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Abstract
Recent work has showcased the powerful001
capability of large language models (LLMs) in002
recalling knowledge and reasoning. However,003
the reliability of LLMs in combining these two004
capabilities into reasoning through multi-hop005
facts has not been widely explored. This paper006
systematically investigates the possibilities for007
LLMs to utilize shortcuts based on direct008
connections between the initial and terminal009
entities of multi-hop knowledge. We first010
explore the existence of factual shortcuts011
through Knowledge Neurons, revealing that:012
(i) the strength of factual shortcuts is highly013
correlated with the frequency of co-occurrence014
of initial and terminal entities in the pre-015
training corpora; (ii) few-shot prompting016
leverage more shortcuts in answering multi-017
hop questions compared to chain-of-thought018
prompting. Then, we analyze the risks posed by019
factual shortcuts from the perspective of multi-020
hop knowledge editing. Analysis shows that021
approximately 20% of the failures are attributed022
to shortcuts, and the initial and terminal entities023
in these failure instances usually have higher co-024
occurrences in the pre-training corpus. Finally,025
we propose erasing shortcut neurons to mitigate026
the associated risks and find that this approach027
significantly reduces failures in multiple-hop028
knowledge editing caused by shortcuts. Code029
is publicly available at Anonymous.030

1 Introduction031

Large Language Models (LLMs) such as ChatGPT032

(OpenAI, 2022) and LLaMA-2 (Touvron et al.,033

2023), have impressive world knowledge modeling034

and reasoning capabilities within their parameters035

(Zhao et al., 2023; Hao et al., 2023). When036

leveraging these two capabilities, it is intuitively037

anticipated that LLMs should be capable of reliably038

answering multi-hop knowledge questions without039

any difficulty (Press et al., 2023).040

Nonetheless, the underlying reasoning processes041

of LLMs in responding to multi-hop knowledge042

Which continent will host
the next Olympic Games?

Asia.

Europe? Asia?

After Knowledge Editing: 

Before Knowledge Editing: 

Which continent will host
the next Olympic Games?

Figure 1: An illustrative example of a multi-hop
factual shortcut in LLMs. The LLM may have directly
encoded multi-hop knowledge (red) during the pre-
training phase, which results in inconsistencies after
a single-hop knowledge editing.

questions have not received thorough investigation. 043

Ideally, an LLM would systematically derive 044

each single-hop answer and culminate in the 045

correct result. However, in reality, LLMs may 046

leverage factual shortcuts learned from pre-training 047

corpora to directly obtain the final answer without 048

performing intermediate reasoning. 049

For conventional multi-hop question answering, 050

the consistency of the final endpoints of shortcuts 051

and multi-hop reasoning results may not cause risks 052

and could even remain unnoticed. However, with 053

the constant evolution of world knowledge, knowl- 054

edge editing techniques are garnering increased 055

attention (Wang et al., 2023b). After knowledge 056

editing, factual shortcuts in multi-hop scenarios 057

may cause significant inconsistency. 058

Figure 1 illustrates the potential pitfalls asso- 059

ciated with factual shortcuts. During the pre- 060

training phase, an LLM may have forged a direct 061

association between the next Olympic Games and 062

Asia. Consequently, when queried with the prompt: 063
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“Which continent will host the next Olympic Games”,064

