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Abstract

Optimization plays a central role in Operations Research (OR) and numerous
industrial applications, yet automating the end-to-end process of translating
natural language descriptions into executable optimization programs remains a
formidable challenge. While recent efforts have applied Large Language Mod-
els (LLMs) to this task, existing approaches are hindered by high inference costs,
limited robustness across domains, and weak verification mechanisms. In this
work, we propose MURKA, a reinforcement learning and knowledge distillation-
based framework that enhances LLM-driven optimization modeling via collabora-
tive agent alignment. MURKA orchestrates three specialized agents—Extractor,
Solver, and Checker—to achieve accurate problem understanding, robust formula-
tion, and verifiable execution. The Extractor is trained using group relative policy
optimization with a composite reward function that incorporates semantic correct-
ness and execution fidelity. The Solver benefits from knowledge distillation from a
powerful teacher model, yielding structurally valid and executable formulations in
AMPL. The Checker iteratively verifies solution correctness via solver feedback.
We validate MURKA’s generalizability through extensive experiments across di-
verse OR benchmarks, demonstrating its robustness and scalability. Experimental
results on eight diverse OR benchmarks, including NLP4LP, ComplexOR, and
NLA4Opt, demonstrate that MURKA, built on the LLLaMa3-8B backbone, achieves
a 5.9% absolute improvement in solution accuracy and a 5.1% increase in execu-
tion success rate compared to leading baselines. These results establish MURKA
as an effective and scalable paradigm for LLM-driven optimization, with strong
potential for deployment in real-world OR applications.

1 Introduction

Operations Research (OR) has long served as a cornerstone for solving complex decision-making
problems across domains such as defense, logistics, supply chain management, and business oper-
ations [Trimborn et al., 2020]. However, the traditional OR modeling pipeline is notoriously labor-
intensive, requiring substantial expertise to manually translate real-world objectives into structured
mathematical formulations. This expert-driven workflow presents significant scalability challenges,
especially in fast-evolving industrial environments.

With the rapid advancement of Large Language Models (LLMs), exemplified by ChatGPT-
4 [Achiam et al., 2023] and DeepSeek-R1 [Guo et al., 2025], a new paradigm has emerged: using
LLMs to automate the translation of natural language descriptions into optimization models. Recent
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studies [Xiao et al., 2023, Li et al., 2023, AhmadiTeshnizi et al., 2024, Zhang et al., 2024, Huang
et al., 2025] have demonstrated the potential of LLMs to reduce expert dependency and accelerate
OR modeling. These methods can be broadly categorized into (1) prompt-based approaches, which
rely on carefully engineered prompts to guide LLMs, and (2) learning-based approaches, which
fine-tune models via supervised learning or Reinforcement Learning (RL).

Despite their promise, the deployment of such methods in real-world scenarios remains limited.
Three critical challenges continue to impede the practical adoption of LLMs for OR modeling: (C1)
Scalability and latency - Large models impose high computational costs, making real-time or edge
deployment infeasible, particularly in industrial systems requiring low-latency decisions; (C2) Se-
mantic extraction and modeling accuracy - Existing approaches struggle to balance modeling cor-
rectness and efficiency. Manual annotation is expensive and non-scalable, while automatic extraction
methods often suffer from semantic drift and ambiguity; (C3) Cross-domain generalization - Many
LLM-based methods exhibit limited adaptability across heterogeneous optimization domains, such
as manufacturing, energy, and logistics.

To address these challenges, we propose MURKA, a collaborative multi-agent framework that
aligns LLMs with optimization tasks via RL. MURKA orchestrates three specialized agents—
Extractor, Solver, and Checker—to systematically convert natural language problem descriptions
into verifiable optimization solutions through an end-to-end, multi-stage pipeline. Our contributions
can be summarized as follows:

* Modular multi-agent framework. To address (C1), we design a collaborative multi-agent frame-
work that decomposes the modeling process into information extraction, model generation, and
verification stages, enhancing efficiency, modularity, and interpretability.

* Combined multi-reward RL strategy. To tackle (C2), we propose a composite reward function
that integrates format validation, constraint checking, semantic analysis, and similarity checking.

* Cross-domain alignment via knowledge distillation. To mitigate (C3), we distill reasoning
patterns from a high-capacity teacher model into a compact solver model, producing executable
AMPL code with improved structural and functional accuracy.

* Substantial improvements over existing methods. MURKA achieves state-of-the-art perfor-
mance on eight diverse OR benchmarks, including NLP4LP, ComplexOR, and NL4Opt, with a
5.9% relative improvement in solution accuracy and a 5.1% increase in execution success rate
compared to previous methods.

Together, these innovations position MURKA as a robust, scalable, and generalizable solution for
LLM-driven optimization modeling, with strong applicability to a broad spectrum of real-world OR
tasks.

2 MURKA Framework

2.1 Overview

Given an optimization problem described in natural language Q, our goal is to produce its optimal
solution A4, as shown in Figure 1. We realize it through a multi-agent framework, MURKA, which
can be formalized as an automatic four-stage description-to-solution pipeline:
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but the framework generalises to mixed-integer and non-linear cases.

1. Information Extraction (£). An Extractor agent parses Q and outputs a structured tuple
(S8,P,V,C,O) containing sets, parameters, decision variables, constraints, and the objective
function.



Human: Both sulfate and ginger need to be added to a shampoo. One unit of sulfate takes 0.5 minutesto be effective while one unit
of ginger takes'0.75 minutes to be effective. The shampoo must contain atleast 100 units of sulfates and a total of 400 units of both
ingredient. Since too much sulfate can damage the hair, there can be at most twice the amount of sulfate as ginger in the shampoo.
How many units of each should be added to the shampoo to minimize the total amount of time it takes for the mixture to be
effective? (Note: one must be =*ded before the other)

e </Sets> <Parameters> veeeee </Sets> <Parameters>

- ts: Time for one unit of sultate to be effective (0.5 minutes) - TimePerUnitSulfaté: = 0.5 minutes

- t2g: Time for one unit of ginger to be effective (0.75 - TimePerUnitGinger: = 0.75 minutes

minutes) - MinSulfateUnits: minimum units of sulfate required = 100

</Parameters> <Variables> - TotalUnits: total units of both ingredients required = 400

- x_s: Number of units of sulfates added - MaxSulfateToGingerRatio: =2

- x_g: Number of units of ginger added </Parameters> <Variables>

</Variables> <Objective> - SulfateUnits: units of sulfate to be added

Minimize: 0.5 *x s +0.75*x_g - GingerUnits: units of ginger to be added

</Objective> <Constraints> <fVariables> <Objective>

- x_s >= 100: Sulfate must be at least 100 units Minimize: TimePerUnitSulfate*SulfateUnits +

-X_s+Xx_g =400: Total amount of both ingredients is 400 TimePerUnitGinger*GingerUnits

X _S<=2FX Qs </Objective> <Constraints> ......

Ampl Compile Error @ {"variables": {"SulfateUnits": 266.0, "GingerUnits": 134.0}
Failed {"objective": 233.5} Succeed

Figure 1: The impact of information quality on the solution results. The color purple represents a
parameter, and represents a variable. The left side extracts low-quality information, leading
to incorrect results, while the right side extracts high-quality information, resulting in correct out-
comes.

