
000 EXCISION SCORE: EVALUATING EDITS WITH SURGICAL 001 PRECISION

002
003
004
005 **Anonymous authors**

006 Paper under double-blind review

007 008 009 ABSTRACT 010

011 Many tasks revolve around editing a document, whether code or text. We formulate
012 the revision similarity problem to unify a wide range of machine learning evaluation
013 problems whose goal is to assess a revision to an existing document. We observe
014 that revisions usually change only a small portion of an existing document, so the
015 existing document and its immediate revisions share a majority of their content.

016 We formulate five adequacy criteria for revision similarity measures, designed to
017 align them with human judgement. We show that popular pairwise measures, like
018 BLEU, fail to meet these criteria, because their scores are dominated by the shared
019 content. They report high similarity between two revisions when humans would
020 assess them as quite different. This is a fundamental flaw we address.

021 We propose a novel static measure, Excision Score (ES), which computes longest
022 common subsequence (LCS) to remove content shared by an existing document
023 with the ground truth and predicted revisions, before comparing only the remaining
024 divergent regions. This is analogous to a surgeon creating a sterile field to focus on
025 the work area. We use approximation to speed the standard cubic LCS computation
026 to quadratic. In code-editing evaluation, where static measures are often used
027 as a cheap proxy for passing tests, we demonstrate that ES surpasses existing
028 measures. When aligned with test execution on HumanEvalFix, ES improves
029 over its nearest competitor, SARI, by 12% Pearson correlation and by >21% over
030 standard measures like BLEU. The key criterion is invariance to shared context;
031 when we perturb HumanEvalFix with increased shared context, ES' improvement
032 over SARI increases to 20% and >30% over standard measures. ES also handles
033 other corner cases that other measures do not, such as correctly aligning moved
034 code blocks, and appropriately rewarding matching insertions or deletions.

035 1 INTRODUCTION

036
037 Editing is a core skill across countless professions, from writers refining drafts to scientists revising
038 research papers. Example tasks from natural language processing (NLP) include sentiment and style
039 transfer Sudhakar et al. (2019), text simplification Al-Thanyyan & Azmi (2021), grammatical error
040 correction Bryant et al. (2023), and updating factual information Logan IV et al. (2022). Nowhere
041 is this more true than in software development, where code evolves through relentless incremental
042 iteration — bug fixes, optimizations, and feature updates — making precise, efficient editing not just
043 useful but essential. Indeed, many AI4Code tasks boil down to editing code: like automated program
044 repair Monperrus (2023), next edit suggestion Chen et al. (2025), refactoring Pomian et al. (2024),
045 and code commenting Panthaplackel et al. (2020), to name a few.

046 In this work, we focus on revision tasks, which we define as purposeful edits to a document, whether
047 text or code, that preserve its core semantics. This distinguishes it from rewriting or summarisation,
048 which can fundamentally change a document's thesis or structure. We therefore contend that a revision
049 must, by definition, maintain a high degree of similarity to its source. Operationally, we posit that
050 a revision alters a relatively small portion of a text. While the definition of "small" is necessarily
051 task-dependent, we argue that establishing a practical threshold for tasks is feasible and that larger
052 changes can often be decomposed into a sequence of smaller ones, *aka* revisions.

053 The LLM tsunami has led to the emergence of edit assistants for both text and code revision. Assessing
these assistants introduces the *revision similarity problem*: defining a measure for the similarity of

054 two revisions of an initial text (or code) that is aligned with human judgement. With such a measure,
055 one can quantify an assistant’s performance by how similar its revision is to the reference. For some
056 tasks, building a golden set of references can be prohibitively expensive, calling for a symmetric
057 measure of revision similarity, *i.e.* one that equally weights its input revisions, allowing it to better
058 tolerate a noisy references. Another use for a symmetric measure is clustering revisions. For example,
059 imagine being the maintainer of a Linux kernel subsystem. Rather than manually assess many patches,
060 clustering them by revision similarity and only reviewing representative patches would save time.

061 Model performance on revision tasks cannot be assessed by humans at scale, so we need an automated
062 measure. Crucially, we need a normalised measure, not a raw distance: if this is not immediate,
063 consider how two operands can be arbitrarily distant in absolute terms, yet arbitrarily similar as a
064 function of their length. Specifically, we want a similarity measure, one that returns a score in $[0..1]$,
065 where 0 denotes utter dissimilarity and 1 identity. This measure should be task-agnostic, interpretable,
066 and lightweight.

067 These three properties rule out dynamic measures, notably $\text{pass}@k$, that rely on execution. Their
068 executability constraint is crippling. Even ignoring NLP tasks, many AI4Code tasks do not produce
069 executable code, like code summarization and commit message generation. Even executable code
070 can be non-testable Weyuker (1982). Even considering only code generation, their utility falters in the
071 face of incomplete codebases. Even restricted to tasks that produce testable code, dynamic measures
072 under-approximate program behaviour Dijkstra (1972), which undermines their interpretability, and
073 can be prohibitively computationally expensive. For example, Neubig & Wang (2024) report that
074 evaluation on some 300 samples of SWE-Bench-like dataset took them 2 days; Adamczewski (2025)
075 managed to reduce it to 1 hour per 500 dataset samples with powerful hardware and dedicated
076 containerized environments optimized for the task.¹ **Thus, a static measure is an indispensable part of**
077 **the evaluator’s toolbox, necessary for scenarios where dynamic evaluation is infeasible or incomplete.**

078 Existing static measures of textual similarity fall into three categories: lexical, edit-based, and
079 semantic. Lexical measures decompose text into a multiset of predefined features, like n -grams,
080 then calculate the similarity of two multisets by atomically comparing their elements. While their
081 n -grams do capture local order, they are oblivious to global order. Edit-based measures, in contrast,
082 operate on sequences, so they are inherently sensitive to order. BLEU, ROUGE, Jaccard (adapted to
083 multisets), and TF-IDF are prominent examples of lexical measures. Normalised edit distance built
084 using Levenshtein edit distance is the preeminent edit-based similarity measure. Canonical semantic
085 measures are Word Mover’s distance Kusner et al. (2015) and BERTScore Zhang* et al. (2020).
086 These measures struggle with rare words, domain-specific jargon, and nuanced linguistic phenomena
087 like negation and sarcasm. Their scores are often hard to interpret, unlike counting matching n -grams;
088 for example, the difference between scores of 0.7 and 0.8 may not be meaningful or consistent across
089 different models and datasets. When applied to the revision problem, these measures are dominated
090 by the underlying similarity of the revisions and the original text (Section 2).

