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Abstract

Precipitation nowcasting is a critical spatio-temporal prediction task for society to prevent
severe damage owing to extreme weather events. Despite the advances in this field, the
complex and stochastic nature of this task still poses challenges to existing approaches.
Specifically, deterministic models tend to produce blurry predictions while generative mod-
els often struggle with poor accuracy. In this paper, we present a simple yet effective model
architecture termed STLDM, which learns the latent representation from end to end along-
side both the Variational Autoencoder and the conditioning network. Experimental results
on multiple radar datasets demonstrate that STLDM achieves superior performance com-
pared to the state of the art, while also improving inference efficiency.

1 Introduction

Precipitation nowcasting is a short-term prediction task for precipitation events over a specific region, based
on weather data such as radar and satellite observations. Accurate and timely nowcasting is crucial to
society, as it enables us to take preventive actions for mitigating potential economic loss and other adverse
impacts due to extreme weather. Traditionally, meteorologists utilized algorithmic methods such as optical-
flow methods (Pulkkinen et al., 2019) and the guidance from numerical weather prediction (NWP) models
on this nowcasting task.
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Figure 1: This demonstrates that deterministic models
result in blurry predictions while generative models
suffer from the issue of inaccurate predictions. Our
proposed STLDM is capable of forecasting accurate
predictions while maintaining a nice appearance.

With the emergence of deep learning, data-driven
models have been extensively explored for model-
ing the spatio-temporal patterns of precipitation
events. Despite their lack of interpretability, these
deep learning approaches often outperform tradi-
tional methods in terms of accuracy and efficiency.
Broadly, these approaches can be categorized into
two main research categories: video prediction (Shi
et al., 2015; 2017; Gao et al., 2022b), which models
the 4D spatio-temporal trend with a ground truth
observation for performance evaluation; and video
generation (Zhang et al., 2023; Leinonen et al., 2023;
Gao et al., 2023), which adopts generative models
to synthesize the target data distributions with less
consideration to the alignment to the ground truth
and more emphasis on the visual fidelity.

Recent works highlight the challenges posed by the
stochastic nature of precipitation nowcasting due to
the inherent unpredictability of open systems. De-
terministic models, in particular, tend to capture
the global motion trend well with the missing of de-
tails at the micro-level, resulting in blurry predictions over longer lead times. This leads to the difficulty
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in practical forecasting operations (Ravuri et al., 2021). On the other hand, generative models are capa-
ble of modeling micro-level weather phenomena through the objective of simulating the data distribution,
which tolerates the nature of stochasticity, thereby producing realistic and sharp forecasts (Zhang et al.,
2023; Leinonen et al., 2023; Gao et al., 2023). However, they often suffer from low accuracy in predicting
large-scale weather events. In summary, both these approaches could only achieve either high accuracy
(deterministic models) or high visual quality (generative models) as shown in Figure 1.

In this paper, we first re-formulate the precipitation nowcasting task into two sequential subtasks: Fore-
casting and Enhancement based on the observations above. First, a Translator with the same architecture
as deterministic models is implemented to perform the forecasting task, i.e., roughly forecast the upcoming
precipitation events, Y . The objective here is to capture the approximate global motion trend of the future.
Then, a diffusion model is used to refine the first estimation by the Translator, Y , by introducing it as the
conditional variable such that the global motion trend of generated samples is constrained well. To accelerate
the inference process, we employ this sampling process in the latent space.

Therefore, we propose and present a novel and simple Spatio-Temporal Latent Diffusion Model – STLDM
for these re-formulated objectives, effectively handling the stochasticity in precipitation nowcasting. STLDM
consists of three modules: a Variational AutoEncoder, a Translator (aka Conditioning Network), and a Latent
Denoising Network. Furthermore, we train STLDM in a manner from end to end to encourage cooperation
among all modules. The experimental results show that STLDM is capable of achieving the state-of-the-art
performance on both pixel accuracy and visual fidelity, outperforming most diffusion-based models. The
contributions of this work are summarized as follows:

• We re-formulate the precipitation nowcasting task into: Forecasting and Enhancement in sequence.
Based on this, we propose STLDM, a simple yet efficient model utilizing the Latent Diffusion Model.

• To the best of our knowledge, this is the first work that trains a Latent Denoising Network alongside
a Variational AutoEncoder and a Conditioning Network for the precipitation nowcasting task.

• Our STLDM achieves state-of-the-art performance on multiple real-life radar echo datasets across
most evaluation metrics while offering faster sampling speeds compared to other diffusion-based
models.

2 Related Works

2.1 Precipitation Nowcasting as a Spatio-Temporal Task

Precipitation nowcasting is commonly interpreted as a spatio-temporal predictive task to predict the next
N output frames, Ŷ1:N , given M input frames, X1:M . It is formulated as:

arg max
Ŷ1,...,ŶN

p(Ŷ1, ..., ŶN | X1, ..., XM ) (1)

Based on this formulation, various deep learning models that leverage spatio-temporal features have been
proposed. ConvLSTM (Shi et al., 2015), which integrates convolution layers into LSTM cells in an encoder-
forecaster architecture, is the first method proposed for this task. Later, PredRNN (Wang et al., 2017)
introduced a novel structure, the ST-LSTM unit, to extract spatio-temporal features and model future
frames in a zigzag memory flow. Building on this foundation, several modifications have been proposed,
including Memory In Memory (MIM) (Wang et al., 2019), the gradient highway (Wang et al., 2018), and
reversed scheduled sampling (Wang et al., 2023).

Following the success of Transformers and their attention mechanisms in natural language processing (NLP)
tasks (Vaswani et al., 2017) and vision processing tasks (Dosovitskiy et al., 2021), several Transformer-based
models have been deployed to capture the long-term spatio-temporal features of this nowcasting task. For
instance, Cuboid attention in Earthformer (Gao et al., 2022b) and Feature Extraction Balance Module in
Rainformer (Bai et al., 2022) are proposed to extract and model both the global and local rainfall features.
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In parallel, CNN-based models have also been explored for spatio-temporal modeling, like SimVP (Gao et al.,
2022a) and TAU (Tan et al., 2023a). Both works adopt a U-Net-like structure, i.e., Encoder-Translator-
Decoder with Spatial Encoder and Decoder. SimVP and TAU introduced Inception modules and Temporal
Attention Unit as translators, respectively, to learn the temporal evolution. These works are primarily
composed of convolution operations, achieving efficiency and remarkable performance.