2. Code Generation (S). A Solver agent transforms Q and Z into an executable AMPL model
M [Fourer et al., 2003], which links the problem’s mathematical formulation to an external opti-
mization engine.

3. Numerical Optimisation. The generated code calls the optimizer, such as Gurobi [Gurobi Opti-
mization, LLC, 2025] solver, to obtain a candidate solution A together with diagnostic informa-
tion (status, duals, objective value).

4. Iterative Verification (C). A Checker agent validates A against the original specification; if
infeasibilities or format errors are detected, it returns corrective feedback to the Solver, triggering
another generate-solve cycle until a feasible, verified solution A4 is produced.

Illustrative example. For a natural-language diet problem, the Extractor retrieves the food set,
nutritional constraints, and cost coefficients; the Solver converts them into the corresponding AMPL
model; the numerical optimizer returns the optimal food quantities, and the Checker verifies nutri-
tional feasibility before providing the final answer.

Therefore, as shown in Figure 2 (a), MURKA includes three important agents: Extractor, Solver, and
Checker. They complete the entire optimization problem-solving task through collaboration. The
Extractor is obtained through the training of the Group Relative Policy Optimization (GRPO) [Shao
et al., 2024] RL with our specially improved and designed efficient multi-dimensional rewards (see
§2.2). The Solver first synthesizes data through a deep thinking and reasoning model, and then is
fine-tuned by knowledge distillation (see §2.3).

2.2 Extractor Alignment via Combined Reward Reinforcement Learning

The information extraction task for optimization problem formulation involves parsing complex
natural language descriptions into structured components, making it well-suited for RL due to its
sequential decision-making nature and the need to optimize extraction quality through iterative feed-
back [Pan et al., 2025]. To model this task, we adapt the GRPO algorithm. The process begins with
generating multiple candidate solutions, referred to as completions, to explore diverse extractions
of key problem elements. Specifically, at each training step, we sample a batch of optimization
problems and generate G completions (denoted o;) for each problem, representing structured in-
formation extractions. Next, we compute the advantage value for each completion to guide policy
updates. In the original GRPO, this relies on a reward model, which poses challenges in practical
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Figure 2: MURKA framework pipeline. (a) Multi-agent orchestration of Extractor-Solver-Checker
agents for optimization problem solving. (b) RL training workflow for the Extractor with multi-
dimensional reward signals. (c) Knowledge distillation process for Solver alignment through teacher-
student model transfer.

settings due to its high data and computational demands and sensitivity to training data quality. To
address these limitations, we propose an enhanced GRPO approach that replaces the reward model
with a composite reward function (o), detailed in Section 2.4. For each of the G' completions, the
reward is calculated using 7(0;), enabling the advantage value fli,t to better reflect the quality of
extractions and provide more effective policy optimization. The advantage is normalized as shown
in Equation 3, where mean(r(o)) and std(r(o)) represent the mean and standard deviation of the
rewards across completions, respectively.

i _ 7(0i) —mean(r(o))
At = T (e o)) )

In the links of estimating the KL divergence and calculating the loss, we follow the methods of
the original GRPO algorithm. The KL divergence D, is used to measure the difference between
two policies, and its definition is shown in Equation 4, where 7y and 7y, , are the current policy
(determined by the model parameter 0) and the reference policy, respectively. mg (0; | ¢, 0i <)
represents the probability of taking the action o; ; at the ¢-th moment of the i-th sample under the
policy g, given the optimization problem ¢ and the previous information extraction 0; <¢. By
estimating D, the magnitude of the policy update is punished to ensure that the model does not
deviate too much from the reference policy when updating the policy, maintaining the stability of
the training process.

Tref (Oz’,t | ani,<t) _ Tref (Oi,t | Q»Oi,<t)
T (Oi,t | q,Oi,<t) i (Oi,t | Q70i,<t)

]D)KL [7T9 H’frref] = -1 (4)

When calculating the loss, the loss function is still determined by maximizing the advantage and
considering the KL divergence penalty, and its definition is shown in Equation 5. The first term
represents the scaled advantage, and the second term punishes the deviation from the reference
policy through Dy . Where 5 is a hyperparameter used to control the degree of KL divergence
penalty, and nograd means that the old policy term does not participate in the gradient calculation.
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Algorithm 1 Comprehensive Reward Calculation

Require: Candidate response c;, weights Weormats Weonstrs Wsem s Wsim
Ensure: Comprehensive reward R
: Extract text content ¢; < c¢;.content
Compute format reward Riomat ~ (see Algorithm 2, lines 2—6)
Compute constraint reward Reonse  (See Algorithm 2, lines 7-14)
Compute semantic reward Ry,  (see Algorithm 3, lines 2-5)
Compute similarity reward Rgy,, (see Algorithm 3, lines 6—13)
Compute comprehensive reward:

R Wiormat * LRformat + Weonstr * Leonstr + Wsem * Lsem + Wsim * Rsim
return R
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2.3 Solver Alignment through Knowledge Distillation

Inspired by Hinton et al. [2015], our Solver model alignment strategy employs knowledge distilla-
tion to transfer optimization modeling expertise from a high-capacity teacher model to a compact
student model, as shown in Figure 2(c). We curate a diverse training dataset of 3,602 problem
instances, sampled from 20% of the test set and stratified by scenarios and optimization types (Ta-
ble 10, Table 11). Using teacher models like DeepSeek-R1 [Guo et al., 2025], we generate enriched
outputs (g, %, m, ) from question-answer pairs (g, «), where i is the extracted information and m
is the AMPL model. Data augmentation via prompt engineering and domain-expert input enhances
diversity, while an iterative refinement process using Gurobi [Gurobi Optimization, LLC, 2025] val-
idates and adjusts AMPL models until they match the ground-truth «, ensuring high-quality training
data.

2.4 Combined Reward Implementation Details

Additional symbol explanations are provided in Appendix A. Algorithm 1 integrates format valida-
tion, constraint checking, semantic analysis, and similarity checking, calculating a comprehensive
reward R through weighted summation to evaluate the overall quality of model-generated results.
Specific implementation details for each stage are provided in Appendix B. Algorithms 2 and 3 de-
scribe our method for comprehensively evaluating model-generated results using multi-dimensional
reward functions, with format validation, semantic analysis, and constraint checking as core stages
to compute the final reward value.

Our methodology establishes a multi-criteria reward mechanism through formal composition of four
orthogonal evaluation dimensions. Let ¢; denote the candidate response, the composite reward R(c;)
is formulated as:

R(c;) = Z wr Rk (ci) (6)

ke {fmt, constr, sem, sim}

where wy, denotes configurable weight coefficients reflecting dimensional importance. The con-
stituent rewards are computed as follows:

Format Verification. This component evaluates XML structure compliance through pattern
matching and positional analysis:

Ry =1+ ]I(pstrict C ti) +r- H(psoft = ti)

strict match soft match
N
+ Z r- H pOS 6 P )] - a”lpre +lpost||1
ses
where @ denotes valid positional constraints for tag s, and || - ||; measures redundant text length.