091 In this work, we proposing the umbrella term “revision similarity” to unite all ML tasks that can be
092 evaluated by three sequences, an original document and two revisions of it, one a golden reference, and
093 the other, the hypothesis to evaluate. We specify five adequacy criteria that any measure of revision
094 similarity should meet and show how many popular measures fail to meet them. We introduce a
095 new measure — EXCISIONSCORE (ES) — that does. It is a static, task-agnostic, interpretable,
096 and lightweight measure. **ES aligns a candidate and a set of reference revisions with their source**
097 **document to focus on their divergent regions, whose n -grams it compares. By constructing its under-**
098 **approximation from a set of references, ES captures a different subspace of program behavior than**
099 **dynamic measures, a semantic variability we formalize and explore in Section 3.2.**

100 2 STORM CLOUDS IN A BLEU SKY

101 To assess revision quality, direct comparison seems natural. However, popular pairwise similarity
102 measures, like normalised edit similarity, BLEU, ROUGE, METEOR, and chrF, tend to go wrong

103
104 ¹Although these estimates include the time needed to run the inference of an LLM, we believe they **exemplify**
105 **the hardships connected with execution-based measures.**

108 because revisions of the same initial version are usually inherently similar, while what matters is
109 comparing their *changes*, not the shared context.
110

111 For example, suppose an LLM is asked to replace “**anim**” with “**bar**” and outputs
112

113 “*Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor*
114 *incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam***foo***, quis*
115 *... officia deserunt mollit anim id est laborum.*”

116 The LLM clearly failed the task: instead of replacing **anim** with **bar**, it incorrectly substituted **veniam**
117 with **foo**. Most people would consider this edit wrong. Yet, popular pairwise metrics will all score
118 close to their maximum value of 1, contradicting human judgment.
119

120 We now generalise this example, then use it to show how BLEU goes wrong in such cases.
121

122 **Example 1 (Similar strings).** Let X, Y, Z and W be strings and let the original sequence be XY ,
123 the assistant’s prediction be XW , and the reference revision be XZ . Let ED denote edit distance.
124 Now imagine asking a language model to replace Y with Z while keeping the common prefix X but
failing and instead replacing Y with W . Let us assume
125

$$ED(Y, Z) = ED(Y, W) = ED(Z, W) = |Y| = |W| = |Z| = l \ll |X|.$$

126
127 In this example, the assistant (*i.e.* an LLM) replaced Y with something completely wrong, so we
128 expect a poor score from any measure well-aligned with human intuition. Consider BLEU applied
129 to Example 1, *viz.* $\text{BLEU}(XW, \{XZ\})$. On this example, BLEU’s brevity penalty will be 1 and,
130 in the limit as $|X| \rightarrow \infty$, the ratios of matched n -grams to all n -grams in X will go to 1, $\forall n$,
131 so $\text{BLEU}(XW, \{XZ\}) = 1$. In short, although the LLM clearly failed the task, BLEU awards a
132 maximal score to tasks captured by Example 1. All other popular pairwise measures, like normalised
133 edit similarity, ROUGE, METEOR, and chrF, fail in the same way: Like BLEU, in the limit as $|X|$
134 increases with l fixed, all these metrics go to 1, the perfect match.
135

136 We are not the first to observe this problem. When Logan IV et al. (2022) proposed a new benchmark
137 for assessing LLM’s ability to make factual updates to text, they observed “**ROUGE is Problematic**.
138 We provide ROUGE F-scores [...] In contrast to the previous results, we find that the simple copy
139 source baseline attains a strong score of 77.4 despite making no updates. [...] This illustrates the
140 importance of evaluating on updates rather than the whole text.” The fact that the authors even tried
141 to apply ROUGE to the task where its use is, by their own admission, problematic highlights a blind
142 spot in the community’s view of how revision similarity-like problems should be evaluated.
143

3 EXCISIONSCORE: MEASURING REVISION SIMILARITY

144 Popular pairwise similarity measures fail to solve the revision similarity problem when they are
145 dominated by the shared context inherited from an origin string O . We formalize shared context in
146 terms of three-way alignment (Definition 1), then propose 5 *Adequacy Criteria*, including invariance
147 to shared context, required for a measure of revision similarity to align with human preference.
148 In Section 3.3, we investigate whether existing measures satisfy these criteria. Finally, we define
149 Excision Score and discuss some of its properties.
150

3.1 CORE CONCEPTS AND UTILITIES

151 A sequence s is a *revision* of an original document O when $ED(s, O) < \tau$ for some small τ . The
152 specific threshold τ is task-dependent. Notably, closeness in terms of edit distance implies that
153 a revision is necessarily of similar length. As τ approaches $\max\{|s|, |O|\}$, the edits become so
154 destructive that the resulting sequence is less of a refinement and more of a new document, even if it
155 retains the original’s core semantics, as in the case of summarizing verbose text. We take A, B to be
156 revisions of the origin O .
157

158 Let Σ denote the set of tokens our documents constist of. Let $- \notin \Sigma$ be the dedicated gap symbol.
159 Let $\Sigma_- := \Sigma \cup \{-\}$. Let Σ_-^* and Σ^* stand for the set of finite sequences with and without gaps,
160 respectively.
161

162 **Definition 1 (Three-Way Alignment).** For three sequences $A, B, O \in \Sigma^*$, a *three-way alignment* is
 163 a rectangular array R of three rows such that (1) each element of R lies in Σ_- ; (2) no column of R
 164 consists of gaps only; and (3) $\text{ungap}(R_1) = A$ and $\text{ungap}(R_2) = B$ and $\text{ungap}(R_3) = O$, where
 165 R_i refers to the i -th row of the array R and $\text{ungap} : \Sigma_-^* \rightarrow \Sigma^*$ removes gaps from a sequence.
 166

167 Unlike the standard definition (Gusfield, 1997, §14), our Definition 1 focuses on a special case of
 168 three sequences and explicitly rules out columns with all gaps, which can be useful when studying
 169 evolution or as a placeholder for missing data but are meaningless in our setting.
 170

171 For an alignment table R , a column of R is *conserved* if all rows in it are identical. If a column is not
 172 conserved, it is *divergent*. A divergent region is, informally, a cluster of adjacent divergent columns.
 173

174 **Definition 2 (Divergent Region).** For a three-way alignment array R , a non-empty sub-array d of R
 175 is called a *divergent region* if (1) d has three rows, same as R (it is a mini-alignment table); (2) all
 176 columns of d are divergent and contiguous in R ; and (3) there is no divergent column in R that would
 177 be adjacent to d (maximality).
 178

179 An alignment can yield several, possibly no, divergent regions. Let $\Pi_{\text{div}}(R) = \langle d_1, \dots, d_k \rangle$ denote
 180 the *divergent region projection* that produces the list of the k divergent regions extracted from the
 181 alignment of A, B, O .
 182

183 **Example 2.** Let $A = CGTCAA$, $B = CGCACT$,
 184 $O = CTGCAATT$. Below is one possible alignment.
 185 Although here we are using 4 letters with significance in
 186 biology for simplicity, note that alignment can operate
 187 at a coarser token level, e.g. $\Sigma = \text{English words}$.
 188

	1	2	3	4	5	6	7	8	9
A	C	G	T	-	C	A	A	-	-
B	C	-	-	G	C	A	C	T	-
O	C	-	T	G	C	A	A	T	T

189 In the example, columns 1, 5 and 6 are conserved, the others are
 190 divergent. Divergent columns can be understood as atomic edits
 191 performed on O by A and B . For example, column 2 shows that A
 192 and B both decided to remove G from O . There are two divergent
 193 regions, highlighted by the red rectangles, shown on the right:
 194

3.2 ADEQUACY CRITERIA FOR REVISION SIMILARITY

195 Recall that A , the reference, and B , the hypothesis, are revisions of the original document O .
 196 We contend that all revision similarity measures should possess the following intuitive properties:
 197 (1) Reward edits on A and B agree; (2) Penalize edits on which B disagrees with A ; (3) Invariant to
 198 shared context (matches across all of A, B and O); (4) Origin-variant (O changing with A and B
 199 fixed); and (5) Reward semantically equivalent mismatches.
 200