However, neither of these works can produce sharp predictions for long lead times due to the stochastic nature
of this task. To address this issue, several loss functions were proposed as alternatives to the conventional
L2 loss, such as SSL (Chen et al., 2020) and FACL (Yan et al., 2024). Meanwhile, probabilistic models
have been employed to capture the spatio-temporal features by estimating the conditional distribution of
the future frames, thereby enabling ensemble predictions with high visual fidelity, such as GANs (Ravuri
et al., 2021; Chang et al., 2022; Zhang et al., 2023) and variational autoencoders (VAEs) (Denton & Fergus,
2018; Franceschi et al., 2020). However, these models are often criticized for their training instability and
potential for mode collapse.

2.2 Diffusion-based Models

Diffusion models (DMs) (Ho et al., 2020) have achieved high visual fidelity in image generation (Saharia
et al., 2022; Ramesh et al., 2022) and video generation (Ho et al., 2022; Yang et al., 2023; Voleti et al., 2022),
and are increasingly being applied in atmospheric forecasting(Price et al., 2023) and downscaling(Mardani
et al., 2023; Wan et al., 2024). Unlike GANs, DMs, which are optimized with a likelihood objective (Kingma
& Gao, 2023), do not suffer from mode collapse. However, they are computationally expensive and have
longer inference times. Several techniques have been proposed to accelerate the sampling process, such as
DDIM (Song et al., 2021) and progressive distillation (Salimans & Ho, 2022).

Applying the denoising process in the latent space, Latent Diffusion Model (LDM), also reduces the heavy
demand of computational resources. LSGM (Vahdat et al., 2021), the first LDM with an end-to-end training
scheme for both VAE and LDM, achieved state-of-the-art performance in image generation tasks and provided
a solid theoretical analysis. Later, follow-up works (Rombach et al., 2022) decomposed this framework into
a two-stage process: pre-training a VAE followed by the training of LDM, showcasing its effectiveness in
conditional generation tasks with lower computational demands.

LDCast (Leinonen et al., 2023) employs Adaptive Fourier Neural Operators (AFNOs) in a conditional LDM
to predict the evolution of radar echo via the denoising process. Similarly, PreDiff (Gao et al., 2023)
incorporates prior knowledge through a knowledge-control network to align the output with prior knowledge,
while replacing the U-Net-style architecture with Earthformer to capture complex spatio-temporal features.
These works adopt the two-stage training framework described above.

Although these diffusion-based models could produce predictions with high visual quality, they often suffer
from the issue of low accuracy. To address this, recent works have attempted to achieve both high visual
quality and high accuracy via the cooperation between deterministic models and DMs. DiffCast (Yu et al.,
2024) treats this nowcasting task as a combination of trend prediction (handled by deterministic models)
and local stochastic variation (handled by DMs); while CasCast (Gong et al., 2024) introduces a cascaded
modeling approach that combines deterministic models with Casformer.

In summary, DiffCast runs the denoising process in the pixel space, which leads to a longer inference time.
Conversely, LDCast, PreDiff, and CasCast deploy DMs in the latent space with a pre-trained VAE. This
approach is proven to be computationally efficient, but the independence to train every module limits the
model’s generative capability, as every module is trained with the corresponding objectives. End-to-end
training of all components may further improve performance.

3 Methodology

In this section, we first provide the background of diffusion models. Then, we revisit and reformulate the
objective of the precipitation nowcasting task. Lastly, we propose and present a Spatio-Temporal Latent
Diffusion Model – STLDM in detail, including its training loss function and each component in STLDM.
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3.1 Preliminary

3.1.1 Diffusion Models

Diffusion Models (DMs) (Ho et al., 2020) learn the data distribution, p(x), by modeling the reverse diffusion
process from Gaussian noise, xT , using corrupted samples, xt, with their corresponding diffusion step, t.
The forward diffusion process, which gradually adds noise from t = 1 to t = T , is defined as:

q(xt+1|xt) = N (xt;
√

1− βtx
t, βtI), (2)

where βt ∈ (0, 1) increases monotonically over t.

The reverse diffusion process iteratively removes noise, starting from pure Gaussian noise, xT , and is formu-
lated as:

pθ(xt−1|xt) = N (xt−1; µθ(xt, t), σ2
t I), (3)

with the parameterized posterior mean function, µθ defined as:

µθ(xt, t) = 1
√

αt
(xt − βt√

1− ᾱt
ϵθ(xt, t)), (4)

where αt = 1 − βt, ᾱt =
∏t

s=1 αs and ϵθ(xt, t) is a trainable denoising function that estimates the noise at
the diffusion step, t. The network parameters, θ, are optimized by minimizing the diffusion loss, Ldiffusion,
as formulated as:

Ldiffusion = γ(t)||ϵ− ϵθ(
√

ᾱtx
0 +
√

1− ᾱtϵ, t)||2, (5)

where γ(t) is the weighting function.

3.1.2 Classifier-Free Guidance

To balance the trade-off between sample quality and diversity during generation, guidance is introduced
during sampling to ensure that the generated sample is constrained with the given conditional variables, c.
Inspired by GANs, Classifier Guidance (Dhariwal & Nichol, 2021) is initially implemented by incorporating
the gradient of a trained classifier into the diffusion score during sampling.

Later, Classifier-Free Guidance (CFG) (Ho & Salimans, 2022) was proposed as an alternative without an ex-
ternal classifier. Instead, an "implicit classifier" is achieved by jointly training a conditional and unconditional
diffusion model. CFG is achieved by modifying the diffusion score, ϵ̃(xt, c), during sampling as:

ϵ̃(xt, c) = ϵ(xt, c)− w(ϵ(xt, ϕ)− ϵ(xt, c)), (6)

where w refers to the guidance strength, and the null sign ϕ indicates the unconditional case.

3.2 Proposed Approach and Details

In this part, we first reformulate the Precipitation Nowcasting task defined in Equation 1 and derive the
corresponding loss function for the proposed STLDM. Later, we describe each component of the proposed
STLDM in detail.

3.2.1 Task Reformulation

With introducing the intermediate variables, Y 1:N , the conditional probability, p(Ŷ1:N |X1:M ), in Equation 1
could be rewritten as:

p(Ŷ1:N |X1:M ) =
∫

p(Y 1:N |X1:M )p(Ŷ1:N |Y 1:N , X1:M )dY 1:N , (7)

where Ŷ1:N and Y 1:N represent the decoded radar frames predicted by the Latent Denoising Network and
Translator, respectively, with the given input radar frames, X1:M . The details can be found in Appendix B.
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The first term in Equation 7 corresponds to the Forecasting task of the first estimation, Y 1:N , with the
given input radar frames, X1:M ; while the second term represents the Visual Enhancement task conditioned
on both the first estimation, Y 1:N , and input radar frames, X1:M . This motivates us to reformulate the
precipitation nowcasting task into two sequential sub-tasks: Forecasting and Enhancement.

