EXCISION SCORE: EVALUATING EDITS WITH SURGICAL
PRECISION

Anonymous authors
Paper under double-blind review

ABSTRACT

Many tasks revolve around editing a document, whether code or text. We formulate
the revision similarity problem to unify a wide range of machine learning evaluation
problems whose goal is to assess a revision to an existing document. We observe
that revisions usually change only a small portion of an existing document, so the
existing document and its immediate revisions share a majority of their content.

We formulate five adequacy criteria for revision similarity measures, designed to
align them with human judgement. We show that popular pairwise measures, like
BLELU, fail to meet these criteria, because their scores are dominated by the shared
content. They report high similarity between two revisions when humans would
assess them as quite different. This is a fundamental flaw we address.

We propose a novel static measure, Excision Score (ES), which computes longest
common subsequence (LCS) to remove content shared by an existing document
with the ground truth and predicted revisions, before comparing only the remaining
divergent regions. This is analogous to a surgeon creating a sterile field to focus on
the work area. We use approximation to speed the standard cubic LCS computation
to quadratic. In code-editing evaluation, where static measures are often used
as a cheap proxy for passing tests, we demonstrate that ES surpasses existing
measures. When aligned with test execution on HumanEvalFix, ES improves
over its nearest competitor, SARI, by 12% Pearson correlation and by >21% over
standard measures like BLEU. The key criterion is invariance to shared context;
when we perturb HumanEvalFix with increased shared context, ES’ improvement
over SARI increases to 20% and >30% over standard measures. ES also handles
other corner cases that other measures do not, such as correctly aligning moved
code blocks, and appropriately rewarding matching insertions or deletions.

1 INTRODUCTION

Editing is a core skill across countless professions, from writers refining drafts to scientists revising
research papers. Example tasks from natural language processing (NLP) include sentiment and style
transfer Sudhakar et al.| (2019), text simplification|Al-Thanyyan & Azmi|(2021), grammatical error
correction Bryant et al.|(2023)), and updating factual information [Logan IV et al.| (2022). Nowhere
is this more true than in software development, where code evolves through relentless incremental
iteration — bug fixes, optimizations, and feature updates — making precise, efficient editing not just
useful but essential. Indeed, many AI4Code tasks boil down to editing code: like automated program
repair Monperrus| (2023), next edit suggestion|Chen et al.| (2025), refactoring Pomian et al.| (2024),
and code commenting [Panthaplackel et al.|(2020), to name a few.

In this work, we focus on revision tasks, which we define as purposeful edits to a document, whether
text or code, that preserve its core semantics. This distinguishes it from rewriting or summarisation,
which can fundamentally change a document’s thesis or structure. We therefore contend that a revision
must, by definition, maintain a high degree of similarity to its source. Operationally, we posit that
a revision alters a relatively small portion of a text. While the definition of “small” is necessarily
task-dependent, we argue that establishing a practical threshold for tasks is feasible and that larger
changes can often be decomposed into a sequence of smaller ones, aka revisions.

The LLM tsunami has led to the emergence of edit assistants for both text and code revision. Assessing
these assistants introduces the revision similarity problem: defining a measure for the similarity of

two revisions of an initial text (or code) that is aligned with human judgement. With such a measure,
one can quantify an assistant’s performance by how similar its revision is to the reference. For some
tasks, building a golden set of references can be prohibitively expensive, calling for a symmetric
measure of revision similarity, i.e. one that equally weights its input revisions, allowing it to better
tolerate a noisy references. Another use for a symmetric measure is clustering revisions. For example,
imagine being the maintainer of a Linux kernel subsystem. Rather than manually assess many patches,
clustering them by revision similarity and only reviewing representative patches would save time.

Model performance on revision tasks cannot be assessed by humans at scale, so we need an automated
measure. Crucially, we need a normalised measure, not a raw distance: if this is not immediate,
consider how two operands can be arbitrarily distant in absolute terms, yet arbitrarily similar as a
function of their length. Specifically, we want a similarity measure, one that returns a score in [0..1],
where 0 denotes utter dissimilarity and 1 identity. This measure should be task-agnostic, interpretable,
and lightweight.

These three properties rule out dynamic measures, notably pass @k, that rely on execution. Their
executability constraint is crippling. Even ignoring NLP tasks, many Al4Code tasks do not produce
executable code, like code summarization and commit message generation. Even executable code
can be nontestable [Weyuker] (1982). Even considering only code generation, their utility falters in the
face of incomplete codebases. Even restricted to tasks that produce testable code, dynamic measures
under-approximate program behaviour Dijkstral (1972)), which undermines their interpretability, and
can be prohibitively computationally expensive. For example, Neubig & Wang| (2024) report that
evaluation on some 300 samples of SWE-Bench-like dataset took them 2 days; Adamczewski| (2025)
managed to reduce it to 1 hour per 500 dataset samples with powerful hardware and dedicated
containerized environments optimized for the taskﬂ Thus, a static measure is an indispensable part of
the evaluator’s toolbox, necessary for scenarios where dynamic evaluation is infeasible or incomplete.

Existing static measures of textual similarity fall into three categories: lexical, edit-based, and
semantic. Lexical measures decompose text into a multiset of predefined features, like n-grams,
then calculate the similarity of two multisets by atomically comparing their elements. While their
n-grams do capture local order, they are oblivious to global order. Edit-based measures, in contrast,
operate on sequences, so they are inherently sensitive to order. BLEU, ROUGE, Jaccard (adapted to
multisets), and TF-IDF are prominent examples of lexical measures. Normalised edit distance built
using Levenshtein edit distance is the preeminent edit-based similarity measure. Canonical semantic
measures are Word Mover’s distance [Kusner et al.| (2015) and BERTScore |[Zhang* et al.| (2020).
These measures struggle with rare words, domain-specific jargon, and nuanced linguistic phenomena
like negation and sarcasm. Their scores are often hard to interpret, unlike counting matching n-grams;
for example, the difference between scores of 0.7 and 0.8 may not be meaningful or consistent across
different models and datasets. When applied to the revision problem, these measures are dominated
by the underlying similarity of the revisions and the original text (Section 2)).

In this work, we proposing the umbrella term “revision similarity” to unite all ML tasks that can be
evaluated by three sequences, an original document and two revisions of it, one a golden reference, and
the other, the hypothesis to evaluate. We specify five adequacy criteria that any measure of revision
similarity should meet and show how many popular measures fail to meet them. We introduce a
new measure — EXCISTONSCORE (ES) — that does. It is a static, task-agnostic, interpretable,
and lightweight measure. ES aligns a candidate and a set of reference revisions with their source
document to focus on their divergent regions, whose n-grams it compares. By constructing its under-
approximation from a set of references, ES captures a different subspace of program behavior than
dynamic measures, a semantic variability we formalize and explore in[Section 3.7]

2 STORM CLOUDS IN A BLEU SKY

To assess revision quality, direct comparison seems natural. However, popular pairwise similarity
measures, like normalised edit similarity, BLEU, ROUGE, METEOR, and chrF, tend to go wrong

! Although these estimates include the time needed to run the inference of an LLM, we believe they exemplify
the hardships connected with execution-based measures.

because revisions of the same initial version are usually inherently similar, while what matters is
comparing their changes, not the shared context.