the LLM might bypass the need for reasoning065

about the country and can directly furnish the066

correct answer. However, applying knowledge067

editing to the LLM, e.g., updating the host country068

of the Olympic Games to France, can expose a069

vulnerability. The persistence of the established070

shortcut may lead the LLM to consistently output071

“Asia” as the host continent even after the change,072

instead of the correct “Europe”, thereby impeding073

the success of multi-hop knowledge editing.074

In this paper, we systematically investigate the075

possibilities for LLMs to utilize factual shortcuts076

based on direct connections between the initial and077

terminal entities of multi-hop knowledge. Firstly,078

we rethink and formalize the process through079

which LLMs reason about multi-hop knowledge.080

We introduce the hypothesis that LLMs may081

leverage factual shortcuts from pre-training082

corpora to facilitate cross-step reasoning.083

Then, we deeply explore the existence of factual084

shortcuts. We conduct a frequency analysis of085

co-occurrences between the initial subject and086

terminal object of multi-hop knowledge instances087

in pre-training corpora. Additionally, we employ088

Knowledge Neurons (Dai et al., 2022) to quantify089

the overlap between the activated neurons for multi-090

hop questions and all single-hop questions. A091

low degree of overlap suggests that the reasoning092

pattern of LLMs in response to multi-hop questions093

is inconsistent with that of single-hop questions, in-094

dicating the presence of shortcuts. Our experiments095

on multi-hop knowledge reveal that:096

(i) Few-shot questions exhibit more shortcuts097

in comparison to chain-of-thought questions, sug-098

gesting that LLMs often arrive at multi-hop099

knowledge answers using unexpected cross-step100

reasoning patterns.101

(ii) Knowledge instances with a higher co-102

occurrence frequency between initial subjects and103

terminal objects tend to have more shortcuts,104

indicating a strong correlation between the105

existence of multi-hop factual shortcuts and the106

word frequencies learned by LLMs during pre-107

training phase.108

Additionally, to provide insights into the po-109

tential risks associated with multi-hop factual110

shortcuts, we conduct a detailed analysis of the111

reasons behind the failures in multi-hop knowledge112

editing. We find that approximately 20% of the113

failure instances are attributed to multi-hop114

factual shortcuts. Furthermore, shortcut failure115

instances often exhibit higher co-occurrence 116

frequencies of the initial and terminal entities, 117

providing compelling evidence that the presence 118

of shortcuts may disrupt the multi-hop reasoning 119

consistency of LLMs after knowledge editing. 120

Finally, we explore the feasibility of employing 121

Knowledge Neurons to eliminate factual shortcuts. 122

We erase crucial neurons associated with factual 123

shortcuts that co-occurred more than 10 times in the 124

pre-training corpus. Results show that the failure 125

rate of multiple-hop knowledge editing caused 126

by shortcuts significantly decreased, leading to 127

an overall improvement in the success rate after 128

our erasing approach. We hope this work can 129

facilitate increased interest in exploring the multi- 130

hop reasoning capabilities of LLMs and constrain 131

reasoning shortcuts during the pre-training stage. 132

2 Rethinking the Multi-Hop Knowledge 133

A basic fact can be formulated as a single-hop 134

knowledge tuple t = (s, r, o) with a subject (s), 135

a relation (r), and an object (o). For each query, 136

we ask the LLM if the object is correct given 137

the subject and the relation 1 {f (T (s, r)) = o}, 138

where f and T denote the outputs of the LLM and 139

the prompt template for splicing s and o into a 140

cloze-style form. 141

In this paper, we mainly focus on the multi-hop 142

knowledge, which comprises a chain of single-hop 143

knowledge: 144

T = ⟨(s1, r1, o1) , ..., (sn, rn, on)⟩ , (1) 145

where si = oi−1. For each query, we directly 146

ask the LLM if the terminal object is correct 147

given the initial subject and the chain relation 148

1 {f (T (s1, rmul)) = on}, where rmul = r1 → 149

... → rn. This question can also be formulated as 150

asking the LLM of the knowledge tuple tmul = 151

(s1, rmul, on), which proves unproblematic in 152

general multi-hop question-answering, as tmul and 153

T share the same endpoint on. 154

However, tmul is in fact a shortcut, treating 155

a chain of relations as a separate composite 156

relation. If a knowledge-editing approach is 157

employed to modify the intermediate entity oi to 158

o∗i , the final answer of T will be altered. Since 159

tmul overlooks the intermediate entity, its answer 160

remains unaffected by knowledge editing. 161

Taking the multi-hop question of “Which con- 162

tinent will host the next Olympic Games” as an 163

illustrative example, if we edit the knowledge of the 164
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“country” from Japan to France, according to the165

chain-relation reasoning, the “continent” hosting166

the Olympic Games should be converted to Europe.167

However, if a composite relation is employed,168

the “continent” would remain unchanged despite169

alterations in the “country”.170

A causal LLM probably encodes such composite171

knowledge during the pre-training phase. The172

initial subject s1 and the terminal object on are173

likely to have direct associations in the corpus.174

Still taking the example above, an LLM may have175

learned the knowledge (the next Olympic Games,176

continent of the country, Asia) from the corpus177

directly, neglecting the causal relationship between178

the country and the continent to which it belongs.179

Therefore, for multi-hop knowledge, LLMs may180

potentially arrive at the correct answer through181

step-wise reasoning, but it is more likely that they182

memorize the outdated answer by leveraging the co-183

occurrence relationships in the pre-training corpus.184

3 Exploring the Existence of Factual185

Shortcuts186

In this section, we explore the extent of shortcuts187

in multi-hop question-answering. Concretely, we188

first validate the correlation between multi-hop189

shortcuts and the word frequency in the pre-training190

corpus. Then, we locate crucial neurons in single-191

hop, few-shot, and chain-of-thought question-192

answering tasks to further elucidate the degree of193

potential factual shortcuts.194

3.1 Probing Shortcuts in Pre-training Corpus195

Our analysis centers specifically on the MQUAKE-196

CF-3K dataset released by Zhong et al. (2023). It197

comprises 3,000 instances of multi-hop question-198

answering for knowledge editing extracted from199

Wikidata (Vrandecic and Krötzsch, 2014), which200

can be adopted in subsequent sections for further201

investigating potential risks introduced by these202

multi-hop factual shortcuts (details are shown in203

Appendix A).204

Considering that the existence of factual short-205

cuts may drive from pre-training corpora, we206

first compute the frequency of co-occurrence of207

the initial subject s1 and the terminal object208

on among these 3,000 items of knowledge on209

Wikipedia (20231101-en) corpus, which contains210

approximately 6.41M rows of texts. We choose211

this corpus due to its comprehensive coverage of212

global knowledge and its frequent utilization as a213
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Figure 2: Frequency analysis of multi-hop knowledge
shortcuts in Wikipedia.

