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LoCal: Logical and Causal Fact-Checking
with LLM based Multi-Agents

Anonymous Author(s)

ABSTRACT
With the development of social media, people are exposed to a vast

amount of unverified information, making fact-checking particu-

larly important. Existing fact-checking methods primarily encour-

age breaking down claims into more easily solvable sub-tasks, and

deriving final answers through reasoning with external evidence.

However, these models face logical issues regarding whether and

how the sub-tasks can logically be combined to form the original

claims, and encounter causal errors in the reasoning process due to

insufficient evidence or hallucinations from LLMs. In addition, they

often suffer from a lack of interpretability. In this paper, we propose

Logical and Causal fact-checking (LoCal), a novel fact-checking

framework based onmultiple LLM-based agents. The usage of multi-

agent systems is due to their increasingly demonstrated ability to

perform complex tasks in a manner similar to humans. LoCal pri-

marily consists of a decomposing agent, multiple reasoning agents,

and two evaluating agents. Specifically, the decomposing agent first

utilizes the in-context learning ability of LLMs to break down com-

plex claims into simpler sub-tasks, including fact verification tasks

and question answering tasks. Afterwards, two types of reasoning

agents are respectively utilized to retrieve external knowledge to

address the fact verification tasks that require comparative analysis

skills, and the question answering tasks that necessitate the ability

of information extraction from evidence. We then combine the sub-

tasks and their corresponding responses to generate a solution for

evaluation. In order to enhance logical and causal consistency, two

evaluating agents are respectively employed to examine whether

the generated solution is logically equivalent to the original claim

and determine whether the solution still holds when challenged

by the counterfactual label. The evaluating agents provide confi-

dence degrees for the solutions based on the evaluation results and

iteratively correct the logical and causal errors in the reasoning

process. We evaluate LoCal on two challenging datasets, and the

results show that LoCal significantly outperforms all the baseline

models across different settings of evidence availability. In addition,

LoCal offers better interpretability by providing a structured solu-

tion along with detailed evaluating processes. We believe LoCal will

provide valuable insights for future agent-based misinformation

detection.
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1 INTRODUCTION
With the rise of social media platforms and online news media,

information spreads at an incredibly fast pace. However, it also

leads to the proliferation of fake news, rumors, and misleading con-

tent. Fact-checking helps identify and correct such misinformation,

preventing it from spreading among the public and reducing its

negative impact on society. As a result, fact-checking has become

increasingly important for the web
1
[14, 20, 23, 30, 51, 58].

However, verifying real-world claims is often nontrivial. Early

studies [29, 36, 49] have primarily focused on verifying a simple

atomic claim that does not encompass the complex logic existing

in real-world claims. More recent studies [3, 8, 39, 43, 64] have rec-

ognized the importance of addressing complex claims. As shown in

Figure 1, these fact-checking models often concentrate on steps like

claim decomposition, external retrieval, sub-question answering,

and reasoning result integration. On one hand, the sub-tasks gener-

ated by claim decomposition need to reflect all the information in

the original claim, and must be correctly integrated to arrive at the

final answer, which we refer to as the logical process. On the other

hand, the model needs to derive correct results for the sub-tasks

based on retrieved evidence and ensure that the reasoning process

leads to an exact answer rather than other possible answers, which

we call the causal process. Existing fact-checking models are often

fragile, prone to logical errors in claim decomposition and sub-task

result integration. In addition, they also suffer from causal issues

due to inadequate retrieval of evidence and hallucinations from

LLMs, leading to incorrect responses of sub-tasks and resulting

in inaccurate or non-unique final label (flipping the label is also

acceptable).

In this work, to address the problems, we propose a logical

and causal fact-checking method with multiple LLM-based agents,

namely LoCal. Multi-agent systems decompose complex tasks into

multiple simpler parts and assign them to different agents, which

are well-suited for fact-checking tasks. The agents are all built upon

1Relevance to the Web: Fact-checking belongs to the Misinformation and Disinfor-

mation topic within the Responsible Web theme. This research aims to propose a new

multi-agent framework to address fact-checking challenges on the Web.
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Figure 1: Comparison between our framework and previous
approaches

large language models since LLMs are trained on vast amounts of

data, making them valuable knowledge source for veracity predic-

tion. More importantly, LLMs can leverage background knowledge

as prior information, enabling them to understand and formalize

various causal scenarios and accurately reason about unseen events.

Unlike previous works [3, 8, 39, 43, 64], we innovatively introduce

an evaluation phase in fact-checking to check logical and causal

consistency. Specifically, as shown in Figure 2, three different types

of agents are used in combination to address the fact-checking task

in LoCal:

• A decomposing agent, responsible for using the in-context

learning ability of LLMs to break down the input claim into

multiple sub-tasks, including fact verification and question

answering tasks.

• Two types of reasoning agents (fact verificating agents and

question answering agents), respectively responsible for

solving the fact verification tasks that require comparative

analysis skills, and the question answering tasks that ne-

cessitate the capabilities of information extraction from

retrieved evidences.

• Two evaluating agents (logically evaluating agent and coun-

terfactually evaluating agent) which examine whether the

solution is logically equivalent to the original claim and

determine whether the solution still holds when challenged

by the counterfactual label, thus determining whether to

accept the answer or start a new iteration.

Moreover, LoCal provides better interpretability for the predicted

veracity from two sides. First, LoCal provides a structured solution.

LoCal connects the decomposed sub-tasks and the sequence of

validations or answers for each sub-task into a solution that consists

of multiple task-response pairs. The solution is structured and

reviewable by humans. Second, LoCal offers a detailed description

of the evaluating process. The logically evaluating agent provides an

evaluation process determining whether the solution is equivalent

to the original claim, while the counterfactually evaluating agent

explains how contradictions arise.