Constraint Checking. This reward evaluates mathematical constraint validity through operator-
variable interaction:

K

Reonstr = Lexist - 7+ Z []Iopk + Lyevup + ]IZO] T 3
k=1

with clip(Reonstrs Romin, Fmax) €nsuring numerical stability.

Semantic Analysis. Element-level analysis of objective function components:
Rsem = ChP (Z [rlﬂnum(e) + TZ]IeGVUP - TSHundef(e)] 7Rmin7 Rmax) (9)
eck

Similarity Checking. This metric combines cardinality alignment and embedding-based similar-
ity, with embeddings generated by the nomic-embed model [Nussbaum et al., 2024]:

1
S(A,B) = AT max cos(Memp (@), Memp (D))
| Al £ beB (10)
Rsim = Clip (_/BAcard + 5(718(‘/:1im7 ‘/acl) + 72S(Paima Pact))v Rmim Rmax)
where Acard = ||Vaim| — |Vact|| + || Paim| — | Pact|| measures set cardinality discrepancy.

The complete reward system employs hierarchical boundary constraints and weight calibration to
maintain numerical stability while preserving gradient information for policy optimization. Hyper-
parameters («, 3, 9, i, w;) are grid-optimized through orthogonal experimental design.

3 Experiments

We conduct an extensive evaluation of MURKA to demonstrate its effectiveness in automating opti-
mization problem modeling, comparing it against a diverse set of state-of-the-art baseline methods
across multiple dimensions. Our experimental design encompasses several objectives: (1) Assessing
MURKA'’s performance against leading LL.M-assisted, multi-agent, domain-specific, and general
optimization approaches; (2) Validating the contributions of its Extractor and Solver components
through ablation studies; (3) Evaluating its generalization across diverse tasks beyond optimiza-
tion; (4) Analyzing the impact of training hyperparameters on performance stability; (5) Exploring
its scalability on smaller-scale models. Detailed implementation specifics, including experimental
descriptions, prompt templates, hyperparameter configurations, and computational resources, are
provided in Appendix D and Appendix E.

3.1 Experimental Setup

Benchmarks. We evaluated our method on eight diverse benchmarks—NL4Opt [Ramamonjison
et al., 2023], Mamo Easy, Mamo Complex [Huang et al., 2024], NLP4ALP [AhmadiTeshnizi et al.,
2024], ComplexOR [Xiao et al., 2023], IndustryOR [Huang et al., 2025], OptiBench [Yang et al.,
2024], and OptMATH [Lu et al., 2025]—comprising 2,224 problem instances. These benchmarks
cover over 20 real-world scenarios, including Agriculture, Transportation, and Entertainment, and
span seven optimization categories, such as Linear Programming, Mixed-Integer Programming, and
Combinatorial Optimization. Details are provided in Appendix C.

Baselines. To benchmark our method, we compare against four categories of baseline approaches:

1. LLM-Assisted Optimization Methods. Methods integrating advanced large language models,
such as GPT-4 [Achiam et al., 2023], Qwen-3 [Team, 2025] and DeepSeek-R1 [Guo et al., 2025],
with the Gurobi solver [Gurobi Optimization, LLC, 2025] for optimization tasks.

2. Multi-Agent Optimization Frameworks. Frameworks employing collaborative multi-agent
strategies, including Reflexion [Shinn et al., 2023], which enhances decision-making through
verbal reinforcement learning without model fine-tuning; COE [Xiao et al., 2023], which uses a
chain of 11 expert agents with forward thinking and backward reflection to solve complex oper-
ations research problems; and OptiMUS [AhmadiTeshnizi et al., 2024], which builds and solves



Table 1: The SA compared to the domain-specific optimization models. The best results among
previous alignment works are marked with underline, the overall best results are marked in bold,
and values in purple indicate that our method outperforms the previous alignment baselines.

Mamo Mamo [ Micro Macro
Method Model NL4Opt Easy Complex Specific Avg Avg
GPT-4 47.3% 66.5% 14.6% 22.3% 49.19% 37.68%

Directly  peepSeck-R1 | 94.8% 95.9% 51.2% 452% | 82.48%  71.78%
Qwen2.5-7B | 94.7% 86.5% 51.2% 24.4% | 7523%  64.20%

OptMATH Qwen2.5-32B 95.9% 89.9% 54.1% 34.7% 78.88% 68.65%
Mistral-7B 84.4% 81.4% 32.0% 27.0% 67.56% 56.20%

ORLM Math-7B* 86.5% 82.2% 37.9% 33.0% 70.05% 59.90%
LLaMa3-8B 85.7% 82.3% 37.4% 38.0% 70.42% 60.85%

Ours LLaMa3-8B ‘ 93.5% 95.9% 55.6% 37.4% ‘ 82.18% 70.60%

" Specific represents the average of IndustryOR and OptMATH.
* Math-7B represents the DeepSeek-Math-7B-Base.

linear and mixed-integer programming models from natural language using modular multi-agent
collaboration.

3. Domain-specific Customized Optimization Models. Specialized approaches for industrial op-
erations research and mathematical optimization, including ORLM [Huang et al., 2025], which
trains open-source large language models via OR-Instruct synthetic datasets, and OptMATH [Lu
et al., 2025], which generates large-scale datasets using selected seed data and back-translation
to fine-tune LLMs for automated optimization modeling.

4. General Optimization Methods. Methods for generic optimization problems, including
NL2OR [Li et al., 2024], which translates natural language into operations research models for
accessible solutions, and LLMOPT [JIANG et al., 2024], a learning-based framework that defines
and solves diverse optimization tasks with improved generalization.

Metrics. In the experiment, we use three performance metrics to comprehensively evaluate the
quality of the generated code of the algorithm, namely, Solution Accuracy (SA), which measures
the correctness of the provided solutions, Compilation Accuracy (CA), which assesses the ability
of the code to compile without errors, and Execution Rate (ER), which indicates the proportion of
successful executions.

3.2 Performance Evaluation of MURKA Against Optimization Baselines

LLM-Assisted Optimization Methods Comparison. As shown in Figure 3a, MURKA achieves
a macro-average performance of 68.61%, closely approaching DeepSeek-R1’s 71.13%, despite us-
ing a significantly smaller LLaMa3-8B backbone. It is critical to note that the DeepSeek-R1-671B
baseline is over 80 times larger than our model. Despite this scale disparity, MURKA demon-
strates comparable and even superior performance on specific benchmarks, underscoring our frame-
work’s substantial computational efficiency and viability for practical deployment. Our selection of
LLaMa3-8B was predicated on its strong, publicly verifiable performance, establishing it as a robust
foundation for our experiments. However, we emphasize that MURKA'’s core technical contribu-
tion is its model-agnostic architecture. The framework is designed as a modular, "plug-and-play"
enhancement that can be seamlessly applied to other capable base models, such as Qwen-7B or fu-
ture open-source alternatives. This adaptability ensures that the demonstrated performance gains are
attributable to our framework’s structured approach rather than the intrinsic capabilities of a single
base model.

