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Abstract

Human drivers focus only on a handful of agents at any one time. On the other
hand, autonomous driving systems process complex scenes with numerous agents,
regardless of whether they are pedestrians on a crosswalk or vehicles parked on
the side of the road. While attention mechanisms offer an implicit way to reduce
the input to the elements that affect decisions, existing attention mechanisms for
capturing agent interactions are quadratic, and generally computationally expensive.
We propose RDAR, a strategy to learn per-agent relevance — how much each agent
influences the behavior of the controlled vehicle — by identifying which agents
can be excluded from the input to a pre-trained behavior model. We formulate
the masking procedure as a Markov Decision Process where the action consists
of a binary mask indicating agent selection. We evaluate RDAR on a large-scale
driving dataset, and demonstrate its ability to learn an accurate numerical measure
of relevance by achieving comparable driving performance, in terms of overall
progress, safety and performance, while processing significantly fewer agents
compared to a state of the art behavior model.

1 Introduction

Humans, when driving, do not pay equal attention to all agents around them (e.g., other vehicles,
pedestrians). Transfomer-based attention models offer the promise of attending only to relevant
components of the input, but existing attention models are typically quadratic in the size of the input
space. Driving models encounter hundreds of input tokens, leading to substantial computational
complexity and latency Harmel et al. [2023], Huang et al. [2024], Baniodeh et al. [2025].

In autonomous driving, there is a tension between the limited available compute resources and the
desire to take advantage of scaling laws, large models, and test-time compute. Having access to
numerical per-agent relevance scores would not only improve the interpretability of large driving
models, but also allow compute resources to be prioritized for the features that are most important.
In fact, when agents and other scene elements are represented explicitly as tokens, reasoning about
interactions between these tokens (typically through self-attention or graph neural network operations)
is quadratic and difficult to reduce using low-rank or other approximations that work well for long-
sequence data. Reducing the number of tokens under consideration provides quadratic improvements
in FLOPs used.

In this work, we introduce RDAR (Reward-Driven Agent Relevance), through which we quantify
agent relevance through a learned approach. The basic intuition is that if an agent is not relevant
towards the driving decisions of the controlled vehicle, then its absence would not change the
controlled vehicle’s driving behavior significantly. Thus, we quantify per-agent relevance by learning
which agents can be masked out from the controlled vehicle’s planner input while maintaining a good
driving behavior. We formulate agent selection as a reinforcement learning (RL) problem where an
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Figure 1: Example visualizations showing agent relevance assigned by our method. The top-k
relevant agents are labeled with a colored dot hovering over them. As shown by the scale in the
bottom left of each image, red corresponds to higher relevance and light blue corresponds to lower
relevance. a) attending to cyclist while turning left, b) attending to pedestrian during stop. The
controlled vehicle is in black.

action is a binary mask indicating which agents to include in the driving policy input, and which not
to. The RDAR scoring policy is trained in the loop with a frozen, pre-trained driving policy and a
simulator. At each time step, based on the relevance scores, an agent mask is fed to the driving policy,
making the controlled vehicle blind to the lower score agents. As it will be clear from the following
sections, this is not a binary classification problem over agents due to the underlying system dynamics
(e.g., not observing an agent now could lead to a collision later) and to the unavailability of ground
truth labels. Some examples of relevance (color-coded) computed by our method are shown in Fig. 1.
Our main contributions are:

* A novel reinforcement learning formulation for agent relevance estimation;
* A sampling-based mechanism for agent selection that enables efficient training and inference;

* A comprehensive evaluation showing that we can maintain driving performance while processing
only a handful of surrounding agents.

2 Related work

Learning object ranking is a long standing problem in deep learning and typically requires human-
labeled data Cohen et al. [1997], Burges et al. [2005], Jamieson and Nowak [2011]. In fields such
autonomous driving, a manual ranking process can be not straightforward, and require large amounts
of labeled data. Input attribution Sundararajan et al. [2017] is a family of post-hoc analysis methods
attempting to pinpoint which parts of the input are most responsible for a prediction. Attribution
methods mostly focus on leave-one-out (LOO) approaches Liu et al. [2024], where chunks of the
input are individually removed, or masked, and are correlated with changes in model outputs.

