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Equivariant Transformer Forcefields for Molecular Conformer
Generation
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Abstract

Molecular conformer generation is vital to com-
putational chemistry and drug discovery, but it
remains challenging due to the extensive range
of possible conformations. In this paper, we
propose a novel approach for molecular con-
former generation that utilizes an Equivariant
Transformwer Forcefield (ETF) pre-trained on
large-scale molecular datasets to refine the qual-
ity of the conformers. This strategy begins with
an initial set of conformers, which are subse-
quently refined through structural optimization.
We demonstrate that our ETF-based optimiza-
tion significantly improves the quality of the con-
formers generated by state-of-the-art methods,
achieving a reduction in 45% the distance to the
reference conformers. Furthermore, our method-
ology outperforms the classical forcefields by
improving precision without sacrificing recall.
Lastly, it can deliver competitive performance
even when beginning with a simple initialization
of conformers by RDKit, demonstrating its ro-
bustness and potential for extensive applications
in computational chemistry and drug discovery.

1. Introduction
The generation of molecular conformers, i.e., spatial ar-
rangements of atoms in the low-energy states of a molecule,
plays a critical role in computational chemistry and drug
discovery. Understanding the range of conformers that a
molecule can adopt is essential, as these conformers largely
dictate the molecule’s biological activity and physical prop-
erties (Hawkins, 2017). However, the generation of con-
formers is a challenging task, especially for large and flex-
ible molecules, given the enormous conformation space.

Traditional conformer generation approaches typically
rely on rules and knowledge extracted from known
conformers to search through a molecule’s conforma-
tional space (Hawkins, 2017). Two well-known tools
in this domain are OMEGA (Hawkins et al., 2010) and

ETKDG (Riniker & Landrum, 2015). OMEGA is a com-
mercial software that applies systematic search with a set
of rules and heuristics to narrow down the search space,
whereas ETKDG, an open source conformer generation
tool, uses a distance geometry-based stochastic approach to
generate conformers with certain constraints. These rules
and knowledge trade off the quality of generated conform-
ers for efficient computation.

To obtain higher quality samples more efficiently, re-
searchers have recently turned to deep generative models
for conformer generation (Ganea et al., 2021; Xu et al.,
2022; Jing et al., 2022). In particular, diffusion models,
which learn to reverse the diffusion process of conform-
ers within either Euclidean or Torsional space, have been
proven to be effective in producing high-quality molecular
conformers (Xu et al., 2022; Jing et al., 2022).

In this work, we reframe conformer generation as a task
of conformer refinement, and introduce a machine learn-
ing forcefield-based approach to improve sample quality.
Instead of directly generating conformers for a specific
molecule, our approach begins with an initial set of con-
formers, then refines the distribution by structural opti-
mization. We optimize the 3D structure of each individ-
ual conformer using an Equivariant Transformer Force-
field (ETF) (Feng et al., 2023). Pre-trained on the off-
equilibrium conformations of small molecules and poly-
mers, the ETF is capable of predicting the force acting
on each atom in a conformation, which is then useful
in pushing the conformations towards their lower energy
states. It’s worth noting that our approach, being orthogo-
nal to existing ones, can seamlessly integrate with any other
conformer generation methods. Furthermore, unlike deep
generative models and cheminformatics methods, our ap-
proach does not require access to exemplar conformers.

We demonstrate that our approach significantly improves
the quality of the conformer distribution generated by state-
of-the-art methods by optimizing the structure of each
individual conformer. This has resulted in a 45% re-
duction in the distance between the generated and ref-
erence conformers, measured in terms of Average Min-
imum RMSD (AMR) on the GEOM-QM9 dataset (Ax-
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elrod & Gomez-Bombarelli, 2022). Unlike classical
hand-engineered forcefields such as Universal Force Field
(UFF) (Rappé et al., 1992) and Merck Molecular Force
Field (MMFF94) (Halgren, 1996), our method does not
compromise recall for precision. Moreover, we have illus-
trated that our approach can maintain performance compa-
rable to that of state-of-the-art methods, even when using
straightforward initializations of conformers.