3.2.2 Derivation of Loss Function
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Figure 2: Top: Model architecture of the proposed STLDM, consisting of a Variational Autoencoder,
({E ,D}), a Conditioning Network (aka Translator), Ψθ, and a Spatio-Temporal Latent Denoising Network,
Dθ. Input radar frames are denoted as X1:M ; while the decoded outputs of both the final prediction after
denoising from pure Gaussian Noise, zT

1:N , and the first estimation, z̄1:N , are denoted as Ŷ1:N and Y 1:N
respectively. Bottom: Structure of Dθ and its sub-modules. "L-Spatial Attention" stands for Linearized
Spatial Attention.

Here, we derive the corresponding loss function of the proposed Spatio-Temporal Latent Diffusion Model
(STLDM) as illustrated in Figure 2. Briefly speaking, the input radar frames, X1:M , is first encoded by
Spatial Encoder, E , then Translator, Ψθ, does the first estimation, Y 1:N , and the Latent Denoising Network,
Dθ, further enhance its visual quality and obtain the final prediction, Ŷ1:N .

We start with the conditional hierarchical VAE loss function over L variational layers (Vahdat & Kautz,
2020):

LELBO = Eq(z|x)[− log p(x|z)] + DKL(q(z1|x)||p(z1)) +
L∑

l=2
DKL(q(zl|x, z<l)||p(zl|z<l)), (8)

We interpret STLDM as a 3-layer VAE and derive its corresponding loss function, LELBO, by substituting:
z1 ← zx, z2 ← z̄1:N , z3 ← zT

1:N and z4 ← z1:N , where zx is the latent representation of the radar frames and
zT

1:N is the pure Gaussian Noise with mean of 0 and standard deviation of 1.
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LELBO = Eq(zx|x)[− log p(x|zx)] (A)
+ DKL(q(zx|x)||p(zx)) (B)
+ DKL(q(z̄1:N |x, zx)||p(z̄1:N |zx)) (C)
+ DKL(q(zT

1:N |x, zx, z̄1:N )||p(zT
1:N |zx, z̄1:N )) (D)

+ DKL(q(z1:N |x, zx, z̄1:N , zT
1:N )||p(z1:N |zx, z̄1:N , zT

1:N )) (E)

Term A corresponds to a typical reconstruction loss term, LMSE, to minimize the difference between the
reconstructed radar frames and the ground truth. As mentioned above, the global motion of the prediction
from the deterministic model has a good alignment with the ground truth. To ensure that the final prediction,
Ŷ1:N , has the same global motion alignment, we propose a constraint loss term, LC , for regulating the first
estimation, z̄1:N , which also acts as the conditioning vector on the denoising network, Dθ. Hence, this
loss term consists of two terms: a typical Mean Squared Error loss for VAE and a constraint loss term on
Translator (aka Conditioning Network), Ψθ.

Eq(zx|x)[− log p(x|zx)] = ||X1:M+N − X̂1:M+N ||2︸ ︷︷ ︸
LMSE

+ ||Y1:N − Y 1:N ||2︸ ︷︷ ︸
LC

, (9)

where X1:M+N is the concatenation of both the input radar frames and the ground truth, and Y1:N is the
ground truth itself, while any notations withˆmean the prediction from STLDM.

Term B represents a regular KL-divergence loss term for constraining the distribution of the encoded latent
representation by the encoder, E , N (µθ, σθ), towards a Standard Gaussian distribution, N (0, 1):

DKL(q(zx|x)||p(zx)) = DKL(N (µθ, σθ)||N (0, 1)) = 1
2[σ2

θ + µ2
θ − 1− log σθ], (10)

while Term C is also a KL-divergence loss term for regularizing the distribution of the first estimated latent
representation, N (z̄1:N , σ̄1:N ), has a similar pattern as a Standard Gaussian distribution, N (0, 1):

DKL(q(z̄1:N |x, zx)||p(z̄1:N |zx)) = DKL(N (z̄1:N , σ̄1:N )||N (0, 1)) = 1
2[σ̄2

1:N + z̄2
1:N − 1− log σ̄1:N ], (11)

The loss term presented in Term D is represented as a Prior Loss that ensures the disrupted latent represen-
tation, zT

1:N , follows Equation 2. In both the formulation of DDPM and LDM with pre-trained VAE, this
loss term would be dropped as it is irrelevant to the denoising network itself. However, this matters for our
proposed STLDM with the end-to-end tuning framework, and it is defined as:

DKL(q(zT
1:N |x, zx, z̄1:N )||p(zT

1:N |zx, z̄1:N )) = DKL(N (
√

ᾱT z1:N , (1− ᾱT ))||N (0, 1)), (12)

where z1:N is the encoded latent representation of the ground truth radar frames, Y1:N .

Following the previous work (Kingma & Gao, 2023), the last loss term stated in Equation 5 could be further
defined and expressed as a general diffusion loss function for the latent denoising network:

DKL(q(z1:N |x, zx, z̄1:N , zT
1:N )||p(z1:N |zx, z̄1:N , zT

1:N )) = γ(t)||ϵ− ϵθ(
√

ᾱtz1:N +
√

1− ᾱtϵ, t)||2 (13)

In summary, the derived loss function for our proposed STLDM consists of VAE reconstruction loss, KL-
divergence regularization loss, Conditioning regularization loss, Prior loss, and a diffusion loss.

3.2.3 Components of STLDM

Spatio-Temporal Latent Diffusion Model (STLDM) consists of three main components: a Variational Au-
toEncoder, {E ,D}, a Conditioning Network (aka Translator), Ψθ, and a Latent Denoising Network, Dθ.
Its details are illustrated in Figure 2. Model performance is further improved with the technique of CFG.
Since CFG involves both the conditional case (c = z̄1:N ) and the unconditional case (c = ϕ) during the
inference, we jointly train the latent denoising network, Dθ, on both cases with the provided algorithm in
(Ho & Salimans, 2022).
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Variational AutoEncoder, {E ,D}, learns the spatial mappings between the radar images, Xt, and their
corresponding latent variables, zt. Specifically, the encoder, E , transforms the input radar image, Xt, from
pixel space to the latent space; while the decoder, D, reconstructs the predicted latent variables back from
the encoded latent space to the pixel space. We denote the encoded radar image in the latent space as
zt ∼ E(Xt) and its reconstructed radar image be X̂t ∼ D(zt).

