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ABSTRACT

The stop gradient and exponential moving average iterative procedures are com-
monly used in non-contrastive approaches to self-supervised learning to avoid rep-
resentation collapse, with excellent performance in downstream applications in
practice. This presentation investigates these procedures from the dual viewpoints
of optimization and dynamical systems. We show that, in general, although they
do not optimize the original objective, or any other smooth function, they do avoid
collapse. Following Tian et al. (2021), but without any of the extra assumptions
used in their proofs, we then show using a dynamical system perspective that,
in the linear case, minimizing the original objective function without the use of a
stop gradient or exponential moving average always leads to collapse. Conversely,
we characterize explicitly the equilibria of the dynamical systems associated with
these two procedures in this linear setting as algebraic varieties in their parameter
space, and show that they are, in general, asymptotically stable. Our theoretical
findings are illustrated by empirical experiments with real and synthetic data.

1 INTRODUCTION

Self-supervised learning (or SSL) is an approach to representation learning that exploits the inter-
nal consistency of training data without requiring expensive annotations. It has proven to be an
effective alternative to traditional supervised technology, for applications in natural language pro-
cessing (Mikolov et al., 2013; Vaswani et al., 2017), image analysis (Chen et al., 2020; Grill et al.,
2020; Caron et al., 2021; Chen and He, 2021; Radford et al., 2021; Zbontar et al., 2021; Bardes
et al., 2022) and video understanding (Bardes et al., 2024). Early SSL approaches, e.g., (Mikolov
et al., 2013; Chen et al., 2020; He et al., 2020; Radford et al., 2021), were contrastive: models are
learned from training pairs that can be either negative, when one data point is representative of the
target population and the other one is not, or positive, when both data points are representative of
the target. The training consists in pushing negative pairs apart while pulling positive ones together.
Non-contrastive approaches to SSL have emerged as a powerful alternative often outperforming
contrastive ones empirically (Grill et al., 2020; Chen and He, 2021; Bardes et al., 2024; Assran
et al., 2023; Bardes et al., 2022; Caron et al., 2021). These techniques compute representations of
different views of the same data and learn to predict one from another, thus avoiding the need for
mining negative data. They are, however, susceptible to representational collapse where a constant
embedding is learned (LeCun, 2022).

Preventing representation collapse in non-contrastive approaches has thus become a key focus in
SSL, leading to two principal strategies: feature decorrelation and enforcing asymmetry between
the two views. The first strategy addresses representational collapse by explicitly enforcing decor-
relation among the learned features. For instance, Bardes et al. (2022) introduce a regularizer Ω
designed to avoid collapse by keeping the variance of the codes of the two views of samples above
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a fixed threshold while encouraging the codes associated with the same sample to be similar. More
recently, Sansone et al. (2025) proposed an auxiliary classification task with randomly assigned la-
bels, providing theoretical guarantees against collapse. Despite their conceptual simplicity, feature-
decorrelation methods are often empirically outperformed by techniques that introduce asymmetries
between the views during training to avoid collapse. Specifically, these rely on a teacher/student
architecture, where the student computes a source view as the composition of encoder and predictor
networks and aims to predict a target view obtained using the teacher network. The latter is either a
frozen copy (through a stop gradient operation or SG) or a delayed version (through an exponential
moving average or EMA) of the student encoder (Oquab et al., 2024; Bardes et al., 2024; Assran
et al., 2023; Grill et al., 2020; Chen and He, 2021). SG and EMA have shown strong empirical
performance and remain standard components of state-of-the-art SSL models (Assran et al., 2023;
Oquab et al., 2024).

Problem statement. Despite the empirical success of SG and EMA, there is no obvious link be-
tween these methods and the optimization of a well-defined objective function. This motivates
gaining a theoretical understanding of their behavior, including: (a) Do SG and EMA solve an op-
timization problem and, if they do, which one? (b) Do they converge and, when and if they do, are
they guaranteed to avoid collapse? (c) Seen as dynamical systems, are their stationary points, if any,
stable, so there is no risk of drifting from them to some trivial solution? These are the problems we
address in the rest of this presentation, from dual perspectives: an optimization perspective for (a)
and (b), and a dynamical system one for (c), following the work of (Littwin et al., 2024; Tian et al.,
2021; Wang et al., 2021) in the linear case.