Ranking agents in a driving scene based on their relevance is useful for both offline and online
applications. Current autonomous driving systems quantify the relevance of surrounding agents
either through fast, heuristic-based modules (e.g. based on euclidean distance), or learned models
trained through supervised learning. Some approaches have been proposed for the supervision of
these models, and they predominantly focus on LOO strategies coming from the attribution literature
for agent prioritization Refaat et al. [2019], selective prediction Tolstaya et al. [2021], or offline
introspection Cusumano-Towner et al. [2025]. While these LOO approaches provide insights into
individual agent contributions, they have some limitations. First of all, a change in driving behavior,
captured by a shift in predicted action, represents a different driving behavior, but not necessarily a
worse one. Second, these methods require multiple forward passes through a model (a planner in
this case). Third, they do not capture the temporal dependencies caused by system dynamics. In this
work, we propose a reward-driven method trained through reinforcement learning to estimate agent
relevance.

RDAR computes per-agent relevance through just one forward pass, and is reward-driven instead
of supervised through ground truth labels. Reinforcement learning (RL) approaches have shown
promising results in autonomous driving applications Kiran et al. [2021], and are being integrated in
production and deployed in real-world systems. Several works have shown large scale urban driving
through the use of both RL and human-collected real world driving data Harmel et al. [2023], Gulino
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Figure 2: Example driving scenarios highlighting agent relevance. In a), the pedestrian crossing in
front of the controlled vehicle is highly relevant, while the one behind is not. In b), the bike just went
through the intersection and is not relevant anymore, while the car inching into the intersection is
highly relevant.

et al. [2023], Lu et al. [2023]. In this work we build upon an existing learned behavior model, and
train a scoring policy with closed-loop RL through a novel formulation for agent selection.

3 Problem Setup

We wish to learn a policy Wé{ assigning a relevance score to each agent in the driving scene based on
its influence on the driving behavior of the controlled vehicle (6 denotes learnable parameters). We
assume a pre-trained driving policy 7" mapping scene information to driving actions is available. We
also assume that, associated with the policy 7, there is a reward function r encoding some notion
of good driving behavior. The RDAR scoring policy 7/ is trained in closed loop with the (frozen)
driving policy 7 and a driving simulator.

Formally defining a notion of agent relevance is not straightforward. However, human drivers have a
good intuitive concept of such notion, which allows them to pay selective attention to surrounding
agents. With reference to Fig. 2a, a pedestrian crossing in front of the controlled vehicle is a highly
relevant agent, because its presence its presence means that the controlled vehicle must come to a stop
and yield instead of driving through a crosswalk. At the same time, the pedestrian crossing behind
the driver has low relevance. Similar considerations are true for the intersection scenario of Fig. 2b.
The vehicle inching into the intersection has high relevance, because its presence means that the
controlled vehicle must stop and yield. Instead, the cyclist who just passed through the intersection
should not affect the controlled vehicle behavior. Therefore, we can say that an agent is relevant
if hypothetically removing it from a driving scenario would cause the controlled vehicle to have a
different behavior.

Markov Decision Process formulation Following the above intuition, we formulate the agent
relevance estimation problem as a Markov Decision Process (MDP). The policy 74* outputs per-agent
relevance scores, which can be interpreted as logits of a categorical distribution. If agent ¢ is sampled
from this relevance distribution, it gets processed by the driving policy 7%, otherwise it is masked
out and ignored by 7. Given a hyperparameter k € N, an action is then a subset of k surrounding
agents, or a k-sample, to be processed by 7. Our goal is thus to learn ﬂf such that the return
is maximized in expectation. Inaccurate relevance scores would make the driving policy blind to
important agents in the scene, leading to low reward behaviors (e.g., collisions). The MDP setup for
this process is defined by a standard tuple (.S, A, r, P, ug), where:

» S'is the state space, including the controlled vehicle state, surrounding agent states (expressed in
the controlled vehicle reference frame), road network and route information (see Fig.3c);

« A ={0,1}" is the action space, consisting of binary masks of size NV (number of agents) indicating
which agents to include in the planning input. The logits of the action distribution are the relevance
scores (details in the following sections);

* ris the reward function encoding good driving behavior. This is ideally the same reward or scoring
function accompanying 77;
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Figure 3: a) Block diagram of the system at training time. b) Block diagram of the system at
deployment time. ¢c) RDAR model structure.

