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Abstract

Human drivers focus only on a handful of agents at any one time. On the other1

hand, autonomous driving systems process complex scenes with numerous agents,2

regardless of whether they are pedestrians on a crosswalk or vehicles parked on3

the side of the road. While attention mechanisms offer an implicit way to reduce4

the input to the elements that affect decisions, existing attention mechanisms for5

capturing agent interactions are quadratic, and generally computationally expensive.6

We propose RDAR, a strategy to learn per-agent relevance — how much each agent7

influences the behavior of the controlled vehicle — by identifying which agents8

can be excluded from the input to a pre-trained behavior model. We formulate9

the masking procedure as a Markov Decision Process where the action consists10

of a binary mask indicating agent selection. We evaluate RDAR on a large-scale11

driving dataset, and demonstrate its ability to learn an accurate numerical measure12

of relevance by achieving comparable driving performance, in terms of overall13

progress, safety and performance, while processing significantly fewer agents14

compared to a state of the art behavior model.15

1 Introduction16

Humans, when driving, do not pay equal attention to all agents around them (e.g., other vehicles,17

pedestrians). Transfomer-based attention models offer the promise of attending only to relevant18

components of the input, but existing attention models are typically quadratic in the size of the input19

space. Driving models encounter hundreds of input tokens, leading to substantial computational20

complexity and latency Harmel et al. [2023], Huang et al. [2024], Baniodeh et al. [2025].21

In autonomous driving, there is a tension between the limited available compute resources and the22

desire to take advantage of scaling laws, large models, and test-time compute. Having access to23

numerical per-agent relevance scores would not only improve the interpretability of large driving24

models, but also allow compute resources to be prioritized for the features that are most important.25

In fact, when agents and other scene elements are represented explicitly as tokens, reasoning about26

interactions between these tokens (typically through self-attention or graph neural network operations)27

is quadratic and difficult to reduce using low-rank or other approximations that work well for long-28

sequence data. Reducing the number of tokens under consideration provides quadratic improvements29

in FLOPs used.30

In this work, we introduce RDAR (Reward-Driven Agent Relevance), through which we quantify31

agent relevance through a learned approach. The basic intuition is that if an agent is not relevant32

towards the driving decisions of the controlled vehicle, then its absence would not change the33

controlled vehicle’s driving behavior significantly. Thus, we quantify per-agent relevance by learning34

which agents can be masked out from the controlled vehicle’s planner input while maintaining a good35

driving behavior. We formulate agent selection as a reinforcement learning (RL) problem where an36
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Figure 1: Example visualizations showing agent relevance assigned by our method. The top-k
relevant agents are labeled with a colored dot hovering over them. As shown by the scale in the
bottom left of each image, red corresponds to higher relevance and light blue corresponds to lower
relevance. a) attending to cyclist while turning left, b) attending to pedestrian during stop. The
controlled vehicle is in black.

action is a binary mask indicating which agents to include in the driving policy input, and which not37

to. The RDAR scoring policy is trained in the loop with a frozen, pre-trained driving policy and a38

simulator. At each time step, based on the relevance scores, an agent mask is fed to the driving policy,39

making the controlled vehicle blind to the lower score agents. As it will be clear from the following40

sections, this is not a binary classification problem over agents due to the underlying system dynamics41

(e.g., not observing an agent now could lead to a collision later) and to the unavailability of ground42

truth labels. Some examples of relevance (color-coded) computed by our method are shown in Fig. 1.43

Our main contributions are:44

• A novel reinforcement learning formulation for agent relevance estimation;45

• A sampling-based mechanism for agent selection that enables efficient training and inference;46

• A comprehensive evaluation showing that we can maintain driving performance while processing47

only a handful of surrounding agents.48

2 Related work49

Learning object ranking is a long standing problem in deep learning and typically requires human-50

labeled data Cohen et al. [1997], Burges et al. [2005], Jamieson and Nowak [2011]. In fields such51

autonomous driving, a manual ranking process can be not straightforward, and require large amounts52

of labeled data. Input attribution Sundararajan et al. [2017] is a family of post-hoc analysis methods53

attempting to pinpoint which parts of the input are most responsible for a prediction. Attribution54

methods mostly focus on leave-one-out (LOO) approaches Liu et al. [2024], where chunks of the55

input are individually removed, or masked, and are correlated with changes in model outputs.56