Conditioning Network/Translator, Ψθ, learns the temporal evolution from the input encoded input
frames, X1:M , to the target output frames, Y1:N , in the latent space. Following the success of SimVP-V2,
we employ its Gated Spatio-Temporal Attention (gSTA) module (Tan et al., 2023b), which relies solely on
convolution operations as Ψθ to model the underlying relation between X1:M and Y1:N in the latent space.
We denote this prediction as a first estimation, z̄1:M , and its decoded output as the first estimation, Y 1:N .

Latent Denoising Network, Dθ, is a conditional latent diffusion model that generates probabilistic
predictions with conditioning on the latent prediction by Ψθ. To effectively capture the spatio-temporal
features, we decouple the spatio-temporal attention mechanism in Dθ into spatial attention and temporal
attention modules. To optimize the computation, a linear variant of spatial attention (Katharopoulos et al.,
2020) which reduces the complexity from O(N2d) to O(Nd2) is implemented for every Downsampling and
Upsampling blocks, where N and d are the number of sequences and their projected dimension respectively.
Briefly speaking, the difference between this linearized variant and a standard attention is the operation
order of the query, Q, key, K, and value, V , as shown below:

AStandard =
(

ϕ(Q)ϕ(K)
)

ϕ(V ); ALinear = ϕ(Q)
(

ϕ(K)ϕ(V )
)

, (14)

STLDM is trained from end to end with the objective defined in Section 3.2.2.

4 Experiments

4.1 Experimental Settings

We evaluate the performance and effectiveness of our proposed STLDM with several deterministic models
serving as baselines, together with various diffusion-based models designed for precipitation nowcasting: LD-
Cast (Leinonen et al., 2023), PreDiff (Gao et al., 2023), and DiffCast (Yu et al., 2024), on three real-life
radar datasets: SEVIR (Veillette et al., 2020), HKO-7 (Shi et al., 2015), and MeteoNet (Larvor et al., 2020).
To alleviate the computation cost, we downscale the spatial resolution to 128 × 128 while preserving their
temporal dimension.

4.1.1 Dataset

SEVIR (Veillette et al., 2020) is a curated and spatial-temporally aligned dataset that captures the
weather events consisting of five different modalities in the US from 2017 to 2019. Each event consists
of an image sequence spanning four hours with a time interval of 5 minutes, covering the region with the
geographical size of 384km × 384km in the US. The data range of the frames is set to [0 − 255]. Following
previous work (Gao et al., 2022b), we specifically select the Vertically Integrated Liquid (VIL) channel and
formulate the task as predicting the next 12 frames (60 minutes) given 13 input frames (65 minutes). We
span the data collected from June to December 2019 as the test set, while the remaining is the training set.

HKO-7 (Shi et al., 2015) is a meteorological dataset containing sequences of observed Constant Altitude
Plan Position Indicator (CAPPI) radar reflectivity at an altitude of 2km, covering the region with a radius of
256km centered at Hong Kong. The data are collected from 2009 to 2015 with a time interval of 6 minutes.
The data range of the frames is set to [0 − 255]. Following previous work (Yan et al., 2024), we formulate
this task as predicting the future radar echoes up to 2 hours (20 frames) based on the past 30 minutes (5
frames). We sample the collected data from 2009 to 2014 as the training set, while the rest is allocated to
the test set.
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MeteoNet (Larvor et al., 2020) is an open-source meteorological dataset that consists of both satellite and
radar observations with a 5-minute interval in France. The data covers geographical areas: the Northwestern
and Southeast quarters of France, with the observation size of 550km× 550km from 2016 to 2018. The data
range of the frames is set to [0− 70]. Like the HKO-7 dataset, we formulate this task to forecast the next 20
frames (100 minutes) of radar echoes based on the provided 5 frames (25 minutes) of radar echoes. Following
previous work (Yu et al., 2024), we select the data specifically from Northwestern France and filter out the
noisy precipitation events. The data collected from June to December 2018 serves as the test set, while the
rest are used as the training set.

4.1.2 Evaluation

Following previous works (Gao et al., 2023; Yu et al., 2024; Yan et al., 2024), various commonly used
forecasting skill scores, such as the Critical Success Score (CSI) and the Heidke Skill Score (HSS), are reported
to evaluate the performance of the models. CSI, also known as Intersection-over-Union (IoU), measures how
accurate the model prediction is after binarizing pixels of both prediction and observation with a specific
threshold. The reported CSI is averaged over multiple selected thresholds, i.e., {16, 74, 133, 160, 181, 219} for
SEVIR, {84, 117, 140, 158, 185} for HKO-7, and {12, 18, 24, 32} for MeteoNet. With the toleration of spatial
deviations, averaged CSIs with pooling sizes of 4 and 16, which correspond to medium and large spatial
tolerance, are measured as well. Besides that, HSS is a skill score that assesses the model’s ability to predict
precipitation events after considering the actual distribution of corresponding thresholds as mentioned above.

In addition, we also report two perceptual-related metrics: Structural Similarity Index Measure (SSIM) and
Learned Perceptual Image Patch Similarity (LPIPS). SSIM is to evaluate the model’s prediction in terms of
structural similarity at the pixel level, while LPIPS is to assess the visual quality of predictions by measuring
the distance between each pair of prediction and observation encoded by a pre-trained model.

To judge the model efficiency during the inference, we report the prediction time per sample, Tsample, on
a single RTX3090 GPU. We also report the required sampling steps (aka denoising steps), N for those
diffusion-based models, i.e., LDCast, PreDiff, DiffCast, and STLDM.

4.2 Compared to the State-of-the-Art

To evaluate the performance of our STLDM, we report three diffusion-based probabilistic models: LD-
Cast (Leinonen et al., 2023), PreDiff (Gao et al., 2023), and DiffCast (Yu et al., 2024) as baselines. Both
LDCast and PreDiff perform the diffusion process in the latent space, while DiffCast is composed of a de-
terministic model and a diffusion model running in the pixel space. For fairness, the performance of these
probabilistic models, including STLDM, is evaluated among 10 ensemble predictions. Additionally, various
deterministic models: ConvLSTM (Shi et al., 2015), PredRNN (Wang et al., 2017), SimVP (Gao et al.,
2022a) and Earthformer (Gao et al., 2022b) are included as references.