* P is the transition probability function associated to the environment. Note that the environment,
from the perspective of the reinforcement learning agent 7175, consists of 72 and the actual driving
environment altogether (see Fig.3a);

* 1 is the initial state distribution.

The nature of the actions space makes this problem similar to a contextual multi-armed bandit
(CMAB) Lu et al. [2010], with the subtle difference that in this case the action changes the context,
which in CMABs is assumed to be independent of the action.

Agent Selection Mechanism At each timestep ¢, the RDAR policy 7/t outputs a vector of per-agent
relevance scores ¢ = [¢1, @2, . .., dn]. At deployment time, the top-k scoring agents are selected,
while at training time, agents are randomly sampled to encourage exploration. For sampling, the
scores are converted to a categorical distribution p; = [p1, pa, ..., pn] over the binary agent selection
action space through a softmax, where

... (. (1)

Z;V:1 exp(¢;)

Drawing one sample from this distribution corresponds to selecting one agent. If we draw exactly
one sample, the probability of agent ¢ being selected is p;. We can thus get a k-sample by drawing
k samples sequentially, without replacement, by renormalizing the probabilities at each step. We
denote an agent k-sample as

a=(ar,as,...,a;), a; €{1,...,N}, 2)

where each component a; is the integer index corresponding to the selected agent. Note that this
notation and an /N-dimensional binary vector are equivalent. Then, the probability of selecting an
ordered sample of agents without replacement is

k

Pa;
Play,...,ax) = || —=r5— 3)
i1 1= Ej:1 Da;

where the denominators are the renormalization terms. Note that although we describe the sampling
process as sequential, the Gumbel top-k trick enables efficient, single-step sampling without replace-
ment Jang et al. [2016], Kool et al. [2019]. The trick consists of perturbing the distribution p; with a
Gumbel distribution, and greadily selecting the top-k elements:

(a1,...,ar) = arg top-k {p; —log(—1logU)}, U ~ Uniform(0,1) “4)
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By applying the logarithm to (3), we can compute the log-likelihood of the k-sample:

k k i-1
logP(ah...,ak):Zlogpai—Zlog(l—ZpaJ). 5)
i=1 i=1 j=1

Since the scores are the output of our model 7%, (5) is exactly what we need for policy gradient
updates in an RL framework. Once a k-sample is picked, only those k agents are processed by the
driving policy 7. The action output by the driving policy is then applied to the simulator, and the
overall state is updated. The simulator also produces the reward signal 7, for RDAR. The process is
then repeated.

Reinforcement learning framework We train the policy using an off-policy actor—critic framework
with V-trace corrections Espeholt et al. [2018]. The loss function combines four components:
L= Lpolicy + )\c‘Ccritic + )\eﬁentropy + )\sﬂsmoolhing (6)

The four components are respectively policy gradient loss, critic loss, entropy regularization loss, and
action smoothing loss. Their exact expressions are:

Lootcy = —Ex [ pe log nff(as | 1) Ay, )
Larie = By (ve(st) ANP ®)
N
ACenlropy =E; |- Zﬂ'g | St IOg Tg ( | St)] 5 )
Lsmooth = By ang | 5¢) — w4 (i |st_1)|2], (10)
where p; = % are clipped importance weights, a; is the agent k-sample at time step ¢ as in

(2). The A} and V;****' terms are computed following Espeholt et al. [2018]. The log-likelihood
term in (7) is computed as in (5). The entropy and smoothing loss components, are calculated on
the logits directly and do not depend on the k-sample a,. The entropy component favors uniformity
in the relevance scores, and therefore encourages exploration. The action smoothing component
encourages the scores corresponding to the same agent to be consistent across time. It is possible that
fewer than IV agents are physically present in a scene at a given time, in which case the loss terms
corresponding to non-existing agents are masked. Finally, A., Ac, As are hyperparameters weighing
the loss terms, selected empirically.