The contributions of this paper are summarized as follows:

• We propose a novel method that employs the Equivari-
ant Transformer Forcefield (ETF) for molecular con-
former generation via structural optimization.

• Our technique substantially refines the quality of con-
formers generated by state-of-the-art deep generative
models, resulting in a 45% reduction in Average Min-
imum RMSD (AMR), a metric that measures the dis-
tance between the generated conformers and their ref-
erence counterparts.

• We introduce a straightforward diversifying sampling
strategy for initialization, using RDKit. With this sim-
ple initialization, our approach outperforms nearly all
baselines on both the Coverage and AMR metrics.

2. Background
2.1. Traditional Methods for Conformer Generation

Traditional methods for conformer generation typically
consist of two steps: 1) exploring the vast conformational
space through conformation search methods, and 2) refin-
ing the conformers generated in the previous step by opti-
mizing their 3D structure using forcefields.

Conformation Search. Classical methods for searching
through conformational space for low-energy samples can
be broadly divided into two categories based on their
sampling methods: stochastic and systematic (Hawkins,
2017). Stochastic sampling methods predominantly rely
on molecular dynamics (MD), Monte Carlo-simulated an-
nealing (MC), distance geometry (DG), and genetic al-
gorithms (GAs). While most MD (Tsujishita & Hirono,
1997) and MC (Wilson et al., 1991; Sperandio et al., 2009;
Chang et al., 1989) based methods do not scale well,
DG-based methods (Vainio & Johnson, 2007; Lagorce
et al., 2009), especially ETKDG (Riniker & Landrum,
2015), strike a good balance between computational effi-
ciency and accuracy. Generally, stochastic methods pro-
duce non-deterministic output, and the computational ef-
fort needed to find diverse and high-quality conformers is
unpredictable (Hawkins, 2017). On the other hand, system-
atic methods comprehensively search the conformational

space. Consequently, rules and knowledge bases such as al-
lowed torsion angles, permissible paths, and libraries of 3D
fragment conformations are necessary to reduce the search
space (Beusen et al., 1996; Sauton et al., 2008; Smellie
et al., 2003). Among them, OMEGA (Hawkins et al., 2010)
represents state-of-the-art software for systematic search.
Overall, systematic methods tend to be inflexible as they
rely heavily on rules and existing knowledge of local struc-
tures.

Structure Optimization / Energy Minimization. Once
the conformer candidates have been generated, force-
fields are typically employed to optimize these conform-
ers through energy minimization. Forcefields calculate the
potential energy and forces of atoms, guiding energy min-
imization using optimization algorithms. ab-initio force-
fields, such as Density Functional Theory (DFT), are highly
accurate but costly, limiting their applications for large-
scale applications for large molecules. In contrast, empir-
ical or classical forcefields like the Universal Force Field
(UFF) (Rappé et al., 1992) and the Merck Molecular Force
Field (MMFF94) (Halgren, 1996), while less accurate, of-
fer much faster computations. These forcefields apply sim-
plified assumptions, fit empirical potential energy function
parameters from experimental data, and typically model in-
teractions between atom pairs and triplets, making them
more suitable for large-scale simulations, albeit mainly for
specific molecule types.

Machine learning forcefields attempt to bridge the gap be-
tween the accuracy of ab-initio forcefields and the effi-
ciency of classical forcefields. Typically, they approximate
the ab-initio forcefield predictions with machine learning
models designed to encode invariant or equivariant features
for molecules. Traditional Graph Neural Network or Mes-
sage Passing based methods, such as SchNet (Schütt et al.,
2018), DIME-Net (Yeh et al., 2023; Gasteiger et al., 2020),
and GemNet (Gasteiger et al., 2021), build on invariant in-
teratomic features such as bond lengths and angles. These
methods can learn invariant molecular representations for
potential energies. More advanced Equivariant Graph Neu-
ral Network based methods, such as NequIP (Batzner
et al., 2022), EGNN (Satorras et al., 2021), and Equiv-
ariant Transformer (ET) (Thölke & De Fabritiis, 2022),
directly learns equivariant features that represent a larger
physically valid function space. Because of the improved
representation ability, they usually achieve higher accuracy
than invariant methods, at the cost of increased computa-
tion overhead to constrain the features in the equivariant
space. The exception is ET (Thölke & De Fabritiis, 2022),
which achieves equivariance with vector embedding and
equivariant attention mechanism, with significantly higher
efficiency.
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2.2. Deep Learning Methods for Conformer
Generation

