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Abstract
We study the problem of distributional reinforce-
ment learning using categorical parametrisations
and a KL divergence loss. Previous work ana-
lyzing categorical distributional RL has done so
using a Cramér distance-based loss, simplifying
the analysis but creating a theory-practice gap.
We introduce a preconditioned version of the al-
gorithm, and prove that it is guaranteed to con-
verge. We further derive the asymptotic variance
of the categorical estimates under different learn-
ing rate regimes, and compare to that of classical
reinforcement learning. We finally empirically
validate our theoretical results and perform an em-
pirical investigation into the relative strengths of
using KL losses, and derive a number of action-
able insights for practitioners.

1. Introduction
The expected return is a core object in reinforcement learn-
ing, allowing for both the evaluation of an agent’s behaviour,
and providing a means of improving this behaviour (Sutton,
2018). The traditional approach to predicting the expected
return is to directly model it as a mean-prediction regression
problem. Distributional reinforcement learning algorithms
take a different approach, instead predicting the full proba-
bility distribution of the random return; the expected return
then emerges as a byproduct of this richer prediction. Agents
making use of distributional reinforcement learning have
enjoyed a variety of empirical successes (Bellemare et al.,
2017; Hessel et al., 2018; Yang et al., 2019; Bodnar et al.,
2020; Wurman et al., 2022).

In particular, categorical distributional reinforcement learn-
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ing methods cast the return distribution prediction problem
as one of classification. These methods have proven perfor-
mant in a variety of large-scale settings.

Theoretical convergence analysis has also been established
for categorical dynamic programming, and categorical
temporal-difference learning using the Cramér loss (Row-
land et al., 2018; Boeck & Heitzinger, 2022; Peng et al.,
2024). However, most large-scale implementations of cate-
gorical temporal-difference learning use a KL loss, rather
than Cramér loss. This is a crucial detail of large-scale im-
plementations, but has not yet been theoretically analysed.

In this work, we study categorical temporal-difference learn-
ing with KL loss (KL-CTD) as a fundamental tabular al-
gorithm for reinforcement learning in its own right. In
Section 3, we present several empirical examples of intrigu-
ing behaviour of KL-CTD in comparison to classical TD
learning, motivating our study. We then go on in Section 4
to establish a connection between KL-CTD and distribu-
tional dynamic programming algorithms, which allow us
to characterise the long-term behaviour of KL-CTD condi-
tional on its convergence. In Section 5, we study the ques-
tion of convergence, and introduce a novel preconditioned
variant of KL-CTD. We then provide theory on the finer-
grained asymptotic fluctuations of value function estimates
produced by KL-based categorical distributional algorithms
in Section 6. Our results provide a variety of hypotheses
about the behaviour of KL-CTD, when we should expect
it to perform well relative to classical TD, and intuition on
how to set hyperparameters such as learning rate. We then
validate these hypotheses in a variety of experiments.

2. Background
We consider a Markov decision process (Puterman, 2014;
Sutton, 2018) with finite state space X , action space A,
transition matrix P ∈ RX×A×X , reward kernel R :
X × A → P(R), and discount factor γ. We as-
sume a fixed policy π : X → P(A), which gives
rise to the policy transition matrix Pπ ∈ RX×X (where
Pπ(x′|x) =

∑
a∈A π(a|x)P (x′|x, a)) and the policy re-

ward kernel Rπ : X → P(R) (where Rπ(x) =∑
a∈A π(a|x)R(x, a)). The policy π induces a distri-
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bution over trajectories (Xt, At, Rt)t≥0, where for every
t ≥ 0 we have At ∼ π(· |Xt), Rt = R(Xt, At), and
Xt+1 ∼ P (· |Xt, At). The agent’s performance is summa-
rized by the discounted return

∑
t≥0 γ

tRt. We use Gπ(x)
to denote the random return when generating actions accord-
ing to π and beginning the trajectory in state X0 = x, and
write ηπ(x) for the distribution of this random variable. The
expected return across trajectories is the value function

V π(x) = E
[
Gπ(x)

]
;

estimating this quantity is central to value-based RL.

2.1. Value estimation

The Monte Carlo (MC) approach to estimating V π performs
online regression against sample returns from trajectories.
More precisely, we maintain an estimate V ∈ RX of the
value function V π , and given a return G ∼ ηπ(x) generated
by following π from an initial state x, we perform the update

V (x)← V (x) + α (G− V (x)) , (1)

where α > 0 is a step size parameter.

Temporal-difference (TD) methods utilize bootstrapping in
place of sample returns from completed trajectories. More
precisely, having observed a sample transition (x,R,X ′)
generated by following the policy π, the full sample of the
return G in the MC update of Equation (1) is replaced with
a bootstrap estimate r + γV (X ′), the intuition being that if
V ≈ V π, then E[R + γV (X ′)] ≈ E[G]. This leads to the
TD update equation

V (x)← V (x) + α (R+ γV (X ′)− V (x)) . (2)

Temporal-difference learning can deliver several benefits rel-
ative to MC estimation, such as reduced variance in regres-
sion targets, as well as the ability to learn from individual
transitions rather than requiring full trajectories.

2.2. Categorical distributional reinforcement learning

As opposed to classical value-based RL algorithms that
focus solely on estimating the expected return of a pol-
icy, distributional reinforcement learning algorithms learn a
parametrized approximation of the return distributions, i.e.,
ηπ(x) = Dist(Gπ(x)), for each x ∈ X .

Various families of distributional RL algorithms have been
proposed, making use of distinct parametric families of re-
turn distributions (Morimura et al., 2010b; Dabney et al.,
2018). A popular class of methods are based on categori-
cal parametrizations (Bellemare et al., 2017), in which the
distributions (ηπ(x) : x ∈ X ) are approximated through
categorical distributions of the form

η(x) =
∑m

i=1 pi(x)δzi , (3)

where z1, . . . , zm ∈ R are fixed locations, and ((pi(x))
m
i=1 :

x ∈ X ) are learnable probability parameters. Throughout
this paper, we will consider the case where each vector
(pi(x))

m
i=1 is parametrized via a vector of logits ϕ(x) ∈ Rm,

writing pϕ(x) = softmax(ϕ(x)) (Bellemare et al., 2017).

Categorical MC estimation. The categorical counterpart
to the Monte Carlo update in Equation (1) is based on the
idea of regressing the distribution η(x) =

∑m
i=1 pi(x)δzi

towards the empirically observed δG. In practice, we typ-
ically have G ̸∈ {z1, . . . , zm}, and so the KL divergence
between δG and η(x) is infinite. To circumvent this issue,
the outcome G is first mapped to a two-hot distribution as
illustrated in Figure 1 (Bellemare et al., 2017; Schrittwieser
et al., 2020), producing the projected target distribution∑m

i=1 hi(G)δzi . (4)

The precise definition of the (hi)
m
i=1 functions defining the

probability masses in Equation (4) is given by

hi(z) = max

(
0,min

(
z − zi−1

zi − zi−1
,
zi+1 − z

zi+1 − zi

))
for 2 ≤ i ≤ m− 1, and special edge cases

h1(z) = min

(
1,max

(
0,

z2 − z

z2 − z1

))
,

hm(z) = min

(
1,max

(
0,

z − zm−1

zm − zm−1

))
,

which account for “clipping” outcomes that occur outside
of the interval [z1, zm] to the endpoints.

Figure 1. Projection of the outcome G onto a distribution over the
support set {z1, . . . , zm}.

The categorical Monte Carlo (CMC) update, in analogy
with the Monte Carlo update in Equation (1), can then be
defined as

ϕ(x)← ϕ(x)− α ∇ϕKL(h(G) || pϕ(x)) , (5)

where we write h(G) = (hi(G))mi=1 for the vector of two-
hot probabilities corresponding to the outcome G.

Categorical TD learning. Just as in the case of value
estimation described in Section 2.1, the CMC update can
be modified to allow for learning from individual sample
transitions (x,R,X ′). As with classical TD learning, the
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sampled return G is replaced by a bootstrapped equivalent.
Here, the random return G is approximated by R + γZ ′,
with Z ′ sampled from the categorical approximation η(X ′)
to the return distribution at state X ′. Setting up the KL
gradient update as in Equation (5) for these bootstrapped
samples, averaging according to the probability of sampling
Z ′ = zi for i = 1, . . . ,m, then yields the following update:

ϕ(x)← ϕ(x)− α

m∑
i=1

pϕi (X
′)× (6)

∇ϕKL(h(R+ γzi) || pϕ(x)) .

This is the categorical temporal-difference (CTD) learning
update, proposed by Bellemare et al. (2017). This update
forms a core component of many deep reinforcement learn-
ing agents utilizing distributional RL (Bellemare et al., 2017;
Hessel et al., 2018). Our principal goal in this paper is to
consider categorical temporal-difference learning as a fun-
damental, complementary approach to value prediction, and
to understand its relative strengths and weaknesses as com-
pared to classical TD learning.

The Cramér-CTD update. While the CTD update in Equa-
tion (6) has not previously been analysed, Rowland et al.
(2018) prove convergence of an alternative version of cate-
gorical temporal-difference learning that performs a mixture
update on probabilities directly, given by:

p(x)← p(x) + α

(∑m
i=1 pi(X

′)h(R+ γzi)− p(x)

)
.

We refer to this variant as Cramér-CTD, due to the fact that
it can be derived through the use of the Cramér distance
(Cramér), rather than the KL, as a loss, and refer to the
update in Equation (6) as KL-CTD, in contrast.

3. Motivation for the study of KL-CTD
Before beginning our analysis, we pause to motivate the
study of KL-CTD, despite existing work studying Cramér-
CTD (Rowland et al., 2018) and proving its equivalence to
TD-learning in the tabular setting (Lyle et al., 2019). We
will show unlike Cramér-CTD, KL-CTD has notable algo-
rithmic differences to TD-learning, and understanding these
differences is consequential as KL-CTD is the foundation
of many performant deep RL algorithms (Bellemare et al.,
2017; Hessel et al., 2018; Farebrother et al., 2024).