We hypothesize that this competitive performance stems from the nature of NL-to-Optimization
challenges. These tasks present two distinct hurdles: (1) complex reasoning chains, which require
intricate, multi-step logical deductions, and (2) robust structural extraction, which demands precise
parsing of numerical values, relationships, and constraints from dense or ambiguous text. While
large models with strong general reasoning capabilities, such as DeepSeek-R1, naturally excel at the
former, their generalist approach can be brittle when faced with the latter. In contrast, MURKA’s Ex-



Table 2: The SA and ER compared to the general optimization methods. The best results among
previous alignment works are marked with underline, and values in purple indicate that our method
outperforms the previous alignment baselines.

Metrics | ER  SA | ER  SA | ER  SA | ER  SA | ER SA
Method | NL4Opt | MamoEasy |Mamo Complex | NLP4LP | Micro Avg

NL20R' | 86.5% 74.8% | 70.1% 63.2% | 22.8% 18.0% | 88.8% 75.6% | 59.5% 48.3%
LLMOPT' | 99.0% 93.0% | 100.0% 95.3% | 98.0% 68.0% | 100.0% 83.8% | 92.7% 76.7%
Ours 100.0% 93.5% | 100.0% 95.9% [100.0% 55.6% |100.0% 87.6% | 97.0% 76.5%

Method \ ComplexOR IndustryOR OptiBench OptMATH

NL20R" | 11.1% 5.56% | 14.0% 4.0% | 623% 43.1% | 6.63% 2.41% | 45.3% 35.8%
LLMOPT' | 94.7% 72.7% | 92.0% 44.0% | 82.3% 66.4% | 75.3% 40.0% | 92.7% 70.4%
Ours 100.0% 72.2% | 99.0% 38.0% | 91.4% 69.3% | 92.2% 36.8% | 97.8% 68.6%

Macro Avg

T NL20OR uses LLaMa3-70B as its backbone, while LLMOPT uses Qwen1.5-14B as its backbone.

Reflexion

Mamo Complex GPT-4 COE
Qwen3-32B OptiMUS

NLP4 DeepSeek-R1 —— Ours
Ours
ComplexOR NL4Opt

NLP4 10 AVg
OptiBench ComplexOR
(a) LLM-Assisted Methods Comparison (b) Multi-Agent methods Comparison

Figure 3: The SA compared to LLM-Assisted optimization methods and Multi-Agent methods.

tractor agent is specifically optimized via our multi-dimensional RL reward to achieve high-fidelity
structural parsing, making it robust against the very ambiguities that can derail a general reason-
ing process. In essence, MURKA bridges the performance gap not by mirroring general problem-
solving abilities, but by specializing in the systematic and verifiable translation of natural language
into structured optimization models.

Multi-Agent Optimization Frameworks Comparison. Our approach delivers state-of-the-art
performance across all benchmarks (Figure 3b), with absolute improvements of 14.8% and 11.93%
in micro- and macro-average metrics, respectively, over prior multi-agent methods. These gains,
consistent across standard and complex scenarios, highlight the strength of our structured task de-
composition framework in enhancing collaborative reasoning.

Domain-Tailored Customized Optimization Models Comparison. Our method outperforms
specialized optimization models by 3.4% in micro-average and 1.75% in macro-average metrics
(Table 1). It achieves 95.9% on Mamo Easy and 55.6% on Mamo Complex, surpassing task-specific
models (OptMATH) and optimization-aligned LLMs (ORLM). These results demonstrate our frame-
work’s ability to bridge general-purpose LL.Ms and domain-specific solvers through systematic rea-
soning decomposition.

General Optimization Methods Comparison. Table 2 shows our method excels in Execution
Rate (ER), achieving near-perfect scores of 100% across benchmarks, including NL4Opt, Mamo
Easy, Mamo Complex, NLP4ALP, and ComplexOR. In Solution Accuracy (SA), it outperforms LL-
MOPT on NLP4LP (87.6% vs. 83.8%) and OptiBench (69.3% vs. 66.4%), but slightly trails on
ComplexOR (72.2% vs. 72.7%) and IndustryOR (38.0% vs. 44.0%). With a micro-average ER
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NL4Opt = 93.5 91.7 66.1 97.8 98.7 88.3 100.0 100.0 100.0 [
Mamo Easy 4 95.9 90.3 73.5 96.1 97.7 81.4 100.0 100.0 100.0 - 80
Mamo Complex - 55.6 44.5 61.1 67.8 100.0 100.0 99.0 .
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3
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Figure 4: Heatmap of ablation study comparing My, Mg, and Mg across benchmark datasets.
Deeper purple indicates poorer performance.

of 97.0% and macro-average SA of 68.6%, our method demonstrates robust versatility, though im-
provements in specific SA metrics are needed.

Our proposed method showcases significant strengths in optimization problem modeling. It achieves
state-of-the-art SA in multi-agent settings, with top scores on NL4Opt (93.5%), NLPALP (87.6%),
and ComplexOR (72.2%), alongside near-perfect ER scores of 100% across most benchmarks. In
specific optimization tasks, it dominates on NL4Opt, Mamo Easy, and Mamo Complex, though
it falls short on the Specific benchmark (37.4%) compared to DeepSeek-R1-671B (45.2%). For
general optimization, its robust ER and competitive SA underscore its versatility. While it excels in
many areas, enhancements are needed in specific metrics like IndustryOR and OptMATH, as well
as broader SA performance, to further strengthen its capabilities.

3.3 Ablation Experiment

The primary ablation study validates the roles of the core architectural components: the extractor (£)
and the solver (S). By comparing the full system My, (integrating £ and S), Mg (with £ replaced by
LLaMa3-70B), and Mg (with S replaced by LLaMa3-70B) across eight optimization benchmarks,
we assess their contributions using SA, CA, and ER as metrics. As shown in Figure 4, My, signif-
icantly outperforms Mg and Mg across all benchmarks. For example, on the ComplexOR dataset,
My achieves a SA of 72.2%, whereas Mg and Mg only reach 45.6% and 51.1%, respectively. Simi-
larly, the ER of Mjp,; remains near-perfect at 100.0%, compared to 68.9% for M¢ and 77.8% for M.
This confirms the necessity of the synergistic integration of £ and S, with specialized components
demonstrating significant advantages over general-purpose large models in optimization tasks.

To further dissect the sources of these performance gains, we conducted a detailed ablation study
on the individual components of our composite reward function in Appendix D.1.3. This analysis
reveals a clear hierarchy of their importance. The Rioma and Reonsr are foundational; their absence
leads to structurally malformed text and logically flawed models, causing a catastrophic drop in
performance across all benchmarks. The Rg.p, is also critical, guiding the Extractor to identify the
correct objective function. Without it, the model often solves a different problem entirely, rendering
the final solution invalid. Finally, the Rgy provides fine-grained semantic tuning by preventing
subtle logical flaws, such as confusing variable or parameter identities. While its removal results
in a less severe performance drop, it is crucial for achieving high accuracy. Collectively, these
results confirm that each reward component addresses a unique and critical facet of the modeling
challenge—from structural integrity to semantic accuracy—and that their synergy is fundamental
to MURKA’s high performance. Furthermore, we verified that our alignment process preserves the
base model’s general capabilities and tested the framework’s scalability on smaller models, with
detailed results presented in Appendix D.1.5.