4 Implementation

Architecture The RDAR model architecture consists of three main components. An encoder
module processes the full scene context (controlled vehicle state, surrounding agent states, road
and route information) and computes embeddings. There are two heads: a scoring head, mapping
embeddings to agent relevance scores, and a value head, approximating the value function. Note that
the value function for the relevance scoring policy has a different meaning than the value function
for the driving policy, since the expectation is over all possible k-samples rather than all possible
driving actions. The three options for the scoring head make use of embedding of varying depth from
the encoder. The first option (Fig. 4a) just uses the features from the agent projection layer. In this
case, only agent state information is fed to the scoring head. The second option (Fig. 4b) uses the
embeddings output by the agent encoder module. In this case, the embeddings also encode agent
interactions. The third option (Fig. 4c) uses the output from the scene encoder, and reprojects it back
to the agent level through a transformer block. In this case, all information from the driving scene is
used to compute agent relevance. The value head is kept the same for the three architectures, and
uses all available information.

Training details The training-time agent sampling procedure described in Section 3 is done through
the Gumbel top-k trick Kool et al. [2019], natively used, for instance, in the JAX’s implementation
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Figure 4: Different model architectures tested. Left: the scoring head consumes directly agent
features projected through a linear layer. Middle: the scoring head consumes the output of the agent
encoder, a transformer block cross attending among agents. Right: the scoring head consumes full
scene information encoded into a latent embedding from the scene encoder, and attending back to
agent tokens.

of the categorical distribution Bradbury et al. [2018]. Also at training time, the number & of agents
sampled is randomized to make sure the model learns actual relevance scores and not only to
differentiate between top-k and non top-k agents. We uniformly sample a different value k& per
driving scenario. To achieve scale, we use a distributed, asynchronous reinforcement learning
infrastructure similar to IMPALA Espeholt et al. [2018]. We found these hyperparameter values to
give the best performances: learning rate 2 - 1072, A, = 0.1, A, = 0.2, Ay = 0.05. No sampling
happens at deployment time, and and the top-k agents are selected greadily (analogous to selecting
the argmax action in standard RL).

5 Experimental Setup

Datasets We train and evaluate our approach on large-scale proprietary datasets consisting of
ten-second long scenarios of real world, diverse urban driving. The training dataset contains around
two million scenarios, while the evaluation dataset contains twelve thousand.

Metrics To quantitatively evaluate our method, we use standard driving metrics which we compute
on the 12k scenario evaluation set. In these evaluations, the candidate relevance scoring policies and
baselines are used in closed-loop as filters, with the driving policy 7 processing only a subset k&
of all the agents present at any one time. At evaluation, we select the top-k scoring agents greedily
(analogously to selecting an action through argmax in standard RL). We use the following metrics:

Collisions [%]: percentage of scenarios in which a collision occurs (lower is better);

Traffic light [%]: percentage of scenarios in which a traffic light is violated (lower is better);
Stop line [%]: percentage of scenarios in which a stop line is skipped (lower is better);
Off-road [%]: percentage of scenarios in which the vehicle drives off-road (lower is better);

M NS

Comfort: metric combining four motion aspects — forward/backward acceleration, turning acceler-
ation, and how suddenly or abruptly these accelerations change. These are weighted, averaged,
then converted to a 0-1 score where 1 means smooth driving and 0 means jerky, uncomfortable
motion (higher is better).

6. Progress ratio: relative progress along the route with respect to the ground truth human log;

7. Complexity: computation required by the scoring method as a function of the number IV of agents
in a scene.

Baselines We compare RDAR to other scoring strategies. The evaluation is done in closed-loop,
using these strategies to pick the top-k agents to be processed by 7°:

* Closest-k selection: Select the k closest agents to the controlled vehicle — equivalent to agents’
relevance scores being inversely proportional to their distance to the controlled vehicle;
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Figure 5: Metrics of best RDAR model and baselines against number & of selected agents in closed-
loop. All the closed-loop metrics for RDAR are close to the full policy baseline, supporting the claim
that we are able to learn true agent relevance. In this case, the RDAR model is the version processing
full scene information (see Fig. 4c).

* Random-k selection: Randomly select £ agents from the scene — equivalent to agents’ relevance
scores being drawn uniformly at random;

* Attribution-based scoring: scores obtained via input attribution Cusumano-Towner et al. [2025]. At
each timestep, the procedure is as follows: the pre-trained driving policy w? is evaluated N + 1
times (one with full scene information and one with each individual agent omitted in turn). For
each agent, the Jensen—Shannon divergence between the action from its masked-out pass and the
nominal full-scene pass is computed.