We present an example of learning curves for TD, Cramér-
CTD, and KL-CTD on a particularly-chosen environment
(see Appendix G) in Figure 2. Learning rates were tuned
independently for each algorithm. The curves for TD and
Cramér-CTD are perfectly overlapped, as predicted by Lyle
et al. (2019). Further, KL-CTD exhibited significantly dif-
ferent learning dynamics, achieving a much better value
MSE on this particular MDP.

100 101 102 103

Iteration

100
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Figure 2. Mean-squared error of TD, Cramér-CTD, and KL-CTD
with tuned learning rates.
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Figure 3. Value function dynamics of KL-CTD on a 2-state MDP.

Another striking difference of KL-CTD is the behaviour of
its mean estimates. In particular, as a result of the loss being
optimized is the KL divergence, which generally does not
correspond to an improvement in the mean estimate. For
probability measures P,Q supported on [a, b] with means
µP , µQ we always have that

|µP − µQ| ≤ (b− a)
√

2KL(P ∥Q),

so that optimizing the KL divergence will eventually op-
timize the mean estimate, however this is not guaranteed
at each step. In the Monte Carlo setting, in expectation
and under a suitable learning rate, the value error of the
MC estimate is guaranteed to decrease at each step (see
Appendix A). In contrast, we find the value error of the
categorical Monte Carlo estimates may behave erratically
as seen in Figure 3, entirely due to the dynamics optimizing
the KL divergence.

4. A linear-algebraic perspective on KL-CTD
We begin by developing a deeper understanding of the KL-
CTD update rule in Equation (6), and establishing connec-
tions with existing dynamic programming algorithms.
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Proposition 4.1. The expected KL-CTD update can be ex-
pressed via matrix-vector multiplication as

ϕ← ϕ+ α(Tπ − I)pϕ , (7)

where we interpret ϕ and pϕ as |X |×m-dimensional vectors,
and where Tπ is the categorical distributional Bellman
operator (Rowland et al., 2018; Bellemare et al., 2023;
Rowland et al., 2024), given by

Tπ(x, i; y, j) = Pπ(y |x)ER∼Rπ(x)[hi(R+ γzj)] .

The connection that Proposition 4.1 establishes to the cate-
gorical distributional Bellman operator is important because
a rich convergence theory exists for this operator (Rowland
et al., 2018). Intuitively, repeated application of the opera-
tor Tπ to any initial collection of categorical probabilities
p ∈ RX×m results in convergence to a collection of proba-
bilities p̃π such that the associated categorical distributions

η̃π(x) =
∑m

i=1 p̃
π
i (x)δzi

form close approximations to the true return distributions
ηπ(x). We recall the precise results required in the remain-
der of the paper below.

Proposition 4.2 (Rowland et al., 2018). The mapping Tπ :
∆X

m → ∆X
m is a contraction with respect to the norm ∥ · ∥

defined by

∥p∥ = max
x∈X
∥Cp(x)∥2 , (8)

where ∥ · ∥2 is the standard Euclidean norm, and C is the
lower-triangular matrix with Cij = 1 if i ≥ j, and Cij = 0
otherwise. More precisely, for any p, q ∈ ∆X

m, we have

∥Tπp− Tπq∥ ≤ √γ∥p− q∥ .

As a result, Tπ has a unique fixed point p̃π ∈ ∆X
m. Writing

η̃π ∈P(R)X for the corresponding distributions, so that

η̃π(x) =
∑m

i=1 p̃
π
i (x)δzi ,

we have that if [z1, zm] contains all possible returns in
the environment, η̃π(x) has the same mean as ηπ(x), and
moreover,

ℓ22(η̃
π(x), ηπ(x)) ≤ zm − z1

(m− 1)(1− γ)
,

where ℓ2 is the Cramér distance (Cramér; Székely, 2003;
Székely & Rizzo, 2013), defined by

ℓ2(ν, ν
′) =

(∫
R
(Fν(t)− Fν′(t))2 dt

)1/2

,

and Fν , Fν′ are the CDFs of ν, ν′, respectively.

Interestingly, the form of Equation (7) shows that the (ex-
pected) KL-CTD updates are linear in probability space,
and the nonlinearity of the updates is entirely due to the
softmax transformation of the logits. We believe that this
perspective may be interesting in its own right, as this form
of nonlinearity is quite distinct from other nonlinear distribu-
tional algorithms, such as quantile-based. As a result of this
connection between KL-CTD and dynamic programming,
we conclude the following result.
Proposition 4.3. The only stationary point of expected up-
date in Equation (7) is the fixed point p̃π of Tπ .

Therefore, if KL-CTD converges to a stationary point, it
must converge to p̃π, and it thus produces accurate esti-
mates of return distributions (with error as stated in Propo-
sition 4.2), and if the support {z1, . . . , zm} is correctly se-
lected to include all possible returns, then its mean predic-
tions at convergence are exact. This is our first important
finding: although the transient mean dynamics of KL-CTD
may deviate significantly from those of classical TD (as
shown in Section 3), at convergence it produces exact pre-
dictions, in contrast to other distributional approaches such
as quantile TD (Dabney et al., 2018; Rowland et al., 2023).

5. Asymptotic convergence and preconditioned
KL-CTD

We now turn our attention to questions of convergence for
categorical algorithms using KL divergence.

5.1. Categorical Monte Carlo

The categorical MC update is straightforwardly analysable,
as the following proposition shows.
Proposition 5.1. If G ∼ ν, then the CMC update appearing
in Equation (5) is a stochastic gradient for the objective
KL(EG∼ν [h(G)] || pϕ), which is convex in ϕ.

Stochastic gradient descent on convex objectives is well-
behaved theoretically (Bottou et al., 2018), and under mild
conditions, it follows that iterative CMC updates with inde-
pendent samples results in pϕ converging.

5.2. KL-CTD and preconditioning

Next, we consider the KL-CTD algorithm. In Section 2, we
motivated this algorithm as a variant of CMC that introduces
bootstrapping, a central idea in RL where the algorithm’s
own predictions are used as targets. Bootstrapping means
that the algorithm updates can no longer be interpreted as
stochastic gradient descent, and the question of whether
such an algorithm converges is therefore more subtle.

A heuristic argument for preconditioning. A natural
question is whether the expected updates of KL-CTD still
act to reduce a quantity such as

∑
x∈X KL(p̃π(x) || pϕ(x));
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such an observation would form the basis of a proof of
convergence for KL-CTD. However, this does not in fact
hold in general; we give a numerical example in Appendix A
(although we emphasize that this doesn’t imply that KL-
CTD does not converge). The issue stems from the fact that
the expected change in this quantity is

α
∑
x∈X

⟨∇ϕKL(p̃π(x) || pϕ(x)), Tπpϕ(x)− pϕ(x)⟩+O(α2)

=α⟨pϕ − p̃π, Tπpϕ − pϕ⟩+O(α2) .

In general, the inner product appearing above may be pos-
itive, leading to an increase in the summed KLs. This is
due to the fact that Tπ may be strictly expansive in the ℓ2

norm on return PMFs. However, the background theory
in Proposition 4.2 shows that Tπ exhibits contractive be-
haviour in a weighted norm. This motivates preconditioning
the KL-CTD update with a matrix that incorporates this
weighting factor, so that expected updates under this new
preconditioned rule reduce a KL-like measurement to p̃π by
construction. We introduce this new algorithm below.

Definition 5.2. Given logits ϕ ∈ RX×m parametrising cat-
egorical approximations of return distributions as in Equa-
tion (3), and an observed transition (x,R,X ′), the precon-
ditioned KL categorical temporal-difference learning (PKL-
CTD) update is defined by

ϕ(x)← ϕ(x)− α

m∑
i=1

pϕi (X
′)× (9)

C⊤C∇ϕKL(h(R+ γzi) || pϕ(x)) .

We explore the empirical performance of this update in
Section 7; in the remainder of this section, we now inves-
tigate its convergence properties, describing how to make
the motivation intuition above precise. Our proof of conver-
gence follows the Robbins-Siegmund theorem (Robbins &
Siegmund, 1971) and a chaining argument (Thakoor et al.,
2022); to understand the dynamics of the random updates
in Equation (9), we first analyse the dynamics of the corre-
sponding expected updates. By following Proposition 4.1,
we obtain an expression for the expected PKL-CTD update
in terms of the operator Tπ:

ϕk+1(x) = ϕk(x) + αC⊤C ((Tπ − I) pϕ)(x) . (10)

We then establish two results that are key in establishing
the convergence of PKL-CTD. The first establishes a new
weighted contraction property for Tπ, mirroring analysis
undertaken by Wu et al. (2023) in the case of 1-Wasserstein
distance.

Proposition 5.3. The mapping Tπ : ∆X
m → ∆X

m is a con-
traction with respect to the norm ∥ · ∥π: for any p, q ∈ ∆X

m,
we have

∥Tπp− Tπq∥π ≤
√
γ∥p− q∥π ,

where ∥ · ∥π is the norm defined by ∥p∥π =∑
x∈X dπ(x)∥Cp(x)∥2

Next, we establish that a weighted sum of KLs between
the CDP fixed-point p̃π and the approximation pϕ must
strictly decrease when pϕ is updated with the continuous-
time dynamics associated with Equation (10).

Proposition 5.4. The continuous-time dynamics of Equa-
tion (10) converges, and a Lyapunov function for its conver-
gence is

L(ϕ) =
∑
x∈X

dπ(x)KL
(
p̃π(x) ∥ pϕ(x)

)
, (11)

where dπ is the stationary distribution of the policy π.

With these results, we are now ready to state the central con-
vergence theorem for PKL-CTD, in the case of synchronous
updates. We discuss the generalization to the asynchronous
updates setting in Appendix A.3.

Theorem 5.5. Suppose that (ϕk)k≥0 is a sequence of logits
generated according to synchronous PKL-CTD updates.
That is, for each k ≥ 0, we have independent transitions
(x,Rx

k , X
x
k ) such that

ϕk+1(x) = ϕk(x) + αk×

C⊤C

(
m∑
i=1

pϕk

i (Xx
k )h(R

x
k + γzi)− pϕk(x)

)
.