Ranking agents in a driving scene based on their relevance is useful for both offline and online57

applications. Current autonomous driving systems quantify the relevance of surrounding agents58

either through fast, heuristic-based modules (e.g. based on euclidean distance), or learned models59

trained through supervised learning. Some approaches have been proposed for the supervision of60

these models, and they predominantly focus on LOO strategies coming from the attribution literature61

for agent prioritization Refaat et al. [2019], selective prediction Tolstaya et al. [2021], or offline62

introspection Cusumano-Towner et al. [2025]. While these LOO approaches provide insights into63

individual agent contributions, they have some limitations. First of all, a change in driving behavior,64

captured by a shift in predicted action, represents a different driving behavior, but not necessarily a65

worse one. Second, these methods require multiple forward passes through a model (a planner in66

this case). Third, they do not capture the temporal dependencies caused by system dynamics. In this67

work, we propose a reward-driven method trained through reinforcement learning to estimate agent68

relevance.69

RDAR computes per-agent relevance through just one forward pass, and is reward-driven instead70

of supervised through ground truth labels. Reinforcement learning (RL) approaches have shown71

promising results in autonomous driving applications Kiran et al. [2021], and are being integrated in72

production and deployed in real-world systems. Several works have shown large scale urban driving73

through the use of both RL and human-collected real world driving data Harmel et al. [2023], Gulino74
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Figure 2: Example driving scenarios highlighting agent relevance. In a), the pedestrian crossing in
front of the controlled vehicle is highly relevant, while the one behind is not. In b), the bike just went
through the intersection and is not relevant anymore, while the car inching into the intersection is
highly relevant.

et al. [2023], Lu et al. [2023]. In this work we build upon an existing learned behavior model, and75

train a scoring policy with closed-loop RL through a novel formulation for agent selection.76

3 Problem Setup77

We wish to learn a policy πR
θ assigning a relevance score to each agent in the driving scene based on78

its influence on the driving behavior of the controlled vehicle (θ denotes learnable parameters). We79

assume a pre-trained driving policy πD mapping scene information to driving actions is available. We80

also assume that, associated with the policy πD, there is a reward function r encoding some notion81

of good driving behavior. The RDAR scoring policy πR
θ is trained in closed loop with the (frozen)82

driving policy πD and a driving simulator.83

Formally defining a notion of agent relevance is not straightforward. However, human drivers have a84

good intuitive concept of such notion, which allows them to pay selective attention to surrounding85

agents. With reference to Fig. 2a, a pedestrian crossing in front of the controlled vehicle is a highly86

relevant agent, because its presence its presence means that the controlled vehicle must come to a stop87

and yield instead of driving through a crosswalk. At the same time, the pedestrian crossing behind88

the driver has low relevance. Similar considerations are true for the intersection scenario of Fig. 2b.89

The vehicle inching into the intersection has high relevance, because its presence means that the90

controlled vehicle must stop and yield. Instead, the cyclist who just passed through the intersection91

should not affect the controlled vehicle behavior. Therefore, we can say that an agent is relevant92

if hypothetically removing it from a driving scenario would cause the controlled vehicle to have a93

different behavior.94

Markov Decision Process formulation Following the above intuition, we formulate the agent95

relevance estimation problem as a Markov Decision Process (MDP). The policy πR
θ outputs per-agent96

relevance scores, which can be interpreted as logits of a categorical distribution. If agent i is sampled97

from this relevance distribution, it gets processed by the driving policy πD, otherwise it is masked98

out and ignored by πD. Given a hyperparameter k ∈ N, an action is then a subset of k surrounding99

agents, or a k-sample, to be processed by πD. Our goal is thus to learn πR
θ such that the return100

is maximized in expectation. Inaccurate relevance scores would make the driving policy blind to101

important agents in the scene, leading to low reward behaviors (e.g., collisions). The MDP setup for102

this process is defined by a standard tuple (S,A, r, P, µ0), where:103

• S is the state space, including the controlled vehicle state, surrounding agent states (expressed in104

the controlled vehicle reference frame), road network and route information (see Fig.3c);105

• A = {0, 1}N is the action space, consisting of binary masks of size N (number of agents) indicating106

which agents to include in the planning input. The logits of the action distribution are the relevance107

scores (details in the following sections);108

• r is the reward function encoding good driving behavior. This is ideally the same reward or scoring109

function accompanying πD;110
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Figure 3: a) Block diagram of the system at training time. b) Block diagram of the system at
deployment time. c) RDAR model structure.