In Table 1, it is noted that STLDM is capable of achieving the best performance for most evaluation metrics,
especially on the HKO-7 dataset. Our STLDM achieves the best performance in terms of LPIPS, which
is a deep-learning-based perceptual metric. This is supported by the visualization shown in Figure 3 that
STLDM has the prediction that is the perceptually closest to the ground truth. However, STLDM does
not consistently outperform all baselines in every metric across the other two benchmarks. On the SEVIR
dataset, STLLDM is 1.64% worse on CSI16-m compared to DiffCast, while outperforming it on all other
metrics. On the MeteoNet benchmark, STLDM shows a performance drop of 1.40% to 2.16% in SSIM,
CSI-m, and HSS, but gains 0.39% to 3.79% improvements on the remaining metrics. Detailed visualizations
on different datasets are shown in Figure 12, 13, and 14 respectively.

Since we adopted the latent-diffusion design as well as the model architecture, STLDM requires fewer sam-
pling steps, enabling it to be 10X faster than DiffCast on the SEVIR dataset and 40X faster on both the
HKO-7 and MeteoNet datasets. Notably, for models like DiffCast, the inference time scales exponentially
with the image resolution. Hence, this efficiency gap between DiffCast and STLDM is even larger for data
with higher resolution, as reported in Table 6. Moreover, those latent-diffusion related works: LDCast,
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Table 1: Performance comparison on multiple precipitation nowcasting benchmarks: SEVIR, HKO-7, and
MeteoNet. The best score among all models is highlighted in bold, while the best score among the proba-
bilistic models, including ours, is underlined. The inference time, Tsample (in seconds), on a single RTX3090
GPU and the sampling steps, N , of those diffusion models are reported as well.

Dataset Model Metrics
Tsample NSSIM↑ LPIPS↓ CSI-m↑ CSI4-m↑ CSI16-m↑ HSS↑

SE
V

IR

ConvLSTM 0.7216 0.3025 0.3458 0.3411 0.3607 0.4467 0.03 -
PredRNN 0.7238 0.2708 0.3553 0.3702 0.4153 0.4621 0.15 -
SimVP 0.7209 0.2793 0.3788 0.3803 0.4160 0.4920 0.01 -
Earthformer 0.7102 0.3254 0.3556 0.3533 0.3838 0.4611 0.02 -
LDCast 0.5772 0.2906 0.2193 0.2898 0.4598 0.2995 4.26 50
PreDiff 0.6279 0.2217 0.3276 0.4271 0.6096 0.4498 73.09 1000
DiffCast 0.6979 0.1948 0.3580 0.4555 0.6281 0.4751 5.20 250
STLDM 0.7183 0.1929 0.3804 0.4662 0.6178 0.5024 0.51 20

H
K

O
-7

ConvLSTM 0.5987 0.3184 0.2905 0.2628 0.2774 0.4076 0.03 -
PredRNN 0.5785 0.3131 0.2857 0.2872 0.3263 0.4026 0.15 -
SimVP 0.6039 0.3596 0.3020 0.2852 0.3115 0.4236 0.02 -
Earthformer 0.5864 0.3373 0.2817 0.2532 0.2704 0.3939 0.02 -
LDCast 0.6003 0.2322 0.2145 0.3122 0.5345 0.3165 4.75 50
PreDiff 0.5922 0.2391 0.2799 0.3787 0.5081 0.3973 70.80 1000
DiffCast 0.6198 0.1949 0.3013 0.4084 0.6084 0.4240 20.50 250
STLDM 0.6433 0.1943 0.3191 0.4413 0.6511 0.4447 0.55 20

M
et

eo
N

et

ConvLSTM 0.7938 0.2203 0.3619 0.3687 0.4130 0.5056 0.02 -
PredRNN 0.8158 0.1419 0.3455 0.4904 0.5837 0.4810 0.16 -
SimVP 0.8134 0.1734 0.3858 0.4467 0.5746 0.5358 0.02 -
Earthformer 0.7806 0.2739 0.3401 0.3244 0.3488 0.4786 0.02 -
LDCast 0.7654 0.1691 0.2620 0.3658 0.5685 0.3904 4.76 50
PreDiff 0.7059 0.1543 0.2657 0.3854 0.5692 0.3782 70.80 1000
DiffCast 0.8167 0.1280 0.3831 0.4771 0.6335 0.5328 21.30 250
STLDM 0.8053 0.1275 0.3748 0.4921 0.6575 0.5233 0.51 20

PreDiff, and our STLDM have a relatively consistent sampling time across benchmarks, and STLDM is still
the most efficient among them.

4.3 Analysis and Ablation Study

To identify which component contributes the most to STLDM’s performance, we conducted several ablation
studies, including the significance of the proposed loss term, LC , and different training strategies on every
component of STLDM. Furthermore, we explore an alternative setup that treats the visual enhancement for
every frame independently, rather than our current setting – Spatio-Temporal Visual Enhancement Task.
Same as the evaluation settings above, all ablation studies are conducted here with ten ensemble predictions.

4.3.1 Significance of Proposed Constraint Loss Term, LC

Table 2: Ablation study of the impact of LC on the performace of STLDM with the SEVIR dataset. A
better score is highlighted in bold.

Existence of LC
Metrics

SSIM↑ LPIPS↓ CSI-m↑ CSI4-m↑ CSI16-m↑ HSS↑
✗ 0.7244 0.2046 0.3569 0.4533 0.6030 0.4659
✓ 0.7183 0.1929 0.3804 0.4662 0.6178 0.5024

As discussed in Section 3.2.2, LC is to constrain the final prediction, Ŷ1:N , such that it has the global
motion trend same as the first estimation, Y 1:N . With the absence of LC , the conditioning network, Ψθ, is
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Figure 3: A set of sample predictions on the SEVIR test set. From top to bottom: Input, Ground truth,
SimVP, PreDiff, DiffCast, and STLDM. The red region of the last prediction frame is zoomed in for a clearer
comparison.

trained only with the KL-divergence and diffusion loss in Terms C and E respectively. Both terms implicitly
constrain the prediction of Ψθ, resulting in a not well-constrained Y 1:N as shown in Figure 7, i.e., a noisy
prediction. This noisy Y 1:N does not help much the final prediction, Ŷ1:N , by the latent denoising network,
Dθ, ultimately causing STLDM to fail to predict the precipitation events accurately.