significant component in the pre-training corpora 214

for most LLMs. If s1 and on co-occur within 215

the same paragraph, it is highly plausible that the 216

LLM establishes a direct connection between them 217

during the pre-training phase. 218

We conduct a frequency analysis of the occur- 219

rences of these multi-hop knowledge shortcuts 220

in the corpus (Figure 2). It can be observed 221

that more than 2/3 of instances exhibited various 222

degrees of shortcuts, with some even appearing 223

over 10,000 times. This indicates that certain 224

pieces of knowledge exhibit significant multi- 225

hop shortcuts, which could potentially influence 226

the reasoning processes of LLMs. 227

Moreover, we select several examples with high 228

and low frequencies for illustration (Table 1). It 229

can be observed that instances with high frequency 230

exhibit a clear direct connection between s1 and 231

on. For instance, “Twitter” is inherently strongly 232

associated with “the United States”, obviating the 233

need to think about the country of citizenship of 234

“Twitter’s CEO”. In contrast, there is no apparent 235

connection between “Jerry Rivers” and “Donald 236

Trump”, necessitating the prior derivation of the 237

nationality of “Jerry Rivers” to arrive at the correct 238

answer. Since “Jerry Rivers” and “Donald Trump” 239

rarely co-occur in the pre-training corpus, LLMs 240

may not contain factual shortcuts related to such 241

multi-hop knowledge. 242

3.2 Quantifying Shortcuts Using Knowledge 243

Neurons 244

Methods. The presence of multi-hop factual 245

shortcuts may result in a divergence in the rea- 246

soning mechanisms employed by the LLM when 247
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Subject (s1) Object (on) Multi-Hop Question Frequency

Rhode Island English Which languages are spoken, written, or signed in Rhode Island as the head of government there? 42754
Twitter United States of America What is the country of citizenship of Twitter’s CEO? 35435
Fanta Atlanta What is the location of the headquarters of the manufacturer of Fanta? 25834

Jerry Rivers Donald Trump Who is the head of state of the country whose citizen is Jerry Rivers? 0
Alvar Aalto Mikael Agricola Who is the creator of the content in the language or languages spoken by Alvar Aalto? 0

Nick Rimando London What is the capital of the country where the sport of Nick Rimando’s position is originated? 0

Table 1: Examples of multi-hop knowledge with high and low frequency of co-occurrence of s1 and on.
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Figure 3: The degree of overlaps employed by GPT-
J in handling multi-hop questions and all single-hop
questions with varying word frequencies in pre-training
corpora under few-shot prompts and chain-of-thought
prompts. It is expected that the instances from Dcount>τ

contain more potential factual shortcuts.

responding to multi-hop questions as opposed to248

directly answering individual single-hop questions.249

To quantify the disparities, we employ Knowledge250

Neurons (KN) proposed by Dai et al. (2022) to251

locate crucial neurons activated by the LLMs when252

responding to various questions. Specifically, it253

gradually changes each neuron w
(l)
i stored in FFN254

from 0 to its original value w
(l)
i and meanwhile255

integrates the gradients. We use the Riemann256

approximation as a substitution for continuous257

integrals:258

Ãttr(w(l)
i ) =

w
(l)
i

m

m∑
k=1

∂P ( k
mw

(l)
i )

∂w
(l)
i

, (2)259

where P (w
(l)
i ) = p(y|x,w(l)

i = ŵ
(l)
i ) is the260

probability of the correct answer predicted by the261

LLM when changing the value of neuron w
(l)
i to262

ŵ
(l)
i , and m is the number of the approximation263

steps. We choose neurons with attribution values264

larger than v as crucial neurons reflecting LLM265

decision-making patterns:266

N =
{
w

(l)
i |Attr(w(l)

i ) > v
}
. (3)267
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Figure 4: Distribution of the number of activated
neurons in GPT-J across different questions.

In this paper, we set m to 20 and the attribution 268

threshold v to 0.2. In the scenario of a multi-hop 269

question devoid of any shortcuts, it should ideally 270

encompass a broader array of crucial neurons 271

inherent to single-hop questions, except those 272

specifically dedicated to lower-level components 273

such as lexical and syntactic neurons. Hence, we 274

define O as the degree of overlap between the 275

reasoning patterns of multi-hop knowledge answers 276

and all single-hop knowledge answers: 277

O =
|NT ∩Ntmul

|
|NT |

, (4) 278

where NT denotes the intersection of crucial 279

neurons for all single-hop questions, Ntmul
de- 280

notes the set of crucial neurons for multi-hop 281

questions. A higher degree of overlap indicates 282

that LLM’s reasoning patterns for answering multi- 283

hop questions are more closely aligned with those 284

for answering single-hop questions. 285

It is noteworthy to emphasize that our objective 286

does not entail the precise localization of neurons 287

storing knowledge; rather, we aim to discern the 288

decision-making processes of the LLMs across 289

various questions. Despite Anonymous (2024)’s 290

skepticism regarding whether neurons uncovered 291

by KN in the FFN truly constitute “knowledge”, 292
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these neurons may store intricate “token expres-293