Further suppose that the stepsizes (αk)k≥0 satisfy
the Robbins-Munro conditions

∑∞
k=0 αk = ∞ and∑∞

k=0 α
2
k < ∞. Then we have that ϕk converges in the

sense that pϕk(x)→ p̃π(x) for every x ∈ X almost surely.

6. Analysis of value estimates
We now perform a theoretical investigation into the algo-
rithms considered and introduced, and their efficacy as value
estimates. We consider both Monte Carlo (Section 6.1)
and TD (Section 6.2) settings, and these analyses yield
theoretically-motivated insights for practitioners.

6.1. Monte Carlo setting

We begin by examining the Monte Carlo methods. For the re-
sults in this section, we will write (Vk)k≥0 and (ϕCMC

k )k≥0

for sequences of iterates generated by following Equa-
tion (1), Equation (5), respectively. Further, we will con-
sider a Monte Carlo variant of PKL-CTD (preconditioned
CMC; PCMC), defined by replacing the bootstrap samples
in Equation (9) with a Monte Carlo sample G, yielding the
update

ϕ(x)← ϕ(x)− αC⊤C∇ϕKL(h(G) || pϕ(x)) . (12)
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We write (ϕPCMC
k )k≥0 for the sequence of iterates gener-

ated by following Equation (12). The stationary points for
both CMC and PCMC are any logits such that the induced
probabilities are equal to ΠCη

π(x) = EG∼ηπ(x)[h(G)] at
each state, which we will refer to as η̆π(x).

The categorical estimates are used to produce value esti-
mates given by

V CMC
ϕk

(x) = z⊤pϕ
CMC
k (x), V PCMC

ϕk
(x) = z⊤pϕ

PCMC
k (x),

where z = (zi)
m
i=1 ∈ Rm is the vector of locations.

The following proposition establishes convergence proper-
ties for the decreasing step size case; the analysis builds on
core results on asymptotic fluctuations in stochastic approx-
imation theory (Borkar, 2008).
Proposition 6.1. Suppose the iterates (Vk)k≥0,
(ϕCMC

k )k≥0, and (ϕPCMC
k )k≥0 were produced using

step size αk = α0k
−β for β ∈ (1/2, 1). Further suppose

that p̆πi (x) > 0 for each x, i ∈ X × [m]. Then we have that

kβ/2(Vk(x)− V π(x))
d→ N (0, σ2(x))

kβ/2(V CMC
ϕk

(x)− V π(x))
d→ N

(
0, 1

2z
⊤J(p̆π(x))2z

)
kβ/2(V PCMC

ϕk
(x)− V π(x))

d→ N
(
0, 1

2u(x)
⊤u(x)

)
,

where J(p) = diag(p)−pp⊤, u(x) = CJ(p̆π(x))z and σ2

is the variance of ηπ(x).

The technical assumption on positivity of p̆πi (x) avoids the
case of divergence of logits to ±∞. For both CMC and
PCMC, the form of the limiting variance may appear opaque.
However, we can note that the variance of the projected
return distribution p̆π(x) is given by∑

piz
2
i −

(∑
pizi

)2
= z⊤

(
diag(p̆)− (p̆π)(p̆π)⊤

)
z

= z⊤J(p̆π)z,

where we write pi = (p̆π(x))i for clarity. Hence the limit-
ing variance of categorical Monte Carlo at a state x differs
from the variance of p̆π(x) by a multiplication of J(p̆π(x))
in the quadratic form. We can now isolate two sources of dif-
ference between the limiting variance of CMC and MC: the
difference due to the extra multiplication of J(p̆π(x)), and
the difference between the variance of the return distribution
ηπ(x) and the variance of the projected return distribution
p̆π(x). We begin by analyzing the former, and demonstrate
that the extra factor of J(p̆π(x)) produces a quantity which
is strictly smaller than the variance, yet still continuous with
respect to the variance.
Proposition 6.2. Suppose p = (pi)

m
i=1 is a collection of

probabilities associated to the locations z = (zi)
m
i=1, and

let the variance of this categorical distribution be σ2. Then
there exists β depending only on p such that

βσ2 < z⊤J(p)2z < σ2.

We next consider the second differentiator, that is the differ-
ence of the variances due to the Cramér projection.

Proposition 6.3. Suppose ν is a probability measure whose
support is contained in [a, b], and VarZ∼ν(Z) = σ2. Let
a = z1, . . . , zm = b be m equally spaced points, Then we
have

VarZ∼ΠCν(Z) = σ2 + E(ν) ≥ σ2,

where 0 ≤ E(ν) ≤ (b−a)2

4(m−1)2 is a quantity capturing the
amount of projection in the map ν 7→ ΠCν.

Proposition 6.3 indicates that the projection increases the
variance incurred, but the amount of this increase is upper
bounded by (b−a)2

(m−1)2 . This suggests that both (i) choosing
the interval [a, b] as small as possible while still containing
the all possible returns (so as to not bias the mean estimate),
and (ii) increasing the number of locations will both lower
the asymptotic variance of CMC.

On the number of locations and learning rate. We now
consider the constant step size setting, and identify another
phenomenon which has important implications for practi-
tioners: the role of learning rate and number of locations are
jointly related in the learning process, and should be jointly
tuned. Concretely, we can write KL loss-based updates
(both MC and TD) in the form

ϕ← ϕ− αD∇ϕKL (T ∥ pϕ) , (13)

where D is a general preconditioner and T is a target dis-
tribution. The eventual mean estimate is then produced by
⟨pϕ, z⟩. The map ϕ 7→ pϕ is 1√

m
-Lipschitz (see Proposi-

tion A.1), meaning that an update of order α on ϕ results in
a change in the mean estimate of order α√

m
. Additionally,

the gradient appearing in Equation (13) is 1√
m

-Lipschitz,
so that as the number of locations increases, the loss land-
scape becomes proportionally flatter and larger step sizes
can be afforded. Based on these points, we suggest scal-
ing α by

√
m, as our analysis suggests that this allows for

transferable learning dynamics across different values of m.

6.2. Temporal-difference setting

We next turn to temporal-difference learning algorithms.
We will write (Vk)k≥0 for a sequence of value estimates
following Equation (2) and (ϕPCTD

k )k≥0 for a sequence of
logits following Equation (9), with associated value esti-
mates V PCTD

ϕk
. The following results allow us to compare

exact asymptotic variances for TD and PKL-CTD; the result
for TD is due to Wu et al. (2024), while the PKL-CTD result
is our own.

Proposition 6.4. (Wu et al., 2024) If the step sizes (αk)k≥0

are given by αk = α0k
−β , we have that

kβ/2(Vk(x)− V π(x))
d→ N (0, (A−1

π ΣTDA
−⊤
π )x),

6
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where we use the notation Aπ = I − γPπ and ΣTD is the
matrix E[zz⊤], z = (Rx+γV (X ′

x)−V (x) : x ∈ X ) where
the expectation is over sample transitions (x,Rx, X

′
x).

Proposition 6.5. If the step sizes (αk)k≥0 are given by
αk = α0k

−β , we have that

kβ/2(V PCTD
ϕk

(x)− V π(x))
d→ N

(
0, b⊤x ΣPCTD(x) bx

)
,

where bx = J(p̃π(x))z and ΣPCTD(x) is the unique solu-
tion Σ of the Lyapunov equation

A(Tπ − I)J(p)Σ + ΣJ(p)((Tπ)⊤ − I)A+AJ(p)A = 0

subject to Σmm = 0, where we write p = p̃π(x), A =
C⊤C, and Tπ as introduced in Proposition 4.1.

This result allows us to compare the exact asymptotic vari-
ances of TD and PKL-CTD, however the forms of their
variance are not as interpretable as the Monte Carlo setting.
In particular, the limiting variance does not have a closed
form, and must be solved for as the solution of a Lyapunov
equation. There is no equivalent result for KL-CTD as we
do not have a convergence guarantee, however, we can de-
rive the asymptotic variance conditioned on convergence
(see Proposition A.2).

7. Empirical evaluation
Having derived a number of theoretical insights into the
comparisons between the considered algorithms, in this sec-
tion we perform an empirical investigation to validate these
findings in practice, and to better understand the relative
strengths of TD, KL-CTD, and PKL-CTD in small-scale,
controlled experiments. Full details for replication are pro-
vided in Appendix G.

7.1. Empirical demonstration of theoretical results

In this section, we empirically validate the theory developed
in Section 6, as well as build intuition around the findings
and their practical implications.

Asymptotic Variance. We begin by considering the asymp-
totic variance results of Proposition 6.1. We empirically
validate the convergence in distribution of the normalized
value errors kβ/2(V CMC

ϕk
(x)− V π(x)) to its limit, and plot

empirical histograms of these errors across 10,000 indepen-
dent experiments in Figure 4. We find that after roughly 104

iterations the theoretical density becomes a good fit for the
empirical density.

Size of the support. Proposition 6.3 suggests that to mini-
mize the increased variance due to the categorical projection,
the support of the locations should be as small as possible
while still containing all possible returns. To empirically
study this effect, we consider an MDP with discount factor
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Figure 4. Comparison of theoretical and empirical normalized er-
ror distributions at different number of updates (N ) for categorical
Monte Carlo across 10,000 independent seeds.

γ = 0.5 and all reward distributions supported on [0, 1],
which ensures that all return distributions are supported on
[0, 2], and then sweep over possibilities for the final support
location zm, for a fixed number of support locations. We
display the results from this procedure in Figure 5. The
empirical results match our theoretical understanding: when
zm < 2, the approximate distribution cannot represent the
full range of outcomes, resulting in biased mean estimates.
Similarly, when zm > 2, more variance is present in the
Cramér projections, leading to value error.