The claim above is supported by the comparison of the model performance with and without LC reported in
Table 2. From Table 2, these two cases have similar performance in both SSIM and LPIPS, corresponding to
the visual assessment of prediction. The existence of LC during training improves all forecasting skill scores:
both CSI and HSS notably. This observation is confirmed by Figure 7 that Ŷ1:N tends to over-predict due
to its noisy first estimation, Y 1:N from Ψθ in the absence of LC during training. In contrast, LC regularizes
the first estimation, Y 1:N , thereby enabling more accurate final predictions. This indicates that LC plays a
crucial role in improving STLDM’s accuracy via constraining the first estimation of Ψθ.

Consequently, explicitly constraining the conditioning network, Ψθ, with the proposed constraint loss, LC ,
consistently improves the performance of STLDM as it ensures the correctness of its prediction.
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Table 3: Ablation study on different training strategies: Which model components are trained along with
the denoising network on the SEVIR dataset. A better score is highlighted in bold.

Strategy Components Trained Together Metrics
{E ,D} Ψθ Dθ SSIM↑ LPIPS↓ CSI-m↑ CSI4-m↑ CSI16-m↑ HSS↑

A ✗ ✗ ✓ 0.7086 0.2121 0.3809 0.4676 0.6209 0.5028
B ✗ ✓ ✓ 0.7173 0.1955 0.3822 0.4680 0.6209 0.5043
C ✓ ✓ ✓ 0.7183 0.1929 0.3804 0.4662 0.6178 0.5024

4.3.2 Different Training Strategies

In this part, we investigate the impact of different training strategies on the performance of STLDM. Be-
yond our current end-to-end tuning strategy (Strategy C), we also report two alternatives: (i) Train every
component individually (Strategy A), and (ii) Jointly train both the Latent Denoising Network, Dθ, and
Conditioning Network, Ψθ, without further tuning the pre-trained Variational Autoencoder (Strategy B).

These two approaches share a common feature: they do not require further tuning of pre-trained VAE during
the training of the denoising network, Dθ, resulting in a lower GPU memory demand for model training.
Hence, these strategies are widely implemented because of their training efficiency. Additionally, using a
pre-trained Conditioning Network further decreases the demand for GPU memory and also benefits from
exposure to a broader pre-training dataset, potentially improving generalization.

From Table 3, all these three approaches have comparable performance in all forecasting skill scores, with the
case that Strategy B: Tuning denoising network, Dθ, along with the Conditioning Network, Ψθ, has a slightly
better performance. Furthermore, it is noted that our current training strategy, i.e., Strategy C: End-to-End
Tuning, yields the best performance in terms of perceptual metrics, specifically SSIM and LPIPS, while
Strategy A: Tuning every component individually achieves the worst performance in these metrics.

Moreover, we study the training convergence of these approaches with the validation MSE and LPIPS
reported in Figure 6. From the plots in Figure 6, Strategy A with both pre-trained VAE and Ψθ has
the fastest convergence speed but fails to achieve those low metrics as the other approaches could. Our
current training setting, i.e., Strategy C, exhibits slightly better validation performance than Strategy B
after training. This reveals that the collaboration among all components in STLDM is important in resulting
in better model performance, especially the cooperation between the Conditioning Network, Ψθ, and the
Latent Denoising Network, Dθ.

4.3.3 Can We Enhance Every Frames Independently?
Table 4: Ablation study on different kinds of visual enhancement tasks on the HKO-7 dataset. A better
score is highlighted in bold.

Types of Enhancement LPIPS↓ FVD↓ Tsample
Spatial 0.1878 241.17 0.4157

Spatio-Temporal 0.1943 87.14 0.5533

As mentioned in Section 3.2.1, we reformulate the nowcasting task as two sub-tasks: Forecasting and En-
hancement in sequence. In our current setting, we treat this visual enhancement task as a spatio-temporal
task with a Spatial Temporal Latent Denoising Network, Dθ. Here, we explore an alternative formulation
that treats enhancement as a purely spatial task by removing all Temporal Attention in Dθ. By treating
every frame independently, this approach provides a faster inference speed and a shorter inference time.

In addition to the required inference time, Tsample, on a single RTX3090 GPU, we report two metrics:
LPIPS (Zhang et al., 2018) and FVD (Unterthiner et al., 2019) for assessing the perceptual scores in spatial
and spatio-temporal, respectively, on the HKO-7 dataset in Table 4 as well. From Table 4, we observe that
treating this visual enhancement task frame-wisely has a slightly better LPIPS score and shorter inference
time, Tsample. However, STLDM’s spatio-temporal enhancement task achieves a comparable LPIPS score,
while significantly outperforming in the FVD score, indicating superior temporal consistency. This finding
is further supported by the visualizations in Figure 9 and 10 that the motion of the cloud in red bounding
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boxes in the settings of the Spatial Visual Enhancement task has a drastic change, resulting in the temporal
inconsistency; while our current setting and the ground truth share a similar cloud movement, i.e., steady and
slow. These results highlight the importance of treating this visual enhancement task as a spatiotemporal
task to achieve better temporal coherence.

4.3.4 Application in Meteorological Operation

Despite their fast inference time, low resource requirement, and reasonable accuracy, the radar nowcasts
predicted by deterministic deep learning models are inadequate for supporting the prediction of convective
weather systems, as they commonly struggle with blurriness issues, as shown in Figure 1. In assessing
the evolution of significant convective weather systems, it is critical to preserve both the spatial structure
of high-intensity reflectivity pixels and their temporal consistency. STLDM is capable of improving the
prediction of small-scale and complex structures of significant convective systems over a longer time range,
resulting in sharp and realistic nowcasts. This enables the weather forecasters to issue more timely alerts and
warnings to the public. Furthermore, STLDM’s fast inference time relative to other diffusion models enables
probabilistic nowcasting with a large ensemble size in real-time forecasting operations. This facilitates the
assessment of the likelihood and alternative scenarios regarding the movement and severity of high-impact
rainstorm events, thereby mitigating potential societal losses of life and property.

5 Conclusion and Future Work

In this work, we propose a Spatio-Temporal Latent Diffusion Model (STLDM), which is a simple yet effective
framework for precipitation nowcasting, based on the idea of reformulating this task into two sub-tasks in
sequence: Forecasting and Enhancement. STLDM is composed of three modules: a Variational AutoEn-
coder, a Conditioning Network/Translator, and a Latent Denoising Network. Extensive experimental results
across multiple radar datasets demonstrate that STLDM outperforms existing techniques, validating its
effectiveness. Furthermore, we argue that introducing conditional regularization on the Translator during
training consistently improves the model’s performance. Moreover, we also reveal that training the Latent
Denoising Network along with other components yields better results than training each component indi-
vidually. Lastly, we also emphasize that modeling the visual enhancement task as a spatio-temporal task
ensures better temporal consistency.