Recently, there has been a surge of interest in employing
deep learning methods for conformer generation. Earlier
methods either directly predicted atomic coordinates (Man-
simov et al., 2019; Zhu et al., 2022), estimated interatomic
distances (Simm & Hernández-Lobato, 2019; Xu et al.,
2021a;b), or predicted the gradient of coordinates (Shi
et al., 2021; Luo et al., 2021). The most cutting-edge meth-
ods include GeoDiff (Xu et al., 2022) and Torsional Diffu-
sion (Jing et al., 2022), which learn to reverse the diffusion
process in Euclidean and Torsional space, respectively. Ge-
oMol (Ganea et al., 2021), another recent method, focuses
solely on predicting local structures and torsional angles.

3. Methodology
In this section, we first propose using machine learning
forcefields to refine conformer samples through structural
optimization. We show that the proposed approach can
be unified with recent diffusion-based conformer genera-
tion methods under the same sample refinement scheme.
Following this, we introduce an Equivariant Transformer
Forcefield (ETF) for structural optimization and detail its
model architecture, training objective, and training dataset.

3.1. A Unified Sample Refinement Scheme for
Conformer Generation

Diffusion-based Probabilistic models, such as GeoDiff (Xu
et al., 2022) and Torsional Diffusion (Jing et al., 2022),
have demonstrated empirically their capability to generate
superior conformer distributions. They outperform other
machine learning and cheminformatics methods in both
RMSD and chemical property predictions. These models
define a Markov chain of the diffusion process by injecting
random noise into the data iteratively. They then learn to
reverse this diffusion process to recover data samples from
the injected noise. To sample a low-energy conformer,
diffusion methods initially draw a conformation from the
uniform distribution, then iteratively apply the learned dif-
fusion model to refine the conformation. However, such
diffusion models are limited by the quality and quantity
of available training data, potentially impeding further im-
provement in the quality of generated samples.

In this study, we propose utilizing machine learning force-
fields to further refine the conformers generated by diffu-
sion models via structural optimization. A forcefield is a
model that uses the atomic coordinates of a molecule to
predict the force acting on each atom. This forcefield can
be applied to optimize a molecular conformation by min-
imizing the energy of the system. As the structural opti-
mization occurs locally, with a good initial coverage of the

conformational space, the forcefield-based approach can be
used to further improve the quality of each individual sam-
ple, without sacrificing the diversity of the generated distri-
bution.

Interestingly, we can unify the sampling schemes of diffu-
sion methods and local structural optimization with force-
fields in Algorithm 1. In this algorithm, the sample-refining
operator It(ct+1|ct) takes a conformation ct as input and
outputs a new conformation ct+1 with improved sample
quality. The operator It can represent either a step in
the denoising diffusion process or in the local optimiza-
tion process. This operator is applied iteratively to the ini-
tial conformation c0 to create a sequence of conformations
c0, c1, . . . , cT . The final conformation cT is then used as
the output of the sample refinement process.

Note that, unlike the reverse diffusion process, the sam-
ple improvement process doesn’t necessarily require ran-
dom uniform initialization. In fact, the initial conforma-
tion c0 can be any conformation, including those gener-
ated by other conformer generation methods. In our ex-
periments, we demonstrate that even with a simple initial-
ization scheme (using ETKDG (Riniker & Landrum, 2015)
and clustering, as illustrated in Algorithm 2), our approach
can still deliver state-of-the-art performance.