For example, suppose an LLM is asked to replace ” with “bar” and outputs

“Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniamfoo, quis
... officia deserunt mollit id est laborum.”

The LLM clearly failed the task: instead of replacing with bar, it incorrectly substituted veniam
with foo. Most people would consider this edit wrong. Yet, popular pairwise metrics will all score
close to their maximum value of 1, contradicting human judgment.

We now generalise this example, then use it to show how BLEU goes wrong in such cases.

Example 1 (Similar strings). Let X, Y, Z and W be strings and let the original sequence be XY,
the assistant’s prediction be X W, and the reference revision be X Z. Let ED denote edit distance.
Now imagine asking a language model to replace Y with Z while keeping the common prefix X but
failing and instead replacing Y with I¥. Let us assume

ED(Y,Z)=ED(Y,W)=ED(Z,W) =|Y|=|W|=|Z| =1 < |X|.

In this example, the assistant (i.e. an LLM) replaced Y with something completely wrong, so we
expect a poor score from any measure well-aligned with human intuition. Consider BLEU applied
to [Example ll, viz. BLEU(XW,{X Z}). On this example, BLEU’s brevity penalty will be 1 and,
in the limit as |X| — oo, the ratios of matched n-grams to all n-grams in X will go to 1, Vn,
so BLEU(XW,{X Z}) = 1. In short, although the LLM clearly failed the task, BLEU awards a
maximal score to tasks captured by All other popular pairwise measures, like normalised
edit similarity, ROUGE, METEOR, and chrF, fail in the same way: Like BLEU, in the limit as | X |
increases with [fixed, all these metrics go to 1, the perfect match.

We are not the first to observe this problem. When [Logan IV et al|(2022) proposed a new benchmark
for assessing LLM’s ability to make factual updates to text, they observed “ROUGE is Problematic.
We provide ROUGE F-scores [...] In contrast to the previous results, we find that the simple copy
source baseline attains a strong score of 77.4 despite making no updates. [...] This illustrates the
importance of evaluating on updates rather than the whole text.” The fact that the authors even tried
to apply ROUGE to the task where its use is, by their own admission, problematic highlights a blind
spot in the community’s view of how revision similarity-like problems should be evaluated.

3 EXCISIONSCORE: MEASURING REVISION SIMILARITY

Popular pairwise similarity measures fail to solve the revision similarity problem when they are
dominated by the shared context inherited from an origin string O. We formalize shared context in
terms of three-way alignment (Definition T)), then propose 5 Adequacy Criteria, including invariance
to shared context, required for a measure of revision similarity to align with human preference.
In we investigate whether existing measures satisfy these criteria. Finally, we define
Excision Score and discuss some of its properties.

3.1 CORE CONCEPTS AND UTILITIES

A sequence s is a revision of an original document O when ED(s, O) < 7 for some small 7. The
specific threshold 7 is task-dependent. Notably, closeness in terms of edit distance implies that
a revision is necessarily of similar length. As 7 approaches max{|s|,|O|}, the edits become so
destructive that the resulting sequence is less of a refinement and more of a new document, even if it
retains the original’s core semantics, as in the case of summarizing verbose text. We take A, B to be
revisions of the origin O.

Let ¥ denote the set of tokens our documents constist of. Let — ¢ 3 be the dedicated gap symbol.
Let ¥_ := ¥ U {-}. Let £* and ¥* stand for the set of finite sequences with and without gaps,
respectively.

Definition 1 (Three-Way Alignment). For three sequences A, B, O € ¥* , a three-way alignment is
arectangular array R of three rows such that (1) each element of R lies in >_; (2) no column of R
consists of gaps only; and (3) ungap(R;) = A and ungap(Rz) = B and ungap(R3) = O, where
R; refers to the i-th row of the array R and ungap : ¥* — X* removes gaps from a sequence.

Unlike the standard definition (Gusfield, [1997, §14), our [Definition T|focuses on a special case of
three sequences and explicitly rules out columns with all gaps, which can be useful when studying
evolution or as a placeholder for missing data but are meaningless in our setting.

For an alignment table R, a column of R is conserved if all rows in it are identical. If a column is not
conserved, it is divergent. A divergent region is, informally, a cluster of adjacent divergent columns.

Definition 2 (Divergent Region). For a three-way alignment array R, a non-empty sub-array d of R
is called a divergent region if (1) d has three rows, same as R (it is a mini-alignment table); (2) all
columns of d are divergent and contiguous in R; and (3) there is no divergent column in R that would
be adjacent to d (maximality).

An alignment can yield several, possibly no, divergent regions. Let 14y (R) = (d1, ..., d)) denote
the divergent region projection that produces the list of the £ divergent regions extracted from the
alignment of A, B, O.

Example 2. Let A = CGTCAA, B = CGCACT,

O = CTGCAATT. Below is one possible alignment. CGT-CAA- -
Although here we are using 4 letters with significance in C--GCACT -
biology for simplicity, note that alignment can operate

at a coarser token level, e.g. ¥ = English words. C-TGCAATT

In the example, columns 1, 5 and 6 are conserved, the others are

divergent. Divergent columns can be understood as atomic edits

performed on O by A and B. For example, column 2 shows that A Maiv (R) = <
and B both decided to remove G from O. There are two divergent

regions, highlighted by the red rectangles, shown on the right:

3.2 ADEQUACY CRITERIA FOR REVISION SIMILARITY

Recall that A, the reference, and B, the hypothesis, are revisions of the original document O.
We contend that all revision similarity measures should possess the following intuitive properties:
(1) Reward edits on A and B agree; (2) Penalize edits on which B disagrees with A; (3) Invariant to
shared context (matches across all of A, B and O); (4) Origin-variant (O changing with A and B
fixed); and (5) Reward semantically equivalent mismatches.

Properties 1 and 2: Rewarding matches while penalizing mismatches is at the core of any ML
evaluation task. Revision similarity is no exception, motivating these properties. The word “edits”
implies existence of O, to which edits are applied, tying them to revision similarity. Despite apparent
their simplicity, there are several interesting edge cases, one of which we examplify below.

Example 3 (Agreeing on Deletions). Let D, K, R € ¥* be non-overlapping and assume O = DK R
where D is deleted by both revisions, K is kept unchanged and R is replaced. Assume that A and
B utterly disagree on what to replace R with,i.e. A = KR4 and B = K Rp with R4 sharing no
overlap with Rp. Although A and B differ in each replacing R with something different, they do
agree on deleting D. Therefore a human would expect a partial similarity score.