We evaluate LoCal on two challenging datasets for verifying

complex claims: FEVEROUS [2] and HOVER [22]. The results show

that our method LoCal significantly outperforms state-of-the-art

methods on both datasets by taking into account the logical and

causal consistency in LLM-based multi-agent system. In addition,

LoCal provides interpretability of fact-checking with structured

solutions and detailed evaluating processes.

In summary, our main contributions are:

• We propose, for the first time, an LLM-based multi-agent

system considering both logical and causal consistency for

fact-checking. Our method provides structured solutions

along with detailed evaluating processes to improve inter-

pretability.

• We innovatively apply logical and causal evaluating agents

in fact-checking, which examine whether the solutions

are logically equivalent to the original claims and assess

whether the solutions still hold when challenged by coun-

terfactual labels, enhancing logical and causal consistency.

• Extensive experiments demonstrate that our fact-checking

method significantly outperforms state-of-the-art meth-

ods across different settings of evidence availability, and

provides interpretability with structured solutions and in-

sightful evaluating processes.

2 RELATEDWORK
2.1 Fact-Checking
With the explosive growth of information on the internet, fact-

checking has been increasingly applied in detecting and correcting

misinformation. Therefore, effective fact-checking methods have

garnered significant attention. For a given claim, the goal of fact-

checking is to find relevant evidence and then make a judgment

on the veracity of the claim based on the evidence [17, 18, 57].

Earlier models [21, 34, 36, 49, 50, 52] primarily addressed simple

atomic claims that could be verified using a single piece of evidence.

However, complex real-world claims often require multi-evidence

reasoning. To address the problem, recent fact-checking models

[5, 29, 39, 43] have acknowledged the importance of handling com-

plex claims. While most existing fact-checking models[5, 16, 24, 37,

59, 63, 65, 66] have achieved some promising results, they rely on

large-scale human-annotated datasets, which are often costly to pro-

duce. To address the issue, recent research [31, 41, 61] has focused

on fact-checking in zero-shot and few-shot scenarios. However,

these methods achieve limited performance due to their restricted

modeling capacity and lack of background knowledge.

2.2 LLMs for Fact-Checking
The rich knowledge and emergent reasoning capabilities of LLMs

present new opportunities for fact-checking tasks. Recently, there

have been numerous efforts exploring the use of LLMs for fact-

checking tasks. For instance, Pan et al. [43] proposed a fact-checking

framework that decomposes claims into a series of subtasks, lever-

aging LLMs’ in-contextual learning capabilities to generate rea-

soning programs that guide the verification of claims. Chen et al.

[7] employed both standard prompting ("No CoT" strategy) and

zero-shot chain-of-thought (CoT) prompting strategies for fact-

checking claims generated by both human and LLMs. Zhao et al.

[64] introduced a framework incorporating a claim decomposer

with self-reflection and an LLM-centric planning module, focusing

on LLMs’ applications in dynamic planning and action execution.

2
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Recognizing that LLMs’ inherent knowledge may be insufficient

for detecting factual errors, some works have explored enhancing

LLMs with external knowledge or tools. Specifically, Chern et al.

[10] proposed a fact-checking framework integrating multiple tools

(such as Google Search, Google Scholar, code interpreters, Python)

for detecting factual errors in texts generated by LLMs. Cheung and

Lam [11] combined knowledge retrieved from search engines with

LLaMA’s reasoning capabilities to predict the veracity of claims.

Some recent works [10, 64] have explored the use of agents to

address fact-checking tasks, but the performance of these models

is limited due to logical and causal errors encountered during the

fact-checking process. Unlike previous efforts, our proposed LoCal

employs an LLM-based multi-agent framework that includes a de-

compositing agent, multiple reasoning agents, and two evaluating

agents tailored to ensure logical and causal consistency. In addi-

tion, our model improves the interpretability of fact-checking by

providing structured solutions along with a detailed description of

the evaluation process.

2.3 Interpretability of Fact Checking
In the face of complex real-world claims, methods that simply as-

sign labels to claims directly from black-box models often lack

convincing interpretability [18, 53, 56]. Many models have endeav-

ored to enhance the interpretability of fact-checking. Some works

[13, 35, 45, 46, 54, 62] emphasize evidence using attention weights,

but this type of explanation is not easily understandable to humans.

Some studies [1, 15] generate logical justifications using knowledge

graphs, which are not flexible. Many works [4, 25, 28] generate

summaries of comments provided by expert fact-checkers, but an-

notating such datasets is costly and difficult to scale. Some studies

[6, 26, 32, 44] enrich context from source documents to assist task-

specific response generation, but the free-form natural language

is not concise. In contrast to previous works, our proposed LoCal

divides fact-checking into several steps, and provide a structured

solution along with detailed description of evaluating processes,

thereby enhancing the model’s interpretability.

3 OUR PROPOSED MODEL
3.1 Problem Formulation
Given a claim 𝑆 , possibly accompanied by a piece of gold evidence

𝑒𝑔𝑜𝑙𝑑 according to the work mode configuration, a fact-checking

model needs to return a Boolean output 𝑌 , indicating the veracity

of the given claim 𝑆 .

3.2 LoCal
We aim to address complex claims that require multi-hop reasoning

and multiple pieces of evidence. We propose a Logical and Causal
fact-checking method (LoCal) based on multiple LLM agents. LoCal

uses a decomposing agent to break down complex claims into sim-

pler sub-tasks, including fact verification and question answering

tasks. The two types of tasks are assigned to specialized reasoning

agents for resolution. The sub-tasks and their corresponding an-

swers are combined to form a solution. Next, in order to enhance

logical and causal consistency, two evaluating agents (logically

evaluating agent and counterfactually evaluating agent) are respec-

tively used to check whether the solution is logically equivalent

to the original claim and whether the solution remains valid when

challenged by the counterfactual label. Based on the evaluation

results, we determine whether to iteratively repeat the processes

of decomposing, reasoning and evaluating. We draw a conclusion

and estimate its confidence until both evaluating agents accept the

solution, or the maximum number of iterations is reached.