To further enhance MURKA, we recommend improving £’s information extraction by incorporating
domain knowledge to boost CA in complex tasks and strengthening S’s modeling capabilities by
exploring advanced optimization algorithms to improve SA. Additionally, motivated by our reward
component analysis which reveals a clear hierarchy of their importance, integrating dynamic reward
weighting in the RL process could adaptively prioritize extraction accuracy for diverse problem



types. Future work could analyze the contributions of £ and S across varying task complexities and
optimize the framework for resource-constrained scenarios, potentially exploring lightweight model
architectures for edge deployment.

4 Related Work

The research is positioned at the intersection of three active areas: synthetic data generation for
optimization, multi-agent frameworks, and the application of reinforcement learning for LLM align-
ment.

Data Synthesis for Optimization Problems. High-quality data is crucial for training LLMs to
handle OR tasks. To overcome the scarcity of real-world datasets, recent works have focused on
synthetic data generation. Methods include semi-automated synthesis from industrial case studies
[Huang et al., 2025], back-translation from mathematical expressions to natural language [Yang
et al., 2024], and using rejection sampling to control problem complexity [Lu et al., 2025]. These
approaches have been instrumental in creating large-scale datasets for supervised fine-tuning. Dis-
tinctly, MURKA leverages synthetic data not for direct supervision, but as an environment to train
our Extractor agent via reinforcement learning, allowing it to learn robust policies from interactive
feedback rather than static examples.

Multi-Agent Frameworks. Decomposing complex problem-solving into tasks for specialized
agents has proven effective. In the OR domain, frameworks like Chain-of-Experts [Xiao et al.,
2023] orchestrate agents with forward-solving and backward-error-correction mechanisms, while
OptiMUS [AhmadiTeshnizi et al., 2024] utilizes modular collaboration to handle linear and mixed-
integer programming. These frameworks typically coordinate agents through sophisticated prompt
engineering and predefined workflows. MURKA builds on this collaborative paradigm but enhances
agent expertise through direct training. Our agents are not just directed by prompts but are special-
ized via reinforcement learning and knowledge distillation, leading to more adaptive and capable
collaboration.

Reinforcement Learning for LLM Alignment. Reinforcement learning is a powerful technique
for aligning LLMs with complex objectives, moving beyond simple instruction following. While
foundational methods like PPO [Schulman et al., 2017] and DPO [Rafailov et al., 2023] are widely
used, recent advancements have focused on enhancing reasoning capabilities. Notably, group rela-
tive reward mechanisms, as employed in mathematical reasoning tasks [Shao et al., 2024, Guo et al.,
2025], have shown success by optimizing policies based on the relative quality of multiple generated
outputs. We adapt this paradigm to the structured domain of optimization. Our key contribution is
the design of a composite reward function that provides granular feedback on multiple facets of the
extraction taskincluding format, constraints, and semanticsthereby aligning the LLM specifically
with the rigorous demands of mathematical optimization modeling.

5 Discussion

The MURKA framework presents significant practical implications for OR automation. By reducing
expert dependency and computational costs, it enables rapid prototyping of optimization models
across various industries. The released dataset and benchmark facilitate standardized evaluation of
OR modeling capabilities in LLMs. Potential societal benefits include more accessible optimization
tools for small businesses and accelerated decision-making in critical domains. However, several
limitations remain: (1) MURKA assumes structured natural language problem descriptions, which
may not fully capture real-world problem complexity. (2) While our combined reward mechanism
improves extraction accuracy, it still relies on predefined templates that may require adaptation for
novel problem types. (3) The knowledge distillation process depends on synthetic data quality,
which could inherit biases from the teacher model.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly outline the MURKA framework, its
contributions (multi-agent system, GRPO, knowledge distillation, new benchmark), and
performance improvements, which align with the detailed results in Sections 3.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper includes a discussion section that explicitly addresses limitations,
such as reliance on structured natural language inputs, predefined templates for reward
mechanisms, and potential biases in synthetic data from the teacher model.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

» The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer:

Justification: The paper focuses on empirical contributions (e.g., framework design, ex-
perimental results) rather than theoretical results requiring proofs, so this question is not
applicable.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

» The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Appendix C and Appendix D provide comprehensive details on benchmarks,
baselines, metrics, training dataset construction, computational resources, and hyperparam-
eters, enabling reproduction of the main experimental results.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The supplemental material includes the code, a README file, training exam-
ple data, and log examples, providing sufficient instructions to reproduce the main experi-
mental results as described in Appendix D.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Appendix D details hyperparameters, data splits, and training configurations,
ensuring clarity for understanding results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: The paper reports standard deviations for rewards in the sensitivity analysis
of epochs, clearly stating the variability captured across training steps. The method for
calculating standard deviation is implied through the training process, and assumptions of
normality are not explicitly violated.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Appendix D.2 specifies the use of eight NVIDIA GeForce RTX 4090 GPUs
with 24 GB memory each and four AMD EPYC 7763 64-Core Processors @ 2.45GHz.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper adheres to ethical research practices, with no indications of viola-
tions (e.g., proper citation of assets, no human subject research), aligning with the NeurIPS
Code of Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
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* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The section 5 highlights positive impacts (e.g., accessible optimization tools
for small businesses, accelerated decision-making) and acknowledges potential negative
impacts indirectly through limitations (e.g., biases in synthetic data).

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:

Justification: The paper does not release new data or models with a high risk for misuse,
as the MURKA framework and its associated benchmark are designed for optimization
problem modeling in operations research, with applications in domains like logistics and
supply chain management.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
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13.

14.

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Appendix D details the licenses, terms of use, and proper crediting for all

code, models, and datasets used, ensuring compliance with their original sources and re-
spective licenses.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer:

Justification: The paper does not introduce new assets such as datasets, code, or models
for public release, as it focuses on the MURKA framework and evaluation on existing
benchmarks without releasing new resources.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer:

Justification: The paper does not involve crowdsourcing or human subject research, so this
question is not applicable.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.
* Including this information in the supplemental material is fine, but if the main contri-

bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.
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15.

16.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:

Justification: The paper does not involve human subjects or crowdsourcing, making IRB
approvals irrelevant.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: The paper explicitly describes the use of LLMs as core components of the
MURKA framework, detailing their roles in extraction, solving, and knowledge distillation
in Section 2.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Algorithm Symbol Definitions and Explanations

Table 3 lists all the key symbols used in the algorithm along with their explanations. These symbols
cover various aspects of the algorithm, such as reward calculation, semantic analysis, and similarity
checks. Each row in the table includes a symbol and its detailed explanation, ensuring that readers
can accurately understand the meaning of each symbol. We recommend that readers refer to Table 3
as needed while reading the algorithm description to ensure their understanding of the algorithm is
accurate and comprehensive.