In|Section 2| we illustrated that measures that reward the shared context as match, violating Prop-
erty 3, do not align with human judgement. We rely on the notions three-way alignment (Definition I
and divergent regions (Definition 2) to formalize invariance to shared context.

Property 3 (Invariance to Shared Context). A revision similarity measure m(A, B; O) is invariant
to shared context iff VA, A’, B, B’,0,0" € ¥*

Hdiv(A7B7O) = Hdiv(Al,B/7O/) —— m(A,B,O) = m(A/,B/;O/).

In words, if the divergent regions of (A, B, O) match those of (A’, B’; O’), a measure m invariant to
shared context must return identical scores on those two inputs.

Property 3 equates shared context with conserved columns. Ignoring shared context, i.e. adding
or removing conserved columns, is thus equivalent to only considering the divergent regions. A
special case of Property 3 is when (A, B, O) differs from (A’, B’, O") by a common prefix or suffix.
For all sequences «, § that do not overlap any of A, B, O, measure m must satisfy m(A4, B; O) =
m(aAB, aBp; a0p).

Another way to conceptualize invariance to shared context would be to constrain the values of m to
inputs where the hypothesis revision matches the origin, B = O. You can think of this as evaluating
a “do-nothing” baseline system that simply echoes the input to produce the output revision. Clearly,
such a system should get a bad score, e.g. zero: m(O, B; O) = 0. A measure that ignores O has no
way of identifying this baseline.

Property 4 (Origin-variant). When A and B # A be fixed, while we edit O; to form a sequence
of variants (Oy, Os,...), where ED(O;, A) = ED(O;,B) < ED(O;4+1,4) = ED(O;41, B),
m(A, B; O;) > m(A, B; O;41) must hold.

In contrast to Property 3, which constrains a measure’s handling of added and removed conserved
columns in the 3-way alignments, this property concerns changes to O’s row. The strict inequality in
the variant sequence restricts the changes to conserved columns. Let I; = ED(O;, B) = ED(O;, A),
as O moves away from A and B. We argue that revision similarity should increase along with ;.
Indeed, as O becomes more and more distant, A and B are implicitly and independently applying a
larger and larger set of matching edits to O, increasing their mutual revision similarity.

Finally, Property S introduces dependence on the semantics of the origin document. Most revision
similarity tasks admit multiple semantically equivalent solutions. In NLP, syntactic variances are
often addressed by providing multiple references that cover different equivalent solutions. However,
some semantics-preserving transformations—such as reordering function definitions or inlining—are
impractical to enumerate exhaustively in a reference set. A natural alternative is to design the similarity
measure itself to tolerate such variations and account for the existence of multiple valid solutions. We
now state this property intuitively:

Property S (Obliviousness to Semantically Equivalent Syntactic Variances). Revision similarity
measures should be oblivious to syntactic variances; that is, they should assign the same score when
differences arise solely from transformations known to preserve semantics.

For a formal statement and extended discussion, we refer the reader to[Appendix A}

3.3 THE UNMET NEED FOR ADEQUATE REVISION SIMILARITY METRICS

An intuitive idea for solving the revision similarity problem is to locate and strip out a Longest
Common Subsequence (LCS) between the origin O and the two revisions A, B originating from
it before applying some pairwise similarity measure. Formally, let us denote the deletion of a
subsequence by \ and the pairwise similarity measure by P : ¥* x ¥* — [0, 1], where P = 1 on
exactly matching inputs and P = 0 if the inputs are utterly dissimilar. Then we define

SansLCSp(A,B | O) £ P(A\L,B\ L) where L =LCS(4,B,0) e))

Unlike pairwise measures, SansLLCSp is invariant to shared context being added to O, A, B, sat-
isfying Property 3. However, SansLCSp comes with flaws of its own. By stripping out the LCS
and considering only A, B, we lost the information about what A and B deleted, making it im-
possible to partially reward agreement on deletions. In LCS(4,B,0) = K and
SansLCSp(A,B | O) = P(KRa \ K, KRp \ K) = P(Ra, Rp) = 0. Additionally, SansL.CSp
introduces substring matches that were not possible when comparing A with B directly. By removing
the LCS, we introduced n-grams at the junctions that existed in neither A nor B which P might
reward, if they happen to match.

A metric named DiffBLEU was recently proposed by Bairi et al.| (2024); Munson et al.|(2022) in the
context of code editing and is defined as BLEU(diff (O, B), diff (O, A)) where diff is the output of

the diff program The IEEE and The Open Group|(2018)) with optional post-processing. Thanks to the
clever application of pairwise diff, Diff BLEU adequately addresses the problem of shared content
across three revisions. However, lumping deleted and inserted lines together and comparing the
concatenated diffs, as opposed to treating them separately, is problematic. First of all, this approach
rewards accidental n-gram matches across different operation types. For example, a word inserted by

A would match a word deleted in O by B. Such matches do not correspond to what a human would
perceive as similarity and thus should not be rewarded. Secondly, while rewarding agreement on
deletions by letting BLEU match the deleted lines prefixed by —, DiffBLEU is prone to overrewarding
it, as the following example shows.

Example 4 (LHS/RHS Agreement Balance). Continuing [Example 3] suppose that D is empty, so
O =KR,A= KR4, and B = KRpg. Replacements (R — R,4) and (R — R4) can be viewed
as two consecutive operations: first deleting R, then inserting R4 or Rp. In that view, A and B
agree on deleting R, the left-hand side (LHS) of the replacement, but disagree on R 4 versus Rp, the
right-hand side (RHS). The high BLEU score given to the matching deleted lines will dominate the
mismatch between the RHS’s of the replacements, contradicting human judgment.

SARI (System output Against References and against Input) is a text similarity measure that compares
a system’s edit (e.g., a simplification) to multiple references and the original input, evaluating the
appropriateness of added, deleted, and kept n-grams via precision/recall/F1 scores |Xu et al.|(2016).
SARI is defined as

1
SARI(Ia O? R) = g(Fadd + erep + Pdel) (2)

where Fieep and Fieep stand for Fy score of the corresponding operation and Py stands for the
precision of deletions, all three averaged over n-grams of order n=1..4. In the limit we described in
when the shared context dominates, Ficep, term of SARI is always greater than 1 — €,
where € — 0. This narrows SARI’s effective range of values down to [% — ¢, 1]. Although SARI does
not fully step into the pitfall of pairwise measures and accounts for O, it is not invariant to shared
context, failing Property 3. In the next subsection we describe EXCISIONSCORE that builds upon
SARI and addresses that flaw.

3.4 EXCISIONSCORE DEFINED

Armed with the insight that shared context should be removed and sidestepping the mistakes of
SansL.CS, we define EXCISIONSCORE (ES) as follows:

ES(A, B;O) £ SARI(A\ L,B\ L,0\ L) where L =LCS(4,B,O0). 3)

After excising the L.CS like SansLLCSp does, ES applies SARI. Recall that P in SansL.CSp was
a pairwise measure, which made it impossible to reward agreement on deletions (Example 3. In
contrast, SARI accepts all three documents A,B,0 as arguments and has a special term Py,
dedicated to that. In terms of three-way alignment, removing the LCS can be thought of as extracting
divergent regions and concatenating them, then removing the gaps. When converting strings to a set
of n-grams, we omit the n-grams that span several divergent regions, sidestepping the other flaw of
SansLCS.