3.2.1 Decomposing Agent. In most scenarios, a claim is complex,

which means it can be composed of many atomic sub-tasks. With

the purpose of verifying the veracity of a complex claim, we could

decompose and atomize it first. To achieve this goal, we introduce

an LLM-based agent here to act as a decomposing agent. The de-

composing agent can generate a sub-task sequence, denoted as

𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑘 }, and a function 𝑓 for deduction in a later stage.

Notably, a sub-task 𝑠𝑖 can not only take the form of an exact atomic

claim (fact verification task), but also a one-hop question (question

answering task). Specifically, we define 𝑠𝑖 = (𝑡𝑖 , 𝐼𝑖 , 𝑎𝑖 ), where 𝑡𝑖 spec-
ifies the type of sub-task (such as a one-hop question or an atomic

claim), 𝐼𝑖 is a natural language sentence describing the sub-task

𝑠𝑖 , 𝑎𝑖 is the variable that stores the result of the sub-task 𝑠𝑖 . Since

subsequent steps often depend on the results of previous steps, we

allow the parameter 𝐼𝑖 to reference the variables 𝑎1, . . . , 𝑎𝑖−1 from
prior steps. The deduction function 𝑓 denotes a logical expression

concerning 𝑎1, 𝑎2, . . . , 𝑎𝑘 , used to derive the veracity label of claim

𝑆 , that is, 𝑓 (𝑎1, 𝑎2, . . . , 𝑎𝑘 ) ∈ {𝑇𝑅𝑈𝐸, 𝐹𝐴𝐿𝑆𝐸}.

3.2.2 Evidence Retrieval. For each sub-task, relevant evidence is

necessary for further deduction. If the work mode configuration

is gold, which means a piece of gold evidence is provided at the

beginning and no other knowledge source can be accessed, we will

directly use it as the relevant evidence for each sub-task. In other

case, if the configuration is open with no gold evidence provided,

we will leverage a retrieval toolkit 𝑅 to collect information for each

sub-task 𝑠𝑖 from the Internet. The toolkit 𝑅 will return a batch

of relevant evidences, which can be denoted as 𝑅(𝑠𝑖 ) = {𝑒 𝑗 }, 𝑗 =
1, 2, . . . , |𝑅(𝑠𝑖 ) |. In general, the collection of relevant evidences 𝐸𝑖
for the sub-task 𝑠𝑖 can be represented as

𝐸𝑖 =

{
{𝑒𝑔𝑜𝑙𝑑 } if work mode is gold.

𝑅(𝑠𝑖 ) = {𝑒 𝑗 } if work mode is open.

3.2.3 Reasoning Agents. We introduce two types of LLM-based rea-

soning agents respectively for fact verification tasks and question

answering tasks. For each sub-task 𝑠𝑖 = (𝑡𝑖 , 𝐼𝑖 , 𝑎𝑖 ) and its relevant

evidences 𝐸𝑖 , a suitable agent will be selected to process them and

generate a corresponding answer. More precisely, when a sub-task

𝑠𝑖 is an exact claim, a fact verificating agent will be used to de-

termine whether it is true or not, returning a Boolean answer 𝑎𝑖
accordingly. If a sub-task is one-hop-question, a question answering

agent will look up the given evidence to extract a direct answer 𝑎𝑖
to that question. During this process, each sub-task 𝑠𝑖 will be paired

with an answer 𝑎𝑖 . Finally, we can get the final Boolean answer that

represents the veracity of the original claim 𝑣 = 𝑓 (𝑎1, 𝑎2, . . . , 𝑎𝑘 ),
where 𝑓 is the deduction function generated in decomposing stage.

3.2.4 Evaluating Agents. In previous approaches, there are no fur-

ther steps to verify the correctness of the predicted veracity in the

reasoning stage. They focus on improvements in the intermediate

steps including decomposition, retrieval, and so on to improve the

3
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Figure 2: The overall framework of LoCal.

performance of fact-checking. However, these methods are inca-

pable of avoiding the logical and causal errors that arise during the

process.

To address this issue, we introduce a novel stage, named the

evaluating stage for logical and causal checking. Specifically, we

aim at identifying and correcting logical and causal errors that are

undetectable in the initial reasoning process. Before the evaluating

stage, a summary description of the previous reasoning process is

required. We sequentially concatenate each sub-task 𝑠𝑖 and its corre-

sponding response 𝑎𝑖 , replacing any references with their pointing

objects, to obtain a summary description, denoted as 𝑑 . For conve-

nience, we may also use the term "solution" to refer to combination

of 𝑑 and 𝑣 . In the evaluating stage, two different LLM-based agents,

namely logically evaluating agent and counterfactually evaluating

agent, will be respectively used to verify the predicted veracity

from logical and causal perspectives.

Logically Evaluating Agent. In order to verify whether the ve-

racity 𝑣 of the original claim is correct in terms of logic, we introduce

a logically evaluating agent that takes the summary description 𝑑

(not including the predicted veracity 𝑣) as input, performs reason-

ing based on it, and outputs a new veracity 𝑣 ′ that aligns with the

logic in 𝑑 . We denote the function of the logically evaluating agent

as 𝐿(𝑑), whose input is the summary description 𝑑 and output is a

Boolean variable 𝑣 ′ representing the new veracity.

Counterfactually Evaluating Agent. Unlike logical evalua-
tion, counterfactual evaluation verifies the veracity 𝑣 of the original

claim from a causal perspective by assuming an opposite veracity

prediction and trying to find conflicts. We use another counter-

factually evaluating agent for causal evaluation. In this process,

the former prediction 𝑣 will be negated first, used as the assuming

predicted veracity for the summary description 𝑑 . After that, both

𝑑 and ¬𝑣 will be fed into the counterfactually evaluating agent for

conflict detection. The counterfactually evaluating agent will be

asked to return a Boolean answer, denoted as 𝐶 (𝑑,¬𝑣), indicating
whether there are conflicts or not.