Table 3: Algorithm Symbol Explanation

Symbol Explanation

w;j Weight coefficient for the i-th reward component
r Base reward for correct items in format and constraint checks
r1 Reward for numerical elements in semantic analysis
ro Reward for defined variables/parameters in semantic analysis
r3 Penalty for undefined elements in semantic analysis
« Penalty coefficient for redundant text length (Ipre, Ipost)
15} Penalty coefficient for set cardinality difference in similarity
Y1 Weight for variable similarity in reward calculation
Y2 Weight for parameter similarity in reward calculation
) Scaling factor for similarity reward

Ruin Lower bound of reward value for boundary constraints

Rinax Upper bound of reward value for boundary constraints

Pstrict Strict matching mode for segmented structure validation

Dsoft Lenient matching mode for label detection

S Set of key labels, e.g., {Sets, Parameters, . . . }

|4 Set of variables from candidate responses or predefined

P Set of parameters from candidate responses or predefined

E Set of objective function elements for semantic analysis
Viaim Target variable set, predefined standard

Piim Target parameter set, predefined standard

Vact Actual variable set from candidate responses
P Actual parameter set from candidate responses
lpre Length of preceding redundant text before label
lpost Length of trailing redundant text after label

I() Indicator function: 1 if condition met, else 0

clip(z,a,b) Clipping function, constrains z to [a, b]
Memp Embedding model, maps text to vector space
cos(u,v) Cosine similarity between vectors u and v

B Algorithm Notations

B.1 Structure Validation Reward Computation

Format validation stage (line 2-6): First, the integrity of the segmented structure is verified by
strictly matching the pattern pgric;. Then, the existence of tags is detected using the loose pattern
Dsote- Finally, a single-item reward r is given for the accurate positioning of the key tag set S =
{Sets, Parameters, . .. }. Meanwhile, a linear penalty « is imposed on the redundant text length
(Ipre, lpost) in the tag context.

Constraint checking stage (line 7-14): As shown in line 7, this module first assigns a basic reward
r to the existing constraint segments. Then, it analyzes the constraint conditions one by one: when
a legal operator is detected, r is added (line 10); when a defined variable v € V U P is used, r is
added; when a non-negative constraint exists, an additional r is added. Finally, the total value is
constrained within a preset interval through the clip function, and stability control is completed as
shown in line 14.
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Algorithm 2 Structure Validation Reward

Require: Candidate response c;
Ensure: Format reward Ryfymmat, constraint reward Reonstr
1: Extract text content ¢; < c¢;.content
2: Format Verification Phase:
3 Rgice 7 - I(match(psuice, 7))
4: Rioy < 7 - I(search(psofi, £1))
5: Rymi <= ) cg[r - I(s exists with correct position)] — (lpre 4 lpost)
6 Rformat <~ Rs[rict + Rsoft + Rxm]
7. Constraint Checking Phase:
8: Initialize Reonstr <— 7 - [(Constraints section exists in ¢;)
9: for each constraint k£ do

10: Reonstr < Reonsr + 7+ I(valid operator)

11: Reonstr < Reonsee + 7 - I(uses defined variables)

12: Reonstr < Reonstr + 7 - I(contains non-negative constraint)
13: end for

14: Reonstr Clip(Rconslra Ruin, Rmax)

15: return Rformat, Reonstr

B.2 Content Validation Reward Computation

Semantic analysis stage (line 2-5): After extracting the element set 2 from the objective function,
a hierarchical reward mechanism is implemented as shown in line 4: numerical elements receive
a basic reward r;, elements within the variable set V' or the parameter set P receive a compliance
reward ro, and undefined elements trigger a penalty r3. Finally, the reward value is ensured to be
stable within the effective interval [Rpin, Rmax] through the boundary constraint function.

Similarity checking stage (line 6—-13): This module achieves semantic alignment of structured ele-
ments through embedding space measurement and imposes a linear penalty term on the cardinality
difference between the variable set V' and the parameter set P. Then, the text is mapped to the
R? space through the embedding model M.y, and the bidirectional maximum cosine similarity be-
tween the target set and the candidate set is calculated. Finally, a weighted fusion strategy is adopted
to convert the semantic similarity into a reward value, and the clip function is used to ensure numer-
ical stability.

Algorithm 3 Content Validation Reward

Require: Candidate response c;
Ensure: Semantic reward Rgep, similarity reward Rgim,
1: Extract text content ¢; < c¢;.content

2: Semantic Analysis Phase:

3. Extract variable set V, parameter set P, objective elements £/
r1 if e is numerical

4: Reem ¢ D ccp{re ifecVUP
r3 otherwise

5 Roem < Clip(Rsem7 Riin, Rmax)

6: Similarity Checking Phase:

7: Viaet < ExtractXML(¢;, Variables)

8: P, < ExtractXML(t;, Parameters)

9: Rien < B(H/zum‘ - |‘/act‘ + |Paim‘ - |Pact|)

10 simy IVm\ > vy, MaXuev,, €08(Memb(v), Memb(u))

11: simp ‘Pain1| > pe Py MAXge Py €OS(Memb (P), Memb(q))

12: Rim < Rien + (1 - simy + 2 - simp)

13: Rsim — Clip(Rsima Rmina Rmax)

14: return Rgm, Rgm
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C Detailed Benchmark Descriptions

This appendix provides a detailed overview of the eight benchmarks used to evaluate our method:
NL4Opt, Mamo Easy, Mamo Complex, NLP4LP, ComplexOR, IndustryOR, OptiBench, and Opt-
MATH. These benchmarks collectively comprise 2,224 problem instances, covering over 20 real-
world scenarios and eight optimization categories. The scenarios and optimization types for each
benchmark are summarized in Table 10 and Table 11, respectively.

The optimization types are abbreviated as follows: LP denotes Linear Programming, IP denotes Inte-
ger Programming, MIP denotes Mixed Integer Programming, NP denotes Nonlinear Programming,
CO denotes Combinatorial Optimization, MOP denotes Multi-objective Programming, and SOCP
denotes Second-Order Cone Programming.

D Detailed Experimental Inventory

To comprehensively evaluate the MURKA framework, we elaborate in this section on the experi-
mental design, adhering to the MIT License, Llama Community License, and Apache License 2.0
for all existing assets (code, models, datasets) used in this study to ensure full compliance with their
terms of use.

D.1 Experimental Design and Objectives Analysis
D.1.1 Capabilities of Native Small-Scale LLMs in Optimization Tasks

Due to the high deployment costs of large-scale language models in practical scenarios, our prelimi-
nary work first investigates the capabilities of native small-scale LLMs in optimization tasks.

This experiment evaluates the performance of native small-scale LLMs on optimization tasks, com-
paring LLaMa3-8B and LLaMa3-70B on the NL4Opt and Mamo tasks. We employ Zero-shot,
Few-shot, and CoT [Wei et al., 2022] prompting strategies, and compare these with a method that
generates AMPL files followed by Gurobi solving. Results, shown in Table 4, indicate that both
LLaMa3-8B and LLaMa3-70B perform poorly when directly handling high-precision optimization
problems, highlighting the limitations of native small-scale LLMs in optimization tasks, particularly
in scenarios requiring high precision. By generating AMPL files and solving with Gurobi, the opti-
mization capabilities of LLaMa3-8B and LLaMa3-70B improve significantly, by 3.73(E and 6.54(E,
respectively. The larger improvement in LLaMa3-70B suggests that larger-scale models have greater
potential in optimization modeling and solving, likely due to their enhanced language understanding
and generation abilities.