201 **Properties 1 and 2:** Rewarding matches while penalizing mismatches is at the core of any ML
 202 evaluation task. Revision similarity is no exception, motivating these properties. The word “edits”
 203 implies existence of O , to which edits are applied, tying them to revision similarity. Despite apparent
 204 their simplicity, there are several interesting edge cases, one of which we exemplify below.
 205

206 **Example 3 (Agreeing on Deletions).** Let $D, K, R \in \Sigma^*$ be non-overlapping and assume $O = DKR$
 207 where D is deleted by both revisions, K is kept unchanged and R is replaced. Assume that A and
 208 B utterly disagree on what to replace R with, i.e. $A = KR_A$ and $B = KR_B$ with R_A sharing no
 209 overlap with R_B . Although A and B differ in each replacing R with something different, they do
 210 agree on deleting D . Therefore a human would expect a partial similarity score.
 211

212 In Section 2, we illustrated that measures that reward the shared context as match, violating **Property 3**, do not align with human judgement. We rely on the notions three-way alignment (Definition 1)
 213 and divergent regions (Definition 2) to formalize invariance to shared context.
 214

215 **Property 3 (Invariance to Shared Context).** A revision similarity measure $m(A, B; O)$ is invariant
 216 to shared context iff $\forall A, A', B, B', O, O' \in \Sigma^*$

$$\Pi_{\text{div}}(A, B, O) = \Pi_{\text{div}}(A', B', O') \implies m(A, B; O) = m(A', B'; O').$$

217 In words, if the divergent regions of (A, B, O) match those of (A', B', O') , a measure m invariant to
 218 shared context must return identical scores on those two inputs.
 219

216 **Property 3** equates shared context with conserved columns. Ignoring shared context, *i.e.* adding
217 or removing conserved columns, is thus equivalent to only considering the divergent regions. A
218 special case of **Property 3** is when (A, B, O) differs from (A', B', O') by a common prefix or suffix.
219 For all sequences α, β that do not overlap any of A, B, O , measure m must satisfy $m(A, B; O) =$
220 $m(\alpha A \beta, \alpha B \beta; \alpha O \beta)$.

221 Another way to conceptualize invariance to shared context would be to constrain the values of m to
222 inputs where the hypothesis revision matches the origin, $B = O$. You can think of this as evaluating
223 a “do-nothing” baseline system that simply echoes the input to produce the output revision. Clearly,
224 such a system should get a bad score, e.g. zero: $m(O, B; O) = 0$. A measure that ignores O has no
225 way of identifying this baseline.

226 **Property 4 (Origin-variant).** When A and $B \neq A$ be fixed, while we edit O_1 to form a sequence
227 of variants $\langle O_1, O_2, \dots \rangle$, where $\text{ED}(O_i, A) = \text{ED}(O_i, B) < \text{ED}(O_{i+1}, A) = \text{ED}(O_{i+1}, B)$,
228 $m(A, B; O_i) > m(A, B; O_{i+1})$ must hold.

229 In contrast to **Property 3**, which constrains a measure’s handling of added and removed conserved
230 columns in the 3-way alignments, this property concerns changes to O ’s row. The strict inequality in
231 the variant sequence restricts the changes to conserved columns. Let $l_i = \text{ED}(O_i, B) = \text{ED}(O_i, A)$,
232 as O moves away from A and B . We argue that revision similarity should increase along with l_i .
233 Indeed, as O becomes more and more distant, A and B are implicitly and independently applying a
234 larger and larger set of matching edits to O , increasing their mutual revision similarity.

235 Finally, **Property 5** introduces dependence on the semantics of the origin document. **Most revision**
236 **similarity tasks admit multiple semantically equivalent solutions.** In NLP, syntactic variances are
237 often addressed by providing multiple references that cover different equivalent solutions. However,
238 some semantics-preserving transformations—such as reordering function definitions or inlining—are
239 impractical to enumerate exhaustively in a reference set. A natural alternative is to design the similarity
240 measure itself to tolerate such variations and account for the existence of multiple valid solutions. We
241 now state this property intuitively:

242 **Property 5 (Obliviousness to Semantically Equivalent Syntactic Variances).** Revision similarity
243 measures should be oblivious to syntactic variances; that is, they should assign the same score when
244 differences arise solely from transformations known to preserve semantics.

245 For a formal statement and extended discussion, we refer the reader to Appendix A.

248 3.3 THE UNMET NEED FOR ADEQUATE REVISION SIMILARITY METRICS

250 An intuitive idea for solving the revision similarity problem is to locate and strip out a Longest
251 Common Subsequence (LCS) between the origin O and the two revisions A, B originating from
252 it before applying some pairwise similarity measure. Formally, let us denote the deletion of a
253 subsequence by \setminus and the pairwise similarity measure by $P : \Sigma^* \times \Sigma^* \rightarrow [0, 1]$, where $P = 1$ on
254 exactly matching inputs and $P = 0$ if the inputs are utterly dissimilar. Then we define

$$255 \text{SansLCS}_P(A, B | O) \triangleq P(A \setminus L, B \setminus L) \quad \text{where} \quad L = \text{LCS}(A, B, O) \quad (1)$$

256 Unlike pairwise measures, SansLCS_P is invariant to shared context being added to O, A, B , sat-
257 isfying **Property 3**. However, SansLCS_P comes with flaws of its own. By stripping out the LCS
258 *and* considering only A, B , we lost the information about what A and B deleted, making it im-
259 possible to partially reward agreement on deletions. In Example 3, $\text{LCS}(A, B, O) = K$ and
260 $\text{SansLCS}_P(A, B | O) = P(KR_A \setminus K, KR_B \setminus K) = P(R_A, R_B) = 0$. Additionally, SansLCS_P
261 introduces substring matches that were not possible when comparing A with B directly. By removing
262 the LCS, we introduced n-grams at the junctions that existed in neither A nor B which P might
263 reward, if they happen to match.

264 A metric named **DiffBLEU** was recently proposed by Bairi et al. (2024); Munson et al. (2022) in the
265 context of code editing and is defined as $\text{BLEU}(\text{diff}(O, B), \text{diff}(O, A))$ where diff is the output of
266 the diff program The IEEE and The Open Group (2018) with optional post-processing. Thanks to the
267 clever application of pairwise diff, DiffBLEU adequately addresses the problem of shared content
268 across three revisions. However, lumping deleted and inserted lines together and comparing the
269 concatenated diffs, as opposed to treating them separately, is problematic. First of all, this approach
rewards accidental n-gram matches across different operation types. For example, a word inserted by

270 A would match a word deleted in O by B . Such matches do not correspond to what a human would
271 perceive as similarity and thus should not be rewarded. Secondly, while rewarding agreement on
272 deletions by letting BLEU match the deleted lines prefixed by $-$, DiffBLEU is prone to overrewarding
273 it, as the following example shows.

274 **Example 4 (LHS/RHS Agreement Balance).** Continuing Example 3, suppose that D is empty, so
275 $O = KR$, $A = KR_A$, and $B = KR_B$. Replacements ($R \mapsto R_A$) and ($R \mapsto R_B$) can be viewed
276 as two consecutive operations: first deleting R , then inserting R_A or R_B . In that view, A and B
277 agree on deleting R , the left-hand side (LHS) of the replacement, but disagree on R_A versus R_B , the
278 right-hand side (RHS). The high BLEU score given to the matching deleted lines will dominate the
279 mismatch between the RHS’s of the replacements, contradicting human judgment.