3.2.5 Confidence Updater. Confidence Updater is designed to esti-

mate the confidence of the predicted veracity of the original claim

𝑣 based on the results of logical and causal evaluation. For conve-

nience, we denote two Boolean variables, 𝑝𝑙 and 𝑝𝑐 , which represent

whether the logically evaluating agent and counterfactually evalu-

ating agent accept the predicted veracity 𝑣 , respectively. Formally,

for logically evaluating agent, we consider it as a state of accep-

tance when the new prediction is consistent with the original one,

i.e., 𝑝𝑙 = ¬(𝐿(𝑑) XOR 𝑣). For counterfactually evaluating agent, we

consider it as a state of acceptance when any conflict is detected

after the label flipping, i.e., 𝑝𝑐 = 𝐶 (𝑑,¬𝑣).
Next, we infer the final veracity and its confidence degree based

on 𝑝𝑙 and 𝑝𝑐 . Firstly, we define two veracity counters, #𝑃𝑂𝑆 and

#𝑁𝐸𝐺 , respectively representing the number of times that 𝑇𝑟𝑢𝑒

or 𝐹𝑎𝑙𝑠𝑒 is considered as the more credible veracity during the

iterative process. Then, we will follow the below workflow based

on the results of the logical and counterfactual evaluations.

• 2 Acceptances: If both 𝑝𝑙 and 𝑝𝑐 are true, which means

both logical and causal evaluating agents accept the pre-

dicted veracity, we consider the prediction is trustworthy,

and take it as the final veracity with confidence degree as

1. The workflow finishes.

• 1 Acceptance: If only one evaluating agent accepts the pre-
dicted veracity, we hold the view that the predicted veracity

4
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has a certain level of confidence, but it is not entirely reliable.

Therefore, we increment the veracity counter associated

with the veracity by one, and return to the decomposing

step for the next iteration.

• 0 Acceptance: If both evaluating agents reject, we would

prefer the opposite veracity result. Therefore, we increment

the veracity counter associated with the opposite of the

predicted veracity, and proceed to the decompose stage for

the next iteration.

Before starting the workflow, we will set a maximum iteration

number. If a 2-Acceptance result has never been achieved within

maximum iterations, we will determine the final veracity associated

with the larger value between #𝑃𝑂𝑆 and #𝑁𝐸𝐺 , whose confidence

degree will be considered as max(#𝑃𝑂𝑆, #𝑁𝐸𝐺)/(#𝑃𝑂𝑆 + #𝑁𝐸𝐺).

4 EXPERIMENTAL SETUP
4.1 Datasets
In our experiments, we evaluate our LoCal model using two differ-

ent datasets: HOVER [22] and FEVEROUS [2]. These two datasets

encompass various domains and complexities, providing a robust

benchmark for fact-checking tasks. HOVER is a dataset that re-

quires hierarchical fact extraction and multi-hop reasoning across

different sections of Wikipedia articles. Based on the number of

“hops” needed when doing fact-checking, we can divide HOVER

into 1126 two-hop claims, 1835 three-hop claims and 1039 four-hop

claims. FEVEROUS is another dataset, containing claims annotated

with evidence from both unstructured text and structured data,

such as tables from Wikipedia. To better compare model perfor-

mances, we process the FEVEROUS dataset in the same manner

as described in the previous method [43], focusing on 2962 claims

that use sentence evidence only.

4.2 Baselines
To better demonstrate the advancements of LoCal, we compare it

against 11 baselines, which can be categorized into four groups

based on their approaches: (1) Pre-trained models, (2) Fine-tuned

models, (3) LLM-based methods, (4) LLM Agent-based methods.

(1) Pre-trainedmodels.These approaches leverage pre-trained
models based on Transformer to do fact-checking tasks. The

following two baselines are of this kind. Bert-FC [55]: It

introduces pre-trained BERT into evidence retrieval and

claim verification. LisT5 [21]: This approach leverages T5

for fact-checking.

(2) FC/NLI fine-tunedmodels.Thesemethods use pre-trained

models which are further fine-tuned on other fact-checking

datasets or natural language inference (NLI) datasets. Three

of our baselines belong to this category. RoBERTa-NLI [38]:

This method chooses RoBERTa as the base model and fine-

tunes it on four NLI datasets. DeBERTaV3-NLI [19]: The

base model of this method is DeBERTaV3, and it is fine-

tuned using FEVER and four NLI datasets. MUTIVERS [59]:

A method, fine-tuned on FEVER, predicts fact-checking

labels and identifies rationales in a multitasking manner.

(3) LLM-basedmethods. This kind of methods leverage LLMs

directly with designed prompts to generate the answer.

Codex [9] and Flan-T5 [12] are two baselines that leverage

LLMs in a few-shot manner, which means a few in-context

examples are provided for LLMs to learn the task. We take

ChatGPT [64] as a zero-shot baseline, which means only

prompting the LLM to find evidence and predict the veracity

without examples.

(4) LLM Agent-based methods. These methods also include

LLMs, not using them directly, but regarding them as agents

for specific sub-tasks in the pipeline. ProgramFC (n) [43]:

It is a model that leverages LLM-based agents to gener-

ate reasoning programs for each claim, which are then

used to execute fact-checking step by step. The variable (n)

represents the number of times Program FC is executed re-

peatedly. PACAR [64]: A model that introduces LLM-based

agents for decomposing, self-reflection and an LLM-centric

planning module in the fact-checking tasks.