EXCISIONSCORE meets the revision similarity adequacy criteria. EXCISIONSCORE identifies edits
as kept, added, or removed n-grams, correctly rewarding agreement on deletions, meeting Properties
1 and 2. We discussed that due to the Fi.., term, SARI is not invariant to shared context and can
award a score of up to % on the “do-nothing” baseline (B = O # A). We fix this by excising the
shared context and ensuring that the Fie., term does not saturate. Thanks to that, ES correctly returns
0 on the do-nothing baseline and satisfies Property 3, if we neglect rare accidental matches that
could happen with any n-gram-based measure even when computed on random sequences. ES meets
Property 4: Changing a shared token in O while keeping A and B fixed turns a previously ignored
conserved column into a new divergent region on which A and B agree, increasing Py and F,qq in
Finally, ES partially satisifises Property 5 by matching misplaced insertions, which we
found to be a common case in CanItEdit dataset we use in[Section 4

EXCISIONSCORE relies on LCS, which, if computed exactly, implies O(/%) time complexity,

I = |0|. For long |O|, this quickly becomes impractical, so we compute L in [Equation (3)| ap-
proximately. In our implementation, L is a not necessarily longest common subsequence computed as
LCS(LCS(0, A), LCS(O, B)). Two-way LCS computed 3 times brings the time complexity down
to O(I?).

4 EVALUATION: EXCISIONSCORE AS EXECUTION PROXY

Actively developed real-world codebases often include incomplete, non-compilable code for which
tests have not yet been written. Even for compilable code in large systems, full build and test cycles
can be prohibitively long, making rapid, lightweight static feedback essential. Equipping a dataset
with extensive test coverage can be more difficult than mining ground truth solutions. For these
reasons, static measures based on syntactic similarity to the reference solution persist as cheap
proxies to expensive verification for Al-generated programs. Following widely accepted practice,
we therefore explore how well ExcisionScore and other popular static measures correlate with test
execution. Our evaluation approach answers the question: "When execution is possible, which static
metric best predicts its outcome?".

Datasets We consider two code editing datasets, where each dataset item consists of a code
snippet, a natural language edit instruction, a reference solution, and a test suite to verify correctness.
HumanEvalFix Muennighoff et al.|(2023) contains 984 buggy code snippets across 6 programming
languages (Python, JavaScript, Java, Go, C++, Rust). CanItEdit Cassano et al. (2024) is a dataset of
120 Python programs. The instructions take two forms: “lazy”, based on human-authored commit
messages, and “descriptive”, written by an LLM. In CanltEdit, the LLM is expected to edit, on
average, around 21% of the original code in terms of normalized edit distance between the original
code snippet and the reference solution. In constrast, expected edits in HumanEvalFix are more
constrained (5%) as the bugs are usually small and well-localized. The two datasets also differ in the
distribution of ground truth edits. In HumanEvalFix, |A| ~ |O|, whereas CanItEdit’s references are
20% longer than the original text, indicating prevalence of insertions.

Experiment Setup We obtain 3 LLM outputs for each item of each dataset, using 9 different
models to multiply our sample size and the following prompt:

Edit the given code according to the instructions.

You MUST output the complete revised version of the code with your edits.
You MUST NOT add any comments. DO NOT explain you edits.

Instructions

{instruction}

Input code

{input_code}

Edited code:

The LLMs used are: claude—-sonnet—4 (2025), Google’s gemini-2.5-flash
DeepMind (2025), OpenAl's gpt-40-2024-11-20, gpt-40-mini-2024-07-18,
gpt-4.1-nano-2025-04-14 (2025), Qwen2.5-Coder Instruct 1B and 5B

(2024), DeepSeek Coder Instruct 1.3B and 6.7B (2024). For the Qwen and DeepSeek
models, we use VLLM inference engine Kwon et al.| (2023)) and the default sampling parameters. For

the remaining (proprietary) models, we set temperature to 0.2 and top_p to 0.95.

This results in 26568 (3 x 9 x 984) data samples derived from HumanEvalFix dataset and 2835
(3 x 9 x 105) derived from CanItEdit. For each LLM output, we execute the tests and record a
binary pass (1) or fail (0) score. In HumanEvalFix, 45% of the generated solutions pass the test, while
for CanltEdit dataset this number is 40%. Finally, we report Pearson correlation coefficient between
the 0/1 indicator of passing the test and ES along with various other static measures computed on the
(origin, reference, prediction) triples, namely exact match, unnormalized Levenshtein distance (ED),
NES, chrF, BLEU, CodeBLEU, DiffBLEU, and SARI.

We experiment with 2 implementations of ExcisionScore—ES-Line and ES-Token—differing in
the granularity of LCS. ES-Line excises the shared lines of code, while ES-Token tokenizes the
code strings with t ree—sitter and excises tokens common to all three strings. Additionally, we
remove comments that do not affect execution, before passing A, B, O to each measure.

To illustrate what happens if our datasets contained a larger proportion of shared context, we artificially
expand it by prepeding a long shared prefix of random length to each A, B, O, similar to
Since the measures considered are semantics-agnostic, the exact content of the prefix is irrelevant.
The prefix is sampled uniformly from characters abcde £, a whitespace, and a newline character to
contain a total of 2000-3000 characters. A different prefix is generated for each individual dataset
sample. We re-use the unperturbed pass/fail test execution data and compute the Pearson correlation
coefficients. After these perturbations, the reference solution’s coverage drops, on average, from 21%
to 7% of the original code in CanltEdit and from 5% to only 0.5% in HumanEvalFix.

(a) HumanEvalFix

(b) HumanEvalFix with shared prefix added

0.70 0.70
0.643 0.643
0.65 3 0.65 1 3
8; 0.599 50 0.599
go.so 3 B go.ao— 3
5 3 5
kol T 0.549
E 0.55 1 0.531 § 0.55 1 I
z I 0.513 L:J
2 I 0.502 2
o o
2 0501 I 0.487 2 0.50 1
5 5
© I © 0.464
s s
g 8 1 045
8§ o04sq & oas 3
0.412 I 0.407
I I 0.3p7
0.40 0.40 1 3
& < & O & Q& & d & e > Q Q& & O &
< 5 < Y = >) > < > & 54 < & & N
<& & & 5 & & & 8
(c) CanltEdit (d) CanltEdit with shared prefix added

0.65 1

0.60 -

0.55 1

0.50 1

Pearson Correlation Coefficient (95% Cl)

0537 0534 0532 (g3,

SRR

0.526
0.510

=

0.4]

f

B5

0.65

0.60 1

0536 0534 0533

NN

0.50 4

Pearson Correlation Coefficient (95% CI)

#6

&
K S

2 & P)
< & (}0& & <& J

Figure 1: Correlation of various static measures with test execution. The first row refers to Hu-
manEvalFix dataset, and the second to CanlItEdit. Error bars indicate 95% bootstrap confidence
intervals. The plots in the right column pertain to the experiment where we prepend a large random
prefix to A, B, O. We excluded ED and exact match as their coefficients were low, as expected.