280 **SARI** (System output Against References and against Input) is a text similarity measure that compares
281 a system’s edit (e.g., a simplification) to multiple references and the original input, evaluating the
282 appropriateness of added, deleted, and kept n-grams via precision/recall/F1 scores Xu et al. (2016).
283 SARI is defined as

$$284 \quad 285 \quad \text{SARI}(I, O, R) = \frac{1}{3}(F_{\text{add}} + F_{\text{keep}} + P_{\text{del}}) \quad (2)$$

286 where F_{keep} and F_{keep} stand for F_1 score of the corresponding operation and P_{del} stands for the
287 precision of deletions, all three averaged over n-grams of order $n=1..4$. In the limit we described in
288 Example 1, when the shared context dominates, F_{keep} term of SARI is always greater than $1 - \epsilon$,
289 where $\epsilon \rightarrow 0$. This narrows SARI’s effective range of values down to $[\frac{1}{3} - \epsilon, 1]$. Although SARI does
290 not fully step into the pitfall of pairwise measures and accounts for O , it is not invariant to shared
291 context, failing **Property 3**. In the next subsection we describe EXCISIONSCORE that builds upon
292 SARI and addresses that flaw.

293 3.4 EXCISIONSCORE DEFINED

295 Armed with the insight that shared context should be removed and sidestepping the mistakes of
296 SansLCS, we define EXCISIONSCORE (ES) as follows:

$$298 \quad \text{ES}(A, B; O) \triangleq \text{SARI}(A \setminus L, B \setminus L, O \setminus L) \quad \text{where} \quad L = \text{LCS}(A, B, O). \quad (3)$$

299 After excising the LCS like SansLCS_P does, ES applies SARI. Recall that P in SansLCS_P was
300 a pairwise measure, which made it impossible to reward agreement on deletions (Example 3). In
301 contrast, SARI accepts all three documents A, B, O as arguments and has a special term P_{del} (eq. (2))
302 dedicated to that. In terms of three-way alignment, removing the LCS can be thought of as extracting
303 divergent regions and concatenating them, then removing the gaps. When converting strings to a set
304 of n-grams, we omit the n-grams that span several divergent regions, sidestepping the other flaw of
305 SansLCS.

306 EXCISIONSCORE meets the revision similarity adequacy criteria. EXCISIONSCORE identifies edits
307 as kept, added, or removed n-grams, correctly rewarding agreement on deletions, meeting **Properties**
308 **1** and **2**. We discussed that due to the F_{keep} term, SARI is not invariant to shared context and can
309 award a score of up to $\frac{1}{3}$ on the “do-nothing” baseline ($B = O \neq A$). We fix this by excising the
310 shared context and ensuring that the F_{keep} term does not saturate. Thanks to that, ES correctly returns
311 0 on the do-nothing baseline and satisfies **Property 3**, if we neglect rare accidental matches that
312 could happen with any n-gram-based measure even when computed on random sequences. ES meets
313 **Property 4**: Changing a shared token in O while keeping A and B fixed turns a previously ignored
314 conserved column into a new divergent region on which A and B agree, increasing P_{del} and F_{add} in
315 Equation (2). Finally, ES partially satisfies **Property 5** by matching misplaced insertions, which we
316 found to be a common case in CanItEdit dataset we use in Section 4.

317 EXCISIONSCORE relies on LCS, which, if computed exactly, implies $\mathcal{O}(l^3)$ time complexity,
318 $l = |O|$. For long $|O|$, this quickly becomes impractical, so we compute L in Equation (3) ap-
319 proximately. In our implementation, L is a not necessarily longest common subsequence computed as
320 $\text{LCS}(\text{LCS}(O, A), \text{LCS}(O, B))$. Two-way LCS computed 3 times brings the time complexity down
321 to $\mathcal{O}(l^2)$.

322 4 EVALUATION: EXCISIONSCORE AS EXECUTION PROXY

324 Actively developed real-world codebases often include incomplete, non-compilable code for which
325 tests have not yet been written. Even for compilable code in large systems, full build and test cycles
326 can be prohibitively long, making rapid, lightweight static feedback essential. Equipping a dataset
327 with extensive test coverage can be more difficult than mining ground truth solutions. For these
328 reasons, static measures based on syntactic similarity to the reference solution persist as cheap
329 proxies to expensive verification for AI-generated programs. Following widely accepted practice,
330 we therefore explore how well ExcisionScore and other popular static measures correlate with test
331 execution. Our evaluation approach answers the question: "When execution is possible, which static
332 metric best predicts its outcome?".

333

334 **Datasets** We consider two code editing datasets, where each dataset item consists of a code
335 snippet, a natural language edit instruction, a reference solution, and a test suite to verify correctness.
336 **HumanEvalFix** Muennighoff et al. (2023) contains 984 buggy code snippets across 6 programming
337 languages (Python, JavaScript, Java, Go, C++, Rust). **CanItEdit** Cassano et al. (2024) is a dataset of
338 120 Python programs. The instructions take two forms: "lazy", based on human-authored commit
339 messages, and "descriptive", written by an LLM. In CanItEdit, the LLM is expected to edit, on
340 average, around 21% of the original code in terms of normalized edit distance between the original
341 code snippet and the reference solution. In contrast, expected edits in HumanEvalFix are more
342 constrained (5%) as the bugs are usually small and well-localized. The two datasets also differ in the
343 distribution of ground truth edits. In HumanEvalFix, $|A| \approx |O|$, whereas CanItEdit's references are
344 20% longer than the original text, indicating prevalence of insertions.

345

346 **Experiment Setup** We obtain 3 LLM outputs for each item of each dataset, using 9 different
347 models to multiply our sample size and the following prompt:

348 Edit the given code according to the instructions.
349 You MUST output the complete revised version of the code with your edits.
350 You MUST NOT add any comments. DO NOT explain your edits.
351 ## Instructions
352 {instruction}
353 ## Input code
354 {input_code}
355 ## Edited code:
356

357 The LLMs used are: claude-sonnet-4 Anthropic (2025), Google's gemini-2.5-flash
358 DeepMind (2025), OpenAI's gpt-4o-2024-11-20, gpt-4o-mini-2024-07-18,
359 gpt-4.1-nano-2025-04-14 OpenAI (2025), Qwen2.5-Coder Instruct 1B and 5B Hui
360 et al. (2024), DeepSeek Coder Instruct 1.3B and 6.7B Guo et al. (2024). For the Qwen and DeepSeek
361 models, we use vLLM inference engine Kwon et al. (2023) and the default sampling parameters. For
362 the remaining (proprietary) models, we set temperature to 0.2 and top_p to 0.95.

363 This results in 26568 ($3 \times 9 \times 984$) data samples derived from **HumanEvalFix** dataset and 2835
364 ($3 \times 9 \times 105$) derived from **CanItEdit**. For each LLM output, we execute the tests and record a
365 binary pass (1) or fail (0) score. In HumanEvalFix, 45% of the generated solutions pass the test, while
366 for CanItEdit dataset this number is 40%. Finally, we report Pearson correlation coefficient between
367 the 0/1 indicator of passing the test and ES along with various other static measures computed on the
368 (origin, reference, prediction) triples, namely exact match, unnormalized Levenshtein distance (ED),
369 NES, chrF, BLEU, CodeBLEU, DiffBLEU, and SARI.