Main contributions.

(1) We prove with Proposition 3.1 that, in general,1 neither the SG algorithm nor its EMA
counterpart minimizes the objective they are derived from and that, if they converge, they
both avoid collapse (Figure 1).

(2) In the case where the loss is the squared Euclidean distance, we then prove with Proposi-
tion 3.2 the conjecture given in (Grill et al., 2020) that the SG and EMA algorithms do not
optimize any well defined function.

(3) We confirm (1) empirically (Section 3.3) on an action classification task from video data,
further finding that the SG and EMA algorithms do not appear to converge, although their
downstream performance increases momentarily in training.

Following Littwin et al. (2024); Tian et al. (2021); Wang et al. (2021), we then switch to a dynamical
system perspective in the case where the encoder and predictor are both linear operators.

(4) We characterize in Proposition 4.5 and Corollary 4.6 the equilibria of the dynamical sys-
tems associated with the SG and EMA algorithms as a finite set of algebraic varieties.

(5) We prove with Proposition 4.10 that these equilibria are, in general, asymptotically sta-
ble (Arnol’d, 1992). In particular, when started close to them, the two procedures are
guaranteed to converge there and stay there.

(6) We run some simulations in the simplified setting where the input space is scalar (m =
1) and show that the two algorithms converge in general in these experiments, although
possibly to trivial minima.

All proofs are relegated to the appendix for conciseness. In the linear case, these proofs leverage the
equations’ structure (Petersen and Pedersen, 2012) to avoid cumbersome tensor manipulations. On a
minor note, this notably allows us to rederive, for completeness, several results about the dynamics
of the SG and EMA algorithms (Lemmas 4.1 to 4.4) already known from (Tian et al., 2021), but
without assumptions from their original proofs, such as that the two views of the data be drawn from
the same distribution conditioned on the data, or that the eigenvalues of certain PSD matrices be
bounded away from zero, whose validity is difficult to guarantee in practice.

1Whenever we state that some property holds in general, this means that, although they may not hold
for certain data satisfying specific equations, they do hold, in practice, for all generic data, in the standard
mathematical sense, following the common notion of genericity in dynamical systems and algebraic geometry,
e.g., Hirsch et al. (2013).
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Figure 1: A (toy) illustration of the optimization landscape for the objective function Ē(θ, ψ) of Eq. (1). Here
C is the global minimum of Ē(θ, ψ) (shown as negative instead of zero for readability) associated with a col-
lapse of the training process;B is a nontrivial local minimum one may reach using an appropriate regularization
to avoid collapse; andA is a limit point of the stop gradient (SG) training procedure associated with parameters
θ∗ and ψ∗ at convergence. In general, it is not a minimum of Ē and thus does not correspond to a collapse of
the training process, but it is a minimum with respect to ψ of Ē(θ∗, ψ). See text for details.

1.1 RELATED WORK

Several works have explored why SSL methods learn effective representations, with feature-
decorrelation methods being specifically investigated in (Balestriero and LeCun, 2022; Weng et al.,
2022; Ziyin et al., 2023; Jing et al., 2022). Balestriero and LeCun (2022) attempt to unify VI-
CReg (Bardes et al., 2022), SimCLR (Chen et al., 2020) and Barlow Twins (Zbontar et al., 2021) in
a single framework using global and local spectral embedding methods. Weng et al. (2022) investi-
gate how whitening-based losses avoid collapse. Ziyin et al. (2023) develop an analytically tractable
theory of SSL loss landscapes for both contrastive and feature-decorrelation methods, analyzing
factors that affect SSL robustness to data imbalance.

Experimental studies of asymmetry-based methods (Tao et al., 2021; Zhang et al., 2022; Liu et al.,
2022) have investigated their properties. Notably, UniGrad (Tao et al., 2021) systematically com-
pares contrastive and non-contrastive SSL approaches, concluding that a momentum encoder is key
to improved performance. Zhang et al. (2022) use gradient analysis of l2-normalized representations
to study why SimSiam avoids collapse. Liu et al. (2022) experimentally show that asymmetry-based
methods like BYOL and SimSiam implicitly enforce feature decorrelation, linking them to methods
such as Barlow Twins and VICReg.