sion patterns” that can still elucidate the LLM’s294

decision-making processes.295

We separately evaluate the degree of shortcuts in296

few-shot and chain-of-thought multi-hop questions.297

All single-hop questions and few-shot multi-298

hop questions utilize the same demonstrations,299

while chain-of-thought multi-hop questions employ300

prompts with similar semantics (details provided301

in Appendix B). Besides, we partition the original302

dataset Do into two subsets Dcount≤τ and Dcount>τ303

based on word frequencies, where τ represents the304

threshold for word frequencies. We compute the305

degree of shortcuts for GPT-J (Figure 3).306

Main Results. It can be observed that the LLM307

adheres to a greater extent to reasoning patterns308

overlapping with those for single-hop questions309

under the chain-of-thought prompt. This obser-310

vation suggests that the chain-of-thought prompt311

indeed serves to induce the LLM to engage in step-312

wise reasoning. It also aligns with our hypothesis313

that LLMs tend to prioritize the utilization of314

latent multi-hop factual shortcuts, relinquishing315

them only when explicitly prompted to engage in316

step-wise reasoning. Furthermore, the instances317

within Dcount>τ exhibit lower degrees of reasoning318

overlap, suggesting that LLMs indeed learn the319

shortcut associations between s1 and on, with320

word frequencies significantly influencing the321

strength of these shortcuts.322

Interestingly, although the overlap rates vary323

across different scenarios, their values remain324

low. We analyze the distribution of the number of325

activated knowledge neurons for different instances326

(Figure 4). Since single-hop knowledge typically327

involves 2-4 questions, the number of activated328

neurons is an order of magnitude higher than329

that for multi-hop questions. Moreover, activated330

neurons, in addition to reflecting the inherent331

knowledge, may also be influenced by factors such332

as the lexical and syntactic aspects of sentences.333

Hence, the reasoning overlap rates tend to be334

maintained at a low value.335

4 Exploring the Potential Risks of Factual336

Shortcuts337

While these shortcuts may not have a significant338

impact on the results in general multi-hop question339

answering, their potential risks can be magnified340

in the context of knowledge editing. Zhong et al.341

(2023) have observed poor performance of LLMs342

in multi-hop knowledge editing. In this section, we 343

will specifically analyze the reasons for the failure 344

of multi-hop knowledge editing, particularly under 345

the influence of shortcuts. 346

Concretely, we employ various knowledge edit- 347

ing methods to modify single-hop knowledge in- 348

stances in MQUAKE-CF-3K and pose three different 349

multi-hop questions about the edited knowledge. 350

Subsequently, we quantify the effects of various 351

knowledge editing methods and categorize error 352

instances into three categories. 353

Failure Categories. We consider three key cat- 354

egories of failures. The first category of failure 355

stems from the unsuccessful editing of single- 356

hop knowledge. We designate the set of failures 357

in this category as Fsingle. The second and 358

third categories are built upon the assumption 359

of successfully editing all single-hop knowledge 360

instances, yet the LLM still fails to answer multi- 361

hop questions correctly. The second category 362

signifies cases where the answer to multi-hop 363

knowledge questions remains the same as the 364

original unedited answer. We denote this set as 365

Fshortcut. Given that all single-hop questions can be 366

answered correctly, the persistence of the original 367

result in multi-hop questions indicates the existence 368

of shortcuts. The third category involves the LLM 369

providing alternative incorrect answers, potentially 370

arising from hallucinations or other reasons. We 371

denote this set as Fother. 372

For each multi-hop edited knowledge, we 373

interrogate the LLM with three distinct multi-hop 374

questions. All multi-hop questions are prefixed 375

with the same few-shot template comprising 16 376

demonstrations, which is consistent with the setup 377

of Zhong et al. (2023). We calculate the percentage 378

of editing successes (S) and failures (F) within 379

three questions. Detailed experimental settings can 380

be seen in the Appendix C. 381

Main Results. Table 2 presents the analysis 382

results. Consistent with the findings of Zhong 383

et al. (2023), knowledge editing algorithms exhibit 384

catastrophic failures when addressing multi-hop 385

factual questions, with only approximately 10%- 386

20% of instances avoiding complete errors across 387

three queries. Fsingle stems from the editing failure 388

of LLMs in addressing single-hop questions. Since 389

multi-hop questions may necessitate more than 390

one edit, it may be slightly higher than the edit- 391

wise failure rate. Fother may originate from the 392

insufficient reasoning capabilities of LLMs or the 393
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S Fsingle Fshortcut Fother

i = 1 i = 2 i = 3 Sum Sum i = 1 i = 2 i = 3 Sum i = 1 i = 2 i = 3 Sum

GPT-J (6B)
MEND 4.27 4.53 14.17 22.97 33.03 3.93 3.17 11.87 18.97 5.40 4.97 33.47 43.84
ROME 2.07 2.30 4.57 8.94 39.87 3.13 2.27 9.17 14.57 3.17 3.63 41.13 47.93
MEMIT 2.17 1.97 4.87 9.01 33.37 4.10 3.63 11.47 19.20 4.20 4.00 43.27 51.47

LLaMA-2 (7B)
MEND 7.40 4.80 7.77 19.97 43.57 5.63 5.70 9.63 20.96 5.90 6.20 26.90 39.00
ROME 5.33 3.00 3.83 12.16 25.37 6.30 6.17 11.67 24.14 6.80 7.00 44.67 58.47
MEMIT 5.13 3.60 3.83 12.56 32.00 6.00 5.47 10.17 21.64 6.20 7.13 40.33 53.66