• P is the transition probability function associated to the environment. Note that the environment,111

from the perspective of the reinforcement learning agent πR
θ , consists of πD and the actual driving112

environment altogether (see Fig.3a);113

• µ0 is the initial state distribution.114

The nature of the actions space makes this problem similar to a contextual multi-armed bandit115

(CMAB) Lu et al. [2010], with the subtle difference that in this case the action changes the context,116

which in CMABs is assumed to be independent of the action.117

Agent Selection Mechanism At each timestep t, the RDAR policy πR
θ outputs a vector of per-agent118

relevance scores ϕt = [ϕ1, ϕ2, . . . , ϕN ]. At deployment time, the top-k scoring agents are selected,119

while at training time, agents are randomly sampled to encourage exploration. For sampling, the120

scores are converted to a categorical distribution pt = [p1, p2, ..., pN ] over the binary agent selection121

action space through a softmax, where122

pi =
exp(ϕi)∑N
j=1 exp(ϕj)

. (1)

Drawing one sample from this distribution corresponds to selecting one agent. If we draw exactly123

one sample, the probability of agent i being selected is pi. We can thus get a k-sample by drawing124

k samples sequentially, without replacement, by renormalizing the probabilities at each step. We125

denote an agent k-sample as126

a = (a1, a2, . . . , ak), ai ∈ {1, ..., N}, (2)

where each component ai is the integer index corresponding to the selected agent. Note that this127

notation and an N -dimensional binary vector are equivalent. Then, the probability of selecting an128

ordered sample of agents without replacement is129

P (a1, . . . , ak) =

k∏
i=1

pai

1−
∑i−1

j=1 paj

, (3)

where the denominators are the renormalization terms. Note that although we describe the sampling130

process as sequential, the Gumbel top-k trick enables efficient, single-step sampling without replace-131

ment Jang et al. [2016], Kool et al. [2019]. The trick consists of perturbing the distribution pt with a132

Gumbel distribution, and greadily selecting the top-k elements:133

(a1, ..., ak) = arg top-k { pt − log(− logU) } , U ∼ Uniform(0, 1) (4)
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By applying the logarithm to (3), we can compute the log-likelihood of the k-sample:134

logP (a1, . . . , ak) =

k∑
i=1

log pai
−

k∑
i=1

log
(
1−

i−1∑
j=1

paj

)
. (5)

Since the scores are the output of our model πR
θ , (5) is exactly what we need for policy gradient135

updates in an RL framework. Once a k-sample is picked, only those k agents are processed by the136

driving policy πD. The action output by the driving policy is then applied to the simulator, and the137

overall state is updated. The simulator also produces the reward signal rt for RDAR. The process is138

then repeated.139

Reinforcement learning framework We train the policy using an off-policy actor–critic framework140

with V-trace corrections Espeholt et al. [2018]. The loss function combines four components:141

L = Lpolicy + λcLcritic + λeLentropy + λsLsmoothing. (6)

The four components are respectively policy gradient loss, critic loss, entropy regularization loss, and142

action smoothing loss. Their exact expressions are:143

Lpolicy = −Et

[
ρt log π

R
θ (at | st) Âv-trace

t

]
, (7)

Lcritic = Et

[(
Vθ(st)− V target

t

)2]
, (8)

Lentropy = Et

[
−

N∑
i=1

πR
θ (i | st) log πR

θ (i | st)

]
, (9)

Lsmooth = Et

[
N∑
i=1

∥πR
θ (i | st)− πR

θ (i | st−1)∥2
]
, (10)

where ρt =
πR
θ (at|st)
µ(at|st) are clipped importance weights, at is the agent k-sample at time step t as in144

(2). The Âv-trace
t and V target

t terms are computed following Espeholt et al. [2018]. The log-likelihood145

term in (7) is computed as in (5). The entropy and smoothing loss components, are calculated on146

the logits directly and do not depend on the k-sample at. The entropy component favors uniformity147

in the relevance scores, and therefore encourages exploration. The action smoothing component148

encourages the scores corresponding to the same agent to be consistent across time. It is possible that149

fewer than N agents are physically present in a scene at a given time, in which case the loss terms150

corresponding to non-existing agents are masked. Finally, λc, λe, λs are hyperparameters weighing151

the loss terms, selected empirically.152

4 Implementation153

Architecture The RDAR model architecture consists of three main components. An encoder154

module processes the full scene context (controlled vehicle state, surrounding agent states, road155

and route information) and computes embeddings. There are two heads: a scoring head, mapping156