370 We experiment with 2 implementations of ExcisionScore—ES-Line and ES-Token—differing in
371 the granularity of LCS. ES-Line excises the shared lines of code, while ES-Token tokenizes the
372 code strings with tree-sitter and excises tokens common to all three strings. Additionally, we
373 remove comments that do not affect execution, before passing A, B, O to each measure.

374 To illustrate what happens if our datasets contained a larger proportion of shared context, we artificially
375 expand it by prepending a long shared prefix of random length to each A, B, O , similar to Example 1.
376 Since the measures considered are semantics-agnostic, the exact content of the prefix is irrelevant.
377 The prefix is sampled uniformly from characters abcdef, a whitespace, and a newline character to
378 contain a total of 2000–3000 characters. A different prefix is generated for each individual dataset
379 sample. We re-use the unperturbed pass/fail test execution data and compute the Pearson correlation
380 coefficients. After these perturbations, the reference solution's coverage drops, on average, from 21%
381 to 7% of the original code in CanItEdit and from 5% to only 0.5% in HumanEvalFix.

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394

(a) HumanEvalFix

(b) HumanEvalFix with shared prefix added

395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411

(c) CanItEdit

(d) CanItEdit with shared prefix added

412 Figure 1: Correlation of various static measures with test execution. The first row refers to HumanEvalFix dataset, and the second to CanItEdit. Error bars indicate 95% bootstrap confidence
413 intervals. The plots in the right column pertain to the experiment where we prepend a large random
414 context to A, B, O . We excluded ED and exact match as their coefficients were low, as expected.
415

416
417
418 **Results** The resulting correlation coefficients are in Figure 1. On **HumanEvalFix** dataset, ES-Token
419 takes the lead with a correlation coefficient of $r = 0.643$ (CI [0.636, 0.651]), followed by ES-Line
420 $r = 0.599$ (CI [0.592, 0.607]), SARI $r = 0.572$ (CI [0.564, 0.58]), and others. Both ES-Token
421 and ES-Line offer statistically significant improvement upon SARI, indicating that it is beneficial
422 to remove shared context before applying SARI. When shared context dominates, the F_{keep} term
423 of SARI is always maxed out to 1. Intuitively, that means that one of the 3 degrees of freedom
424 ($F_{\text{keep}}, F_{\text{add}}, P_{\text{del}}$) SARI has is permanently switched off, making SARI less sensitive. When a shared
425 context is added to the HumanEvalFix dataset, SARI’s correlation coefficient with pass@1 drops
426 significantly: from 0.572 (CI [0.564, 0.58]) to 0.549 (CI [0.541, 0.558]). Extending shared context
427 does not affect SARI’s correlation with test execution on CanItEdit.

428 On the **CanItEdit** dataset, the differences in performance of different metrics, including pairwise
429 ones, are insignificant. One possible explanation for that is the relative size of the edited region in
430 CanItEdit (21%, not including the unexpected edits the LLM solution makes). Besides, CanItEdit
431 expects 20% more insertions than deletions. Since the inserted tokens appear in either A or B but not
in O , the benefits of taking O into account are reduced.

432 Our results indicate that granularity of computing LCS or alignment is important. In HumanEvalFix,
433 the edits are often small, changing only a few tokens within a line, explaining why ES-Token surpasses
434 ES-Line on this dataset. On CanItEdit, however, ES-Token loses to ES-Line by a barely significant
435 margin. Manual inspection reveals that overly fine-grained alignment can lead to meaningless unintu-
436 itive artifacts. Similarly, line-granular DiffBLEU falls short on HumanEvalFix, while performing
437 well on CanItEdit.

438 **We found that 2% of LLM solutions for HumanEvalFix dataset and 5% for CanItEdit match the**
439 **reference solution exactly. Excluding them from the data decreases all the correlation coefficients**
440 **by 3-9%, leaving the ranking of different metrics unaffected on HumanEvalFix. Differences in**
441 **correlation coefficients remain insignificant on CanItEdit.**

442 Perturbing the data by adding a shared prefix does not affect ES and DiffBLEU scores, as ignoring
443 this prefix was part of their design, neither does it affect unnormalized ED. In contrast, correlation
444 coefficients of other pairwise measures with pass@1 on HumanEvalFix drop significantly: from
445 [0.505, 0.52] to [0.439, 0.451] for BLEU, from [0.494, 0.51] to [0.457, 0.471] for CodeBLEU, from
446 [0.48, 0.494] to [0.431, 0.444] for chrF, and from [0.505, 0.52] to [0.391, 0.403] for NES. We observe
447 a similar effect on CanItEdit.

448 We critisized pairwise measures on the grounds that they reward dominating shared context as match,
449 which reduces the effective range of values the similarity measure can take from [0, 1] to $[x, 1]$, where
450 x depends on how prevalent shared context is in the data. Some might object to this argument and
451 suggest that dataset-specific re-normalization of the scores could be a trivial remedy. Namely, if s_i
452 are the pairwise similarity scores on the i -th dataset sample, one could consider $s'_i \equiv \frac{s_i - \min s_i}{\max s_i - \min s_i}$,
453 ensuring that s'_i fully cover the expected [0..1] range. However, our empirical results suggest that
454 such a re-normalization still does not yield a satisfactory measure. Pearson’s correlation coefficient r
455 is invariant under linear transformations of the variables. Thus, the renormalized scores would have
456 the same low r as the original values we observed. Our superiority argument based on correlation
457 coefficients holds independently of the arguments about suitable and interpretable range of values.

460 5 RELATED WORK

461
462 Our adequacy criteria leverage global multiple sequence alignment (MSA, Definition 1), a technique
463 well established in bioinformatics Chatzou et al. (2015).

464 Numerous measures assess the similarity of two strings in different contexts. **We argue that they are**
465 **ill-suited for the revision similarity problem, because they do not take the original document O string**
466 **into account.** Without O , pairwise measures cannot distinguish between revision similarity due to
467 inheriting parts of O unchanged and that due to performing the same edits to O . **As a result, pairwise**
468 **measures reward shared context.** Pairwise N-gram-based lexical measures include BLEU Papineni
469 et al. (2002), METEOR Banerjee & Lavie (2005), ROUGE Lin (2004), and chrF Popović (2015).
470 BLEU has well-documented limitations, including its inability to address revision similarity — a
471 gap we rigorously analyze in Section 2. For a systematic critique of BLEU’s shortcomings (e.g., its
472 insensitivity to paraphrasing and granular edits), we direct readers to Callison-Burch et al. (2006)
473 and Reiter (2018). Despite these flaws, BLEU persists as a de facto standard due to its simplicity,
474 reproducibility, and historical inertia. **Syntax-aware pairwise static measures for code include Tree**
475 **Edit Distance Schwarz et al. (2017) (TED), RUBY Tran et al. (2019), CodeBLEU Ren et al. (2020),**
476 **and CrystalBLEU Eghbali & Pradel (2023).** They require the code to be parseable. TED is very
477 interpretable but takes $\mathcal{O}(n^3)$ time, where n is the number of nodes in the syntax tree. CrystalBLEU
478 removes ‘shared’ n-grams, but interprets ‘shared’ as frequent n-grams in the language, not unedited
479 tokens inherited from O as in our work. Lastly, embedding-based measures such as cosine similarity,
480 BERTScore Zhang et al. (2020) and CodeBERTScore Zhou et al. (2023), while capturing semantic
481 similarity, remain fundamentally pairwise and cannot account for the original document O .