4.3 Implementation Details
For a fair comparison, we follow ProgramFC [43], using Flan-T5

[12] as the base for reasoning agents, which is an improved T5

model [48] that has achieved state-of-the-art zero-shot/few-shot

performance on many QA benchmarks. Due to the discontinuation

of Codex used in ProgramFC, we follow PACAR [64], using gpt-3.5-

turbo as the base for the decompositing and evaluating agent. For

the sake of fair comparison and cost considerations, we do not use

GPT-4, which may perform better in the tasks. In the claim decom-

position step, we use few-shot learning, limiting the decomposing

agent to access only 20 samples from HOVER or FEVEROUS. We

conduct experiments in the gold evidence (abbr. gold) and open

book settings (abbr. open). For the open book setting, we build

an index for the knowledge base accompanying the HOVER and

FEVEROUS datasets and use the Pyserini toolkit [33] as the retrieval

tool. For each sub-task, we use the top 5 paragraphs provided by

the retrieval tool as supporting evidence. In the sub-task answering

and evaluation steps, we let the reasoning agents and evaluating

agents operate in a zero-shot manner to reduce the model’s burden.

The maximum number of iterations is set to 3. We use the macro-

F1 score to evaluate the fact-checking performance of all models,

following the approach of Pan et al. [43].

5 EXPERIMENTAL RESULTS
5.1 Main Results
Table 1 presents a comprehensive comparison of our proposed

LoCal model with various state-of-the-art baselines across all set-

tings. As we can see, LoCal achieves the best performance in 7 out

of 8 evaluations, and outperforms all baseline models on average,

demonstrating its effectiveness. LoCal surpasses the best baseline

models ProgramFC and PACAR in both the gold evidence and open

book settings. It is particularly evident on HOVER, where LoCal’s

average performance improves by 2.14% and 2.31% compared to

the best baseline models in both settings. We believe that LoCal

enhances the performance of fact-checking through improvements

in logical and causal consistency.

We also find that the multi-agent models outperform LLM-based

models. This highlights the superiority of the multi-agent frame-

work, due to its demonstrated ability to perform complex tasks in
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Table 1: Main Results: Macro-F1 scores of LoCal and baselines on HOVER and FEVEROUS datasets. The best and second-best
results in each column are indicated with bold and underlined text, respectively. * denotes that the improvement of the metric
over the baseline methods is statistically significant (p< 0.01).

Models
Gold-Evidence Open-Book

HOVER

FEVEROUS AVERAGE

HOVER

FEVEROUS AVERAGE

2-hop 3-hop 4-hop 2-hop 3-hop 4-hop

I

BERT-FC 53.40 50.90 50.86 74.71 57.47 50.68 49.86 48.57 51.67 50.20

LisT5 56.15 53.76 51.67 77.88 59.87 52.56 51.89 50.46 54.15 52.27

II

RoBERTa-NLI 74.62 62.23 57.98 88.28 70.78 63.62 53.99 52.40 57.80 56.95

DeBERTaV3-NLI 77.22 65.98 60.49 91.98 73.92 68.72 60.76 56.00 58.81 61.07

MUTIVERS 68.86 59.87 55.67 86.03 67.61 60.17 52.55 51.86 56.61 55.30

III

Codex 70.63 66.46 63.49 89.77 72.59 65.07 56.63 57.27 62.58 60.39

Flan-T5 73.69 65.66 58.08 90.81 72.06 69.02 60.23 55.42 63.73 62.10

ChatGPT 71.42 64.87 63.65 83.49 70.86 66.94 60.56 58.73 55.72 60.49

IV

ProgramFC(n=1) 74.10 66.13 65.69 91.77 74.42 69.36 60.63 59.16 67.80 64.24

ProgramFC(n=5) 75.65 68.48 66.75 92.69 75.89 70.30 63.43 57.74 68.06 64.88

PACAR 76.86 70.10 69.95 94.43 77.84 - - - - -

Our LoCal 79.93∗ 73.26∗ 70.14∗ 91.09 78.61∗ 72.71∗ 64.11∗ 61.59∗ 68.22∗ 66.66∗

a manner similar to humans. Compared to the strong LLM-based

baselines Flan-T5 and ChatGPT, LoCal shows an average improve-

ment of 6.55% and 7.75% in the gold evidence setting and 4.56%

and 6.17% in the open book setting. Through the decomposing

agent, reasoning agents, and evaluating agents in multi-agent col-

laboration, LoCal has achieved significantly superior performance

compared to LLMs.

Fact-checking in the open book setting is challenging because it

requires retrieving external evidence, which often includes many

irrelevant items. LoCal outperforms the best baseline on the 2-hop,

3-hop, and 4-hop claims of HOVER and the FEVEROUS dataset

by 2.41%, 0.68%, 3.85%, and 0.16%, with an average improvement

of 1.78%. These results highlight the model’s ability to deal with

insufficient and irrelevant evidence, through its logical and causal

evaluations. Additionally, the strong baseline model ProgramFC

(n=5) requires a full execution of 5 iterations, imposing a significant

burden on LLMs. However, our model only requires a maximum

of 3 iterations to reach the final veracity and performs iterative

fact-checking only when the evaluating agents do not accept the

predicted veracity.

The HOVER dataset is more challenging in the gold evidence set-

ting compared to FEVEROUS because FEVEROUS’s gold evidence is

more direct and obvious, making it easier to obtain the final answers.

Our LoCal model improves by 3.07%, 3.16%, and 0.19% on the 2-hop,

3-hop, and 4-hop claims of HOVER, with an average improvement

of 2.14%. These results indicate that our model can better handle

claims containing complex gold evidence with iterative logical and

causal evaluation. For the simple FEVEROUS dataset, the perfor-

mance of state-of-the-art baselines already exceeds 90% (indicating

that it is a simple task), and our LoCal achieves a comparable per-

formance exceeding 90%. For complex tasks with more errors in

claim decomposition and reasoning, LoCal benefits from enhancing

logical and causal consistency with the corresponding evaluating

agents. However, for simpler tasks, they might “overcorrect”, lead-

ing to some correct answers being modified incorrectly. Overall, our

model achieves the highest average performance on both HOVER

and FEVEROUS and is better suited for complex tasks.