3.2. Equivariant Transformer Forcefields for Local
Structural Optimization

In this study, we propose to use forcefields to optimize
molecular conformations to their low-energy states. Con-
sider a molecule x comprised of nx atoms. This molecule
x can exist in various 3D conformations cx ∈ Rnx×3,
each with a corresponding potential energy denoted as
E = E(x, cx) ∈ R. The forcefield model F is a func-
tion that takes a molecule x and a conformation cx as input
and outputs the force acting on each atom: F(x, cx) =
∂E(x,cx)

∂cx
∈ Rnx×3. Given an initial conformer c0, the local

structural optimization can then be formulated as a local
optimization problem:

c∗ = argmin
cx

E(x, cx) s.t. cx ∈ N (c0), (1)

where N (c0) represent the neighborhood of c0. We con-
sider classic second-order optimization algorithms such
as the Broyden-Fletcher-Goldfarb-Shanno (BFGS) (Broy-
den, 1970), Limited-memory BFGS (LBFGS) (Nocedal,
1980) and conjugate gradient (Hestenes et al., 1952) due to
the small problem scale and their faster convergence rate.
These methods require the access to the gradient function
∂E(x,cx)

∂cx
, which can be computed by the forcefield model

F . However, obtaining highly accurate forces require the
use of ab-initio methods such as the Density Functional
Theory (DFT). These methods are computationally expen-
sive and are not suitable for force computation at inference
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Algorithm 1: Diffusion + FF Optimization
Data: Molecule m

1 Sample c0 ∼ uniform(m);
2 for t in {1, 2, · · · , ND +NFF } do
3 if t ≤ ND then
4 ct ← ID(ct|ct−1)
5 else
6 ct ← IFF (ct|ct−1)
7 end
8 end
9 return cND+NFF

Algorithm 2: ETKDG + FF Optimization
Data: Molecule m

1 candidates← ETKDG(m);
2 cluster centers← K-means(candidates);
3 Sample c0 ∼ cluster centers.;
4 for t in {1, 2, · · · , NFF } do
5 ct ← IFF (ct|ct−1)
6 end
7 return cNFF

Figure 1. Algorithm 1 unifies the diffusion model and forcefield optimization within the sample refinement scheme. After sampling a
conformation from a uniform distribution, it is refined for ND steps using the learned diffusion denoising model. Subsequently, the
forcefield refines it further for NFF steps. The final conformation serves as one conformer sample from the process. Algorithm 2
utilizes ETKDG to generate an initial set of conformations. Once a candidate conformation set has been generated, it applies K-means
clustering to extract the cluster centers for further refinement. This straightforward initialization strategy ensures an adequate level of
diversity among the initially generated samples.

time. Classic forcefields such as MMFF94 and UFF, on the
other hand, are fast but inaccurate.

We propose to use the ET-OREO (Feng et al., 2023) force-
field model to strike the balance between accuracy and ef-
ficiency. ET-OREO is an Equivariant Transformer-based
model, pre-trained on four public datasets comprising over
15 million in equilibrium and off-equilibrium molecules.
The model achieves state-of-the-art force prediction accu-
racy and molecular dynamics simulations. At the same
time, ET-OREO achieves 3 times faster inference than the
similarly performing model, NequIP, and achieves high fi-
delity and robustness in MD simulations.

Model Architecture. We use an Equivariant Trans-
former(Thölke & De Fabritiis, 2022) (ET) for learning
molecular embeddings. ET leverages the equivariant atten-
tion mechanism to capture the quantum mechanical inter-
actions between atoms. We represent a ET model parame-
terized with θ as Φθ, which maps (x, cx) to Φθ(x, cx) ∈ R
and ∇cXΦθ(x, cx) ∈ Rx×3, approximating the potential
energy and forces, respectively.