482 Evaluating Grammatical Error Correction (GEC) techniques can be seen as an instance of the revision
483 similarity problem. In GEC, edits are typically small and evaluation requires strict measures that
484 are sensitive to word order. Alignment has been used to leverage these aspects in designing GEC
485 metrics such as I-Measure Felice & Briscoe (2015) and M^2 (MaxMatch) Dahlmeier & Ng (2012).
Evaluation of Text Simplification (TS) can, in some cases, also be viewed as revision similarity

486 problem, provided that the simplifying changes do not rewrite the entire text. SARI Xu et al. (2016)
487 (defined in Equation (2)) is an n-gram-based metric designed for text simplification.
488

489 **6 REPRODUCIBILITY STATEMENT**
490

491 We attach the collected LLM responses and test execution results as Supplementary Materials.
492 In Section 4 we specify how it was obtained. The code used to process this data
493 and compute the scores with their correlation coefficients is available anonymously under
494 <https://anonymous.4open.science/r/excision-score-eval-B9AF/>.
495

496 **REFERENCES**
497

498 Tom Adamczewski. How to run swe-bench verified in one hour on one machine. Blog post on
499 epoch.ai, July 2025. URL <https://epoch.ai/blog/swebench-docker>. Accessed: 2025-09-05.
500

501 Suha S. Al-Thanayan and Aqil M. Azmi. Automated text simplification: A survey. *ACM Computing
502 Survey*, 54(2), March 2021. ISSN 0360-0300. doi: 10.1145/3442695. URL <https://doi.org/10.1145/3442695>.
503

504 Anthropic. System card: Claude opus 4 & claude sonnet 4. <https://www-cdn.anthropic.com/4263b940cabb546aa0e3283f35b686f4f3b2ff47.pdf>, May 2025.
505

506 Ramakrishna Bairi, Atharv Sonwane, Aditya Kanade, Vageesh D. C., Arun Iyer, Suresh Parthasarathy,
507 Sriram Rajamani, B. Ashok, and Shashank Shet. Codeplan: Repository-level coding using llms
508 and planning. *Proc. ACM Softw. Eng.*, 1(FSE), July 2024. doi: 10.1145/3643757. URL <https://doi.org/10.1145/3643757>.
509

510 Satanjeev Banerjee and Alon Lavie. METEOR: An automatic metric for MT evaluation with
511 improved correlation with human judgments. In Jade Goldstein, Alon Lavie, Chin-Yew Lin,
512 and Clare Voss (eds.), *Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation
513 Measures for Machine Translation and/or Summarization*, pp. 65–72, Ann Arbor, Michigan, June
514 2005. Association for Computational Linguistics. URL <https://aclanthology.org/W05-0909>.
515

516 Christopher Bryant, Mariano Felice, and Ted Briscoe. Building a written corpus of learner english
517 with automatic linguistic annotation. In *Proceedings of the 12th Workshop on Innovative Use of
518 NLP for Building Educational Applications*, pp. 61–68, 2017.
519

520 Christopher Bryant, Zheng Yuan, Muhammad Reza Qorib, Hannan Cao, Hwee Tou Ng, and Ted
521 Briscoe. Grammatical error correction: A survey of the state of the art. *Computational Linguistics*,
522 49(3):643–701, 09 2023. ISSN 0891-2017. doi: 10.1162/coli_a_00478. URL https://doi.org/10.1162/coli_a_00478. section 6 (Evaluation).
523

524 Chris Callison-Burch, Miles Osborne, and Philipp Koehn. Re-evaluating the role of Bleu in machine
525 translation research. In Diana McCarthy and Shuly Wintner (eds.), *11th Conference of the European
526 Chapter of the Association for Computational Linguistics*, pp. 249–256, Trento, Italy, April 2006.
527 Association for Computational Linguistics. URL <https://aclanthology.org/E06-1032/>.
528

529 Federico Cassano, Luisa Li, Akul Sethi, Noah Shinn, Abby Brennan-Jones, Jacob Ginesin, Edward
530 Berman, George Chakhnashvili, Anton Lozhkov, Carolyn Jane Anderson, and Arjun Guha. Can
531 it edit? evaluating the ability of large language models to follow code editing instructions, 2024.
532 URL <https://arxiv.org/abs/2312.12450>.
533

534 Maria Chatzou, Cedrik Magis, Jia-Ming Chang, Carsten Kemen, Giovanni Bussotti, Ionas Erb, and
535 Cedric Notredame. Multiple sequence alignment modeling: methods and applications. *Briefings
536 in Bioinformatics*, 17(6):1009–1023, 11 2015. ISSN 1467-5463. doi: 10.1093/bib/bbv099. URL
537 <https://doi.org/10.1093/bib/bbv099>.

538 Xinfang Chen, Siyang Xiao, Xianying Zhu, Junhong Xie, Ming Liang, Dajun Chen, Wei Jiang, Yong
539 Li, and Peng Di. An efficient and adaptive next edit suggestion framework with zero human
instructions in ides, 2025. URL <https://arxiv.org/abs/2508.02473>.

540 Daniel Dahlmeier and Hwee Tou Ng. Better evaluation for grammatical error correction. In Eric
541 Fosler-Lussier, Ellen Riloff, and Srinivas Bangalore (eds.), *Proceedings of the 2012 Conference
542 of the North American Chapter of the Association for Computational Linguistics: Human Lan-
543 guage Technologies*, pp. 568–572, Montréal, Canada, June 2012. Association for Computational
544 Linguistics. URL <https://aclanthology.org/N12-1067/>.

545 Google DeepMind. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long
546 context, and next generation agentic capabilities, 2025. URL <https://arxiv.org/abs/2507.06261>.

547 Edsger W. Dijkstra. The humble programmer. *Communications of the ACM*, 15(10):859–866, 1972.
548 doi: 10.1145/355604.361591. The famous quote appears on p. 861. Originally presented as the
549 1972 ACM Turing Award Lecture.

550 Aryaz Eghbali and Michael Pradel. Crystalbleu: Precisely and efficiently measuring the similarity of
551 code. In *Proceedings of the 37th IEEE/ACM International Conference on Automated Software
552 Engineering*, ASE ’22, New York, NY, USA, 2023. Association for Computing Machinery. ISBN
553 9781450394758. doi: 10.1145/3551349.3556903. URL <https://doi.org/10.1145/3551349.3556903>.

554 Mariano Felice and Ted Briscoe. Towards a standard evaluation method for grammatical error
555 detection and correction. In Rada Mihalcea, Joyce Chai, and Anoop Sarkar (eds.), *Proceedings
556 of the 2015 Conference of the North American Chapter of the Association for Computational
557 Linguistics: Human Language Technologies*, pp. 578–587, Denver, Colorado, May–June 2015.
558 Association for Computational Linguistics. doi: 10.3115/v1/N15-1060. URL <https://aclanthology.org/N15-1060/>.

559 Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
560 Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder: When the
561 large language model meets programming – the rise of code intelligence, 2024. URL <https://arxiv.org/abs/2401.14196>.

562 Dan Gusfield. *Algorithms on Strings, Trees, and Sequences: Computer Science and Computational
563 Biology*. Cambridge University Press, 1997. sections 11 (two-sequence alignment) and 14
564 (multi-sequence alignment).