Results The resulting correlation coefficients are in[Figure 1| On HumanEvalFix dataset, ES-Token
takes the lead with a correlation coefficient of » = 0.643 (CI [0.636, 0.651]), followed by ES-Line
r = 0.599 (CI [0.592,0.607]), SARI = 0.572 (CI [0.564,0.58]), and others. Both ES-Token
and ES-Line offer statistically significant improvement upon SARI, indicating that it is beneficial
to remove shared context before applying SARI. When shared context dominates, the Fieep term
of SARI is always maxed out to 1. Intuitively, that means that one of the 3 degrees of freedom
(Fkeep, Faddas Pae1) SARI has is permanently switched off, making SARI less sensitive. When a shared
context is added to the HumanEvalFix dataset, SARI’s correlation coefficient with pass@1 drops
significantly: from 0.572 (CI [0.564, 0.58]) to 0.549 (CI [0.541, 0.558]). Extending shared context
does not affect SARTI’s correlation with test execution on CanltEdit.

On the CanlItEdit dataset, the differences in performance of different metrics, including pairwise
ones, are insignificant. One possible explanation for that is the relative size of the edited region in
CanltEdit (21%, not including the unexpected edits the LLM solution makes). Besides, CanltEdit
expects 20% more insertions than deletions. Since the inserted tokens appear in either A or B but not
in O, the benefits of taking O into account are reduced.

Our results indicate that granularity of computing LCS or alignment is important. In HumanEvalFix,
the edits are often small, changing only a few tokens within a line, explaining why ES-Token surpasses
ES-Line on this dataset. On CanltEdit, however, ES-Token loses to ES-Line by a barely significant
margin. Manual inspection reveals that overly fine-grained alignment can lead to meaningless unintu-
itive artifacts. Similarly, line-granular DiffBLEU falls short on HumanEvalFix, while performing
well on CanltEdit.

We found that 2% of LLM solutions for HumanEvalFix dataset and 5% for CanlItEdit match the
reference solution exactly. Excluding them from the data decreases all the correlation coefficients
by 3-9%, leaving the ranking of different metrics unaffected on HumanEvalFix. Differences in
correlation coefficients remain insignificant on CanltEdit.

Perturbing the data by adding a shared prefix does not affect ES and DiffBLEU scores, as ignoring
this prefix was part of their design, neither does it affect unnormalized ED. In contrast, correlation
coefficients of other pairwise measures with pass@1 on HumanEvalFix drop significantly: from
[0.505, 0.52] to [0.439, 0.451] for BLEU, from [0.494, 0.51] to [0.457,0.471] for CodeBLEU, from
[0.48,0.494] to [0.431, 0.444] for chrF, and from [0.505, 0.52] to [0.391, 0.403] for NES. We observe
a similar effect on CanlItEdit.

We critisized pairwise measures on the grounds that they reward dominating shared context as match,
which reduces the effective range of values the similarity measure can take from [0, 1] to [x, 1], where
z depends on how prevalent shared context is in the data. Some might object to this argument and
suggest that dataset-specific re-normalization of the scores could be a trivial remedy. Namely, if s;
are the pairwise similarity scores on the i-th dataset sample, one could consider s; = T s
ensuring that s} fully cover the expected [0..1] range. However, our empirical results suggest that
such a re-normalization still does not yield a satisfactory measure. Pearson’s correlation coefficient r
is invariant under linear transformations of the variables. Thus, the renormalized scores would have
the same low r as the original values we observed. Our superiority argument based on correlation
coefficients holds independently of the arguments about suitable and interpretable range of values.

5 RELATED WORK

Our adequacy criteria leverage global multiple sequence alignment (MSA, [Definition), a technique
well established in bioinformatics (Chatzou et al.[(2015).

Numerous measures assess the similarity of two strings in different contexts. We argue that they are
ill-suited for the revision similarity problem, because they do not take the original document O string
into account. Without O, pairwise measures cannot distinguish between revision similarity due to
inheriting parts of O unchanged and that due to performing the same edits to O. As a result, pairwise
measures reward shared context. Pairwise N-gram-based lexical measures include BLEU
(2002), METEOR Banerjee & Lavie| (2005), ROUGE [Lin| (2004), and chrF [Popovic| (2015).
BLEU has well-documented limitations, including its inability to address revision similarity — a
gap we rigorously analyze in[Section 2] For a systematic critique of BLEU’s shortcomings (e.g., its
insensitivity to paraphrasing and granular edits), we direct readers to [Callison-Burch et al/ (2006))
and Reiter] (2018). Despite these flaws, BLEU persists as a de facto standard due to its simplicity,
reproducibility, and historical inertia. Syntax-aware pairwise static measures for code include Tree
Edit Distance [Schwarz et al] (20T7) (TED), RUBY (20T9). CodeBLEU £020).
and CrystalBLEU [Eghbali & Pradel| (2023)). They require the code to be parseable. TED is very
interpretable but takes O(n?>) time, where n is the number of nodes in the syntax tree. Crystal BLEU
removes ‘shared’ n-grams, but interprets ‘shared’ as frequent n-grams in the language, not unedited
tokens inherited from O as in our work. Lastly, embedding-based measures such as cosine similarity,
BERTScore [Zhang et al](2020) and CodeBERTScore [Zhou et al]([2023), while capturing semantic

similarity, remain fundamentally pairwise and cannot account for the original document O.

Evaluating Grammatical Error Correction (GEC) techniques can be seen as an instance of the revision
similarity problem. In GEC, edits are typically small and evaluation requires strict measures that
are sensitive to word order. Alignment has been used to leverage these aspects in designing GEC
metrics such as I-Measure [Felice & Briscoe (2015) and M? (MaxMatch) Dahlmeier & Ng (2012).
Evaluation of Text Simplification (TS) can, in some cases, also be viewed as revision similarity

problem, provided that the simplifying changes do not rewrite the entire text. SARIXu et al.| (2016)
(defined in is an n-gram-based metric designed for text simplification.

6 REPRODUCIBILITY STATEMENT

We attach the collected LLM responses and test execution results as Supplementary Mate-
rials. In we specify how it was obtained. The code used to process this data
and compute the scores with their correlation coefficients is available anonymously under
https://anonymous.4open.science/r/excision-score-eval-BOAF/ .