In order to obtain the potential energy and forces predic-
tions, the model consists of three parts: 1) the embedding
layer, 2) the update layers, and 3) the output layer. The em-
bedding layer transforms each atom into vector representa-
tions that encapsulate their quantum mechanical informa-
tion and their interactions within the vicinity. This layer
generates both scalar and vector embeddings, with the for-
mer derived by integrating an intrinsic vector (containing
atom-specific data) and a neighborhood vector (account-
ing for atomic neighborhood interactions). The embed-
ding layer converts each atom into vector representations
that incorporate their quantum mechanical properties and

nearby interactions. Update layers handle the sequential
transformation of these embeddings within each network
layer with equivariant attention mechanisms. Equivari-
ant attention mechanisms encode interatomic interactions
by considering the relative distance between atoms. The
output network generates scalar predictions Φθ(x, cx) for
each atom through Gated Equivariant Blocks (Schütt et al.,
2021). The scalar prediction Φθ(x, cx) serves as the ap-
proximation for the potential energy, and its gradient w.r.t
coordinates∇cXΦθ(x, cx) as forces prediction.

For the results to be physically well-defined, the model
must be equivariant w.r.t. the SE(3) group on R3 to input
coordinates. The SE(3) group contains rotation and transla-
tion operations on 3D coordinates. Intuitively, equivariance
dictates that the model predicts potential energy that re-
mains unchanged when input coordinates are translated or
rotated. Furthermore, the model should predict forces that
transform according to the input coordinates. Formally,

Φθ(x, g(cx)) = Φθ(x, cx),

∇cxΦθ(x, g(cx)) = g(∇cxΦθ(x, cx)),

where g is taken from the SE(3) group. Our Equivariant
Transformer achieves the desired equivariance by lever-
aging both scalar and vector embeddings for each atom:
the scalar embedding depends on the interatomic distances
∥cix − cjx∥22 ∈ R, where i, j index atoms in the molecule c.
The scalar embedding is invariant to the inputs as the inter-
atomic distances remain unchanged with rotation and trans-
lation operations. The vector embedding depends on the in-
teratomic distance vectors cix− cjx ∈ R3, which change ac-
cording to the rotation operations applied to inputs. Thus,
the Equivariant Transformer is able to parameterize a large

4



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

range of physically valid functions from input coordinates
to potential energy and forces.

Compared to Equivariant Graph Neural Networks (Sator-
ras et al., 2021), Equivariant Transformer enjoys improved
efficiency with the equivariant attention mechanism, which
naturally models the interactions between atoms. Further-
more, the scalar embedding in higher dimensional latent
space in Equivariant Transformer endows it with higher
expressivity of equivariant features. Compared to e3nn,
Equivariant Transformer does not require the complex and
inefficient calculation of SE(3) representations in high di-
mensions to achieve similar levels of expressivity in equiv-
ariant features. Hence, we chose Equivariant Transformer
as our backbone model to achieve both high expressivity
and computational efficiency.

Force-Centric Training. We use a variant of ET-OREO
which only require off-equilibrium samples to train the
model. The model parameter is optimized by minimizing
the following objective function:

θ∗ = argmin
θ
∥∇cxΦθ(x, cx)−F(x, cx)∥. (2)

The objective function (2) is solely focused on forces opti-
mization. We implement this design for a number of rea-
sons. 1) Forces are a locally well-defined quantity that is
more generalizable across different molecules; 2) By learn-
ing forces as a gradient, the model naturally learns the po-
tential energy surface up to linear transforms. From an opti-
mization perspective, the model learns the same locally op-
timal conformations. While involving potential energy in
the objective function is tempting, ET-OREO (Feng et al.,
2023) shows that the joint optimization of potential energy
and forces is difficult in a multi-molecule setting.

Training Data. The training data consists of small off-
equilibrium molecules from several different domains from
three different sources: poly24, MD17, and ANI1-x.
Poly24 consists of polymer structures, while MD17 and
ANI1-x consists of small organic molecules. The details
of the data composition are given below.

Poly24: MD Simulations for Polymers. This dataset is
proposed by (Feng et al., 2023) and composes of DFT-
based molecular dynamics simulations for 24 polymer
types. For each type, a polymer is constructed with a spe-
cific monomer repeated L times in a loop structure. In total,
we run generally 10 DFT simulations for different initial-
ization of each L-loop (L = 1, 3, 4, 5, 6) polymer across
the 24 types of polymers. In this paper, we only use poly-
mers with less than or equal to 64 atoms for training ETF,
totaling 3,851,540 conformations.