Scaling with number of atoms. We next test our hypothesis

0 2 4 6 8 10
zm

10
2

10
1

M
S

E

z *
m

Figure 5. Value MSE against final support location for an environ-
ment where all return distributions are supported on [0, 2]. Each
instance is run across 1,000 independent seeds.
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Figure 6. Value MSE against learning rate for CTD instances
across varying number of locations. On the left no per-instance
learning rate scaling is applied, on the right the learning rate is
scaled by

√
m. Each instance is run across 200 independent seeds.

in Section 6.1 that the learning rate should be scaled by
√
m

in order to transfer across different numbers of atoms. To
do this, we run CTD on a fixed MDP a number of times
with different numbers of atoms, and for each number of
atoms we sweep over 40 different learning rates and plot
the MSE as a function of learning rate. We repeat this
procedure once more, but for each number of atom locations
m we scale the learning rates used by

√
m. We present the

result of these experiments in Figure 6. As was predicted
by the theory, we can see that without applying learning
rate scaling, larger number of support locations results in a
larger optimal unscaled learning rate, however after scaling
by
√
m, the optimal learning rate is similar across a wide

range of values of m.

Another phenomenon demonstrated in Figure 6 is the mono-
tonic decrease in MSE obtained as m increases. This
matches the behaviour predicted by the theory in Propo-
sition 6.3, as increasing the number of atoms for a fixed
support size minimizes the variance present in the Cramér
projection.

7.2. Tabular experimental suite

In this section, we follow Rowland et al. (2023) and compare
TD, KL-CTD, and PKL-CTD across a suite of MDPs with
varying stochasticity in the transitions and rewards. We con-
sider environments with deterministic transition structure
(“Cycle”), sparse stochastic transitions (“Garnet”; Archibald
et al., 1995), and dense stochastic transitions (“Dirichlet”),
and deterministic/Gaussian/t2-distributed rewards. For each
MDP we perform a learning rate sweep for all methods
over a fixed budget of 1,000 asynchronous updates with the
environment, and calculate the MSE of the value estimates
produced by the methods.

We present the results in Figure 7. In the deterministic do-
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Figure 7. Comparison of tabular TD, KL-CTD, and PKL-CTD on
environments with a variety of transition structures and rewards.

main (top-left), TD learning with a large learning rate is
clearly the preferable approach. In other domains, however,
there are benefits to using categorical approaches. In par-
ticular, in environments with high levels of reward noise,
KL-CTD is preferable, and PKL-CTD performs well in all
non-deterministic environments, indicating the benefits of
an algorithm motivated by convergence considerations. We
perform additional ablations over variations of the algo-
rithms in Appendix F.

8. Conclusion
In this paper, we have studied the fundamental proper-
ties of categorical temporal-difference learning with KL-
divergence. This has led us to propose a novel variant of
categorical distributional RL, PKL-CTD, which makes use
of preconditioning. We have proven convergence of PKL-
CTD, and moreover analysed asymptotic variance of a vari-
ety of Monte Carlo and temporal-difference learning algo-
rithms. These analyses have led to several practical insights,
including the relationship between optimal learning rates
and number of categories used in approximate distributions.
Natural directions for further research include finite-sample
analyses of KL-based categorical distributional algorithms.
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Impact Statement
This paper presents work whose goal is to advance funda-
mental reinforcement learning. There are many potential
societal consequences of our work, none which we feel must
be specifically highlighted here.
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APPENDICES
For convenience, we collect together the contents of the appendix:

• Appendix A contains several additional results referenced in the main text.

• Appendix B contains the proofs of results stated in Section 4.

• Appendix C contains the proofs of results stated in Section 5

• Appendix D contains the proofs of results stated in Section 6.

• Appendix E provides a summary of several areas of related work.

• Appendix F provides additional experimental results referenced in the main text.

• Appendix G contains full details for all experiments presented in the main paper.

A. Additional Results
A.1. Counterexample to KL as a Lyapunov function for KL-CTD

We construct a numerical example that shows that even in a single-state MDP, the KL divergence KL(p̃π(x) || pϕ(x)) need
not decrease under KL-CTD dynamics. The example is constructed as follows.

We take a single-state, single-action MDP, such that taking the action in the state leads to a self-transition. We take the
immediate reward to be 0.02644103, and discount factor to be 0.99. For the categorical support, we take 10 equally spaced
atoms between 0 and 100. We consider initial values for the logit vector given by

(1.88191424,−0.02041108,−1.2244804, 0.44203928, 0.71425795,
0.46704711, 0.09271942, 0.11709652,−0.32497122,−1.59718562) .

After taking a softmax, this yields initial categorical probabilities of approximately

(0.40581378, 0.06055603, 0.01816506, 0.09616057, 0.12624672,

0.09859566, 0.06780931, 0.06948262, 0.0446569, 0.01251333) ;

see Figure 8 for an illustration of these initial categorical probabilities p0, the target distribution Tπp0 under the categorical
distributional Bellman operator, and the fixed-point categorical probabilities p̃π .
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Figure 8. Left: The initial categorical probabilities p0. Center: The initial target probabilities, Tπp0. Right: The fixed-point categorical
probabilities, p̃π .

We simulate the cumulative effect of expected KL-CTD updates with small learning rate by numerically solving the flow

∂tϕt = (Tπ − I)pϕt ,

using the default scipy.integrate.solve ivp method (Virtanen et al., 2020). We plot KL(p̃π || pϕt) against the
ODE time t in Figure 9, and note that initially, the KL divergence increases, meaning it is not a Lyapunov function for the
KL-CTD dynamical system.
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Figure 9. Numerical illustration of the non-monotonicity of the KL divergence for KL-CTD dynamics.

A.2. Lipschitz coefficient of the KL gradient

Proposition A.1. The gradient ∇φKL(q || softmax(φ)) is Lipschitz with constant at most
√
m−1
m .

Proof. We note that ∇φKL(q || softmax(φ)) = softmax(φ) − q , and we also note the Jacobian of this is given by
J(softmax(φ)), where we use J(p) = diag(p)− pp⊤. We next recall the fact that a function being Lipschitz with constant
L is equivalent to all eigenvalues of its Jacobian being less than L at every point in its domain. We also recall the fact that
the Frobenius norm of a matrix upper-bounds its largest eigenvalue. We now consider

sup
φ∈Rm

∥J(pφ)∥F = sup
φ∈Rm

√√√√ m∑
i=1

(pφi )
2(1− pφi )

2 +
∑
i ̸=j

(pφi )
2(pφj )

2

≤
√

m− 1

m2
,

as the supremum is attained when J(softmax(φ)) is a uniform distribution. Combining with the previous results, this
implies that all eigenvalues of the Jacobian are upper bounded by

√
m−1
m , and we are complete.

Proposition A.2. Suppose the iterates (ϕCTD
k )k≥0 are generated by following Equation (6) with step size αk = α0k

−β for
β ∈ (1/2, 1), and moreover suppose that this sequence converges. Let us write V CTD

k = z⊤pϕ
CTD
k . Then we have that

kβ/2(V CTD
k (x)− V π(x))

d→ N (0, z⊤J(p̃π(x))ΣCTD(x)J(p̃
π(x))z),

where ΣCTD(x) is the unique solution of the Lyapunov equation

(Tπ − I)J(p̃π(x))Σ + ΣJ(p̃π(x))((Tπ)⊤ − I) + J(p̃π) = 0

subject to 1⊤Σ1 = 0.

Proof. We first show that the logits must converge to a unique point. From Proposition 4.3 we know that we must
have convergence to a ϕ⋆ such that pϕ⋆(x) = p̃π(x) for each x, which gives a 1-dimensional subspace of solutions
for each x. However we also know that at each state x the CTD update is orthogonal to 1, so that we must have
1⊤(ϕCTD

0 (x)− ϕ⋆(x)) = 0, which uniquely identifies ϕ⋆. Since under our assumption we have a convergent sequence to a
unique fixed point we satisfy the assumptions of Proposition D.1, which gives us that

kβ/2(ϕCTD
k (x)− ϕ⋆(x))

d→ N (0,ΣTD(x)),

where ΣTD(x)) is a solution of the Lyapunov equation

(Tπ − I)J(p̃π(x))Σ + ΣJ(p̃π(x))((Tπ)⊤ − I) + J(p̃π) = 0.

This equation admits a 1-dimensional subspace of solutions, however we know that there is no covariance in the direction
parallel to 1, so we can uniquely identify the solution through the constraint 1⊤Σ1 = 0. The remainder of the result now
follows directly from applying Proposition D.2 to the map ϕ 7→ z⊤pϕ, and we are complete.
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A.3. Extension to asynchronous PKL-CTD

Our convergence result in Section 5 focused on the case of asynchronous updates; here we discuss at a high-level how the
key details map onto settings with asynchronous updates. In particular, from a sequence of transitions (Xk, Rk, X

′
k)k≥0 we

compute a sequence of logits (ϕk)k≥0 given by

ϕk+1(x) = ϕk(x) + αk,x C
⊤C

(
m∑
i=1

pϕk

i (X ′
k)h(Rk + γzi)− pϕk(x)

)

for x = Xk, ϕk+1(x) = ϕk(x) for x ̸= Xk, and αk,x is a state-dependent stepsize.

In this setting, under certain assumptions on the step sizes and distribution of updated states (Xk)k≥0, the ODE becomes

∂tϕt(x) = c(x)C⊤C (Tπ − I)pϕt(x), (14)

where c(x) is a constant reflecting the relative update frequency of different states. It can be verified that these dynamics
converge, using a Lyapunov function argument similar to that of Proposition 5.4.

Proposition A.3. The ODE in Equation (14) converges, and a Lyapunov function for its convergence is

L(ϕ) =
∑
x∈X

dπ(x)

c(x)
KL(p̃π(x)∥pϕ(x))

Proof. Writing the right hand side of the ODE as f(ϕ), we can write out ⟨∇ϕL(ϕ), f(ϕ)⟩:

⟨∇ϕL(ϕ), f(ϕ)⟩ = −
∑
x∈X

dπ(x)

c(x)

〈
p̃π(x)− pϕ(x), c(x)C⊤C(Tπpϕ(x)− pϕ(x))

〉
= −

∑
x∈X

dπ(x)
〈
C(p̃π(x)− pϕ(x)), C(Tπpϕ(x)− pϕ(x))

〉
,

which becomes the same expression as in Appendix C.2, which is guaranteed to be negative.