Limitations and future work. Despite STLDM’s competitive performance, it still struggles to accurately
forecast precipitation events that originate outside the observation region or are driven by unknown factors,
as illustrated in Figure 15. A possible solution is to introduce a multimodal model capable of capturing
precipitation events beyond the observation window. Additionally, STLDM must be retrained for a new
dataset in a different region. Although the precipitation events in different regions exhibit unique character-
istics, they also share underlying common features, such as the governing physical principles. Therefore, our
future direction is to develop a unified and physics-informed multimodal model across multiple benchmarks,
offering not only broader generalization but also improved physical interpretability.
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A Model Architecture of STLDM

In this section, we specify the details of every component of STLDM: a Variational autoencoder, a condition-
ing network, and a latent denoising network. Additionally, STLDM’s hyperparameters for both the training
and inference processes are reported in this section.

A.1 Variational AutoEncoder, {E ,D}
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Figure 4: Illustration of the implemented encoder, E , decoder, D and conditioning network, Ψθ.

We follow these previous works (Gao et al., 2022a; Tan et al., 2023b) to build a Variational autoencoder,
{E ,D}, as shown in Figure 4 that solely relies on convolutional operations. The only change we made is the
removal of the skip connection between the encoder and the decoder. Specifically, the input radar frames at
time t, xt ∈ R1×128×128, are encoded to the corresponding latent variables, zt ∈ R32×32×32, by the encoder
while the decoder decodes the predicted latent variables back into the predicted frames.

The components inside the encoder and decoder are described here:

• Channel Conversion: 3× 3 convolution layer, Group Normalization over groups of 2 followed by
a leaky ReLU activation layer.

• Down/Upsample: Transposed convolutional operations that downsample or upsample by a spatial
factor of 2.

A.2 Conditioning Network/Translator, Ψθ

Depth-wise Convolution

Depth-wise Dilation 
Convolution

Channel-wise Convolution

× 𝜎

(𝑏, 𝑡×𝑐, ℎ, 𝑤)
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Figure 5: Gated Spatio-Temporal
Attention (gSTA) module

We stack several Gated Spatio-Temporal Attention (gSTA) modules
(Tan et al., 2023b) as the conditioning network, Ψθ, for modeling the
underlying relation between the encoded input frames and the tar-
get output frames as illustrated in Figure 4. The gSTA module is
also solely composed of convolutional operations for modeling spatio-
temporal features, imitating the spatio-temporal attention mechanism
with a large kernel convolution. Every gSTA module consists of
a depth-wise convolution, a depth-wise dilation convolution, and a
channel-wise convolution as illustrated in Figure 5.

For constraining the conditional vector on thw Latent Denoising Net-
work (a.k.a the prediction from Ψθ), we regularize the decoded predic-
tion from Ψθ, Y 1:N , with the ground truth as stated in the loss term,
LC , included in Equation 9.

A.3 Latent Denoising Network, Dθ

The architecture of the latent denoising network, Dθ, included in our proposed STLDM is shown in Figure 2.
In this section, we elaborate on different components inside Dθ:
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• ResBlock: It is composed of two subblocks and followed by a 1× 1 convolution for channel conver-
sion. Each subblock inside contains a 3× 3 convolution, group normalization over groups of 8, and
a SiLU activation.

• Down/Upsample: These are the convolutional operations (with a kernel size of 4, padding of 1,
and stride of 2) that downsamples or upsamples by a spatial factor of 2.

• Spatial Attention: A self-attention between each pixel in every layer after interpreting the in-
put as batches of independent frames (by shifting the temporal axis into batch dimension), i.e.,
[b, t, c, h, w]→ [b× t, c, h, w].

• Linearized Spatial Attention (L-Spatial): This linearized attention is a self-attention between
each pixel within a patch with patch size, p. This is achieved by considering every independent patch
as an attention head as well, after patching the query, key, and value. Patch size, p, is halved for
each Downsampling Block while p is doubled for each Upsampling Block. The order of computing
the self-attention follows Equation 14.

• Temporal Attention: This is a self-attention between each frame in every layer along the temporal
dimension with the following reshape: [b, t, c, h, w]→ [b× h× w, c, t].

where b, t, c, h, and w are denoted as batch, time, channel, height, and width, respectively.

A.4 Hyper-Parameters of Training and Inference

We trained the models for 200k training steps in total on all benchmarks with a batch size of 4. The learning
rate is scheduled with a 2k steps warm-up period, followed by a Cosine Annealing Scheduler decaying from
the peak learning rate of 1e−4. Besides that, we set the total sampling steps of STLDM to 50.

During the inference process, we employ the DDIM technique (Song et al., 2021) of 20 sampling steps and
the Classifier-Free Guidance (Ho & Salimans, 2022) with the strength of 1.0.

B Details about Task Reformulation

In this section, we provide the details of the task reformulation process. Recall that, the objective of
this nowcasting task is to find a predicted sequences, Ŷ1:N , which has the highest conditional probability,
p(Ŷ1:N |X1:M ), with the given input radar sequences, X1:M .

First, the conditional probability of both events A and B happening given that event C occurred could be
rewritten as the product of two conditional probabilities:

P (A, B|C) = P (A, B, C)
P (C)

= P (A|B, C)P (B, C)
P (C)

= P (A|B, C)P (B|C)

Motivated by the idea above, we introduce an intermediate variable (aka the first estimation), Y 1:N , then
we could rewrite the conditional probability of this task objective as follows:

p(Ŷ1:N |X1:M ) =
∫

p(Ŷ1:N , Y 1:N |X1:M )dY 1:N

=
∫

p(Ŷ1:N |X1:M , Y 1:N )p(Y 1:N |X1:M )dY 1:N
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Hence, we introduce an additional task objective – Forecasting that constraining the first estimation, Y 1:N ,
to this nowcasting task:

p(Ŷ1:N , Y 1:N |X1:M ) = p(Ŷ1:N |Y 1:N , X1:M )p(Y 1:N |X1:M )

∇θ log p(Ŷ1:N , Y 1:N |X1:M ) = ∇θ log p(Y 1:N |X1:M )︸ ︷︷ ︸
Forecasting

+∇θ log p(Ŷ1:N |Y 1:N , X1:M )︸ ︷︷ ︸
Visual Enhancement

,

where θ refers to the model parameters. The first term is obligated for the forecasting objective, while the
latter term is responsible for the visual enhancement goal.