MD17 and ANI1-x: small organic molecules. In ad-
dition to poly24, we have utilized three existing public
datasets, namely MD17(Chmiela et al., 2017; 2018) and
ANI1-x(Smith et al., 2020) for training our forcefield.
These datasets contain small organic molecules in a vac-
uum, and property prediction for such molecules is an area
of great interest to the cheminformatics community. Ma-
chine learning for the molecules community has also ex-
tensively studied and benchmarked these datasets.

In summary, we have 3,851,540 3D conformations from
poly24, 3,611,115 from MD17, and 4,956,005 from ANI1-
x, totaling 12,339,673 conformations for training ETF.

4. Experiments
In this section, we present a comprehensive empirical eval-
uation of our Equivariant Transformer Forcefield-based
structural optimization approach, referred to as ETF opti-
mization for the remainder of this section, for generating
molecular conformers. We assess our methodology’s per-
formance using a diverse set of small organic molecules
and compare our approach with a range of state-of-the-
art molecular conformer generation baselines, including
both cheminformatics and machine-learning-based meth-
ods. For a fair comparison, we utilize the GEOM-QM9
dataset, a widely recognized benchmark for molecular con-
former generation techniques. We employ two primary
metrics, Average Minimum Root Mean Square Distance
(AMR) and Coverage, to compare the conformers gener-
ated by our approach with the reference conformers in the
dataset. The results of our experiments underscore the ef-
fectiveness of our ETF optimization approach in generating
high-quality molecular conformers.

4.1. Experimental Settings

Dataset. Our evaluation is based on the GEOM-QM9
dataset (Axelrod & Gomez-Bombarelli, 2022), consistent
with prior studies (Jing et al., 2022; Ganea et al., 2021).
Derived from the well-established QM9 database (Ramakr-
ishnan et al., 2014), the GEOM-QM9 dataset serves as a
common benchmark for comparing molecular conformer
generation methods. It contains conformers for 133k small
organic molecules. In line with previous research, we
maintain the same train/validation/test splits for our exper-
iments.

Metrics. Our comparative analysis employs two primary
metrics, Average Minimum RMSD (AMR), and Coverage,
to measure the difference between the generated conform-
ers and the dataset’s reference conformers. The Cover-
age metric measures the percentage of one conformer set
present within the δ-neighborhood of the other, whereas
AMR quantifies the average distance between each con-
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former in one set relative to the other. Both metrics are
computed under the Recall and Precision settings. The
Recall setting assesses how extensively the generated con-
formers covers the reference conformers, while the Preci-
sion setting evaluates the accuracy of the generated con-
formers.

Let G = {ĉg}|G|g=1, and R = {cr}|R|
r=1 represent the

sets of generated and reference conformers for the same
molecule, respectively. In line with existing work, each
method is permitted to generate twice as many conform-
ers as in the reference group: |G| := 2|R|. The Coverage
and AMR metrics under the Recall setting are defined as
follows: The Coverage metrics under the Recall setting,
Coverage-Recallδ(G|R) is defined as follows:

1

|R|

∣∣∣{cr ∈ R : ∃ ĉg ∈ G, RMSD(cr, ĉg) < δ}
∣∣∣, (3)

while AMR-Recall(G|R) is defined as

1

|R|
∑
cr∈R

min
ĉg∈|G|

RMSD(cr, ĉg) (4)

. In the equations above, RMSD denotes the Root Mean
Square Distance of atom-wise distances following the
alignment of the conformer pair. Similarly, the Coverage
and AMR metrics under the Precision setting can be com-
puted by swapping the roles of G andR in the above equa-
tions.

Baselines. We compare our ETF optimization approach
with a range of state-of-the-art molecular conformer gen-
eration baselines, including both classical cheminformat-
ics methods and recent deep generative model based ap-
proaches. The baselines we consider are: The following
conformer generation baselines are chosen as comparison
to our ETF optimization approach, including both classical
methods and recent deep generative model approaches:

• RDKit’s ETKDG. ETKDG (Riniker & Landrum,
2015) is a well-accepted method for 3D conformer
generation implemented in the RDKit cheminformat-
ics library. ETKDG uses a distance geometry-based
approach with embedded torsion angle preferences
from small molecule crystal data.