A complete asynchronous convergence proof from here relies on the details on the sequence of transitions (Xk, Rk, X
′
k)

(e.g. if (Xk)k≥0 forms an ergodic Markov chain), and details on the step size sequence. Suitable results which can be used
as a basis to build upon can be found in Borkar (1998) and Borkar & Meyn (2000).

B. Proofs of results from Section 4
B.1. Proof of Proposition 4.1

Proposition 4.1. The expected KL-CTD update can be expressed via matrix-vector multiplication as

ϕ← ϕ+ α(Tπ − I)pϕ , (7)

where we interpret ϕ and pϕ as |X | ×m-dimensional vectors, and where Tπ is the categorical distributional Bellman
operator (Rowland et al., 2018; Bellemare et al., 2023; Rowland et al., 2024), given by

Tπ(x, i; y, j) = Pπ(y |x)ER∼Rπ(x)[hi(R+ γzj)] .

Proof. To begin, recall that the synchronous sample-based KL-CTD update takes the form

ϕ(x)← ϕ(x)− α
∑m

i=1 p
ϕ
i (X

x)∇ϕKL(h(Rx + γzi) || pϕ(x)) ,

where for each state x ∈ X , (x,Rx, Xx) is an independent transition sampled under π. Next, note that for a vector φ ∈ Rm

and distribution q ∈ ∆m, we have

∇φKL(q || softmax(φ)) = softmax(φ)− q .
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As a result, the expression for the update above can be rewritten as

ϕ(x)← ϕ(x) + α
∑m

i=1 p
ϕ
i (X

x)
(
h(Rx + γzi)− pϕ(x)

)
.

Now, taking an expectation over the random transition (x,Rx, Xx) yields

E
[ m∑

j=1

pϕi (X
x)(h(Rx + γzj)− pϕ(x)

]

=

m∑
j=1

∑
y∈X

Pπ(y|x)pϕj (y)ER∼Rπ(x)[h(R+ γzj)]− pϕ(x)

=

m∑
j=1

∑
y∈X

Pπ(y|x)ER∼Rπ(x)[h(R+ γzj)]p
ϕ
j (y)− pϕ(x)

=((Tπ − I)pϕ)(x) ,

as required.

B.2. Proof of Proposition 4.3

Proposition 4.3. The only stationary point of expected update in Equation (7) is the fixed point p̃π of Tπ .

Proof. At a stationary point, the expected update is 0. From Equation (7), the expected update (up to multiplication by the
learning rate α) takes the form (Tπ − I)pϕ, and thus the expected update being 0 implies Tπpϕ = pϕ. From the contraction
theory recalled in Proposition 4.2, Tπ has a fixed point, p̃π , and is also a contractive map on ∆X

m, so does not have any other
fixed points in ∆X

m. Thus, at a stationary point, we must have pϕ = p̃π , as required.

C. Proofs of results from Section 5
C.1. Proof of Proposition 5.3

Proposition 5.3. The mapping Tπ : ∆X
m → ∆X

m is a contraction with respect to the norm ∥ · ∥π: for any p, q ∈ ∆X
m, we

have

∥Tπp− Tπq∥π ≤
√
γ∥p− q∥π ,

where ∥ · ∥π is the norm defined by ∥p∥π =
∑

x∈X dπ(x)∥Cp(x)∥2

Proof. Let η, µ ∈ P(R)X . We follow the structure of the proof of contractivity of Tπ in the norm ∥ · ∥ described in
Proposition 4.2, and established by Rowland et al. (2018). Thus, we begin by observing that by identifying ∆m with
P({z1, . . . , zm}) via the map (pi)

m
i=1 7→

∑m
i=1 piδzi , the operator Tπ can be interpreted as the composition of the

distributional Bellman operator T π : P({z1, . . . , zm})X →P(R)X and the categorical projection ΠC : P(R)→P(R)
Rowland et al. (2018); see Bellemare et al. (2017); Morimura et al. (2010a); Chung & Sobel (1987) for earlier definitions
of the distributional Bellman operator in alternative forms. We define the π-averaged version of the Cramér distance (see
Proposition 4.2 as

ℓ
π

2 (η, η
′) =

∑
x∈X

dπ(x)ℓ2(η(x), η
′(x)) ,
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for all η, η′ : X →P(R). Then, arguing as in Rowland et al. (2018), we have

ℓ
π

2 (T πη, T πµ)2 =
∑
x∈X

dπ(x) ℓ2(T πη(x), T πµ(x))2

=
∑
x∈X

dπ(x) ℓ2

(∫
R

∑
X′∈X

(br,γ)#η(X
′)Pπ(dr,X ′ |x),

∫
R

∑
X′∈X

(br,γ)#µ(X
′)Pπ(dr,X ′ |x)

)2

≤
∑
x∈X

dπ(x)

∫
R

∑
X′∈X

Pπ(dr,X ′ |x) ℓ2 ((br,γ)#η(X ′), (br,γ)#µ(X
′))

2

= γ
∑
x∈X

dπ(x)

∫
R

∑
X′∈X

Pπ(dr,X ′ |x) ℓ2 (η(X ′), µ(X ′))
2

= γ
∑

X′∈X
dπ(X ′) ℓ2 (η(X

′), µ(X ′))
2

(a)
= γ ℓ

π

2 (η, µ)
2 .

Here, (a) follows from the invariance of dπ, as used in the argument of Wu et al. (2023) in the case of 1-Wasserstein
distance. Further, ΠC is a non-expansion in ℓ2 (Rowland et al., 2018), so together, we have that ΠCT π is a

√
γ-contraction

P({z1, . . . , zm}) with respect to ℓπ2 distance. Further, the map between ∆m and P({z1, . . . , zm}) is an isometry when
∆m is equipped with the metric that sets the distance between p, q ∈ ∆m to be ∥C(p − q)∥2, and P({z1, . . . , zm}) is
equipped with ℓ2. Hence, we recover that Tπ is a

√
γ-contraction on ∆X

m with respect to ∥ · ∥π , as required.

C.2. Proof of Proposition 5.4

Proposition 5.4. The continuous-time dynamics of Equation (10) converges, and a Lyapunov function for its convergence is

L(ϕ) =
∑
x∈X

dπ(x)KL
(
p̃π(x) ∥ pϕ(x)

)
, (11)

where dπ is the stationary distribution of the policy π.

Proof. We can note that the gradient∇ϕL(ϕ) is given by

∇ϕL(ϕ) =
∑
x∈X

dπ(x)(pϕ(x)− p̃π(x)).

Writing the right hand side of Equation (10) as f(ϕ), we can now write out ⟨∇ϕL(ϕ), f(ϕ)⟩:

⟨∇ϕL(ϕ), f(ϕ)⟩ = −
∑
x∈X

dπ(x)
〈
p̃π(x)− pϕ(x), C⊤C(Tπpϕ − pϕ(x))

〉
= −

∑
x∈X

dπ(x)
〈
C(p̃π(x)− pϕ(x)), C(Tπpϕ − pϕ(x))

〉
= −

∑
x∈X

dπ(x)
(
∥C(p̃π(x)− pϕ(x))∥22 − ⟨C(p̃π(x)− pϕ(x)), C(p̃π(x)− Tπpϕ(x))⟩

)
. (⋆)
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We can next note that∑
x∈X

dπ(x)
〈
C(p̃π(x)− pϕ(x)), C(p̃π(x)− Tπpϕ(x))

〉
(a)

≤
∑
x∈X

dπ(x)
∥∥C(p̃π(x)− pϕ(x))

∥∥
2

∥∥C(p̃π(x)− Tπpϕ(x))
∥∥
2

=
∑
x∈X

(
dπ(x)

1
2

∥∥C(p̃π(x)− pϕ(x))
∥∥
2

)(
dπ(x)

1
2

∥∥C(p̃π(x)− Tπpϕ(x))
∥∥
2

)
(a)

≤

(∑
x∈X

dπ(x)
∥∥C(p̃π(x)− pϕ(x))

∥∥2
2

) 1
2
(∑

x∈X
dπ(x)

∥∥C(p̃π(x)− Tπpϕ(x))
∥∥2
2

) 1
2

(b)

≤ √γ

(∑
x∈X

dπ(x)
∥∥C(p̃π(x)− pϕ(x))

∥∥2
2

) 1
2
(∑

x∈X
dπ(x)

∥∥C(p̃π(x)− pϕ(x))
∥∥2
2

) 1
2

=
√
γ
∑
x∈X

dπ(x)
∥∥C(p̃π(x)− pϕ(x))

∥∥2
2
,

where both inequalities marked (a) follow from the Cauchy-Schwarz inequality, and (b) follows from the contractivity
established in Proposition 5.3. This shows that the right hand side of (⋆) is strictly negative when p̂π ̸= pϕ,and hence we are
complete.

C.3. Proof of Theorem 5.5

Theorem 5.5. Suppose that (ϕk)k≥0 is a sequence of logits generated according to synchronous PKL-CTD updates. That
is, for each k ≥ 0, we have independent transitions (x,Rx

k , X
x
k ) such that

ϕk+1(x) = ϕk(x) + αk×

C⊤C

(
m∑
i=1

pϕk

i (Xx
k )h(R

x
k + γzi)− pϕk(x)

)
.

Further suppose that the stepsizes (αk)k≥0 satisfy the Robbins-Munro conditions
∑∞

k=0 αk =∞ and
∑∞

k=0 α
2
k <∞. Then

we have that ϕk converges in the sense that pϕk(x)→ p̃π(x) for every x ∈ X almost surely.

Proof. The high-level structure of the proof follows the classical Robbins-Siegmund theorem (Robbins & Siegmund, 1971),
using the fact that as established in Proposition 5.4, the function L in Equation (11) is a Lyapunov function for the associated
continuous-time dynamical system, and combining this with the supermartingale convergence theorem. We begin with
the assumption that dπ, a stationary distribution of π, has full support over the state space X . We will then treat the more
general case where this assumption does not hold by following the argument made in Thakoor et al. (2022), by making an
inductive chaining argument across the communicating classes of the Markov chain induced on X by π.