Table 2: The percentage of successful (S) and failed (F) multi-hop knowledge edits, where i denotes the frequency
of success or failure within the three queries, "Sum" denotes the cases with at least one success or failure. We
mainly focus on failures caused by factual shortcuts (Fshortcut).
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Figure 5: The average co-occurrence frequency of s1 and on in the pre-training corpus. The horizontal axis
represents the number of occurrences of shortcut failures across three queries.

hallucinations generated during editing. While394

we utilize few-shot prompts instead of chain-of-395

thought prompts to expose factual shortcuts, it may396

also increase Fother.397

It is noteworthy that Fshortcut also constitutes a398

significant proportion. This type of failure implies399

that LLMs respond with old ground truth for multi-400

hop questions while capable of correctly answering401

single-hop questions after all edits. In other words,402

shortcuts enable LLMs to conveniently utilize the403

rmul hard-coded during the pre-training phase to404

directly obtain results, without genuinely engaging405

in multi-hop knowledge reasoning. Experiments406

indicate that these factual shortcuts are preva-407

lent across various knowledge types in LLMs.408

To further investigate the connection between409

shortcut failures and falsely learned relations in the410

pre-training corpus, we analyze the relationship411

between the average co-occurrence frequency of412

entities and the occurrence frequency of shortcut413

failures (Figure 5). We observe that instances with414

higher occurrences of shortcut failures, partic-415

ularly those with three failures, exhibit higher 416

word co-occurrence frequencies between s1 and 417

on. This suggests that LLMs are highly likely 418

to leverage the multi-hop knowledge hardcoded 419

during the pre-training phase as reasoning shortcuts. 420

The presence of these factual shortcuts significantly 421

diminishes the reliability and plausibility of LLMs’ 422

reasoning. In the context of multi-hop knowledge 423

editing, the LLMs are easily entangled in the 424

confusion between old shortcut knowledge and new 425

multi-hop knowledge. 426

5 Reducing Multi-Hop Factual Shortcuts 427

The existence of multi-hop factual shortcuts reveals 428

the unreliability of current LLMs’ reasoning 429

and increases the risk of failures in multi-hop 430

knowledge editing. Since these shortcuts represent 431

knowledge hardcoded into LLMs during the pre- 432

training phase, it is challenging to eliminate these 433

factual shortcuts fundamentally unless there are 434

substantial changes in the pre-training phase. 435
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Europe.

Which continent will host
the next Olympic Games?

Feed-Forward
Network Knowledge Neurons

Figure 6: An illustrative example for reducing multi-
hop factual shortcuts.