REFERENCES

Tom Adamczewski. How to run swe-bench verified in one hour on one machine. Blog post on
epoch.ai, July 2025. URL https://epoch.ai/blog/swebench-docker. Accessed: 2025-09-05.

Suha S. Al-Thanyyan and Aqil M. Azmi. Automated text simplification: A survey. ACM Computing
Survey, 54(2), March 2021. ISSN 0360-0300. doi: 10.1145/3442695. URL https://doi.org/10.1145/
3442695.

Anthropic. System card: Claude opus 4 & claude sonnet 4. |https://www-cdn.anthropic.com/
4263b940cabb546aa0e3283f35b686f413b2ft47.pdf, May 2025.

Ramakrishna Bairi, Atharv Sonwane, Aditya Kanade, Vageesh D. C., Arun lyer, Suresh Parthasarathy,
Sriram Rajamani, B. Ashok, and Shashank Shet. Codeplan: Repository-level coding using 1lms
and planning. Proc. ACM Softw. Eng., 1(FSE), July 2024. doi: 10.1145/3643757. URL https:
//doi.org/10.1145/3643757.

Satanjeev Banerjee and Alon Lavie. METEOR: An automatic metric for MT evaluation with
improved correlation with human judgments. In Jade Goldstein, Alon Lavie, Chin-Yew Lin,
and Clare Voss (eds.), Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation
Measures for Machine Translation and/or Summarization, pp. 65-72, Ann Arbor, Michigan, June
2005. Association for Computational Linguistics. URL https://aclanthology.org/W05-0909/.

Christopher Bryant, Mariano Felice, and Ted Briscoe. Building a written corpus of learner english
with automatic linguistic annotation. In Proceedings of the 12th Workshop on Innovative Use of
NLP for Building Educational Applications, pp. 61-68, 2017.

Christopher Bryant, Zheng Yuan, Muhammad Reza Qorib, Hannan Cao, Hwee Tou Ng, and Ted
Briscoe. Grammatical error correction: A survey of the state of the art. Computational Linguistics,
49(3):643-701, 09 2023. ISSN 0891-2017. doi: 10.1162/coli_a_00478. URL https://doi.org/10.
1162/coli_a_00478. section 6 (Evaluation).

Chris Callison-Burch, Miles Osborne, and Philipp Koehn. Re-evaluating the role of Bleu in machine
translation research. In Diana McCarthy and Shuly Wintner (eds.), 1 Ith Conference of the European
Chapter of the Association for Computational Linguistics, pp. 249-256, Trento, Italy, April 2006.
Association for Computational Linguistics. URL https://aclanthology.org/E06-1032/.

Federico Cassano, Luisa Li, Akul Sethi, Noah Shinn, Abby Brennan-Jones, Jacob Ginesin, Edward
Berman, George Chakhnashvili, Anton Lozhkov, Carolyn Jane Anderson, and Arjun Guha. Can
it edit? evaluating the ability of large language models to follow code editing instructions, 2024.
URL |https://arxiv.org/abs/2312.12450,

Maria Chatzou, Cedrik Magis, Jia-Ming Chang, Carsten Kemena, Giovanni Bussotti, Ionas Erb, and
Cedric Notredame. Multiple sequence alignment modeling: methods and applications. Briefings
in Bioinformatics, 17(6):1009-1023, 11 2015. ISSN 1467-5463. doi: 10.1093/bib/bbv099. URL
https://doi.org/10.1093/bib/bbv099.

Xinfang Chen, Siyang Xiao, Xianying Zhu, Junhong Xie, Ming Liang, Dajun Chen, Wei Jiang, Yong

Li, and Peng Di. An efficient and adaptive next edit suggestion framework with zero human
instructions in ides, 2025. URL https://arxiv.org/abs/2508.02473,

10

https://anonymous.4open.science/r/excision-score-eval-B9AF/
https://epoch.ai/blog/swebench-docker
https://doi.org/10.1145/3442695
https://doi.org/10.1145/3442695
https://www-cdn.anthropic.com/4263b940cabb546aa0e3283f35b686f4f3b2ff47.pdf
https://www-cdn.anthropic.com/4263b940cabb546aa0e3283f35b686f4f3b2ff47.pdf
https://doi.org/10.1145/3643757
https://doi.org/10.1145/3643757
https://aclanthology.org/W05-0909/
https://doi.org/10.1162/coli_a_00478
https://doi.org/10.1162/coli_a_00478
https://aclanthology.org/E06-1032/
https://arxiv.org/abs/2312.12450
https://doi.org/10.1093/bib/bbv099
https://arxiv.org/abs/2508.02473

Daniel Dahlmeier and Hwee Tou Ng. Better evaluation for grammatical error correction. In Eric
Fosler-Lussier, Ellen Riloff, and Srinivas Bangalore (eds.), Proceedings of the 2012 Conference
of the North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, pp. 568-572, Montréal, Canada, June 2012. Association for Computational
Linguistics. URL https://aclanthology.org/N12-1067/.

Google DeepMind. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long
context, and next generation agentic capabilities, 2025. URL https://arxiv.org/abs/2507.06261.

Edsger W. Dijkstra. The humble programmer. Communications of the ACM, 15(10):859-866, 1972.
doi: 10.1145/355604.361591. The famous quote appears on p. 861. Originally presented as the
1972 ACM Turing Award Lecture.

Aryaz Eghbali and Michael Pradel. Crystalbleu: Precisely and efficiently measuring the similarity of
code. In Proceedings of the 37th IEEE/ACM International Conference on Automated Software
Engineering, ASE *22, New York, NY, USA, 2023. Association for Computing Machinery. ISBN
9781450394758. doi: 10.1145/3551349.3556903. URL https://doi.org/10.1145/3551349.3556903.

Mariano Felice and Ted Briscoe. Towards a standard evaluation method for grammatical error
detection and correction. In Rada Mihalcea, Joyce Chai, and Anoop Sarkar (eds.), Proceedings
of the 2015 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pp. 578-587, Denver, Colorado, May—June 2015.
Association for Computational Linguistics. doi: 10.3115/v1/N15-1060. URL https://aclanthology.
org/N15-1060/.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder: When the
large language model meets programming — the rise of code intelligence, 2024. URL https:
/larxiv.org/abs/2401.14196|

Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and Computational
Biology. Cambridge University Press, 1997. sections 11 (two-sequence alignment) and 14
(multi-sequence alignment).

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, Kai Dang, Yang Fan, Yichang Zhang, An Yang, Rui Men, Fei Huang,
Bo Zheng, Yibo Miao, Shanghaoran Quan, Yunlong Feng, Xingzhang Ren, Xuancheng Ren,
Jingren Zhou, and Junyang Lin. Qwen2.5-coder technical report, 2024. URL https://arxiv.org/abs/
2409.12186.

Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian Weinberger. From word embeddings to document
distances. In Proceedings of the 32nd International Conference on Machine Learning (ICML), pp.
957-966, 2015.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summarization
Branches Out, pp. 74-81, Barcelona, Spain, July 2004. Association for Computational Linguistics.
URL https://aclanthology.org/W04-1013/.