Theoretical investigations of asymmetry-based methods have been proposed, notably by Tian et al.
(2021), showing that, under isotropic data and specific optimization trajectory assumptions, the
predictor and stop-gradient are essential to prevent collapse in linear BYOL and SimSiam. This
study has inspired algorithms where the predictor is an explicit function of the encoder, with proven
collapse-avoiding properties (Wang et al., 2021; Jing et al., 2022; Halvagal et al., 2023; Tang et al.,
2023). Wen and Li (2022) investigate the encoder’s role in avoiding collapse using a two-layer neural
network, albeit under a simplified data-generating process. Finally, Littwin et al. (2024) study the
effect of depth on learned representations in deep linear models, showing that Joint-Embedding
Predictive Architectures (or JEPA) models prioritize “influential” features (features which are most
informative in prediction), with derivations relying on diagonal covariance matrices and orthogonal
initialization.

2 PROBLEM SETTING

Given a parametric encoder fθ : Rm → Rn and a parametric predictor gψ : Rn → Rn with
parameters θ in Rp and ψ in Rq , it is possible (LeCun, 2022; Bardes et al., 2022) to learn θ and
ψ from data embedded in Rm without outside supervision by minimizing with respect to these
parameters the objective function

Ē(θ, ψ) = Ex,yE(θ, ψ, x, y), where E(θ, ψ, x, y) = l[gψ ◦ fθ(x), fθ(y)] + Ω(θ, ψ). (1)

Here, x and y are different views of some data point (e.g., different crops of the same image),
Ex,yE is the mean of the function E over the (unknown) distribution of the views conditioned on
the corresponding data, approximated in practice by a mean over a finite number of data samples,
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l : Rn × Rn → R+ is some loss and Ω : Rp × Rq → R+ is some regularizer. The corresponding
architecture is that of a Siamese network (Bromley et al., 1994) whose branches correspond to the
encoders of the two views compared, with shared parameters, while the predictor sits on top of
the first branch. In this setting, Ē(θ, ψ) can be minimized with respect to these parameters by
using, for example, stochastic gradient descent. With proper learning rates, the training procedure
will converge to some critical point of Ē where both gradients are zero (Figure 1). A difficulty,
however, is how to prevent it from collapsing by converging to the degenerate zero global minimum
corresponding to fθ being a constant and gψ being the identity, or fθ being zero and gψ being a
function such that gψ(0) = 0. To address this difficulty, BYOL (Grill et al., 2020) and SimSiam (Chen
and He, 2021) propose to use exponential moving average and stop gradient training procedures, as
defined in the rest of this section, as alternative minimization procedures. To properly define these
procedures, let us introduce an objective function with an additional argument ξ in Rp:

F̄ (θ, ψ, ξ) = Ex,yF (θ, ψ, ξ, x, y), where F (θ, ψ, ξ, x, y) = l[gψ ◦ fθ(x), fξ(y)] + Ω(θ, ψ), (2)

and consider instead the exponential moving average (EMA) procedure (Grill et al., 2020).

EMA algorithm: Initialize θ0, ψ0 and ξ0 to some values and t to 1, then repeat until convergence
or you run out of patience:

(a) θt ← θt−1 − µt∇θF̄ (θt−1, ψt−1, ξt−1);
(b) ψt ← ψt−1 − νt∇ψF̄ (θt−1, ψt−1, ξt−1);
(c) ξt ← αtξt−1 + (1− αt)θt;
(d) t← t+ 1.

This is the procedure used to train BYOL in (Grill et al., 2020) and V-JEPA in (Bardes et al.,
2024)2. The corresponding architecture is no longer a true Siamese network because the encoders
in its two branches have different parameters, so fθ and fξ are sometimes respectively called the
online (or student) and target (or teacher) networks. An alternative is to consider the stop gradient
procedure (Chen and He, 2021) used to train SimSiam, which is a true Siamese architecture with
identical encoders in its two branches but uses ∇θF̄ as a proxy for ∇θĒ when updating θ.

SG algorithm: Initialize θ0 and ψ0 to some values and t to 1, then repeat until convergence or you
run out of patience:

(a) θt ← θt−1 − µt∇θF̄ (θt−1, ψt−1, θt−1);
(b) ψt ← ψt−1 − νt∇ψF̄ (θt−1, ψt−1, θt−1);
(c) t← t+ 1.