embeddings to agent relevance scores, and a value head, approximating the value function. Note that157

the value function for the relevance scoring policy has a different meaning than the value function158

for the driving policy, since the expectation is over all possible k-samples rather than all possible159

driving actions. The three options for the scoring head make use of embedding of varying depth from160

the encoder. The first option (Fig. 4a) just uses the features from the agent projection layer. In this161

case, only agent state information is fed to the scoring head. The second option (Fig. 4b) uses the162

embeddings output by the agent encoder module. In this case, the embeddings also encode agent163

interactions. The third option (Fig. 4c) uses the output from the scene encoder, and reprojects it back164

to the agent level through a transformer block. In this case, all information from the driving scene is165

used to compute agent relevance. The value head is kept the same for the three architectures, and166

uses all available information.167

Training details The training-time agent sampling procedure described in Section 3 is done through168

the Gumbel top-k trick Kool et al. [2019], natively used, for instance, in the JAX’s implementation169
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Figure 4: Different model architectures tested. Left: the scoring head consumes directly agent
features projected through a linear layer. Middle: the scoring head consumes the output of the agent
encoder, a transformer block cross attending among agents. Right: the scoring head consumes full
scene information encoded into a latent embedding from the scene encoder, and attending back to
agent tokens.

of the categorical distribution Bradbury et al. [2018]. Also at training time, the number k of agents170

sampled is randomized to make sure the model learns actual relevance scores and not only to171

differentiate between top-k and non top-k agents. We uniformly sample a different value k per172

driving scenario. To achieve scale, we use a distributed, asynchronous reinforcement learning173

infrastructure similar to IMPALA Espeholt et al. [2018]. We found these hyperparameter values to174

give the best performances: learning rate 2 · 10−5, λc = 0.1, λe = 0.2, λs = 0.05. No sampling175

happens at deployment time, and and the top-k agents are selected greadily (analogous to selecting176

the argmax action in standard RL).177

5 Experimental Setup178

Datasets We train and evaluate our approach on large-scale proprietary datasets consisting of179

ten-second long scenarios of real world, diverse urban driving. The training dataset contains around180

two million scenarios, while the evaluation dataset contains twelve thousand.181

Metrics To quantitatively evaluate our method, we use standard driving metrics which we compute182

on the 12k scenario evaluation set. In these evaluations, the candidate relevance scoring policies and183

baselines are used in closed-loop as filters, with the driving policy πD processing only a subset k184

of all the agents present at any one time. At evaluation, we select the top-k scoring agents greedily185

(analogously to selecting an action through argmax in standard RL). We use the following metrics:186

1. Collisions [%]: percentage of scenarios in which a collision occurs (lower is better);187

2. Traffic light [%]: percentage of scenarios in which a traffic light is violated (lower is better);188

3. Stop line [%]: percentage of scenarios in which a stop line is skipped (lower is better);189

4. Off-road [%]: percentage of scenarios in which the vehicle drives off-road (lower is better);190

5. Comfort: metric combining four motion aspects – forward/backward acceleration, turning acceler-191

ation, and how suddenly or abruptly these accelerations change. These are weighted, averaged,192

then converted to a 0-1 score where 1 means smooth driving and 0 means jerky, uncomfortable193

motion (higher is better).194

6. Progress ratio: relative progress along the route with respect to the ground truth human log;195

7. Complexity: computation required by the scoring method as a function of the number N of agents196

in a scene.197

Baselines We compare RDAR to other scoring strategies. The evaluation is done in closed-loop,198

using these strategies to pick the top-k agents to be processed by πD:199

• Closest-k selection: Select the k closest agents to the controlled vehicle – equivalent to agents’200

relevance scores being inversely proportional to their distance to the controlled vehicle;201
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Figure 5: Metrics of best RDAR model and baselines against number k of selected agents in closed-
loop. All the closed-loop metrics for RDAR are close to the full policy baseline, supporting the claim
that we are able to learn true agent relevance. In this case, the RDAR model is the version processing
full scene information (see Fig. 4c).