• OMEGA. OMEGA (Hawkins et al., 2010) is a widely
used commercial software for generating conformers.
OMEGA applies a systematic search method based on
rules derived from observed geometries in databases.

• GeoMol. GeoMol (Ganea et al., 2021) employs a
SE(3)-invariant graph neural network to predict adja-
cent atomic coordinates and torision angles.

• GeoDiff. GeoDiff (Xu et al., 2022) is a Euclidean-
space diffusion model that generate models conform-
ers as 3D point clouds.

• Torsional Diffusion. Torsional Diffusion (Jing et al.,
2022) constructs a diffusion model in the space of tor-
sional angles, resulting in a significant reduction in di-
mensionality.

4.2. Molecular Conformer Generation

Main Results. Table 1 outlines a comparison between
our proposed Equivariant Transformer Forcefield (ETF)-
based structural optimization approach and existing base-
lines. Overall, the best performance is achieved when ETF
optimization is applied to the Torsional Diffusion samples.
A notable reduction of 35% in mean AMR and 45% in
median AMR is observed in both the Recall and Precision
settings. This suggests considerable potential for improve-
ment even for the leading existing deep generative model,
and demonstrating the effectiveness of ETF optimization.

Limited Improvement on Recall Coverage. While our
method significantly improves most metrics when initial-
ized with Torsional Diffusion samples, the improvement in
the Coverage rate under the Recall setting is relatively mod-
est. This observation is consistent with our understanding
of local optimization – since it does not leap over the en-
ergy barrier, it does not aid in broadening coverage to in-
clude more low-energy modes.

RDKit Initializations. Even with basic RDKit initializa-
tion (ETKDG + ETF), the conformers obtained post-ETF
optimization still outperform the baselines significantly on
AMR metrics. However, due to the aforementioned limita-
tions, this combination tends to have low coverage of refer-
ence conformers. To improve the coverage, we preprocess
the ETKDG conformers with K-means clustering, i.e., we
generate 10 times more conformers using ETKDG and ex-
tract the K-means cluster centers for initialization. This
initialization strategy (ETKDG + K-means + ETF) notably
increases Recall Coverage by 5% and reduces Recall AMR
by 20%, further demonstrating the effectiveness of ETF op-
timization, even with simple initialization.

Ablation Studies. We conducted several ablation stud-
ies to examine the effect of the ETF model size, the op-
timization algorithm used, and the choice of forcefields.
The results are shown in Table 2. Unless otherwise stated,
all methods default to using the 12-layer ETF model in
conjunction with the BFGS optimization algorithm, with
initial conformers generated by Torsional Diffusion. Our
findings indicate that increasing the number of layers from
8 to 12 significantly reduces the AMR, suggesting that
a larger model is capable of learning a more accurate
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Recall Precision
Coverage ↑ AMR ↓ Coverage ↑ AMR ↓Method

Mean Med Mean Med Mean Med Mean Med

ETKDG (Riniker & Landrum, 2015) 82.3 100.0 0.234 0.198 84.3 100.0 0.236 0.206
OMEGA (Hawkins et al., 2010) 85.5 100.0 0.177 0.126 82.9 100.0 0.224 0.186

GeoMol (Ganea et al., 2021) 91.5 100.0 0.225 0.193 86.7 100.0 0.270 0.241
GeoDiff (Xu et al., 2022) 76.5 100.0 0.297 0.229 50.0 33.5 0.524 0.510

Torsional Diffusion (Jing et al., 2022) 88.4 100.0 0.178 0.147 84.5 100.0 0.221 0.195

ETKDG + ETF 83.5 100.0 0.169 0.108 86.5 100.0 0.155 0.108
ETKDG + K-means + ETF 87.5 100.0 0.135 0.087 86.2 100.0 0.158 0.110
Torsional Diffusion + ETF 88.8 100.0 0.116 0.078 87.0 100.0 0.144 0.106