Note that Ē(θ, ψ) = F̄ (θ, ψ, θ) for any values of θ and ψ, but it is a priori unclear whether any limit
point of the SG procedure is related to the critical points of Ē. Note also that the EMA algorithm
reduces to the SG one when αt = 0 and ξ0 = θ0. Indeed, Chen and He (2021) refer to SimSiam as
“BYOL without the momentum encoder”, but in practice αt is taken very close to 1, e.g., αt varies
between 0.996 and 1 in BYOL (Grill et al., 2020).

3 AN OPTIMIZATION PERSPECTIVE

We assume from now on for simplicity that αt is a constant with αt ̸= 1 or converges to such a
constant as t tends to infinity. Under this assumption, if and when the EMA and SG procedures
converge, we have by continuity θ = ξ at a limit point because of step (c), with the same gradient
values in θ and ψ as in SG. The dynamics may be different, and lead to different limit points, but
these will obey the same zero gradient conditions at the equilibria of the corresponding dynamical
systems.

2BYOL (Grill et al., 2020) assumes that what we call an encoder is a proper encoder followed by a projection
operator and that the loss acts on normalized versions of its inputs. Both BYOL and SimSiam (Chen and He,
2021) make the loss symmetric by having each view predict the other. This is subsumed by the framework
presented here and does not change the conclusions of our analysis
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3.1 EMA AND SG OBJECTIVES

The motivation for the EMA algorithm in BYOL (Grill et al., 2020, Sec. 3.1, Eq. (2)) is to minimize
over θ, ψ and ξ the mean over pairs of views x and y of the data the squared Euclidean distance
between the prediction gψ◦fθ(x) obtained from the representation of x and the target encoding fξ(y)
of y, where ξ is the moving average defined recursively by step (c) of EMA. Note that, although ξt
is well defined at each t, an explicit definition of ξ is missing, except in the limit case if and when
EMA converges. It is thus a priori unclear whether its iterations minimize a well-defined function.
Similarly, the motivation for the SG training procedure in (Chen and He, 2021, Sec. 3, Eq. (1)) is to
minimize the mean squared Euclidean distance between the prediction gψ ◦ fθ(x) obtained from x
and the target fθ(y), using∇θF̄ as a proxy for the true gradient∇θĒ of the corresponding objective
function. It is therefore again a priori unclear whether it minimizes a well-defined function.

3.2 SG AND EMA ALGORITHMS VS OPTIMIZATION PROBLEMS

It is important for fairness to clearly state that none of the papers we are aware of that use the
SG or EMA procedure claims to actually minimize such functions in practice. In fact, the BYOL
authors write (Grill et al., 2020): “More generally, we hypothesize that there is no loss Lθ,ξ such
that BYOL’s dynamics is a gradient descent on L jointly over θ, ξ.” One of our main contributions is
actually to prove this conjecture (see Proposition 3.2 below). Let us first state a simple but important
result (see the appendix for its proof).

Proposition 3.1. The SG and EMA algorithms do not, in general, minimize the original objective
function Ē of Eq. (1). If and when they converge, the corresponding solution is, in general, not a
degenerate one corresponding to a zero global minimum of that function.

A harder question to answer is whether these algorithms optimize any objective function. Let us
assume from now on for simplicity that l is the (half) squared Euclidean distance and Ω(θ, ψ) =
λ(∥θ∥2 + ∥ψ∥2)/2. With this choice, we have ∇ul(u, v) = u− v, ∇θΩ = θ, ∇ψΩ = ψ and{

∇θF (θ, ψ, θ, x, y) = Jθu(θ, ψ, x)
T [u(θ, ψ, x)− v(θ, y)] + λθ,

∇ψF (θ, ψ, θ, x, y) = Jψu(θ, ψ, x)
T [u(θ, ψ, x)− v(θ, y)] + λψ,

(3)

where u(θ, ψ, x) = gψ ◦ fθ(x) and v(θ, y) = fξ(y). We wish to understand whether the vector
fields Ex,y[∇θF (θ, ψ, x, y)] and Ex,y[∇ψF (θ, ψ, x, y)] are the gradients of some well defined scalar
function which the SG algorithm (and its EMA counterpart) would presumably minimize. The
answer is negative:

Proposition 3.2. Under the (mild) assumption that fθ and gψ are smooth neural networks whose last
layer is linear and that they are not identically 0, i.e. there exists θ0, ψ0, x0 and z0 so that fθ0(x0) ̸=
0 and gψ0(z0) ̸= 0, then the vector fields Ex,y[∇θF (θ, ψ, x, y)] and Ex,y[∇ψF (θ, ψ, x, y)] are not,
in general, the gradient fields of any smooth function.

