variational autoencoder, a condition-
ing network, and a latent denoising network. Additionally, STLDM’s hyperparameters for both the training
and inference processes are reported in this section.

A.1 Variational AutoEncoder, {E ,D}

22/01/2025 Weekly Meeting

Channel Conversion

DownSample
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Figure 6: Illustration of the implemented encoder E , decoder D and conditioning network Ψθ.

We follow these previous works (Gao et al., 2022a; Tan et al., 2023b) to build a Variational autoencoder,
{E ,D} as shown in Figure 6 that solely relies on convolutional operations. The only change we made is the
removal of the skip connection between the encoder and the decoder. Specifically, the input radar frames at
time t, xt ∈ R1×128×128 are encoded to the corresponding latent variables, zt ∈ R32×32×32 by the encoder
while the decoder decodes the predicted latent variables back into the predicted frames.

The components inside the encoder and decoder are described here:

• Channel Conversion: 3× 3 convolution layer, Group Normalization over groups of 2 followed by
a leaky ReLU activation layer.

• Down/Upsample: Transposed convolutional operations that downsample or upsample by a spatial
factor of 2.

A.2 Conditioning Network/Translator, Ψθ

Depth-wise Convolution

Depth-wise Dilation 
Convolution

Channel-wise Convolution

× 𝜎

(𝑏, 𝑡×𝑐, ℎ, 𝑤)

(𝑏, 𝑡×𝑐, ℎ, 𝑤)

Figure 7: Gated Spatio-Temporal
Attention (gSTA) module

We stack several Gated Spatio-Temporal Attention (gSTA) modules
(Tan et al., 2023b) as the conditioning network, Ψθ, for modeling the
underlying relation between the encoded input frames and the tar-
get output frames as illustrated in Figure 6. The gSTA module is
also solely composed of convolutional operations for modeling spatio-
temporal features, imitating the spatio-temporal attention mechanism
with a large kernel convolution. Every gSTA module consists of
a depth-wise convolution, a depth-wise dilation convolution, and a
channel-wise convolution as illustrated in Figure 7.

For constraining the conditional vector on thw Latent Denoising Net-
work (a.k.a the prediction from Ψθ), we regularize the decoded predic-
tion from Ψθ, Y 1:N with the ground truth as stated in the loss term,
LC included in Equation 9.

A.3 Latent Denoising Network, Dθ

The architecture of the latent denoising network, Dθ, included in our proposed STLDM is shown in Figure 2.
In this section, we elaborate on different components inside Dθ:
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• ResBlock: It is composed of two subblocks and followed by a 1× 1 convolution for channel conver-
sion. Each subblock inside contains a 3× 3 convolution, group normalization over groups of 8, and
a SiLU activation.

• Down/Upsample: These are the convolutional operations (with a kernel size of 4, padding of 1,
and stride of 2) that downsamples or upsamples by a spatial factor of 2.

• Spatial Attention: A self-attention between each pixel in every layer after interpreting the in-
put as batches of independent frames (by shifting the temporal axis into batch dimension), ie.
[b, t, c, h, w]→ [b× t, c, h, w].

• Linearized Spatial Attention (L-Spatial): This linearized attention is a self-attention between
each pixel within a patch with patch size p. This is achieved by considering every independent patch
as an attention head as well after patching query, key, and value. Patch size, p, is halved for each
Downsampling Block while p is doubled for each Upsampling Block. The order of computing the
self-attention follows Equation 14.

• Temporal Attention: This is a self-attention between each frame in every layer along the temporal
dimension with the following reshape: [b, t, c, h, w]→ [b× h× w, c, t].

where b, t, c, h and w denote batch, time, channel, height, and width, respectively.

A.4 Hyper-Parameters of Training and Inference

We trained the models for 200k training steps in total on all benchmarks with a batch size of 4. The learning
rate is scheduled with a 2k steps warm-up period, followed by a Cosine Annealing Scheduler decaying from
the peak learning rate of 1e−4. Besides that, we set the total sampling steps of STLDM to 50.

During the inference process, we employ the DDIM technique (Song et al., 2021) of 20 sampling steps and
the Classifier-Free Guidance (Ho & Salimans, 2022) with the strength of 1.0.

B Details about Task Reformulation

In this section, we provide the details of the task reformulation process. Recall that, the objective of
this nowcasting task is to find a predicted sequences, Ŷ1:N which has the highest conditional probability,
p(Ŷ1:N |X1:M ) with the given input radar sequences, X1:M .

First, the conditional probability of both events A and B happening given that event C occurred could be
rewritten as the product of two conditional probabilities:

P (A, B|C) = P (A, B, C)
P (C) = P (A|B, C)P (B, C)

P (C) = P (A|B, C)P (B|C)

Motivated by the idea above, we introduce an intermediate variable (aka the first estimation), Y 1:N , then
we could rewrite the conditional probability of this task objective as follows:

p(Ŷ1:N |X1:M ) =
∫

p(Ŷ1:N , Y 1:N |X1:M )dY 1:N

=
∫

p(Ŷ1:N |X1:M , Y 1:N )p(Y 1:N |X1:M )dY 1:N

Hence, we introduce an additional task objective – Forecasting that constraining the first estimation, Y 1:N
to this nowcasting task:

p(Ŷ1:N , Y 1:N |X1:M ) = p(Ŷ1:N |Y 1:N , X1:M )p(Y 1:N |X1:M )
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∇θ log p(Ŷ1:N , Y 1:N |X1:M ) = ∇θ log p(Y 1:N |X1:M )︸ ︷︷ ︸
Forecasting

+∇θ log p(Ŷ1:N |Y 1:N , X1:M )︸ ︷︷ ︸
Visual Enhancement

,

where θ refers to the model parameters. The first term is obligated for the forecasting objective, while the
latter term is responsible for the visual enhancement goal.

To fulfill this, we reformulate the objective of the nowcasting task into two sequential sub-tasks: Forecasting
and Enhancement, with proposing a constraint loss, LC mentioned in Equation 9.

C More Visualizations
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Figure 8: A set of sample predictions from STLDM trained in both cases that with and without the proposed
Constraint Loss, LC as mentioned in Term A during training on the SEVIR test set.
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Figure 9: A set of sample predictions from STLDM trained with different training strategies as mentioned
in Section 4.3.2 on the SEVIR test set.
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Figure 10: A set of sample predictions from STLDM with two different kinds of visual enhancement settings:
Spatial and Spatio-Temporal, as mentioned in Section 4.3.3 on the HKO-7 test set.
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Figure 11: A set of sample predictions on the SEVIR test set. From top to bottom: Input, Ground truth,
ConvLSTM, PredRNN, SimVP, Earthformer, LDCast, PreDiff, DiffCast, and STLDM.
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Figure 12: A set of sample predictions on the HKO-7 test set. From top to bottom: Input, Ground truth,
ConvLSTM, PredRNN, SimVP, Earthformer, LDCast, PreDiff, DiffCast, and STLDM.
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Figure 13: A set of sample predictions on the MeteoNet test set. From top to bottom: Input, Ground truth,
ConvLSTM, PredRNN, SimVP, Earthformer, LDCast, DiffCast, and STLDM.
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Figure 14: A set of sample predictions that both DiffCast and STLDM failed to predict the precipitation
events spawning on the left due to the limited observation region on the HKO-7 test set.
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