Table 1. Main results for molecular conformer generation. ETKDG and OMEGA are cheminformatics software tools, while GeoMol,
GeoDiff, and Torsional Diffusion represent state-of-the-art deep generative models. The Coverage and AMR metrics are defined in
Eq (3) and Eq (4), respectively. The term ’Recall’ refers to the computation of metrics with respect to each reference conformer,
whereas ’Precision’ refers to the computation of metrics for each generated conformer. The application of ETF optimization results in
a significant improvement in all metrics under both the Recall and Precision settings. ETF optimization, even with simple RDKit and
K-means initialization, outperforms all baseline methods except for GeoMol in terms of the Coverage metrics.

Recall Precision
Coverage ↑ AMR ↓ Coverage ↑ AMR ↓Method

Mean Med Mean Med Mean Med Mean Med

L8 88.7 100.0 0.151 0.123 85.9 100.0 0.189 0.160
L12 88.8 100.0 0.116 0.078 87.0 100.0 0.144 0.106

CG (Hestenes et al., 1952) 88.6 100.0 0.130 0.093 86.5 100.0 0.161 0.127
LBFGS (Nocedal, 1980) 89.0 100.0 0.118 0.082 86.9 100.0 0.150 0.114
BFGS (Broyden, 1970) 88.8 100.0 0.116 0.078 87.0 100.0 0.144 0.106

UFF (Rappé et al., 1992) 84.5 100.0 0.202 0.173 85.7 100.0 0.185 0.142
MMFF94 (Halgren, 1996) 86.0 100.0 0.182 0.148 87.2 100.0 0.167 0.129

ETF 88.8 100.0 0.116 0.078 87.0 100.0 0.144 0.106

Table 2. Ablation studies on the ETF model size, optimization algorithm used, and the choice of forcefields. L8 and L12 denote the
8-layer and 12-layer ETF models, respectively. CG refers to the conjugate gradient optimization algorithm, while UFF and MMFF94
represent classical forcefield models. Unless specified otherwise, all methods default to using the L12 ETF model combined with the
BFGS optimization algorithm, with initial conformers generated by Torsional Diffusion.

forcefield. Additionally, we observed that the BFGS op-
timization algorithm (Broyden, 1970) is preferred over
LBFGS (Nocedal, 1980) and the conjugate gradient (CG)
method (Hestenes et al., 1952).

ETF versus Classical Forcefields. When compared
with classical forcefields such as Universal Force Field
(UFF) (Rappé et al., 1992) and Merck Molecular Force
Field (MMFF94) (Halgren, 1996), local optimization us-
ing our ETF yields significantly improved Coverage and
AMR scores. Unlike UFF and MMFF94, ETF optimization
does not compromise recall scores for the sake of precision
scores, when compared to the pre-optimized Torsional Dif-
fusion samples. This result suggests that the ETF closely
approximates the exact physical force, allowing ETF opti-
mization to recover more modes without mode collapsing.

5. Conclusion
In this work, we introduced an innovative approach for
molecular conformers generations based on an Equivari-
ant Transformer Forcefield model. Extensive experiments
on the GEOM-QM9 dataset confirmed the significant im-
provements our method offers in terms of the generated
conformers’ quality, with a notable reduction in Average
Minimum RMSD and improved performance on the Cov-
erage metric. Our method was effective even with simple
initialization of conformers, highlighting its robustness.

The results of our study underscore the vast potential of
pre-trained machine learning forcefields in the realm of
computational chemistry and drug discovery. Future stud-
ies could look into non-local structural optimization meth-
ods, which may help further improve the Recall Coverage.
Also, the scalability of our method to larger and more com-
plex molecules remains an exciting area to explore.
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Kristof Schütt, Oliver Unke, and Michael Gastegger.
Equivariant message passing for the prediction of ten-
sorial properties and molecular spectra. In Interna-
tional Conference on Machine Learning, pp. 9377–9388.
PMLR, 2021.
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