5.2 Ablation Experiments
To further evaluate the effectiveness of the mechanisms proposed

by the LoCal model, we conduct various ablation experiments in

the open book setting. For convenience, we refer to the evaluating

agents as Eval, the logically evaluating agent as L-Eval, and the

counterfactually evaluating agent as C-Eval.

As shown in Table 2, we test the performance of LoCal remov-

ing the Eval, removing the L-Eval, and removing the C-Eval. The

experimental results on different hop levels (2-hop, 3-hop, 4-hop)

of the HOVER dataset and the FEVEROUS dataset show that re-

moving both evaluating agents results in a 1.13% performance drop.

When we remove the C-Eval, the results show an average average

drop of 0.74%. When we remove L-Eval, the results show an av-

erage drop of 0.35%. This demonstrates the effectiveness of both

the logical and counterfactual evaluation. Additionally, we observe

a more significant drop of 1.77% on 4-hop claims when removing

the Eval, compared to smaller drops on 2-hop and 3-hop claims,

indicating that ensuring logical and causal consistency is more

effective for complex tasks. Note that, each ablation experiment

reaches the final answer after executing up to 3 iterations, which is

consistent with the non-ablation experimental settings. Therefore,

the performance improvement does not stem from an increase in

the number of execution iterations but from enhanced logical and

causal consistency.

5.3 Analysis of Corrected Errors by LoCal
To evaluate the improvements of LoCal in logical and causal consis-

tency, we selected 100 samples from the HOVER and FEVEROUS

datasets, with 50 from each. These samples are initially assigned

incorrect labels but are ultimately corrected by our proposed logical

and causal evaluation. Based on the stages of error occurrence, we

analyzed 4 types of errors that could be corrected:
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Table 2: Ablation results of LoCal

Models HOVER

FEVEROUS AVG

2-hop 3-hop 4-hop

LoCal 72.71 64.11 61.59 68.22 66.66
w/o Eval 71.66 63.07 59.82 67.56 65.53

w/o C-Eval 72.13 63.47 60.04 68.04 65.92

w/o L-Eval 72.38 63.57 61.49 67.81 66.31

Figure 3: The percentage of the four corrected error types in
the samples that were initially assigned incorrect labels but
were corrected by our proposed logical and causal evaluation.

• Decomposing Errors: Errors made by the decomposing

agent in breaking down the claim, including incorrect or

missing references, and incorrect decomposition logic.

• Retrieval Errors: The decomposition is correct, but the

retrieval tool fails to retrieve sufficient relevant evidence for

the sub-tasks, leading to untrustworthy or missing answers.

• FV&QA Errors: Relevant evidence is retrieved, but the

fact verification and question answering agents provide

incorrect or contradictory answers to the sub-tasks.

• Deducing Errors: The answers to the sub-tasks are correct,
but the deduction function makes errors when integrating

sub-tasks to form the predicted veracity, such as confusion

over logical operators like “and”, “or”, “both”, and “not both”.

We present the corrected analysis results in Figure 3. It shows

that corrected decomposition errors are the most frequently cor-

rected type, accounting for 38% on HOVER and 36% on FEVEROUS,

which indicates that LoCal can logically identify unreasonable sub-

task decomposition. The corrected FV&QA errors and Deducing

errors come second, which means LoCal can causally identify the

incorrect or contradictory information in sub-tasks and overall

deduction. Additionally, we observe that LoCal could also correct

some retrieval errors by iterative logical and causal checking.

5.4 Results in Closed Book Setting
We also evaluated the performance of various models in the closed

book setting, where models rely solely on their internal parametric

knowledge without any external evidence, including gold and re-

trieved evidence. We divided the baseline models into three groups:

The first group directly uses LLMs like Codex, FLAN-T5, and In-

structGPT [40]. The second group applies different prompting meth-

ods to InstructGPT. Self-Ask: Guide the LLM to autonomously gen-

erate and answer relevant questions [47]. Chain-of-Thought (CoT):

Prompt with demonstrations [60]. Zero-Shot Chain-of-Thought

(ZS-CoT): With the prompt "let’s think step by step" [27]. The third

group consists of models that have achieved claim decomposition,

including ProgramFC, and QACheck [42] which is a reasoning

model that uses a claim verifier and a question generator.

The results in Table 3 show that most models achieve a macro-F1

score between 50% and 60%, indicating that current methods strug-

gle with fact-checking tasks without retrieving external knowledge.

Our LoCal model achieves the best performance on the 2-hop, 4-

hop, and average scores. For the 3-hop HOVER dataset and the

FEVEROUS dataset, QACheck and CoT achieve the best perfor-

mance. All three top-performing models employed step-by-step

reasoning, which underscores the importance of task decomposi-

tion for fact-checking. Additionally, on the 4-hop HOVER dataset,

LoCal outperforms ProgramFC by 1.01%, indicating LoCal achieved

more accurate results for complex claims due to the assurance of

logical and causal consistency.

Table 3: Results in the Closed-Book setting

Models HOVER

FEVEROUS AVG

2-hop 3-hop 4-hop

Codex 55.57 53.42 45.59 57.85 53.11

Flan-T5 48.27 52.11 51.13 55.16 51.67

InstructGPT 56.51 51.75 49.68 60.13 54.52

Self-Ask 51.54 51.47 52.45 56.83 53.07

CoT 57.20 53.66 51.83 61.05 55.94

ZS-CoT 50.30 52.30 51.58 54.78 52.24

ProgramFC 54.27 54.18 52.88 59.66 55.25

QACheck 55.67 54.67 52.35 59.47 55.54

ours 57.51 53.60 53.89 59.47 56.12

5.5 Case Study
To illustrate our approach, we conduct a case study presented in

Table 4. In iteration 1, we find that the reasoning agents provide

correct answers based on retrieved evidence. However, sub-task

1 is wrong with the added “not” compared to the original claim,

causing the deduction function incorrect. Given that both sub-task

1 and sub-task 3 were true, the model concluded the original claim

was true. Fortunately, our LoCal will iteratively conduct logical and

causal consistency checking, finally achieving the right veracity.