Inspired by Ramamonjison et al. [2022], we introduce an information extraction pipeline, using
LLaMa3-8B for information extraction or expert-curated information, combined with LLaMa3-70B
and Gurobi for modeling and solving. As shown in Figure 5, this approach improves CA by an
average of 4.67% and SA by 7.37%, indicating that information extraction significantly enhances the
model’s understanding and modeling quality for optimization problems. Next work could explore
optimizing automated information extraction to reduce reliance on expert-curated information.

Table 4: Comparison of the SA of the native small-
scale LLMs in optimization tasks with and without Gurobi

Solver.
Model ~ Method | NL4opt Mamo  Mamo
Easy Complex

Zero-shot |  0.0% 0.3% 0.0%

Few-shot 0.0% 0.0% 0.0%

LLaMa3-8B "0 or ™ | 08 0.9% 0.0%
Gurobi 4.4% 2.0% 0.0%

Zero-shot 1.6% 8.3% 3.8%

Few-shot 1.6% 0.2% 0.0%

LLaMa3-70B ““cor ™ | 160 9.8% 1.9%
Gurobi 33.5% 52.0% 1.4%
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Figure 5: Effect of Extracted Information Quality on SA and CA.

D.1.2 Performance Evaluation of MURKA Against Optimization Baselines

We propose the MURKA framework (see §2) to enhance the performance of large language mod-
els in optimization tasks. The Experimental Setup details the Benchmarks, Baselines, and Metrics
used. Performance comparisons between MURKA and selected baselines are presented via radar
charts in §3, with detailed data in Table 5 and Table 6. Results demonstrate that MURKA outper-
forms baselines across multiple optimization task benchmarks, exhibiting stronger robustness and
generalization.

Table 5: Comparison of the SA metric against LLM-Assisted Methods.

Method ‘ NL4Opt  Mamo Easy Mamo NLP4ALP ‘ Micro Avg
Complex

GPT-4 47.3% 66.5% 14.6% 35.8% 49.34%
Qwen3-32B 83.5% 70.7% 27.0% 76.0% 57.68%
DeepSeek-R1-671B 94.8% 95.9% 51.2% 93.8% 78.15%
Ours ‘ 93.5% 95.9% 55.6% 87.6% ‘ 76.48%

Method | ComplexOR IndustryOR ~ OptiBench  OptMATH |Macro Avg
GPT-4 9.5% 28.0% 62.8% 16.6% 35.14%
Qwen3-32B 33.3% 21.0% 56.0% 13.86% 47.67%
DeepSeek-R1-671B 72.2% 47.0% 70.7% 43.4% 71.13%
Ours 72.2% 38.0% 69.3% 36.8% 68.61%

Table 6: Comparison of the SA metric against Multi-Agent Methods.

Method | NL4Opt NLP4LP ComplexOR | Micro Avg Macro Avg
Reflexion 53.0% 46.3% 19.1% 48.45% 39.47%
Chain-of-Experts | 64.2%  53.1% 38.1% 57.76% 51.80%
OptiMUS 78.8%  72.0% 66.7% 75.00% 72.50%
Ours ‘ 93.5% 87.6% 72.2% ‘ 89.80% 84.43%

D.1.3 Detailed Ablation Studies on Key Components
As detailed in §3.3, our primary ablation study confirmed the critical, synergistic roles of the Ex-

tractor (£) and Solver (S). To further dissect the framework’s performance gains, we conducted an
additional ablation study on the individual components of our multi-part reward function.
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Table 7: Ablation study on the impact of re-
ward components on SA.

Method | NL4Opt NLPALP ComplexOR

Ours (Full) | 93.5% 87.6% 72.2%
w/0 Rsim 78.6%  73.4% 58.5%
w/o Rsemn | 602%  57.9% 39.2%
w/0 Reonstr | 55.8%  52.1% 34.6%
w/o Rformat | 51.3%  48.5% 30.1%

The results, summarized in Table 7, reveal a clear hierarchy of importance among the reward com-
ponents. The format reward is the most critical; its absence leads to malformed text and frequent
compilation errors, severely undermining performance. The constraint reward and semantic reward
are the next most critical, as their removal results in models that are either logically flawed due to
incorrect constraints or solve an entirely different problem due to a wrong objective function. Fi-
nally, the similarity reward addresses more subtle logical errors, such as variable confusion; while
its removal is less catastrophic, it remains essential for fine-tuning the model’s accuracy.

D.1.4 Generalization Assessment Across Diverse Tasks

This experiment evaluates the performance of MURKA-aligned LLaMa3-8B (Ours) against native
LLaMa3-8B on seven tasks using the eval-harness [Gao et al., 2024], with accuracy as the metric
(except for WMT14, which uses BLEU score). The MURKA-aligned model slightly outperforms na-
tive LLaMa3-8B on most tasks but shows minor declines on XNLI and WMT14. Overall, MURKA
does not significantly degrade performance across a wide range of tasks.

Table 8: Performance comparison of MURKA and LLaMa3-8B across seven
tasks, measuring accuracy (except WMT 14, which uses BLEU score).

Method ‘GSMSK XNLI TruthfulQA ToxiGen MMLU QQP WMTI14

LLaMa3-8B | 76.48% 44.76%  54.09%  43.19% 68.00% 42.80% 36.81
Ours 78.86% 43.95%  54.56%  43.40% 68.01% 48.76% 36.52

A | +2.38% -0.81% +0.47%  +0.21% +0.01% +5.96% -0.29

D.1.5 Evaluation of MURKA on Smaller-Scale Models

This experiment aligns LLaMa-8B and LLaMa-3B models using the MURKA framework and eval-
uates their performance on four benchmarks: NL4Opt, Mamo Easy, NLP4LP, and OptiBench, with
ER and SA as metrics. Results, shown in Table 9, indicate that MURKA performs better on LLaMa-
8B. Model scale has a greater impact on SA than ER, particularly in complex tasks. We recommend
prioritizing larger models when resources permit to enhance performance.

Table 9: The SA and ER compared to the smaller-scale models.

Metrics ‘ ER SA ‘ ER SA ‘ ER SA ‘ ER SA
Method | NL4Opt | MamoEasy | NLPALP | OptiBench
LLaMa-8B 100.0% 93.5% | 100.0% 95.9% |100.0% 87.6% |91.4% 69.3%
LLaMa-3B 96.1% 77.0% | 96.9% 83.7% | 95.0% 76.5% |90.6% 48.1%

A 39% -16.5%| -3.1% -122% | -5.0% -11.1% | -0.8% -21.2%

D.2 Train Dataset Construction and Augmentation

To construct a high-quality dataset for optimization problems, we systematically curated data, en-
suring a balanced representation of scenarios and problem types, as detailed in Table 10 and Ta-
ble 11. From the test set, we randomly sampled 20% of the instances, stratified by scenarios and
types, to serve as the foundation for knowledge distillation and data synthesis. Initially, we utilized
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Table 10: The scenarios of the benchmarks.