• Random-k selection: Randomly select k agents from the scene – equivalent to agents’ relevance202

scores being drawn uniformly at random;203

• Attribution-based scoring: scores obtained via input attribution Cusumano-Towner et al. [2025]. At204

each timestep, the procedure is as follows: the pre-trained driving policy πD is evaluated N + 1205

times (one with full scene information and one with each individual agent omitted in turn). For206

each agent, the Jensen–Shannon divergence between the action from its masked-out pass and the207

nominal full-scene pass is computed.208

The overall performance of these baselines when varying k is shown in Fig. 5. When k = N no209

agents are masked out from the driving policy.210

6 Results211

Quantitative results The three different architectures proposed in Fig. 4 show comparable per-212

formances, and the model using full scene information causes the least collisions. We report plots213

showing the trends of the reference metrics when varying the value k in Fig. 5. We can see that214

RDAR has comparable performances to the attribution method, and requires only a fraction of the215

computation time. RDAR is also able to drive with a fraction of percent performance regressions216

compared to the nominal, full policy, while processing an order of magnitude fewer agents. Table 1217

shows the actual numbers relative to the k = 10 case. It is interesting to see that the random scoring218

policy outperforms all the others in when it comes to rules of traffic (off-road, traffic lights, stop219

lines). This comes, as expected, at the cost of much higher collision rates. Scores computed using220

only agent features (Fig. 4a) or attending to the control vehicle state (Fig. 4b), which achieves good221

closed-loop driving, requires fewer FLOPs compared to using full scene information (Fig. 4c). On222

the other hand, full scene information enables enhanced awareness and lower collisions.223

Qualitative results We also report some visualizations from the same closed-loop evaluation224

rollouts (Fig. 6). The scenes represented are challenging, cluttered driving scenes in which incorrect225

relevance quantification would lead to wrong masking and bad behaviors. The top-k agents have a226

colored dot hovering over them, which is color-coded based on the actual score. These examples are227

from our best full-scene scoring policy. We can see that the agent importance assigned by our model228

is aligned with human intuition.229
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Off-ro
ad [%]

Traffic light [%]

Stop line [%]

Comfort
Rel. progress

Complexity

RDAR, Agent features (Fig. 4a) 0.94 0.71 0.97 0.44 0.57 1.06 O(1)
RDAR, Agent encoder (Fig. 4b) 0.89 0.70 0.89 0.43 0.57 1.06 O(1)
RDAR, Full scene (Fig. 4c) 0.77 0.79 0.92 0.46 0.60 1.05 O(1)

Closest-k 1.34 0.75 0.90 0.46 0.59 1.07 O(1)
Random-k 12.5 0.46 0.38 0.10 0.39 1.17 O(1)
Attribution 0.75 0.74 0.96 0.47 0.58 1.05 O(N)

Baseline (no filter) 0.68 0.75 1.02 0.50 0.61 1.07 −
Table 1: Closed-loop metrics of different methods with k = 10 agents. Using only agent features or
reasoning about agent interactions leads to good closed-loop driving performance, and requires fewer
FLOPs compared to full scene, which on the other hand achieves lower collision rate.

b)a)

c) d)

Figure 6: Example visualizations showing agent relevance assigned by our method. The top-k
relevant agents are labeled with a colored dot hovering over them. As shown by the scale in the
bottom left of each image, red corresponds to higher relevance and light blue corresponds to lower
relevance. The controlled vehicle is in black. Agent importance seems to be aligned with human
intuition.

7 Discussion and Conclusions230

Our model provides insights into which agents influence driving decisions, enabling better under-231

standing of planner behaviors. It can also inform how to allocate costly computation in a principled232

way–for example, running joint trajectory prediction or computing vision embeddings only for the233

most relevant agents.234

This work opens several interesting directions. First, similar relevance-scoring methods could be235

applied to other components of the driving scene, such as road information. A challenge here is the236

potential for distribution shifts when masking inputs; in our case such effects are mild, since driving237

scenarios remain in-distribution regardless of the number or position of agents, but investigating238

mitigation strategies is important. Second, the scoring policy’s action space could be expanded239

beyond masking. Instead of excluding agents, the prioritization module could be trained to trigger240

targeted computation on selected agents, such as expensive vision embeddings, so that enhanced241

representations directly translate into downstream gains like improved driving rewards.242

We introduced a reinforcement learning approach to estimate agent relevance in driving scenarios. By243

formulating relevance scoring as an agent-masking MDP, we enable end-to-end training of a scoring244

policy with a driving policy in the loop. Our method avoids costly post-hoc attribution and repeated245

forward passes, making it well suited for real-time autonomy stacks. In closed-loop evaluation, we246
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show that comparable driving performance can be achieved while processing an order of magnitude247

fewer agents, highlighting the benefits of our approach in terms of behavior model introspection and248

dynamic compute allocation.249
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