Methods. To reduce the risks of multi-hop fac-436

tual shortcuts and further validate the hypotheses437

presented in this paper, we adopt a simple yet438

effective method inspired by Dai et al. (2022)439

to erase these shortcuts (Figure 6). Compared440

to Figure 1, we erase crucial neurons related to441

the red factual shortcuts, compelling the LLM442

to answer the continent that will host the next443

Olympic Games using the correct path of reasoning444

after knowledge editing.445

Specifically, we use the integral gradient al-446

gorithm to locate the crucial neurons associated447

with multi-hop knowledge questions and set them448

to zero. For each piece of multi-hop knowl-449

edge, we query with three questions to obtain450

the intersection of crucial neurons. Based on451

the previous experiments (Figure 3), we posit452

that multi-hop knowledge with a co-occurrence453

frequency exceeding 10 exhibits evident short-454

cuts. Consequently, we proceeded to eliminate455

these multi-hop factual shortcuts from the dataset456

Dcount>10. We compute the percentage of editing457

success (S) and shortcut failure rate (Fshortcut) for458

multi-hop knowledge editing before and after the459

erase of factual shortcuts, respectively.460

Main Results. Table 3 presents the success rate461

and shortcut failure rate of multi-hop knowledge462

editing before and after the erase of factual463

shortcuts on Dcount>10. Compared to Tabel 2,464

both the success rate and shortcut failure rate of465

multiple-hop knowledge editing have increased on466

Dcount>10. The result implies that instances with467

factual shortcuts are inherently more amenable to468

editing, yet the presence of factual shortcuts also469

entails a higher level of risk for these instances.470

Thus, these latent factual shortcuts are far more471

harmful than we realize.472

Furthermore, the erasing of shortcuts can 473

significantly reduce the risks associated with 474

shortcut failures, leading to an appreciable 475

improvement in the success rate of multi-hop 476

knowledge editing. Due to the incapacity of 477

knowledge editing methods to address shortcut 478

knowledge tmul, inconsistencies arise in LLMs’ 479

reasoning results. By erasing neurons correspond- 480

ing to tmul, we ensure that LLMs reason along the 481

correct path, thereby enhancing the success rate. 482

However, despite the efficacy of this approach 483

in mitigating the risk posed by factual shortcuts 484

to specific knowledge, it cannot serve as a 485

comprehensive solution to the problem. Due 486

to the ubiquitous nature of such shortcuts, it is 487

impractical to review and erase crucial neurons 488

for every multi-hop knowledge. Fundamentally, 489

to attain a trustworthy LLM with genuine multi- 490

hop reasoning capabilities, it is imperative to 491

address the issue at the pre-training stage to explore 492

improved pre-training methodologies. 493

6 Related Work 494

In this section, we discuss two lines of research 495

that are key to our work: knowledge editing and 496

multi-hop reasoning. 497

6.1 Knowledge Editing 498

Numerous studies have explored efficient knowl- 499

edge editing methods for LLMs, seeking resolu- 500

tions to challenges arising from outdated knowl- 501

edge. One prevalent and intuitive approach in- 502

volves employing external memorization, wherein 503

new knowledge is incorporated through external 504

context or parameters, without necessitating modifi- 505

cations to the LLM weights (Mitchell et al., 2022b; 506

Dong et al., 2022; Huang et al., 2023; Zheng et al., 507

2023; Zhong et al., 2023). While these approaches 508

are simple and effective in ensuring consistency, 509

the substantial influx of supplementary knowledge 510

may result in redundancy and low timeliness at a 511

later stage (Wang et al., 2023b). 512

Another line of work focuses on directly up- 513

dating the LLM parameters. Some investigations 514

are dedicated to constrained fine-tuning (Chen 515

et al., 2020; Lee et al., 2022) or meta-learning 516

(Lee et al., 2022; Mitchell et al., 2022a), which 517

update the full parameters of LLMs. The other 518

investigations involve a preliminary stage of 519

knowledge localization before editing, premised 520

on the assumption that knowledge is stored in 521
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S ↑ Fshortcut ↓

i = 1 i = 2 i = 3 Sum i = 1 i = 2 i = 3 Sum

GPT-J (6B)

MEND Before Erasing 4.46 5.13 19.56 29.15 4.08 4.18 17.57 25.83
After Erasing 5.79 5.41 18.42 29.62 4.75 4.84 15.76 25.35

ROME Before Erasing 2.09 2.94 8.64 13.67 2.75 3.23 12.82 18.80
After Erasing 4.47 2.94 8.36 15.77 2.57 3.33 11.62 17.52

MEMIT Before Erasing 1.61 2.94 7.98 12.53 4.27 5.60 16.05 25.92
After Erasing 3.32 2.66 8.07 14.05 3.23 4.65 14.25 22.13

LLaMA-2 (7B)

MEND Before Erasing 9.21 5.79 9.97 24.97 6.27 7.03 17.76 31.06
After Erasing 8.36 6.08 9.31 23.75 7.79 8.17 5.51 21.47

ROME Before Erasing 5.98 4.65 7.03 17.66 6.84 6.93 18.33 32.10
After Erasing 7.50 4.75 6.93 19.18 7.03 6.36 11.97 25.36

MEMIT Before Erasing 5.60 4.84 7.12 17.46 6.08 6.17 17.09 29.34
After Erasing 8.36 5.03 6.74 20.13 6.36 5.88 9.88 22.12

Table 3: Success rate and shortcut failure rate of multi-hop knowledge editing before and after the erase of factual
shortcuts on Dcount>10.