The overall performance of these baselines when varying k is shown in Fig. 5. When & = N no
agents are masked out from the driving policy.

6 Results

Quantitative results The three different architectures proposed in Fig. 4 show comparable per-
formances, and the model using full scene information causes the least collisions. We report plots
showing the trends of the reference metrics when varying the value k in Fig. 5. We can see that
RDAR has comparable performances to the attribution method, and requires only a fraction of the
computation time. RDAR is also able to drive with a fraction of percent performance regressions
compared to the nominal, full policy, while processing an order of magnitude fewer agents. Table 1
shows the actual numbers relative to the & = 10 case. It is interesting to see that the random scoring
policy outperforms all the others in when it comes to rules of traffic (off-road, traffic lights, stop
lines). This comes, as expected, at the cost of much higher collision rates. Scores computed using
only agent features (Fig. 4a) or attending to the control vehicle state (Fig. 4b), which achieves good
closed-loop driving, requires fewer FLOPs compared to using full scene information (Fig. 4c). On
the other hand, full scene information enables enhanced awareness and lower collisions.

Qualitative results We also report some visualizations from the same closed-loop evaluation
rollouts (Fig. 6). The scenes represented are challenging, cluttered driving scenes in which incorrect
relevance quantification would lead to wrong masking and bad behaviors. The top-k agents have a
colored dot hovering over them, which is color-coded based on the actual score. These examples are
from our best full-scene scoring policy. We can see that the agent importance assigned by our model
is aligned with human intuition.
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RDAR, Agent encoder (Fig. 4b) 0.89  0.70 0.89 043 0.57 1.06 O(1)
RDAR, Full scene (Fig. 4c) 077 079 092 046 0.60 1.05 O(1)
Closest-k 1.34 0.75 0.90 0.46 0.59 1.07 0(1)
Random-k 12.5 0.46 0.38 0.10 0.39 1.17 0(1)
Attribution 0.75 0.74 0.96 0.47 0.58 1.05 O(N)
Baseline (no filter) 0.68 0.75 1.02 0.50 0.61 1.07

Table 1: Closed-loop metrics of different methods with £ = 10 agents. Using only agent features or
reasoning about agent interactions leads to good closed-loop driving performance, and requires fewer
FLOPs compared to full scene, which on the other hand achieves lower collision rate.

Figure 6: Example visualizations showing agent relevance assigned by our method. The top-k
relevant agents are labeled with a colored dot hovering over them. As shown by the scale in the
bottom left of each image, red corresponds to higher relevance and light blue corresponds to lower
relevance. The controlled vehicle is in black. Agent importance seems to be aligned with human
intuition.

7 Discussion and Conclusions

Our model provides insights into which agents influence driving decisions, enabling better under-
standing of planner behaviors. It can also inform how to allocate costly computation in a principled
way—for example, running joint trajectory prediction or computing vision embeddings only for the
most relevant agents.

This work opens several interesting directions. First, similar relevance-scoring methods could be
applied to other components of the driving scene, such as road information. A challenge here is the
potential for distribution shifts when masking inputs; in our case such effects are mild, since driving
scenarios remain in-distribution regardless of the number or position of agents, but investigating
mitigation strategies is important. Second, the scoring policy’s action space could be expanded
beyond masking. Instead of excluding agents, the prioritization module could be trained to trigger
targeted computation on selected agents, such as expensive vision embeddings, so that enhanced
representations directly translate into downstream gains like improved driving rewards.

We introduced a reinforcement learning approach to estimate agent relevance in driving scenarios. By
formulating relevance scoring as an agent-masking MDP, we enable end-to-end training of a scoring
policy with a driving policy in the loop. Our method avoids costly post-hoc attribution and repeated
forward passes, making it well suited for real-time autonomy stacks. In closed-loop evaluation, we
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show that comparable driving performance can be achieved while processing an order of magnitude
fewer agents, highlighting the benefits of our approach in terms of behavior model introspection and
dynamic compute allocation.
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