Robert L. Logan IV, Alexandre Passos, Sameer Singh, and Ming-Wei Chang. Fruit: Faithfully
reflecting updated information in text, 2022. URL https://arxiv.org/abs/2112.08634.

Martin Monperrus. Living bibliography for automated program repair. https://program-repair.org/
bibliography.html, 2023. URL https://program-repair.org/bibliography.html. Online; accessed
December 2, 2025.

Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai Zheng, Binyuan Hui, Terry Yue Zhuo, Swayam
Singh, Xiangru Tang, Leandro von Werra, and Shayne Longpre. Octopack: Instruction tuning code
large language models. arXiv preprint arXiv:2308.07124, 2023.

11

https://aclanthology.org/N12-1067/
https://arxiv.org/abs/2507.06261
https://doi.org/10.1145/3551349.3556903
https://aclanthology.org/N15-1060/
https://aclanthology.org/N15-1060/
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2409.12186
https://aclanthology.org/W04-1013/
https://arxiv.org/abs/2112.08634
https://program-repair.org/bibliography.html
https://program-repair.org/bibliography.html
https://program-repair.org/bibliography.html

Karl Munson, Anish Savla, Chih-Kai Ting, Serenity Wade, Kiran Kate, and Kavitha Srinivas. Explor-
ing code style transfer with neural networks, 2022. URL https://arxiv.org/abs/2209.06273.

Graham Neubig and Xingyao Wang. Evaluation of llms as coding agents on swe-bench (at 30x
speed!). All Hands Al Blog, October 2024. URL https://www.all-hands.dev/blog/evaluation-of-
Ilms-as-coding-agents-on-swe-bench-at-30x-speed.

OpenAl. OpenAl API Models Documentation. https://platform.openai.com/docs/models, September
2025. Accessed: September 10, 2025. Overview of available models in the OpenAl API, including
capabilities and usage guidelines.

Sheena Panthaplackel, Pengyu Nie, Milos Gligoric, Junyi Jessy Li, and Raymond Mooney. Learning
to update natural language comments based on code changes. In Dan Jurafsky, Joyce Chai, Natalie
Schluter, and Joel Tetreault (eds.), Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pp. 1853—1868. Association for Computational Linguistics, July 2020.
doi: 10.18653/v1/2020.acl-main.168. URL https://aclanthology.org/2020.acl-main.168/.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the Association
for Computational Linguistics, pp. 311-318, 2002.

Dorin Pomian, Abhiram Bellur, Malinda Dilhara, Zarina Kurbatova, Egor Bogomolov, Timofey
Bryksin, and Danny Dig. Next-generation refactoring: Combining llm insights and ide capabilities
for extract method. In 2024 IEEE International Conference on Software Maintenance and Evolution
(ICSME), pp. 275-287, 2024. doi: 10.1109/ICSME58944.2024.00034.

Maja Popovié. chrF: character n-gram F-score for automatic MT evaluation. In Ondfej Bojar,
Rajan Chatterjee, Christian Federmann, Barry Haddow, Chris Hokamp, Matthias Huck, Varvara
Logacheva, and Pavel Pecina (eds.), Proceedings of the Tenth Workshop on Statistical Machine
Translation, pp. 392-395, Lisbon, Portugal, September 2015. Association for Computational
Linguistics. doi: 10.18653/v1/W15-3049. URL https://aclanthology.org/W15-3049/.

Ehud Reiter. A structured review of the validity of BLEU. Computational Linguistics, 44(3):393-401,
September 2018. doi: 10.1162/coli_a_00322. URL https://aclanthology.org/J18-3002/.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel Sundaresan, Ming Zhou,
Ambrosio Blanco, and Shuai Ma. Codebleu: a method for automatic evaluation of code synthesis,
2020. URL https://arxiv.org/abs/2009.10297.

Stefan Schwarz, Mateusz Pawlik, and Nikolaus Augsten. A new perspective on the tree edit distance.
In Christian Beecks, Felix Borutta, Peer Kroger, and Thomas Seidl (eds.), Similarity Search and
Applications, pp. 156—170, Cham, 2017. Springer International Publishing. ISBN 978-3-319-
68474-1.

Akhilesh Sudhakar, Bhargav Upadhyay, and Arjun Maheswaran. “transforming” delete, retrieve,
generate approach for controlled text style transfer. In Kentaro Inui, Jing Jiang, Vincent Ng,
and Xiaojun Wan (eds.), Proceedings of the 2019 Conference on Empirical Methods in Natural
Language Processing and the 9th International Joint Conference on Natural Language Process-
ing (EMNLP-IJCNLP), pp. 3269-3279, Hong Kong, China, November 2019. Association for
Computational Linguistics. doi: 10.18653/v1/D19-1322. URL https://aclanthology.org/D19-1322/.

The IEEE and The Open Group. diff — compare two text files. https://pubs.opengroup.org/onlinepubs/
9699919799/utilities/diff.html, 2018. IEEE Std 1003.1-2017 (Revision of IEEE Std 1003.1-2008).

Ngoc Tran, Hieu Tran, Son Nguyen, Hoan Nguyen, and Tien N. Nguyen. Does bleu score work for
code migration? In Proceedings of the 27th International Conference on Program Comprehension,
ICPC ’19, pp. 165-176. IEEE Press, 2019. doi: 10.1109/ICPC.2019.00034. URL https://doi.org/
10.1109/ICPC.2019.00034.

Elaine J. Weyuker. On testing non-testable programs. The Computer Journal, 25(4):465-470, 1982.
doi: 10.1093/com;jnl/25.4.465.

12

https://arxiv.org/abs/2209.06273
https://www.all-hands.dev/blog/evaluation-of-llms-as-coding-agents-on-swe-bench-at-30x-speed
https://www.all-hands.dev/blog/evaluation-of-llms-as-coding-agents-on-swe-bench-at-30x-speed
https://platform.openai.com/docs/models
https://aclanthology.org/2020.acl-main.168/
https://aclanthology.org/W15-3049/
https://aclanthology.org/J18-3002/
https://arxiv.org/abs/2009.10297
https://aclanthology.org/D19-1322/
https://pubs.opengroup.org/onlinepubs/9699919799/utilities/diff.html
https://pubs.opengroup.org/onlinepubs/9699919799/utilities/diff.html
https://doi.org/10.1109/ICPC.2019.00034
https://doi.org/10.1109/ICPC.2019.00034

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Wei Xu, Courtney Napoles, Ellie Pavlick, Quanze Chen, and Chris Callison-Burch. Optimizing statis-
tical machine translation for text simplification. Transactions of the Association for Computational
Linguistics, 4:401-415, 2016. doi: 10.1162/tacl_a_00107. URL https://aclanthology.org/Q16-
1029/

Tianyi Zhang*, Varsha Kishore*, Felix Wu*, Kilian Q. Weinberger, and Yoav Artzi. Bertscore:
Evaluating text generation with bert. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=SkeHuCVFDr.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. Bertscore: Evaluating
text generation with bert, 2020. URL https://arxiv.org/abs/1904.09675.