Specifically, LoCal can:

• use the logically evaluating agent (L-Eval) to identify the

correct logical structure and obtain the correct answer,

“False” (Reject);
• use the counterfactually evaluating agent (C-Eval) to sup-

port the counterfactual answer and find no contradiction

when flipping the label, meaning “False” label also aligns

with the solution (Reject);
• increase the veracity counter of “False” by 1 (Both evaluat-

ing agents reject, 0 Acceptance), start a new iteration, and

finally conclude that the veracity is “False”.

One advantage of LoCal is that it enhances the interpretability
of fact-checking compared to end-to-end models by breaking down

fact-checking into several clear execution steps, which can aid
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Table 4: Case Study: The green highlight indicates correct information, while the red highlight indicates untrustworthy or
misleading information. The underlined text represents correct evaluating results, implying the correct veracity.

Claim: The novelist Paul Thomas Mann was American, not the author of Snow Falling on Cedars. Right Veracity: False
⊲ Iteration 1
Decomposing Agent: sub-task1 = Paul Thomas Mann was not American.

Evidence1: Paul Thomas Mann was a German novelist, short story writer, social critic, philanthropist, essayist, . . .

Fact Verificating Agent: Answer1 = True

sub-task2 = Who was the author of Snow Falling on Cedars?

Evidence2: Snow Falling on Cedars is a film . . . based on David Guterson’s award-winning novel of the same title. . . .

Question Answering Agent: Answer2 = David Guterson

sub-task3 = Paul Thomas Mann was not David Guterson.

Evidence3: Paul Thomas Mann was a German novelist . . .David Guterson (born May 4, 1956) is an American novelist . . .

Fact Verificating Agent: Answer3 = True

Predicted veracity = Answer1 and Answer3 = True

L-Eval: Based on the solution provided, it is clear that Paul Thomas Mann was not American and was not the author of Snow Falling on

Cedars. Therefore, the claim that Paul Thomas Mann was American and not the author of Snow Falling on Cedars is False. The solution

and the original claim are not equivalent.

C-Eval: The predicted veracity "False" indicates that the claim stating Paul Thomas Mann was American and not the author of Snow Falling

on Cedars is incorrect. The possible solution confirms that Paul Thomas Mann was not American. The possible solution also confirms

that Paul Thomas Mann was not the author of Snow Falling on Cedars. The predicted veracity correctly concludes that the claim is false

based on the information provided in the possible solution. So there is no contradiction in the solution.

Zero Acceptance
⊲ Iteration 2
. . .

Final Veracity: False

human understanding and debugging. As shown in Table 4, LoCal

connects the sub-tasks with their answers, forming a structured

solution composed of multiple task-answer pairs, which facilitates

human review. Additionally, LoCal provides a detailed description

of the evaluating process, where the L-Eval determines whether the

solution is equivalent to the original claim, and the C-Eval explains

how contradictions arise.

5.6 Analysis of Required Iterations
To evaluate the efficiency of LoCal, we statistically analyzed the

number of required execution iterations on the HOVER (2-hop, 3-

hop, 4-hop) and FEVEROUS datasets. As depicted in Figure 4, most

execution iterations are 1, indicating that LoCal can quickly provide

conclusions for most claims. For more complex claims, multiple

iterations are necessary. Approximately one-third of the claims

require further iterations of fact-checking to reach a conclusion.

6 CONCLUSION
In summary, we propose LoCal, a novel logical and causal fact-

checking method with LLM-based multi-agents. LoCal primarily

consists of a decomposing agent, multiple reasoning agents, and

two evaluating agents. Specifically, the decomposing agent breaks

down complex claims into multiple simpler sub-tasks, the reasoning

agents use the retrieved evidence to handle fact verification and

question answering sub-tasks separately, and two evaluating agents

(logically evaluating agent and counterfactually evaluating agent)

check whether the solution is logically and causally valid. By itera-

tively performing the steps, we obtain a more accurate fact veracity

Figure 4: The proportion of required iteration numbers to
obtain the final result

result due to logical and causal insurance. Additionally, our LoCal

provides a better interpretability with the structured solution along

with a detailed evaluating process. The results from two challenging

datasets demonstrate the effectiveness of LoCal. In future work, we

would explore adapting LoCal to more real-world scenarios, such

as fake news detection and multi-modal fact-checking.
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A ALGORITHM
The detailed structure of our LoCal is presented in Algorithm 1.

Algorithm 1 LoCal

procedure ONE_ITERATION(𝑆, 𝑖𝑡𝑒𝑟,𝑚𝑎𝑥, #𝑃𝑂𝑆, #𝑁𝐸𝐺)