Scenarios ‘ NL4Opt  Mamo Easy Mamo Complex IndustryOR  NLP4LP  ComplexOR OptiBench OptMATH

Agriculture ] []30 0 s 0 s [ 4 0 [ s6 0
Energy 0 s []33 0 7 | 1 0 s 0 0 2 0 s

Health ¥ e C: D& |
Rl 0w [ ¥ Ow Oa 01 Ow» [0 s
Environment 0 s [ ko 0 0 0 o 0 [ 12 0
Education 1 3 3 0 0 3 1 3 0 I o 0
Financial Services | [] g [ 36 | 2 0 e 0 6 0 0 21 0 s
Tansporation | [31]  [@] 3] s Tl
Public Utilities | [ 4 []2 0 u 0 I 4 0 1 0 13 12
Manufacturing 0 s [ a5 ] [ e 1 [ 6 | [230 ] [ 57|
Software | 1 0 0 1w 1 | 1 01 | s I 2
Construction I 3 5 | 1 1 1 3 0 0 26 0
Legal 0 0 0 0 0 0 0 0
Customer Service 0 | 2 0 0 | 1 0 | 3 0
Entertainment | [| 4 [ 0 0 0 6 0 | 6 0
Others I 4 100 | 1 0 s 1 4 0 0 29 (Y
Sum ‘ 230 652 211 100 242 18 605 166
Table 11: The optimization types of the benchmarks.

Types \ NL4Opt ~ Mamo Easy Mamo Complex IndustryOR ~ NLP4LP  ComplexOR OptiBench  OptMATH
Lp |2 [ % [ b6 [ 6] 0 u
P [ 23 0 n (] n 0 n a1 0 0 2
MIP IEE a2 ] [ 48] & | [mo ] [ s ] 0
NP 0 0 I 2 0 ] 26 0 [ 183 0 o
co 0 0 Oo DOw [ 0 0

MOP o 0 0 0 s 0 0 0 0

SOCP 0 0 0 0 0 0 0 0 1w

Others | 1 0 [ bs [ s 0 0 0 0
Sum ‘ 230 652 211 100 242 18 605 166

powerful inference models, such as DeepSeek-R1 and Qwen3-235B, as teacher models to generate
seed data. These models performed reasoning-based analysis on the sampled problems, producing
Problem-AMPL pairs, which map optimization problems to their AMPL formulations. To expand
the diversity of scenarios, types, and data, we applied data augmentation techniques, leveraging
prompt engineering and domain-expert input to refine and enrich the seed dataset while ensuring
correctness of the AMPL formulations.

The augmented Problem-AMPL pairs were then solved using the Gurobi optimizer. We iteratively
refined the AMPL models based on solver logs, adjusting formulations within a fixed number of iter-
ations until successful convergence was achieved. Finally, information is extracted through prompt
engineering and domain experts. Valid Problem-AMPL pairs were retained as the final output of
this stage. Through this distillation and augmentation process, we generated a training dataset com-
prising 3,602 instances, ensuring complete separation between training and test sets to prevent data
leakage. This dataset serves as a robust resource for training optimization models, with diverse
scenarios and problem types reflective of real-world benchmarks.

D.3 Computational Resources and Training Configuration

To solve the optimization model, we use Gurobi 12.0.1 [Gurobi Optimization, LLC, 2025]. The
training of MURKA’s extractor (£) and solver (S) components was conducted on a single GPU,
leveraging its 24 GB of VRAM. The solver’s longer training time and higher computational cost
are attributed to its larger maximum sequence length and distinct hyperparameters, as detailed in
Table 12. During inference, MURKA requires approximately 16 GB of VRAM (using FP16 preci-
sion), and the Gurobi solver runs on the CPU with a peak RAM usage of around 40 GB for the most
complex cases.
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When comparing computational costs, direct latency comparison with baselines like Chain-of-
Experts is challenging, as they rely on API calls to closed-source models (e.g., GPT-4), making
their performance subject to network variability and external load. Therefore, we advocate using
token consumption as a more stable and equitable metric for cost, directly reflecting both API ex-
penses and computational workload. Under this metricc MURKA is dramatically more efficient,
reducing token usage by over 20x compared to Chain-of-Experts and also outperforming other
learning-based methods. This provides strong, concrete evidence for the scalability and efficiency
of our framework.

Table 12: Hyperparameter Configuration for Extractor and Solver.
Model |Epoch Batch LearningRate LoRA_R Max_Length WarmUp Ratio Weight Decay Adam Beta

& 25 16 Se-6 16 1024 0.1 0.1 0.9
S 15 32 Se-5 8 3072 0 0 0.9

E Prompt template

E.1 Information Extraction

input_variables = ["question"],

nn

template =

You are a professional optimization problem analyst, proficient in extracting key ele-
ments from optimization problems described in natural language.

Your task is to accurately output the sets, parameters, variables, objective function, and
constraints in a specific format.

Ensure that the output is concise, professional, and meets the requirements.

Here is the specific description of the optimization problem:
{question}

Please extract the required information from the following optimization problem ac-
cording to the format below:

<Sets>
List the sets involved in the problem here. such as:
- set_name: description of the set

</Sets>

<Parameters>
List the parameters involved in the problem here. such as:
- parameter_name: description of the parameter

</Parameters>

<Variables>
List the variables involved in the problem here. such as:
- variable_name: description of the variable

</Variables>

<Objective>
Specify the objective function of the problem here. such as:
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Maximize/Minimize: objective function
</Objective>

<Constraints>

List the constraints existing in the problem here. such as:
- constraint_1

</Constraints>

nn

E.2 Code Generation

non

input_variables = ["question", "extracted_info"],
template = """
You are an optimization expert.

You should solve question step by step within specified label tags.

Solve the optimization problem and only output the complete AMPL model code
within <AMPL></AMPL>tags.

Problem: {question}
Extract Information: {extracted_info}

Ensure that the output strictly adheres to the correct AMPL syntax and structure for
model files.

nn

E.3 Knowledge Distillation

input_variables = ["Problem"]
template = """

The following is an operations research problem.

Problem description: {Problem}

Let’s solve it step by step:

step 1. Understand the problem

Please extract the key information for the optimization problem from the following
natural language description:

- Problem description: Provide a detailed description of the task or problem, including the

business background and the specific optimization goal.
- Decision variables: Identify the variables that need to be decided (e.g., quantity, time,
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allocation, etc.).

- Objective function: Clearly define the optimization goal (e.g., maximizing profit, minimiz-
ing cost, minimizing time, etc.).

- Constraints: List all the limiting conditions that affect decision-making (e.g., resource
constraints, time limitations, etc.).

step 2. Develop the mathematical model

Based on the analysis in step 1, construct the mathematical model:

- Decision variable symbols: Define each decision variable with a symbol and explain its
meaning.

- Objective function: Express the optimization goal with a mathematical formula.

- Constraints: List all constraints and express them with mathematical formulas, including
boundary conditions and other restrictions.

step 3. Implement the model in AMPL

Using the mathematical model developed in step 2, write the AMPL code:

- Declare variables: Define each decision variable and its value range.

- Objective function: Write the AMPL expression for the objective function.
- Constraints: Write the AMPL expressions for each constraint.

step 4. Output the AMPL code

Output the complete AMPL model code within <AMPL></AMPL>tags.

nn
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