Proof sketch. The full proof, given in the appendix, follows from Eq. (3) and Schwarz’s integrability
theorem, according to which, a necessary condition for these vector fields to be the gradient field
of a smooth scalar function is that their second-order cross derivatives be the transposes of each
other. By expressing these cross derivatives we find that their difference (taking into account the
transposition operation) does not vanish in a generic sense. To establish genericity, we show that
there exists arbitrarily small perturbations to the data distribution for which the corresponding cross
derivative difference cannot be identically zero.

3.3 EXPERIMENTS WITH REAL DATA

We investigate in this section three fundamental questions about the SG and EMA algorithms: (1)
Although they do not, in theory, minimize the original objective Ē(θ, ψ), do they minimize it in
practice? (2) Do they converge, and in particular do θt − θt−1 and ψt −ψt−1 both tend toward zero
as the number of training steps increases? (3) Does the classification accuracy increase with training
time? We address these three questions in a realistic setting with experiments on a video classifica-
tion task using the code of Bardes et al. (2024), on the Kinetics710 and SSv2 benchmarks (Goyal
et al., 2017; Smaira et al., 2020).
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Figure 2: Evolution over 300,000 iterations of (left) the Ē objective (plus F̄ for EMA) without the squared
Euclidean norm regularizer, (middle) the norms of the parameter increments θt−θt−1, ψt−ψt−1 and ξt−ξt−1,
and (right) the classification accuracy on the K400 and SSv2 benchmarks for SG (top) and EMA (bottom). All
curves here are smoothed using a moving average, and the squared Euclidean norm regularizer is ignored to
emphasize the main loss.

Experimental setting. To provide a realistic setting, we address the challenging problem of self-
supervised learning for action classification in videos, a task for which VICReg (Bardes et al., 2022)
and regularization-based methods such as SimCLR (Chen et al., 2020) and Barlow Twins (Zbontar
et al., 2021) have not proven successful so far. Indeed, the state-of-the-art V-JEPA model of Bardes
et al. (2024) uses the EMA algorithm for training, and we use its code, kindly provided by its authors,
in our experiments, with an ℓ1 loss for l, a ViT-S encoder and a ViT-T predictor (Dosovitskiy et al.,
2021). We use the unions of the Kinetics710 and SSv2 training datasets (Goyal et al., 2017; Smaira
et al., 2020) for learning the representation. We also learn in a supervised manner an attentive
pooling classifier as in (Bardes et al., 2024), with the train splits of each dataset. We report the top-1
accuracy on the classification task for each dataset on its validation splits.

We slightly modify the training setup compared to (Bardes et al., 2024) to make it simpler and faster.
We run the SG and EMA algorithms on both datasets in our experiments, with 1000 training epochs
(300 000 iterations), instead of 300 epochs in V-JEPA. We also restrict the train set to Kinetics710
and SSv2, discarding Howto100M Miech et al. (2019). We use a ViT-Base encoder instead of a
ViT-L encoder and reduce the batch size to 1024. Instead of the cosine annealing with warmup
schedulers, we fix the learning rate to 0.0001 and the weight decay to 0.1. Following (Bardes et al.,
2024), the variable αt increases from 0.998 to 0.9996 across iterations. As expected, with these
simplifications, the performance of the trained models on the downstream K400 and on SSv2 video
classification tasks (Figure 2, bottom) is lower than the accuracies of 72.9 and 67.4 reported in
(Bardes et al., 2024) for the V-JEPA ViT-L model trained on K710 and SSv2 for a total of 900K
samples seen during training. Yet we believe that this simple setting is sufficient to run realistic
experiments and give preliminary yet meaningful answers to the questions addressed in this section.