Shuyan Zhou, Uri Alon, Sumit Agarwal, and Graham Neubig. Codebertscore: Evaluating code
generation with pretrained models of code. 2023. URL |https://arxiv.org/abs/2302.05527.

A FORMALISM AND EXTENDED DISCUSSION OF PROPERTY 5

Standard reference-based evaluation relies on a set of references A to define the space of semantically
acceptable revisions for a given task, a well-established practice in fields like Grammatical Error
Correction (GEC) to account for valid alternative outputs (Bryant et al.} 2017] §6). For instance, to
evaluate a revision that adds a sort function, .4 would contain different correct sorting algorithms
(e.g., quicksort, mergesort), thereby defining a range of semantic solutions deemed acceptable.

However, a single semantic solution can often be implemented with minor syntactic variances that do
not alter its meaning. Examples include moving a function definition to a different, syntactically valid
location within a code file, or applying semantics-preserving code transformations such as inlining
(replacing a function call with its body) or outlining (extracting a code segment into a new function).
In text, analogous examples include adding a new step before any of its dependencies or changing the
order of a bulleted list.

Requiring A to explicitly enumerate all possible variants of every acceptable solution is computation-
ally expensive. For instance, to handle all possible locations for a single function definition across
O(|O]) locations, one would need a reference for each. Comparing a candidate revision against this
set involves a quadratic O(|O|?) number of pairwise block comparisons to align the candidate’s
function with each reference’s function. This cost is incurred for each such syntactic variance.

Therefore, a robust similarity measure should be efficient with respect to the reference set A for
such semantics-preserving, syntactic variances. Property S requires that the measure, leveraging
knowledge of the language and task, can recognize a candidate revision B as matching a reference
A € Aeven if B and A differ only by a variance of this kind, without requiring A to explicitly
enumerate all possible variants. Moreover, the measure should acknowledge a partial match in case
some of the edits B makes achieve the effect semantically equivalent to some of A’s edits, even if A
otherwise semantically differs from B.

Example 5 (Tolerated Syntactic Variances). In the sort function task, the set .4 defines the acceptable
semantic range (e.g., quicksort, mergesort). Property 5 ensures that if a candidate revision B places
a correct quicksort implementation in a different location than the reference quicksort in A, it is still
correctly identified as matching the quicksort semantics. This avoids the need for a separate reference
for every possible function location, making the evaluation both practical and semantically grounded.

To formalize the notion of semantics-preserving syntactic variances, we first define a semantic
equivalence relation between documents under a set of semantics-preserving transformations.

Definition 3 (Equivalence under Semantics-Preserving Transformations). Let [s];, denote the
semantics of a string s in language L. Let =, be a semantics-preserving syntactic equivalence relation
on strings in L, such that A =, B implies [A] = [B] . This relation is defined by a set of syntactic
transformation rules (e.g., function relocation, inlining) that are known a priori to preserve semantics.
Any practical measure uses a concrete =;, that under-approximates the full, undecidable semantic
equivalence relation.

We now extend this concept to define semantic equivalence between sets of edits.

13

https://aclanthology.org/Q16-1029/
https://aclanthology.org/Q16-1029/
https://openreview.net/forum?id=SkeHuCVFDr
https://arxiv.org/abs/1904.09675
https://arxiv.org/abs/2302.05527

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
77
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
41
742
743
744
745
746
747
748
749
750
751
752
753
754
755

An atomic edit is a tuple defining a single, irreducible change to a sequence, e.g., of tokens or
characters. It combines an operation (insert, delete, replace, swap, etc.), a target location index
within the sequence, and an optional operand: a new element for insert/replace, an index for swap,
ignored for delete. Let A be the revision produced by applying a set of atomic, nonoverlapping
edits {a1,...,a,} to O, denoted A = {aq,...,a,}(O). Similarly, let B = {b1,...,by}(O).
By nonoverlapping, we mean that the indices of distinct edits are distinct: formally, for a;, =
Lz, _),a; = (Ly,_) € {ar,...,an},i # j = x # y, where ’_" denotes don’t care. The edits
in a nonoverlapping set can be applied simultaneously. For any subset of indices I C {1,...,n},
we denote by a;(O) = {a;};cr(O) the revision obtained by applying exactly those edits to O. For
example, {}(O) = O and {a;}?_,(0) = A.

Definition 4 (Semantically Equivalent Edits). For {a;}} and {b;}7", let I C 1..n, J C 1..m,
I'=1.n\1,J=1.m)\ J. Assume that the indices of the edits b; do not overlap with the indices
of a7 and indices of a; do not overlap with those of b ;.

The subsets of edits a; = {a; | ¢+ € I} and by = {b; | j € J} are semantically equivalent
under =, iff:

A=p (byjUap)(O) AN B=p(a;Ubs)(0)

This relation is symmetric. It formalizes the condition that the edits in a; and b; are interchangeable
syntactic variances for achieving the same semantic outcome within the context of their respective
revisions; in other words, the edits are equivalent in the surrounding context of the other edits A and
B apply. Finding the subsets [and .J is, of course, undecidable in general, but, in practice, can be
under-approximated with knowledge of the transformations that underlie a particular concretisation
of =;.

Property 5 (Obliviousness to Semantically Equivalent Syntactic Variances). In the notation of
Definition 4, a similarity measure m must satisfy:

m(A, B;0) =m(A, (ar Ub;)(0);0),
whenever the edits {a; | i € I} and {b; | j € J} are semantically equivalent under =7..

This property requires a revision similarity measure to be oblivious to the choice between syntactically
different but semantically equivalent edit sets under some realisation of =y. Our new measure,
EXCISIONSCORE does so by being insensitive to the order of n-grams, as we show in[Section 3.4]
This accounts for semantically equivalent mismatches that can be fixed by reordering blocks of
content, which we found to be common in our our evaluation datasets.

Humans care about more than mere semantics when comparing revisions. For instance, a human may
prefer unobfuscated or well-refactored code or, in text, a paraphrase or a summary of some topic.
Humans, to take another example, also vary greatly in terms of their code commenting preferences.
Property 5 permits handling these aspects in two ways: either by defining =7, to consider them or by
including examples of these aspects in the set of references. Using =y, to do so effectively makes the
relevant aspects semantic.

14

	Introduction
	Storm Clouds in a BLEU Sky
	ExcisionScore: Measuring Revision Similarity
	Core Concepts and Utilities
	Adequacy Criteria for Revision Similarity
	The Unmet Need for Adequate Revision Similarity Metrics
	ExcisionScore Defined

	Evaluation: ExcisionScore as Execution Proxy
	Related Work
	Reproducibility Statement
	Formalism and Extended Discussion of prop:syn:var