To begin, we perform a second-order Taylor expansion of the Lyapunov function L(ϕk+1) around ϕk, using Ek to denote
conditional expectation given the random variables defining the sequence (ϕl)0≤l≤k, and pk to denote pϕk :

Ek

[
L(ϕk+1)

]
= Ek

[
L(ϕk + αkC

⊤C(Tπ − I)pk + αkεk)
]

= L(ϕk) + αk⟨∇L(ϕk),C
⊤C(T − I)pk⟩

+ α2
kEk

[
⟨C⊤C(Tπ − I)pk + εk, HL(ϕk)C

⊤C(Tπ − I)pk + αkεk⟩
]

≤ L(ϕk)− αk(1−
√
γ)∥p̃π − pk∥2π

+ α2
kEk

[
⟨C⊤C(Tπ − I)pk + εk, HL(ϕk)C

⊤C(Tπ − I)pk + αkεk⟩
]
,

where HL(ϕk) is the Hessian of L at ϕk, εk(x) = C⊤C(Tπ − I)pk(x)−C⊤C
(∑m

i=1 p
ϕk

i (Xx
k )h(R

x
k + γzi)− pϕk

i (x)
)

is the zero-mean noise at step k, and the inequality follows from the argument in the proof of Proposition 5.4. The Hessian
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of the Lyapunov function is uniformly bounded, and so too are the quantities C⊤C(Tπ − I)pk + εk, so there exists a global
constant B > 0 such that

Ek

[
L(ϕk+1)

]
≤ L(ϕk)− αk(1−

√
γ)∥p̃π − pk∥2π + α2

kB .

This is almost a supermartingale inequality, save for the final term on the right-hand side. The idea, however, is that thanks
to the summability condition

∑
k≥0 α

2
k <∞, the cumulative effect of these terms does not interfere with the convergence

guarantees associated with non-negative supermartingales; the following argument follows the approach of Robbins &
Siegmund (1971).

Writing Lk = L(ϕk), note that if we define

L̃k = Lk −
k−1∑
l=0

α2
lB +

k−1∑
l=0

αl(1−
√
γ)∥C(p̃π − pl)∥2dπ ,

then we have

Ek[L̃k+1] = Ek[Lk+1]−
k∑

l=0

α2
l pk +

k∑
l=0

αl(1−
√
γ)∥p̃π − pk∥2π

≤ Lk − αk(1−
√
γ)∥p̃π − pk∥2π + α2

kpk −
k∑

l=0

α2
l pk +

k∑
l=0

αl(1−
√
γ)∥p̃π − pl∥2π

= Lk −
k−1∑
l=0

α2
l pk +

k−1∑
l=0

αl(1−
√
γ)∥p̃π − pl∥2π

= L̃k .

Hence, (L̃k)k≥0 is a supermartingale, and it is uniformly bounded below by −pk
∑∞

k=0 α
2
k, and so by the martingale

convergence theorem, we deduce that L̃k converges almost surely. It therefore follows that

k∑
l=0

αl(1−
√
γ)∥p̃π − pl∥2π

converges almost surely, and hence so does Lk. If Lk does not converge to 0 almost surely, then there exists ε > 0 such that
lim infk Lk > ε with positive probability. On this event, we would therefore have that

k∑
l=0

αl(1−
√
γ)∥p̃π − pl∥2π

diverges, since
∑∞

l=0 αl =∞, a contradiction. Hence, Lk → 0 almost surely, and this implies pk → p̃π almost surely, as
required, since we assume dπ has full support.

To make the general argument, where dπ does not have full support, we can proceed in exactly the same manner as Thakoor
et al. (2022). First, by adjoining a terminal state if necessary (to deal with environments in which episodes terminate in finite
time), there exists an invariant probability distribution dπ over the state space X under the transition dynamics induced by π.
The argument above applies verbatim to obtain ∥p̃− pϕk∥π → 0 (though as dπ does not have full support, this does not
show pk → p̃π).

Now, we apply an inductive argument to the communicating classes of the Markov chain on X induced by π. The set of
communicating classes of a finite state Markov chain form a directed acyclic graph (with a directed edge drawn from one
communicating class K1 to another K2 if there exist x ∈ K1, y ∈ K2 such that Pπ(y|x) > 0. The leaves of this directed
acyclic graph are precisely the communicating states which have an invariant probability distribution. For any such invariant
class K, there exists an invariant distribution dπ supported on K, and the argument above applies to obtain pk(x)→ p̃π(x)
for all x ∈ K, and moreover, that

k∑
l=0

αl(1−
√
γ)∥p̃π − pl∥π
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converges.

We now induct on communicating classes, based on the maximal length of path in the directed acyclic graph from the
communicating class to a leaf. For any such communicating class K, by Perron-Frobenius theory there exists a probability
distribution κ supported on K, with the property that

κPπ = λκ+ (1− λ)κ′ ,

with λ ∈ [0, 1), and κ′ a probability distribution supported solely on communicating classes K ′ for which, by inductive
hypothesis, we have pk(x)→ p̃π(x) for all x ∈ K ′. Now, following exactly the steps of the proof of Proposition 5.3, we
obtain

∥Tπp− Tπq∥2κ ≤ λγ∥p− q∥2κ + (1− λ)∥p− q∥2κ′ ,

where semi-norm ∥ · ∥κ is defined by ∥p∥κ =
∑

x∈X κ(x)∥p(x)∥, and similarly for ∥ · ∥κ′ .

Using the inequality above with p = p̃π and q = pk, and from the expansion

∥p̃π − Tπpk∥2κ = ∥p̃π − pk∥2κ + ∥pk − Tπpk∥2κ + 2⟨p̃π − pk,C
⊤C(pϕk − Tπpk)⟩κ ,

where ⟨u, v⟩κ =
∑

x∈X κ(x)⟨u(x), v(x)⟩ (u, v ∈ RX×m) denotes the κ-weighted inner-product, we obtain

∥p̃π − pk∥2κ + ∥pk − Tπpk∥2κ + 2⟨p̃π − pk,C
⊤C(pϕk − Tπpk)⟩κ ≤ λγ∥p̃π − pk∥2κ + (1− λ)∥p̃π − pk∥2κ′ ,

which, with some rearranging, yields

⟨p̃π − pk,C
⊤C(pk − Tπpk)⟩κ ≤

1

2

(
(λγ − 1)∥p̃π − pk∥2κ + (1− λ)∥p̃π − pk∥2κ′ − ∥pk − Tπpk∥2κ

)
.

Now, defining

Lκ(ϕ) =
∑
x∈X

κ(x)KL(p̃π(x) || pϕ(x)) ,

and writing Lκ
k = Lκ(ϕk), we can compute that

Ek[L
κ
k+1] ≤ Lκ

k + αk⟨∇Lκ(ϕk),C
⊤C(Tπpk − pk)⟩+ α2B

= Lκ
k + αk⟨p̃π − pk,C

⊤C(pk − Tπpk)⟩κ + α2B

≤ Lκ
k + α2B + αk

λγ − 1

2
∥p̃π − pk∥2κ + αk

1− λ

2
∥p̃π − pk∥2κ′ .

By the induction hypothesis,
∑k

l=0 αl∥p̃π−pl∥2κ′ converges, and so we may apply the supermartingale convergence theorem
as above to conclude that

∑k
l=0 αl∥p̃π − pl∥2κ converges, and that ∥p̃π − pk∥κ → 0, completing the inductive step and the

proof.

D. Proofs of results from Section 6
D.1. Proof of Proposition 6.1

Prior to the proof of Proposition 6.1, we use the following supplementary results.
Proposition D.1. (Meyn, 2022, Theorem 8.1, Proposition 8.10) Let f : Rd → Rd, and for an initialization θ0 ∈ Rd,
consider the sequence of iterates (θn)n≥0 defined by the iterative rule

θn+1 = θn + αn+1(f(θn) + εn) ,

with (εn)n≥0 a mean-zero martingale noise sequence, such that the distribution of ε depends only on θn, and αn = α/nβ .
If (i) ∂tϑt = f(ϑt) has a globally asymptotically stable equilibrium θ∗, (ii) θn → θ∗ almost surely, (iii) f is Lipschitz
continuous, (iv) ∇f(θ∗) is Hurwitz, then the scaled error α−1/2

n (θn − θ∗) converges in distribution to N (0,Σ), where Σ is
a positive-definite solution of the Lyapunov equation

AΣ+ ΣA⊤ = −Σ∆,

where Σ∆ is the covariance of the noise εn at θ∗ and A = ∇f(θ∗).
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Proposition D.2. Let g : Rd → Rk be a mapping such that the Jacobian Jg is continuous in a neighbourhood of µ ∈ Rd. If

Xn is a sequence of d-dimensional random vectors such that for some β ∈ [0, 1], nβ(Xn − µ)
d→ N (0,Σ), then

nβ(g(Xn)− g(µ))
d→ N (0, JgΣJ

⊤
g ).

Proof. This proof closely that of Theorem 7 of Ferguson (1996), but adapted to the scaling nβ instead of
√
n. We note that

we have Xn
d→ µ. Then if there exists δ > 0 such that g is continuous on the set {x ∈ Rd : ∥x− µ∥2 < δ}, for x such that

∥x− µ∥2 < δ we have

g(x) = g(µ) +

∫ 1

0

Jg(µ+ v(x− µ)) dv (x− µ).

So for n such that ∥Xn − µ∥ < δ,

nβ(g(Xn)− g(µ)) = nβ

∫ 1

0

Jg(µ+ v(Xn − µ)) dv (x− µ).

Since Xn
d→ µ, P(∥Xn−µ∥ < δ)→ 1 and

∫ 1

0
Jg(µ+ v(Xn−µ)) dv → Jg(µ), so nβ(g(Xn)− g(µ))

d→ Jg(µ)Z, where
Z ∼ N (0,Σ). From this we note that Dist(Jg(µ)Z) = N (0, JgΣJ

⊤
g ), and we are complete.