To fulfill this, we reformulate the objective of the nowcasting task into two sequential sub-tasks: Forecasting
and Enhancement, with proposing a constraint loss, LC , mentioned in Equation 9.

C Validation MSE and LPIPS of Different Training Strategies
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Figure 6: Validation MSE and LPIPS of different training strategies of STLDM during the training process.

D Evaluation on a High-Resolution Dataset

To evaluate the feasibility of STLDM at different spatial resolutions, we also report its quantitative results
on the HKO-7 dataset with a spatial size of 256× 256 with two baselines: LDCast and DiffCast in Table 5.
The forecasting task remains the same – predicting the next 20 frames given 5 input frames.

From Table 5, we observe that STLDM achieves the best performance across all metrics. This result is
consistent with its performance on the downscaled HKO-7 dataset reported in Table 1. This makes us
conclude that STLDM consistently outperforms the baselines on the HKO-7 dataset regardless of spatial
resolution. A detailed visualization is shown in Figure 11.

Table 5: Performance comparison of our proposed STLDM with two baselines: LDCast and DiffCast on the
HKO-7 dataset with the spatial size of 256. The best score among all models is highlighted in bold.

Model Metrics
SSIM↑ LPIPS↓ CSI-m↑ CSI4-m↑ CSI16-m↑ HSS↑

LDCast 0.6776 0.2476 0.1558 0.2096 0.3675 0.2375
DiffCast 0.6986 0.1854 0.3111 0.3799 0.5303 0.4372
STLDM 0.7097 0.1840 0.3778 0.4137 0.5665 0.4671
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E Running Time of STLDM and Baselines

We have demonstrated that STLDM is the most effective among diffusion-based models, achieving state-
of-the-art performance across multiple real-life radar echo datasets. In this section, we analyze STLDM’s
efficiency from two perspectives: inference time and training cost.

To compare inference efficiency with other baselines, we report their inference times on the HKO-7 benchmark
at three spatial resolutions: 128, 256, and 512 in Table 6. From Table 6, we concluded that STLDM
consistently achieves the fastest sampling speed at every spatial scale, resulting in the shortest inference
time. Moreover, the performance gap between STLDM and the baselines is increasing with the spatial scale.

In addition, we also reported the average training time of these models on the HKO-7 benchmark with a
spatial size of 128 and a batch size of 4 over 10k training steps in Table 7. From Table 7, despite being
trained from end to end, STLDM still requires the least training time, leading to the lowest training cost.
Table 6 and 7 highlight that STLDM is the most efficient model, achieving both the shortest inference time
and the lowest training cost.

Table 6: Inference time (in seconds) of each model on the HKO-7 dataset with different spatial sizes, using
a single RTX3090 GPU.

Model Sampling Steps Inference Time (s)
128 256 512

LDCast 50 4.76 12.17 46.69
PreDiff 1000 70.80 222.73 900.15
DiffCast 250 20.50 25.06 99.90
STLDM 20 0.55 0.66 2.41

Table 7: Average training time for each model on the HKO-7 benchmark with a batch of 4 over 10k training
steps, using a single RTX3090 GPU.

Model Training Time
LDCast with a pre-trained VAE 3 hours 48 minutes

DiffCast 4 hours 12 minutes
STLDM from end to end 2 hours 23 minutes

F More Visualizations

19



Under review as submission to TMLR

t− 6

In
p
u
t

t− 5 t− 4 t− 3 t− 2 t− 1 t− 0

G
T

F
ir

st
 E

st
im

at
io

n
 

 (
W

it
h
ou

t 
L
C
)

F
in

al
 P

re
d
ic

ti
on

 
 (

W
it
h
ou

t 
L
C
)

F
ir

st
 E

st
im

at
io

n
 

 (
W

it
h
 L

C
)

t+ 1

F
in

al
 P

re
d
ic

ti
on

 
 (

W
it
h
 L

C
)

t+ 3 t+ 5 t+ 7 t+ 9 t+ 11

0

31

74

133

181

255

Figure 7: A set of first estimation and final prediction from STLDM trained in both cases, that with and
without the proposed Constraint Loss, LC , as mentioned in Term A during training on the SEVIR test set.
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Figure 8: A set of sample predictions from STLDM trained with different training strategies as mentioned
in Section 4.3.2 on the SEVIR test set.
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Figure 9: A set of sample predictions from STLDM with two different kinds of enhancement: Spatial and
Spatio-Temporal on the HKO-7 test set. The red region of the first five frames is zoomed in for a clearer
comparison.
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Figure 10: A set of sample predictions from STLDM with two different kinds of visual enhancement settings:
Spatial and Spatio-Temporal, as mentioned in Section 4.3.3 on the HKO-7 test set.
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Figure 11: A set of sample predictions on the HKO-7 test set with a spatial size of 256. From top to bottom:
Input, Ground truth, LDCast, DiffCast, and STLDM.
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Figure 12: A set of sample predictions on the SEVIR test set. From top to bottom: Input, Ground truth,
ConvLSTM, PredRNN, SimVP, Earthformer, LDCast, PreDiff, DiffCast, and STLDM.
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Figure 13: A set of sample predictions on the HKO-7 test set. From top to bottom: Input, Ground truth,
ConvLSTM, PredRNN, SimVP, Earthformer, LDCast, PreDiff, DiffCast, and STLDM.

24



Under review as submission to TMLR

t− 4

In
p
u
t

t− 3 t− 2 t− 1 t− 0

G
ro

u
n
d
 T

ru
th

C
o
n
v
L
S
T

M
P

re
d
R

N
N

S
im

V
P

E
ar

th
fo

rm
er

L
D

C
as

t
D

if
fC

as
t

t+ 1

S
T

L
D

M

t+ 3 t+ 5 t+ 7 t+ 9 t+ 11 t+ 13 t+ 15 t+ 17 t+ 19

0

8

16

24

40

56

Figure 14: A set of sample predictions on the MeteoNet test set. From top to bottom: Input, Ground truth,
ConvLSTM, PredRNN, SimVP, Earthformer, LDCast, DiffCast, and STLDM.
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Figure 15: A set of sample predictions that both DiffCast and STLDM failed to predict the precipitation
events spawning on the left due to the limited observation region on the HKO-7 test set.
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