565 Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
566 Bowen Yu, Keming Lu, Kai Dang, Yang Fan, Yichang Zhang, An Yang, Rui Men, Fei Huang,
567 Bo Zheng, Yibo Miao, Shanghaoran Quan, Yunlong Feng, Xingzhang Ren, Xuancheng Ren,
568 Jingren Zhou, and Junyang Lin. Qwen2.5-coder technical report, 2024. URL <https://arxiv.org/abs/2409.12186>.

569 Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian Weinberger. From word embeddings to document
570 distances. In *Proceedings of the 32nd International Conference on Machine Learning (ICML)*, pp.
571 957–966, 2015.

572 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
573 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
574 serving with pagedattention. In *Proceedings of the ACM SIGOPS 29th Symposium on Operating
575 Systems Principles*, 2023.

576 Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In *Text Summarization
577 Branches Out*, pp. 74–81, Barcelona, Spain, July 2004. Association for Computational Linguistics.
578 URL <https://aclanthology.org/W04-1013/>.

579 Robert L. Logan IV, Alexandre Passos, Sameer Singh, and Ming-Wei Chang. Fruit: Faithfully
580 reflecting updated information in text, 2022. URL <https://arxiv.org/abs/2112.08634>.

581 Martin Monperrus. Living bibliography for automated program repair. <https://program-repair.org/bibliography.html>, 2023. URL <https://program-repair.org/bibliography.html>. Online; accessed
582 December 2, 2025.

583 Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai Zheng, Binyuan Hui, Terry Yue Zhuo, Swayam
584 Singh, Xiangru Tang, Leandro von Werra, and Shayne Longpre. Octopack: Instruction tuning code
585 large language models. *arXiv preprint arXiv:2308.07124*, 2023.

594 Karl Munson, Anish Savla, Chih-Kai Ting, Serenity Wade, Kiran Kate, and Kavitha Srinivas. Exploring
595 code style transfer with neural networks, 2022. URL <https://arxiv.org/abs/2209.06273>.
596

597 Graham Neubig and Xingyao Wang. Evaluation of llms as coding agents on swe-bench (at 30x
598 speed!). *All Hands AI Blog*, October 2024. URL <https://www.all-hands.dev/blog/evaluation-of-llms-as-coding-agents-on-swe-bench-at-30x-speed>.
599

600 OpenAI. OpenAI API Models Documentation. <https://platform.openai.com/docs/models>, September
601 2025. Accessed: September 10, 2025. Overview of available models in the OpenAI API, including
602 capabilities and usage guidelines.
603

604 Sheena Panthaplacek, Pengyu Nie, Milos Gligoric, Junyi Jessy Li, and Raymond Mooney. Learning
605 to update natural language comments based on code changes. In Dan Jurafsky, Joyce Chai, Natalie
606 Schluter, and Joel Tetraeault (eds.), *Proceedings of the 58th Annual Meeting of the Association for
607 Computational Linguistics*, pp. 1853–1868. Association for Computational Linguistics, July 2020.
608 doi: 10.18653/v1/2020.acl-main.168. URL <https://aclanthology.org/2020.acl-main.168/>.
609

610 Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
611 evaluation of machine translation. In *Proceedings of the 40th Annual Meeting of the Association
612 for Computational Linguistics*, pp. 311–318, 2002.
613

614 Dorin Pomian, Abhiram Bellur, Malinda Dilhara, Zarina Kurbatova, Egor Bogomolov, Timofey
615 Bryksin, and Danny Dig. Next-generation refactoring: Combining llm insights and ide capabilities
616 for extract method. In *2024 IEEE International Conference on Software Maintenance and Evolution
(ICSME)*, pp. 275–287, 2024. doi: 10.1109/ICSME58944.2024.00034.
617

618 Maja Popović. chrF: character n-gram F-score for automatic MT evaluation. In Ondřej Bojar,
619 Rajan Chatterjee, Christian Federmann, Barry Haddow, Chris Hokamp, Matthias Huck, Varvara
620 Logacheva, and Pavel Pecina (eds.), *Proceedings of the Tenth Workshop on Statistical Machine
621 Translation*, pp. 392–395, Lisbon, Portugal, September 2015. Association for Computational
622 Linguistics. doi: 10.18653/v1/W15-3049. URL <https://aclanthology.org/W15-3049/>.
623

624 Ehud Reiter. A structured review of the validity of BLEU. *Computational Linguistics*, 44(3):393–401,
625 September 2018. doi: 10.1162/coli_a_00322. URL <https://aclanthology.org/J18-3002/>.
626

627 Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel Sundaresan, Ming Zhou,
628 Ambrosio Blanco, and Shuai Ma. Codebleu: a method for automatic evaluation of code synthesis,
629 2020. URL <https://arxiv.org/abs/2009.10297>.
630

631 Stefan Schwarz, Mateusz Pawlik, and Nikolaus Augsten. A new perspective on the tree edit distance.
632 In Christian Beecks, Felix Borutta, Peer Kröger, and Thomas Seidl (eds.), *Similarity Search and
633 Applications*, pp. 156–170, Cham, 2017. Springer International Publishing. ISBN 978-3-319-
634 68474-1.
635

636 Akhilesh Sudhakar, Bhargav Upadhyay, and Arjun Maheswaran. “transforming” delete, retrieve,
637 generate approach for controlled text style transfer. In Kentaro Inui, Jing Jiang, Vincent Ng,
638 and Xiaojun Wan (eds.), *Proceedings of the 2019 Conference on Empirical Methods in Natural
639 Language Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP)*, pp. 3269–3279, Hong Kong, China, November 2019. Association for
640 Computational Linguistics. doi: 10.18653/v1/D19-1322. URL <https://aclanthology.org/D19-1322/>.
641

642 The IEEE and The Open Group. diff — compare two text files. <https://pubs.opengroup.org/onlinepubs/9699919799/utilities/diff.html>, 2018. IEEE Std 1003.1-2017 (Revision of IEEE Std 1003.1-2008).
643

644 Ngoc Tran, Hieu Tran, Son Nguyen, Hoan Nguyen, and Tien N. Nguyen. Does bleu score work for
645 code migration? In *Proceedings of the 27th International Conference on Program Comprehension,
646 ICPC ’19*, pp. 165–176. IEEE Press, 2019. doi: 10.1109/ICPC.2019.00034. URL <https://doi.org/10.1109/ICPC.2019.00034>.
647

Elaine J. Weyuker. On testing non-testable programs. *The Computer Journal*, 25(4):465–470, 1982.
doi: 10.1093/comjnl/25.4.465.