Lemma D.3. Suppose the iterates (ϕCMC
k )k≥0 and (ϕPCMC

k )k≥0 were produced using step size αk = α0k
−β for β ∈ (1/2, 1)

and p̃πi (x) > 0 for each x, i ∈ X × [m]. Then we have that there exists unique fixed points ϕCMC
⋆ and ϕPCMC

⋆ such that
have

kβ(ϕCMC
k (x)− ϕCMC

⋆ (x))
d→ N (0,ΣCMC)

and
kβ(ϕPCMC

k (x)− ϕPCMC
⋆ (x))

d→ N (0,ΣPCMC),

where ΣCMC = 1
2 (I −

1
m11⊤) and ΣPCMC = 1

2 (C
⊤C − 11⊤).

Proof. We begin by deriving the fixed points ϕCMC
⋆ and ϕPCMC

⋆ . To begin, we note that from the assumption on full
support of p̃π at each state, the function θ̃(x) = log(p̃π(x)) satisfies softmax(θ̃(x)) = p̃π(x) for each x. Furthermore,
softmax(θ̃(x) + c1) = p̃π(x) for any c, and this construction contains all logits satisfying this condition. We write
Φ = {θ : X → R : ∃c ∈ R. θ(x) = θ̃(x) + c1} for this set of optimal logits, and note that each ϕ ∈ Φ is a fixed point for
both CMC and PCMC. We now show that CMC and PCMC always converge to a unique point in this set, regardless of the
given sequence of updates.

The CMC update at each step and state is orthogonal to 1, as it consists of a difference of probability vectors. This gives
us that beginning from ϕCMC

0 , for any k ≥ 0 we have 1⊤(ϕCMC
0 (x)− ϕCMC

k (x)) = 0, for any x ∈ X . From this we can
conclude that ϕCMC

⋆ is the unique element of Φ such that 1⊤(ϕCMC
⋆ (x)− ϕCMC

0 (x)) = 0 for all x ∈ X , and we remark that
this is entirely dictated by ϕCMC

0 . The PCMC updates also maintain an invariant in their updates: in particular the updates
do not change the mth element of the logit (this can be seen as (C⊤Ce)m = 0 for any e ∈ 1⊥). Thus ϕPCMC

⋆ is the unique
element of Φ such that (ϕCMC

⋆ (x))m = ϕCMC
0 (x)m for all x ∈ X .

We may now apply Proposition D.1, since CMC converges as stochastic gradient descent on a convex objective with bounded
noise, and the convergence of PCMC is guaranteed as a special case of the analysis carried out for PKL-CTD (with discount
0) in Theorem 5.5. The existence of a Lyapunov function for both systems guarantees the global asymptotic stability required
as well as the Hurwitz property for the Jacobian at the fixed point. Using Proposition D.1, it now remains to find solutions to
the Lyapunov equation of each method. Before applying the lemma, we pause to ensure that all of its conditions are met.
The previous arguments gave the unique equilibrium point for both CMC and PCMC, and the remaining assumptions are
met if the methods converge. We note that CMC converges as it corresponds to stochastic gradient descent on a convex loss
function, and we also have that PCMC converges as it corresponds to PCTD with a discount factor of 0, which we have
convergence for (Theorem 5.5).

Now applying Proposition D.1 to CMC, this corresponds to solving

J(p̃π(x))Σ + ΣJ(p̃π(x)) = J(p̃π(x))
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at each state x ∈ X . As J(p̃π(x)) is not full rank (the vector 1 is an eigenvector with eigenvalue 0), there is a 1-dimensional
space of solutions. However we also know that the CMC update is orthogonal to 1, so the asymptotic variance is the unique
solution Σ of the Lyapunov equation subject to 1⊤Σ1 = 0. We now show that this matrix Σ is given by 1

2

(
I − 1

m11⊤). To
see this we can note that Col(11⊤) = span(1) = Ker(J(p̃π(x))), so that J(p̃π(x))Σ = 1

2J(p̃
π(x)). We also note that as

J(p̃π(x)) and 11⊤ are both symmetric we have that 11⊤J(p̃π(x)) = 0, and hence ΣJ(p̃π(x)) = 1
2J(p̃

π(x)). Combining
these we have that

J(p̃π(x))Σ + ΣJ(p̃π(x)) = J(p̃π(x)),

as desired.

We next turn to PCMC. This now corresponds to solving

C⊤CJ(p̃π(x))Σ + ΣJ(p̃π(x))C⊤C = C⊤CJ(p̃π(x))C⊤C.

As in the previous case, this equation admits a 1-dimensional subspace of solutions, however from the assumption above we
know that we must have 0 covariance in the bottom right element of Σ, as there is no change in this logit. We can then find
that 1

2 (C
⊤C − 11⊤) satisfies this condition, and we can verify that this satisfies the Lyapunov equation.

Lemma D.4. Under the same assumptions as Lemma D.3, we have

kβ(pθk(x)− p̂π(x))
d→ N

(
0,

1

2
J(p̃π)2

)
,

and

kβ(pϑk(x)− p̂π(x))
d→ N

(
0,

1

2
J(p̃π)C⊤CJ(p̃π)

)
,

where we use the shorthand J(p) = diag(p)− pp⊤.

Proof. This follows from the convergence result of Lemma D.3 and Proposition D.2. In particular we are applying the
function ϕ(x) 7→ pϕ(x), which has Jacobian J(pϕ(x)). We can also note that 1 is in the kernel of J(pϕ(x)), so that

J(pϕ(x))(I − 1

m
11⊤)J(pϕ(x))⊤ = J(pϕ(x))2

and
J(pϕ(x))(C⊤C − 11⊤)J(pϕ(x))⊤ = J(pϕ(x))C⊤CJ(pϕ(x)).

With this, we are complete.

Proposition 6.1. Suppose the iterates (Vk)k≥0, (ϕCMC
k )k≥0, and (ϕPCMC

k )k≥0 were produced using step size αk = α0k
−β

for β ∈ (1/2, 1). Further suppose that p̆πi (x) > 0 for each x, i ∈ X × [m]. Then we have that

kβ/2(Vk(x)− V π(x))
d→ N (0, σ2(x))

kβ/2(V CMC
ϕk

(x)− V π(x))
d→ N

(
0, 1

2z
⊤J(p̆π(x))2z

)
kβ/2(V PCMC

ϕk
(x)− V π(x))

d→ N
(
0, 1

2u(x)
⊤u(x)

)
,

where J(p) = diag(p)− pp⊤, u(x) = CJ(p̆π(x))z and σ2 is the variance of ηπ(x).

Proof. This follows from the results of Lemma D.4 and Proposition D.2, as we are passing the converging probabilities
of Lemma D.4 through the map p 7→ p⊤z, and the effect on the limiting distribution from this transformation is given by
Proposition D.2.
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D.2. Proof of Proposition 6.2

Proposition 6.2. Suppose p = (pi)
m
i=1 is a collection of probabilities associated to the locations z = (zi)

m
i=1, and let the

variance of this categorical distribution be σ2. Then there exists β depending only on p such that

βσ2 < z⊤J(p)2z < σ2.

Proof. Note that J(p) is a positive-semidefinite matrix with all eigenvalues in [0, 1) (we have x⊤J(p)x ≥ 0 for any x as it
is the variance of a random variable distributed as

∑
i piδxi

, and its maximal eigenvalue must be strictly less than 1 as its
trace is

∑
i pi(1 − pi) ≤ m−1

m ). Writing 0 = λ1 ≤ · · · ≤ λm < 1 for the eigenvalues of J(p), we note that λ2
1, . . . , λ

2
m

are the eigenvalues of J(p)2, and J(p), J(p)2 share the same respective eigenvectors as J(p) is symmetric. Next writing
z̃1, . . . , z̃m for the coordinates of z in the basis of corresponding eigenvectors of J(p̃π), we have that

z⊤J(p)z =

m∑
i=1

z̃2i λi,

and

z⊤J(p)2z =

m∑
i=1

z̃2i λ
2
i .

As each λi < 1, this results in a strictly smaller quantity. We can also note that z⊤J(p)z ≤ λm∥z∥2 and z⊤J(p)2z ≥
λ2
2∥z∥2, so that z⊤J(p)z

z⊤J(p)2z
≤ λm

λ2
2

, and we can set β =
λ2
2

λm
to satisfy the statement in the proposition.

D.3. Proof of Proposition 6.3

Proposition 6.3. Suppose ν is a probability measure whose support is contained in [a, b], and VarZ∼ν(Z) = σ2. Let
a = z1, . . . , zm = b be m equally spaced points, Then we have

VarZ∼ΠCν(Z) = σ2 + E(ν) ≥ σ2,

where 0 ≤ E(ν) ≤ (b−a)2

4(m−1)2 is a quantity capturing the amount of projection in the map ν 7→ ΠCν.

Proof. Let Z ∼ ν, then by the assumption on the support of ν we have that z1 ≤ Z ≤ zm almost surely. Our goal is to
introduce a jointly distributed random variable E distributed as the difference between Z and the Cramér projection of Z.
We define l(Z) = max{zi : zi ≤ Z}, and u(Z) = min{zi : zi ≥ Z}. If l(Z) = u(Z) then Z is already on a support point
of ΠCν, and in this case we set E to be 0 with probability 1. In the case that l(Z) < u(Z), we set E to take value (Z− l(Z))
with probability (u(Z)−Z)/(u(Z)− l(Z)), and (u(Z)−Z) with probability (Z− l(Z))/(u(Z)− l(Z)). Then we have that
Z+E takes value l(Z) with probability (u(Z)−Z)/(u(Z)− l(Z)) and u(Z) with probability (Z− l(Z))/(u(Z)− l(Z)),
that is, Z + E is distributed according to ΠCν.