Results and conclusions. Figure 2 (top, left) shows the evolution of Ē(θt, ψt) for the SG procedure
as a function of the number of iterations. As expected, the algorithm does not minimize the function,
its smallest value being reached early in the iterations. Figure 2 (bottom, left) shows the evolution
of F̄ (θt, ψt, ξt) and Ē(θt, ψt) for the EMA procedure, and similar conclusions can be reached. As
shown in Figure 2 (top, middle), θ and ψ do not converge in our experiments either since the norms
of θt − θt−1 and ψt − ψt−1 do not tend to zero. As shown in Figure 2 (bottom, middle), a similar
conclusion can be reached for θ, ψ and ξ and the EMA algorithm. Finally, classification accuracy
does increase initially for both the SG and EMA algorithms before decreasing late in the process for
SG, and reaching a plateau for EMA (Figure 2, right), confirming the commonly accepted fact that
they learn something, although it is still unclear exactly what they learn. In this particular setting,
EMA gives better classification results than SG. General conclusions about other downstream tasks
should not be drawn from this of course.
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4 A DYNAMICAL SYSTEM PERSPECTIVE IN THE LINEAR CASE

Let us now consider, following (Littwin et al., 2024; Tian et al., 2021; Wang et al., 2021), the linear
case where fθ(x) = Ax, fξ(y) = Cy, and gψ(z) = Bz, where x ∈ Rm, A and C are n × m
matrices, with n > m, z ∈ Rn, B is an n × n matrix, and the vectors θ, ξ and ψ store row
after row the coefficients of A, C and B. We will from now on write [xxT ] for Ex

[
xxT

]
and

[yxT ] for Ex,y
[
yxT

]
. Recall that we consider, here, the (half) squared Euclidean distance for l and

Ω(θ, ψ) = λ(∥θ∥2 + ∥ψ∥2)/2.

4.1 THE SG AND EMA ALGORITHMS AS DYNAMICAL SYSTEMS

An algorithm such as the SG and EMA procedures can also be viewed as a discrete dynamical
system. In this case, the dynamics are driven by the gradients of the function F with respect to the
parameters being optimized, i.e., the matrices A, B and C. Note: We assume from now on that αt
is a constant α ̸= 1. For completeness, we rederive in the rest of this section several results about
the dynamics of the SG and EMA algorithms (Lemmas 4.1 to 4.4) already known from (Tian et al.,
2021). As noted earlier, however, our proofs, given in appendix, do not rely on the assumptions
required by the original ones, for example that the two views of the data be drawn from the same
distribution conditioned on the data, or that the eigenvalues of certain PSD matrices be bounded
away from zero, whose validity is difficult to guarantee in practice.
Lemma 4.1. The discrete dynamics of the EMA algorithm in the linear case are given by At = At−1 − µt(BTt−1R(At−1, Bt−1, Ct−1) + λAt−1),

Bt = Bt−1 − νt(R(At−1, Bt−1, Ct−1)A
T
t−1 + λBt−1),

Ct = αCt−1 + (1− α)At,
(4)

where R(A,B,C) def
= BA[xxT ]− C[yxT ].

The dynamics for the SG algorithm are obtained by taking C = A in Eq. (4) and not using the C
update. The stationary points of SG must satisfy the p + q equations in p + q unknowns defined
by P̄ = 0 and Q̄ = 0, with p = nm and q = n2, whose solutions include A = 0 and B = 0. In
particular, unlike the nonlinear case, it is a priori possible in the linear setting for a limit point of
the SG or EMA algorithm to be the degenerate global minimum associated with A = 0 and B = 0.3
The following lemma follows easily from Eq. (4) and is reminiscent of prior results on gradient
descent for deep linear networks (Baldi and Hornik, 1989).
Lemma 4.2. When λ > 0, the limit points of the SG algorithm, if they exist, satisfy BTB = AAT .

We switch now to a continuous dynamical system perspective, following (Littwin et al., 2024; Tian
et al., 2021; Wang et al., 2021), to simplify the analysis. The continuous version of Eq. (4) is Ȧ = −(BTR(A,B,C) + λA),

Ḃ = −(R(A,B,C)AT + λB),

Ċ = (1− α)(A− C).
(5)

where R(A,B,C) is the same as in Lemma 4.1. At a limit point, we have in addition Ȧ = 0,
Ḃ = 0 and multiplying the first equation on the right by AT and the second one on the left by BT ,
then subtracting the results yields BTB = AAT . Given Eq. (5) we can now rederive two results
from (Tian et al., 2021).
Lemma 4.3. Given the dynamical system associated with the gradient flow for the original objective
function of Eq. (1), the matrix A always converges to zero.