648 Wei Xu, Courtney Napoles, Ellie Pavlick, Quanze Chen, and Chris Callison-Burch. Optimizing statistical
649 machine translation for text simplification. *Transactions of the Association for Computational
650 Linguistics*, 4:401–415, 2016. doi: 10.1162/tacl_a_00107. URL <https://aclanthology.org/Q16-1029/>.
651

652 Tianyi Zhang*, Varsha Kishore*, Felix Wu*, Kilian Q. Weinberger, and Yoav Artzi. Bertscore:
653 Evaluating text generation with bert. In *International Conference on Learning Representations*,
654 2020. URL <https://openreview.net/forum?id=SkeHuCVFDr>.
655

656 Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, and Yoav Artzi. Bertscore: Evaluating
657 text generation with bert, 2020. URL <https://arxiv.org/abs/1904.09675>.
658

659 Shuyan Zhou, Uri Alon, Sumit Agarwal, and Graham Neubig. Codebertscore: Evaluating code
660 generation with pretrained models of code. 2023. URL <https://arxiv.org/abs/2302.05527>.
661

662 A FORMALISM AND EXTENDED DISCUSSION OF PROPERTY 5

663

664 Standard reference-based evaluation relies on a set of references \mathcal{A} to define the space of semantically
665 acceptable revisions for a given task, a well-established practice in fields like Grammatical Error
666 Correction (GEC) to account for valid alternative outputs (Bryant et al., 2017, §6). For instance, to
667 evaluate a revision that adds a sort function, \mathcal{A} would contain different correct sorting algorithms
668 (e.g., quicksort, mergesort), thereby defining a range of semantic solutions deemed acceptable.
669

670 However, a single semantic solution can often be implemented with minor syntactic variances that do
671 not alter its meaning. Examples include moving a function definition to a different, syntactically valid
672 location within a code file, or applying semantics-preserving code transformations such as inlining
673 (replacing a function call with its body) or outlining (extracting a code segment into a new function).
674 In text, analogous examples include adding a new step before any of its dependencies or changing the
675 order of a bulleted list.
676

677 Requiring \mathcal{A} to explicitly enumerate all possible variants of every acceptable solution is computationally
678 expensive. For instance, to handle all possible locations for a single function definition across
679 $\mathcal{O}(|O|)$ locations, one would need a reference for each. Comparing a candidate revision against this
680 set involves a quadratic $\mathcal{O}(|O|^2)$ number of pairwise block comparisons to align the candidate’s
681 function with each reference’s function. This cost is incurred for each such syntactic variance.
682

683 Therefore, a robust similarity measure should be efficient with respect to the reference set \mathcal{A} for
684 such semantics-preserving, syntactic variances. **Property 5** requires that the measure, leveraging
685 knowledge of the language and task, can recognize a candidate revision B as matching a reference
686 $A \in \mathcal{A}$ even if B and A differ only by a variance of this kind, without requiring \mathcal{A} to explicitly
687 enumerate all possible variants. Moreover, the measure should acknowledge a *partial* match in case
688 some of the edits B makes achieve the effect semantically equivalent to some of A ’s edits, even if A
689 otherwise semantically differs from B .
690

691 **Example 5 (Tolerated Syntactic Variances).** In the sort function task, the set \mathcal{A} defines the acceptable
692 semantic range (e.g., quicksort, mergesort). **Property 5** ensures that if a candidate revision B places
693 a correct quicksort implementation in a different location than the reference quicksort in \mathcal{A} , it is still
694 correctly identified as matching the quicksort semantics. This avoids the need for a separate reference
695 for every possible function location, making the evaluation both practical and semantically grounded.
696

697 To formalize the notion of semantics-preserving syntactic variances, we first define a semantic
698 equivalence relation between documents under a set of semantics-preserving transformations.
699

700 **Definition 3 (Equivalence under Semantics-Preserving Transformations).** Let $\llbracket s \rrbracket_L$ denote the
701 semantics of a string s in language L . Let \equiv_L be a semantics-preserving syntactic equivalence relation
702 on strings in L , such that $A \equiv_L B$ implies $\llbracket A \rrbracket_L = \llbracket B \rrbracket_L$. This relation is defined by a set of syntactic
703 transformation rules (e.g., function relocation, inlining) that are known *a priori* to preserve semantics.
704 Any practical measure uses a concrete \equiv_L that under-approximates the full, undecidable semantic
705 equivalence relation.
706

707 We now extend this concept to define semantic equivalence between *sets of edits*.

702 An *atomic edit* is a tuple defining a single, irreducible change to a sequence, *e.g.*, of tokens or
 703 characters. It combines an operation (insert, delete, replace, swap, *etc.*), a target location index
 704 within the sequence, and an optional operand: a new element for insert/replace, an index for swap,
 705 ignored for delete. Let A be the revision produced by applying a set of atomic, nonoverlapping
 706 edits $\{a_1, \dots, a_n\}$ to O , denoted $A = \{a_1, \dots, a_n\}(O)$. Similarly, let $B = \{b_1, \dots, b_m\}(O)$.
 707 By nonoverlapping, we mean that the indices of distinct edits are distinct: formally, for $a_i =$
 708 $(_, x, _)$, $a_j = (_, y, _) \in \{a_1, \dots, a_n\}$, $i \neq j \Rightarrow x \neq y$, where $_$ denotes don't care. The edits
 709 in a nonoverlapping set can be applied simultaneously. For any subset of indices $I \subseteq \{1, \dots, n\}$,
 710 we denote by $a_I(O) = \{a_i\}_{i \in I}(O)$ the revision obtained by applying exactly those edits to O . For
 711 example, $\{\}(O) = O$ and $\{a_i\}_{i=1}^n(O) = A$.

712 **Definition 4 (Semantically Equivalent Edits).** For $\{a_i\}_1^n$ and $\{b_j\}_1^m$, let $I \subseteq 1..n$, $J \subseteq 1..m$,
 713 $\bar{I} = 1..n \setminus I$, $\bar{J} = 1..m \setminus J$. Assume that the indices of the edits b_J do not overlap with the indices
 714 of $a_{\bar{I}}$ and indices of a_I do not overlap with those of $b_{\bar{J}}$.

715 The subsets of edits $a_I = \{a_i \mid i \in I\}$ and $b_J = \{b_j \mid j \in J\}$ are **semantically equivalent**
 716 under \equiv_L iff:

$$717 \quad A \equiv_L (b_J \cup a_{\bar{I}})(O) \quad \wedge \quad B \equiv_L (a_I \cup b_{\bar{J}})(O)$$

719 This relation is symmetric. It formalizes the condition that the edits in a_I and b_J are interchangeable
 720 syntactic variances for achieving the same semantic outcome within the context of their respective
 721 revisions; in other words, the edits are equivalent in the surrounding context of the other edits A and
 722 B apply. Finding the subsets I and J is, of course, undecidable in general, but, in practice, can be
 723 under-approximated with knowledge of the transformations that underlie a particular concretisation
 724 of \equiv_L .

725 **Property 5 (Obliviousness to Semantically Equivalent Syntactic Variances).** In the notation of
 726 Definition 4, a similarity measure m must satisfy:

$$727 \quad m(A, B; O) = m(A, (a_I \cup b_{\bar{J}})(O); O),$$

729 whenever the edits $\{a_i \mid i \in I\}$ and $\{b_j \mid j \in J\}$ are semantically equivalent under \equiv_L .
 730

731 This property requires a revision similarity measure to be oblivious to the choice between syntactically
 732 different but semantically equivalent edit sets under some realisation of \equiv_L . Our new measure,
 733 EXCISIONSCORE does so by being insensitive to the order of n-grams, as we show in Section 3.4.
 734 This accounts for semantically equivalent mismatches that can be fixed by reordering blocks of
 735 content, which we found to be common in our evaluation datasets.

736 Humans care about more than mere semantics when comparing revisions. For instance, a human may
 737 prefer unobfuscated or well-refactored code or, in text, a paraphrase or a summary of some topic.
 738 Humans, to take another example, also vary greatly in terms of their code commenting preferences.
 739 **Property 5** permits handling these aspects in two ways: either by defining \equiv_L to consider them or by
 740 including examples of these aspects in the set of references. Using \equiv_L to do so effectively makes the
 741 relevant aspects semantic.

742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755