S ← [𝑠1, . . . , 𝑠𝑘 ] = [DECOMPOSE(𝑆)]
E ← [𝐸1, . . . , 𝐸𝑘 ] = [RETRIEVE(𝑠𝑖 ) for 𝑠𝑖 in S]
A ← [𝑎1, . . . , 𝑎𝑘 ] = [REASON(𝑠𝑖 , 𝐸𝑖 ) for 𝑠𝑖 , 𝐸𝑖 in S, E]
𝑣 ← DEDUCE(A)
𝑑 ← SUMMARIZE(S,A)
𝑝𝑙 ← ¬(LOGICAL_EVAL(𝑑) XOR 𝑣)
𝑝𝑐 ← COUNTERFACTUAL_EVAL(𝑑,¬𝑣)
if 𝑝𝑙 is True and 𝑝𝑐 is True then

return 𝑣

else if 𝑝𝑙 is True or 𝑝𝑐 is True then
CONFIDENCE(𝑣, #𝑃𝑂𝑆, #𝑁𝐸𝐺)

else
CONFIDENCE(¬𝑣, #𝑃𝑂𝑆, #𝑁𝐸𝐺)

end if
if 𝑖𝑡𝑒𝑟 >=𝑚𝑎𝑥 then

if #𝑃𝑂𝑆 > #𝑁𝐸𝐺 then
return True

else
return False

end if
else

return ONE_ITERATION(𝑆, 𝑖𝑡𝑒𝑟 + 1,𝑚𝑎𝑥, #𝑃𝑂𝑆, #𝑁𝐸𝐺)

end if
end procedure

In Algorithm 1, 𝑖𝑡𝑒𝑟 represents the current iteration number,

𝑚𝑎𝑥 represents the maximum number of iterations, and the rest of

the notations are consistent with those used in the main text.

B ADVANTAGES COMPARED TO COT
CoT prompts guide LLMs to think step by step, essentially decom-

posing claims. However, CoT lacks logic and causal evaluation. To

further assess the effectiveness of LoCal, we compared its perfor-

mance with ChatGPT using CoT in the gold evidence setting.

As shown in Table 5, LLM with CoT still performs poorly on

fact-checking tasks, showing the inherent limitations of LLMs, such

as hallucination issues and limited reasoning capabilities, which

hinder their ability to effectively address fact-checking tasks. In

contrast, our proposed LoCal model, based on an LLM-powered

multi-agent system, achieves superior performance by ensuring

logical and causal consistency.

Table 5: Results of LoCal and CoT in the Gold-Evidence set-
ting

Models HOVER

FEVEROUS AVG

2-hop 3-hop 4-hop

ChatGPT 71.42 64.87 63.65 83.49 70.86

ChatGPT-CoT 72.85 65.61 64.08 84.22 71.69

ours 79.93 73.26 70.41 91.09 78.67

C A COMPLETE CASE STUDY
To provide a detailed demonstration of our approach, we conducted

a comprehensive case study in Table 6, which is an expanded de-

scription of Table 4.

The first iteration is the same as in Table 4. Since both L-Eval and

C-Eval do not accept the predicted veracity, the veracity counter

associated with "False" is incremented by 1, leading to the second

iteration. In the second iteration, all components provided trust-

worthy information, and the right veracity was obtained. This case

study shows how LoCal enhances logical and causal consistency to

improve the accuracy of fact-checking, while providing structured

solutions along with detailed evaluating processes.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009
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Table 6: A Complete Case Study: The green highlight indicates correct information, while the red highlight indicates untrust-
worthy or misleading information. The underlined text represents correct evaluating results, implying the correct veracity.

Claim: The novelist Paul Thomas Mann was American, not the author of Snow Falling on Cedars. Right Veracity: False
⊲ Iteration 1
Decomposing Agent: sub-task1 = Paul Thomas Mann was not American.

Evidence1: Paul Thomas Mann was a German novelist, short story writer, social critic, philanthropist, essayist, . . .

Fact Verificating Agent: Answer1 = True

sub-task2 = Who was the author of Snow Falling on Cedars?

Evidence2: Snow Falling on Cedars is a film . . . based on David Guterson’s award-winning novel of the same title. . . .

Question Answering Agent: Answer2 = David Guterson

sub-task3 = Paul Thomas Mann was not David Guterson.

Evidence3: Paul Thomas Mann was a German novelist . . .David Guterson (born May 4, 1956) is an American novelist . . .

Fact Verificating Agent: Answer3 = True

Predicted veracity = Answer1 and Answer3 = True

L-Eval: Based on the solution provided, it is clear that Paul Thomas Mann was not American and was not the author of Snow Falling on

Cedars. Therefore, the claim that Paul Thomas Mann was American and not the author of Snow Falling on Cedars is False. The solution

and the original claim are not equivalent.

C-Eval: The predicted veracity "False" indicates that the claim stating Paul Thomas Mann was American and not the author of Snow Falling

on Cedars is incorrect. The possible solution confirms that Paul Thomas Mann was not American. The possible solution also confirms

that Paul Thomas Mann was not the author of Snow Falling on Cedars. The predicted veracity correctly concludes that the claim is false

based on the information provided in the possible solution. So there is no contradiction in the solution.

Zero Acceptance

⊲ Iteration 2
Decomposing Agent: sub-task1 = Paul Thomas Mann was American.

Evidence1: Paul Thomas Mann was a German novelist, short story writer, social critic, philanthropist, essayist, . . .

Fact Verificating Agent: Answer1 = False

sub-task2 = Paul Thomas Mann was not the author of Snow Falling on Cedars.

Evidence2: David Guterson (born May 4, 1956) is an American novelist, . . .He is best known as the author of the book "Snow

Falling on Cedars".

Fact Verificating Agent: Answer2 = True

Predicted veracity = Answer1 and Answer2 = False

L-Eval: The evidence provided clearly states that Paul Thomas Mann was not American and was not the author of Snow Falling on

Cedars. Therefore, the claim that Paul Thomas Mann was American and not the author of Snow Falling on Cedars is False based on the

evidence provided. The solution and the original claim are equivalent.

C-Eval: The predicted veracity "True" means that Paul Thomas Mann was indeed American and not the author of Snow Falling on Cedars.

The possible solution states that it is false that Paul Thomas Mann was American. The possible solution also states that it is true that Paul

Thomas Mann was not the author of Snow Falling on Cedars. The predicted veracity contradicts the possible solution by stating that Paul

Thomas Mann was American.

Two Acceptance
Final Veracity: False
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