We can note that E[E |Z] = 0, which gives us that E and Z are uncorrelated. We can also consider Var(E |Z), which
therefore reduces to computing E[E2 | Z]. When Z lies on the grid, this quantity is trivially 0, and otherwise we have

E
[
E2 |Z

]
= (Z − l(Z))2 · (u(Z)− Z)

(u(Z)− l(Z))
+ (u(Z)− Z)2 · (Z − l(Z))

(u(Z)− l(Z))

=

(Z − l(Z))(u(Z)− Z)

(
(u(Z)− Z) + (Z − l(Z))

)
(u(Z)− l(Z))

= (Z − l(Z))(u(Z)− Z).
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We next set U = Z + E, and write out

Var(U)
(a)
= Var(Z) + Var(E)

= Var(Z) + E [Var(E |Z)] + Var (E [E |Z])

= Var(Z) + E [Var(E |Z)]

= Var(Z) +

m−1∑
i=1

∫ zi+1

zi

Var(E |Z = z)P(dz)

= Var(Z) +

m−1∑
i=1

∫ zi+1

zi

(z − l(z))(u(z)− z)P(dz) ,

where (a) follows from the deduction above that Z and E are uncorrelated. This quantity is minimized when ν is supported on
{z1, . . . , zm}, as the additional variance term is 0. The quantity (z−l(z))(u(z)−z) is maximized when z = (u(z)+l(z))/2,
meaning z is concentrated on the midpoint of zi and zi+1, that is, the case when ν =

∑m−1
i=1 piδ(zi+zi+1)/2, and the amount

of projection is maximal. In this case, the additional variance incurred is given by

m−1∑
i=1

pi
(u(z)− l(z))2

4
=

m−1∑
i=1

pi
(b− a)2

4(m− 1)2

=
(b− a)2

4(m− 1)2
.

D.4. Proof of Proposition 6.5

Proposition 6.5. If the step sizes (αk)k≥0 are given by αk = α0k
−β , we have that

kβ/2(V PCTD
ϕk

(x)− V π(x))
d→ N

(
0, b⊤x ΣPCTD(x) bx

)
,

where bx = J(p̃π(x))z and ΣPCTD(x) is the unique solution Σ of the Lyapunov equation

A(Tπ − I)J(p)Σ + ΣJ(p)((Tπ)⊤ − I)A+AJ(p)A = 0

subject to Σmm = 0, where we write p = p̃π(x), A = C⊤C, and Tπ as introduced in Proposition 4.1.

Proof. We may apply Proposition D.1. Our earlier Theorem 5.5 guarantees the conditions of the result hold, thanks to
the establishing of a Lyapunov function; the existence of the Lyapunov function establishes global asymptotic stability
of the equilibrium, and the expected update function is clearly Lipschitz (since as noted earlier, the softmax function is
Lipschitz), and the Lyapunov function also guarantees that the the Jacobian at the equilibrium point is Hurwitz. We thus
obtain the stated Lyapunov equation for the term ΣPCTD. This equation will have a 1-dimensional subspace of solutions due
to the rank-deficiency of J(p), however the PKL-CTD updates do not modify the final logit, so we must have the bottom
right entry of the covariance matrix be 0. This constraint uniquely identifies the matrix in the subspace of solutions as the
subspace of solutions is along the span of 11⊤. This then combined with Proposition D.2 to reflect the effect of the map
ϕ 7→ z⊤pϕ completes the statement.

E. Related work
Categorical approaches to tasks that are traditionally modeled as regression have been studied in a variety of settings more
generally. Stewart et al. (2023) study the effects on neural network representations, and Lyle et al. (2024) study the effects
on network plasticity.

Beyond categorical distributional reinforcement learning (Bellemare et al., 2017), a variety of categorical approaches to
reinforcement learning have been considered in the literature, including two-hot regression targets, and various versions
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of one-step distributional RL (Achab, 2020; Schrittwieser et al., 2020; Hoffman et al., 2020; Achab et al., 2023; Hafner
et al., 2023). In particular, Farebrother et al. (2024) study the empirical benefits of categorical algorithms for reinforcement
learning, finding a combination of one-step categorical distributional reinforcement learning (Achab, 2020; Achab et al.,
2023) and implicitly injected Gaussian noise to smooth the resulting loss (Imani & White, 2018; Imani et al., 2024)
particularly effective, producing a novel reinforcement learning algorithm that was demonstrated to be performant in a wide
variety of applications.

The Cramér-variant of CTD was first analysed by Rowland et al. (2018), who proved its convergence to the fixed point of
the categorical dynamic programming algorithm. Boeck & Heitzinger (2022) then developed a variant of this algorithm
that incorporates ideas from speedy Q-learning (Azar et al., 2011); both Boeck & Heitzinger (2022) and Peng et al. (2024)
obtain finite-time sample complexity bounds on Cramér-based CTD algorithms. An analysis of a preconditioned variant of
Cramér-CTD was performed by Peng et al. (2025).

Rowland et al. (2023) study the efficacy of quantile temporal-difference learning (Dabney et al., 2018; Rowland et al., 2024),
a complementary approach to distributional reinforcement learning, for value-function estimation. Several recent works
also analyze the complementary class of likelihood-maximization-based methods for distributional reinforcement learning,
both from the perspective of regret minimization (Wang et al., 2023; 2024b; Ayoub et al., 2024) and sample-efficient policy
optimization and evaluation (Ayoub et al., 2024; Wu et al., 2023; Wang et al., 2024a).

F. Additional experimental results
We perform ablations over potential causes for the occasional underperformance of TD: synchronous vs asynchronous
updates, boundedness of the value estimates, and boundedness of the regression targets. The experimental suite in Section 7
uses asynchronous updates for TD, KL-CTD, and PKL-CTD, which may cause an increased difference in the number of
updates across states. We present the experimental suite using synchronous updates in Figure 10. The second potential cause
is boundedness of the value estimate: due to the nature of the categorical parametrization, the categorical value estimate
at each state is bounded in [z1, zm]. To see if this has a material effect on the relative performance of the algorithms, we
consider a variant of TD learning where the value estimate at each state is clipped to [z1, zm] after each update. We present
the experimental suite under these updates in Figure 11. The third potential cause is that the categorical target distributions
are always bounded in [z1, zm], which may be contributing to a regularization effect, especially with heavy-tailed rewards.
To test this we consider a variant of TD learning where the TD target is clipped to [z1, zm] before being used in the update
step, and present the experimental suite using these updates in Figure 12.

Across all of the above considered ablations, the relative performance of TD, KL-CTD, and PKL-CTD are fairly robust,
suggesting that in the settings where KL-CTD or PKL-CTD outperform TD, this is more likely to be a result of the
underlying algorithmic differences, rather than an effect of the relative number of updates per state or clipping effects of the
categorical parametrization.
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Figure 10. Experimental suite where each algorithm is run synchronously.
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Figure 11. Experimental suite where TD estimates are clipped to [z1, zm] after each update.
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Figure 12. Experimental suite where TD targets are clipped to [z1, zm] prior to each update.

26



Categorical Distributional RL with KL Divergence

G. Experimental details
In this section, we collect full details for the experiments presented in the main paper. For all generated figures, the error
bars represent ±2 times the sample standard error of the mean.

G.1. Details for Figure 2

The MDP considered is a two-state MDP, with a single action a and discount factor 0. Writing the states as x, y, we have
P(x |x, a) = 1 and P(y | y, a) = 1, that is each state transitions to itself. The reward distributions are given asR(x, a) = δ0,
R(y, a) = 1

2 (δ−10 + δ10). Cramér-CTD and KL-CTD are both run using 40 atoms uniformly spaced on [−30, 30], a
learning rate of 4 · 10−3 was used for TD and Cramér-CTD, and a learning rate of 1 · 10−1 was used for KL-CTD.

G.2. Details for Figure 3

We use a two-state MDP with a single action, deterministic rewards, and a discount factor of 0.7. The transition matrix is
sampled from a Dirichlet(1, . . . , 1) distribution, and the reward means are sampled independently from N (0, 1). KL-CTD
was run for 5,000 iterations with 50 atoms uniformly spaced on [−10, 10] and a learning rate of 0.5.

G.3. Details for Figure 4

We use a single-state MDP with a single action and discount factor 0. The return from this state is sampled from U([−10, 10]).
We use CTD with 10 atoms whose locations are uniformly spaced across [−10, 10] with a step size sequence given by
αk = k−0.55.

G.4. Details for Figure 5

We consider an MDP with 10 states, transitions sampled from a Dirichlet(1, . . . , 1) distribution, deterministic rewards
whose means are sampled from U([0, 1]), and discount factor 0.5. We set the number of atoms to be 20, and uniformly
space these atoms across [0, zm]. The final atom location zm itself is swept over 100 uniformly spaced points in [0.1, 10].

G.5. Details for Figure 6

We consider an MDP with 20 states, transitions sampled from a Dirichlet(1, . . . , 1) distribution, deterministic rewards
whose means are sampled from a standard normal N (0, 1) distribution, and discount factor 0.9. We sweep over the number
of atoms, m, in the set [4, 10, 16, 50, 100, 200]. For each choice of m, we set the locations to be uniformly spaced on
[−10, 10]. We swept over learning rates uniformly-spaced in log-space over the range [1 · 10−4, 10]. For the scaled learning
rates, we scale each learning rate by

√
m, so that a learning rate of α corresponds to an effective learning rate of α

√
m.

G.6. Details for Figure 7

All MDPs considered have 20 states and a discount factor of 0.7. All reward functions have their means sampled from a
standard normal N (0, 1) distribution. All methods are initialized so that their initial value estimates are 0, and CTD and
PCTD use 50 bins uniformly spaced on [−100, 100]. We sweep over learning rates uniformly-spaced in log-space over the
range [10−4, 10]. We now detail each type of transition and reward structure.

Transition dynamics

• Cycle domain: We use a deterministic cycle transition structure over the states.

• Garnet domain: We sample a sparse Garnet MDP transition structure (Archibald et al., 1995).

• Dirichlet domain: Each row of the transition matrix is sampled i.i.d. from a Dirichlet(1, . . . , 1) distribution.

Reward distributions

• Deterministic distributions: The distributions are Dirac distributions centred at the means.

• Gaussian distributions: The reward distributions are Gaussian with the given means with variance 1.

• t2 distributions: The reward distributions are shifted t2 distributions to maintain the specified reward means.
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