the form of key-value memories within the two-522

layer Feedforward Neural Network (FFN) (Geva523

et al., 2021). Dai et al. (2022) located and524

refined knowledge neurons (KN) through integral525

gradients (Sundararajan et al., 2017). Meng et al.526

(2022) et al. proposed the Rank-One Model method527

(ROME) to insert new knowledge in a specific FFN528

layer, while MEMIT (Meng et al., 2023) further529

extended address scenarios of mass editing.530

While the effectiveness of single-hop knowledge531

editing has been thoroughly investigated, there is532

a notable dearth of attention given to multi-hop533

knowledge editing. Zhong et al. (2023) systemati-534

cally focused on this issue by introducing the multi-535

hop knowledge editing evaluation benchmarks536

MQUAKE-CF and MQUAKE-T. Their findings537

revealed catastrophic performance degradation of538

existing knowledge editing methods. In this paper,539

we further investigate and elucidate the repercus-540

sions stemming from the presence of reasoning541

shortcuts in multi-hop knowledge editing.542

6.2 Multi-Hop Reasoning543

Multi-hop reasoning is often seen as a weakness544

for LLMs (Huang and Chang, 2023). Early545

efforts commonly employed in-context prompting,546

which involves the provision of few input-output547

demonstrations to LLMs (Brown et al., 2020;548

Zhao et al., 2021; Chen et al., 2022). This549

approach enables LLMs to solve problems through550

reasoning implicitly. However, its effectiveness551

diminishes significantly when confronted with552

multi-hop questions (Valmeekam et al., 2022). To553

incentivize LLMs to engage in explicit multi-hop554

reasoning, the concept of chain-of-thought was 555

introduced by Wei et al. (2022). It encourages the 556

LLM to think step by step and output intermediate 557

deductive steps (Chu et al., 2023). In this paper, 558

we elucidate the process by which LLMs handle 559

multi-hop question-answering from the perspective 560

of factual shortcuts. We provide evidence that 561

the chain-of-thought prompting compels LLMs to 562

attend to the single-hop knowledge more faithfully. 563

7 Conclusion 564

In this paper, we systematically explore the latent 565

factual shortcuts that LLMs may employ when 566

answering multi-hop knowledge questions. We 567

first demonstrate the strong correlation between the 568

strength of factual shortcuts and the co-occurrence 569

of the initial subject and the terminal object in pre- 570

training corpora. Then, we delve into the potential 571

risks introduced by these shortcuts in the context 572

of multi-hop knowledge editing. Our exploration 573

reveals that approximately 20% of failures can 574

be attributed to factual shortcuts, particularly in 575

instances characterized by high co-occurrences 576

within pre-training corpora. Finally, we propose a 577

straightforward yet efficient approach to mitigate 578

shortcut failures in multi-hop knowledge editing by 579

selectively erasing shortcut neurons. We advocate 580

for increased research efforts directed towards 581

exploring the true boundaries of LLMs in the realm 582

of multi-hop reasoning, emphasizing the need to 583

better constrain shortcut generation during the pre- 584

training phase. 585
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8 Limitations586

We posit that Wikipedia serves as a comprehensive587

repository of global knowledge, thus making it588

a suitable substitute for the entirety of the pre-589

training corpora. However, despite our exhaustive590

traversal of the Wikipedia dataset to calculate the591

co-occurrence frequencies of initial and terminal592

entities, it is noteworthy that the pre-training593

corpora for LLMs often extend beyond the confines594

of this dataset. This potential discrepancy may595

introduce inaccuracies in statistical outcomes.596

We advocate for future investigations to extend597

statistical analyses to more expansive corpora.598

For the erasing of factual shortcuts, our primary599

objective is to further substantiate the potential600

risks associated with these shortcuts, and the601

observed improvement in editing success rates602

after erasing serves to support this assertion.603

However, it is imperative to recognize that this604

approach functions as a mitigative measure, as the605

complete eradication of factual shortcuts through606

post-hoc removal is unattainable. A genuine and607

thorough elimination of factual shortcuts must be608

initiated during the pre-training phase, involving609

the alignment of LLMs’ multi-hop reasoning610

capabilities with human-level proficiency.611

Finally, due to space and resource constraints,612

we only conduct detailed experiments on GPT-J613

(6B) and LLaMA-2 (7B) and do not encompass all614

publicly accessible LLMs, such as PaLM (Chowd-615

hery et al., 2022), OPT (Zhang et al., 2022), and616

Pythia (Biderman et al., 2023). We encourage617

future research to undertake comprehensive experi-618

ments on a broader spectrum of LLMs.619

9 Ethical Statement620

We conduct a reassessment of the multi-hop rea-621

soning capabilities of LLMs and demonstrate that622

the presence of factual shortcuts may compromise623

the consistency of results in multi-hop knowledge624

editing. Since the approach itself is unbiased625

and all experiments are conducted on publicly626

available datasets, we believe that our work creates627

no potential ethical risk. Additionally, all use of628

existing artifacts is consistent with their intended629

use in this paper.630

However, we have exposed the indiscrimi-631

nate use of shortcuts by LLMs during multi-632

hop reasoning, raising concerns regarding their633

genuine reasoning capabilities. LLMs struggle634

to engage in step-wise reasoning akin to human635

cognitive processes, and the potential for parameter 636

confusion may arise following the assimilation 637

of new knowledge. These factors contribute to 638

our perplexity concerning the black-box nature of 639

LLMs and apprehensions regarding their applica- 640

tion in security-sensitive domains. We advocate for 641

more rigorous ethical scrutiny and improvements 642

in LLMs to ensure alignment with the human 643

reasoning process. 644
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A Dataset921

We select the MQUAKE-CF-3K dataset as the922

primary focus for exploration in this paper. It923

comprises 3,000 multi-hop English knowledge924

questions extracted from Wikipedia along with a925

corresponding knowledge editing task. We present926

essential information for one sample from the927

dataset (Table 4). For Section 3, we compute928

the crucial neurons of the first question within the929

’questions’ key, alongside the entirety of questions930

within the ’single_hops’ key. For Section 4, we931

adopt knowledge editing methods of all knowledge932

encapsulated within the ’requested_rewrite’ key.933

Furthermore, we augment the original dataset934

by introducing a new key, labeled as ’short-935

cut_frequency’, which denotes the frequency of936

co-occurrence in the pre-training corpus between937

the initial subject and the terminal object for each938

instance. We commit to open-sourcing the dataset939

for subsequent research use.940

B Prompts for Knowledge Neurons941

We employ prompt templates similar to that utilized942

by Zhong et al. (2023) for finding crucial neurons.943

Given the substantial computational overhead944

associated with Knowledge Neurons, we adopt a945

2-shot prompt, which is already sufficient for the946

LLM to comprehend the task and furnish accurate947

responses.948

For all single-hop questions, we adopt the few-949

shot prompt shown in Table 5. Subsequently, we950

locate crucial neurons based on the probability of951

correct answer output by the LLM following the952

"A:" prefix.953

For multi-hop questions, we adopt both the few-954

shot and chain-of-thought prompts. The few-shot955

prompt mirrors that of single-hop questions, while956

the chain-of-thought prompt is constructed with957

semantically approximate expressions. We require958

the LLM to articulate its reasoning process upon959

receiving the question. Then we locate crucial960

neurons based on the probability of correct answer961

output by the LLM following the "Answer:" prefix962

(see Table 6).963

C Experimental Details964

C.1 Language Models965

Our experiments are conducted on GPT-J (6B)966

(Wang and Komatsuzaki, 2021) and LLaMA-2 (7B)967

(Touvron et al., 2023). The selection of GPT-J is968

motivated by the alignment with the pre-existing 969

work on knowledge editing (Meng et al., 2022, 970

2023; Zhong et al., 2023), while opting for LLaMA- 971

2 is motivated by its status as a recent, prominent 972

open-source LLM representative, providing a 973

robust reflection of the current capabilities of 974

LLMs. We use the huggingface package (Wolf 975

et al., 2020) for the specific implementation. 976

C.2 Knowledge Editing 977

We use the cloze-style statement templates for 978

knowledge editing, which is consistent with the 979

previous studies. We employ the EasyEdit package 980

(Wang et al., 2023a) for the specific implementa- 981

tion. All licenses of these packages allow us for 982

normal research use. The detailed specifics of the 983

three knowledge editing methods that are employed 984

in our training are as follows. 985

MEND. MEND (Mitchell et al., 2022a) trains 986

a lightweight model editor network to produce 987

edits to the LLM’s weight when provided with 988

the standard fine-tuning gradient. We train our 989

editor network on the ZsRE dataset (Levy et al., 990

2017) with a maximum number of training steps 991

of 100,000. We set the learning rate scale to be 1.0 992

during inference. All experiments edit the MLP 993

weights in the last 3 Transformer blocks. 994

ROME. ROME (Meng et al., 2022) stands out 995

as a popular method for knowledge localization 996

and editing. It introduces a based on corruption 997

and restoration to identify relevant layers storing 998

knowledge. Subsequently, it inserts new knowl- 999

edge by key selection and value optimization in the 1000

corresponding feed-forward network (FFN) layer. 1001

We perform the intervention at layer 5 for GPT-J 1002

(6B) and 6 for LLaMA-2 (7B). We compute the 1003

second-order momentum statistics using 100,000 1004

examples of Wikitext in fp32. For the remaining 1005

hyperparameters, we adopt the default values 1006

specified in Meng et al. (2022). 1007

MEMIT. MEMIT (Meng et al., 2023) is a 1008

subsequent work to ROME, designed to handle 1009

extensive knowledge edits. In this paper, we 1010

perform the intervention at layer {3, 4, 5, 6} for 1011

GPT-J (6B) and {4, 5, 6, 7} for LLaMA-2 (7B). 1012

We also compute the covariance statistics using 1013

100,000 examples of Wikitext in fp32. For the 1014

remaining hyperparameters, we adopt the default 1015

values specified in Meng et al. (2023). 1016
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case_id: 16
requested_rewrite: [

{
prompt: {} is a citizen of
target_new: Latvia,
target_true: United States of America,
subject: Jack Dorsey,
question: What is the country of citizenship of Jack Dorsey?

}
]
questions: [

What is the country of citizenship of Twitter's CEO?
From which country does Twitter's CEO hold citizenship?
Which country's citizenship is held by the CEO of Twitter?

]
answer: United States of America
answer_alias: ...
new_answer: Latvia
new_answer_alias: ...
shortcut_frequency: 35435
single_hops: [

{
question: Who is the chief executive officer of Twitter?
cloze: The chief executive officer of Twitter is
answer: Jack Dorsey
answer_alias: ...

}
{

question: What is the country of citizenship of Jack Dorsey?
cloze: Jack Dorsey is a citizen of
answer: United States of America
answer_alias: ...

}
]
new_single_hops: [

{
question: Who is the chief executive officer of Twitter?
cloze: The chief executive officer of Twitter is
answer: Jack Dorsey
answer_alias: ...

}
{

question: What is the country of citizenship of Jack Dorsey?
cloze: Jack Dorsey is a citizen of
answer: Latvia
answer_alias: ...

}
]

Table 4: Critical information for a sample in the multi-hop knowledge editing dataset MQUAKE-CF-3K. We have
added the ’shortcut_frequency’ key to the original dataset to store the frequency of shortcuts appearing in Wikipedia.
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Q: Who is the spouse of the US president? A: Jill Biden
Q: In which country is the company that created Nissan 200SX located? A: Japan
Q: [Input Question] A: [Output Answer]

Table 5: The few-shot prompt for Knowledge Neurons.

Question: Who is the spouse of the US president?
Thoughts: The US president is Joe Biden. The spouse of Joe Biden is Jill Biden.
Answer: Jill Biden.

Question: In which country is the company that created Nissan 200SX located?
Thoughts: Nissan 200SX was created by Nissan. Nissan is located in the country of Japan.
Answer: Japan.

Question: [Input Question]
Thoughts: [Output Thoughts]
Answer: [Output Answer]

Table 6: The chain-of-thought prompt for Knowledge Neurons.

C.3 Computational Budget1017

For all the experiments mentioned in this paper,1018

we use one Nvidia A100-SXM4 GPU with 80GB1019

memory. We spend about 100, 200, and 2501020

GPU hours exploring the existence of factual1021

shortcuts (Section 3), exploring the potential risks1022

of factual shortcuts (Section 4) and reducing multi-1023

hop factual shortcuts (Section 5).1024
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