This is Theorem 2 in Tian et al. (2021), but without the assumptions made in the original proof. This
result implies that there is no other limit point than the global trivial minima whereA = 0 andB can
assume any value. Tian et al. (2021) (and (Littwin et al., 2024; Wang et al., 2021)) interpret Eq. (5)
as defining a gradient flow. Note that it might be more appropriate to see these equations as defining

3The degenerate solution where fθ is a nonzero constant and gψ is the identity does not occur in the linear
case since Ax constant implies A = 0.
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a general flow instead, that is, a first-order ordinary equation whose integral curves are the output
of the algorithm since we have shown that their corresponding vector fields are not the gradients of
a well defined function by Proposition 3.2. We can now state in our setting Theorem 1 from (Tian
et al., 2021) as follows.

Lemma 4.4. Under the SG or EMA dynamics, the difference of the two matrices BTB and AAT
tends to zero as t tends to infinity.

4.2 CHARACTERIZING THE EQUILIBRIA OF THE SG AND EMA ALGORITHMS

Proposition 4.5. Assuming that the matrix A has maximal rank m < n at equilibria of the SG
algorithm, these equilibria are the (A,B) pairs such that

([xxT ]S + λId)(S[xxT ] + λId) = [xyT ]S[yxT ], where S = ATA. (6)

and
B = A[yxT ]ATW−1 where W = A[xxT ]AT + λId. (7)

Assuming again that the matrix A has maximal rank m < n at the equilibria of the EMA algorithm,
these equilibria are the (A,B,C) triples where A verifies Eq. (6), B is given by Eq. (7) and C = A.
In both cases, the (A,B) pairs associated with equilibria also verify BTB = AAT .

Equation (6) is a system of m(m+1)/2 quadratic equations in the m(m+1)/2 independent entries
of the symmetric matrix S, which is positive definite since A is assumed to have maximal rank.
Such a system admits in general at most 2m(m+1)/2 solutions, and we obtain the following result.

Corollary 4.6. Let K denote the number of distinct real solutions Sk (k = 1, . . . ,K) of Eq. (6)
such that Sk is positive definite and, for k = 1, . . . ,K, let

√
Sk denote the unique positive definite

square root of Sk. The equilibria of the SG algorithm can be decomposed into K sub-varieties of
Rn×m × Rm×m formed by pairs (A,B) such that A belongs to

Ak = {A ∈ Rn×m, ATA = Sk} = {U
√
Sk, where U ∈ Rn×m and UTU = Id}, (8)

and B satisfies Eq. (7). The equilibria (A,B,C) of the EMA algorithm can be characterized in a
similar way to A in Ak, B satisfying Eq. (7) and C = A.

One might ask whether such maximal rank solutions exist in the first place. The following propo-
sition, whose proof is provided in the appendix, leverages Brouwer’s fixed point theorem and the
implicit function theorem to establish that, in general, they do exist.

Proposition 4.7. Let P0 be some data distribution. For any positive ϵ, there always exists a per-
turbed data distribution (x̃, ỹ) ∼ Pϵ that is ϵ-close to P (e.g., in the 2-Wasserstein distance sense),
so that there exist equilibria of the SG and EMA algorithms with A having maximal rank m for λ
small enough.

Using classical results on the dynamics of differential equations will now allow us to prove our last
result. Let us first define the stable equilibria of such a dynamical system (Arnol’d, 1992).

Definition 4.8. An equilibrium for the dynamical system ż = v(z), where v is a smooth field over
Rd, is a point e where v(e) = 0. An equilibrium e is called (Lyapunov) stable when solutions of
the differential equation with initial values close to e converge uniformly to a nearby point. A stable
equilibrium is said to be asymptotically stable when any solution started close to e converges to e.

Theorem 4.9. (Arnol’d, 1992, Chap. 3) Consider a dynamical system ẋ = v(x) whose dynamics
can be approximated by the linear operator J: v(x) = Jx+O(∥x∥2). A sufficient condition for an
equilibrium to be asymptotically stable is that all eigenvalues of J have a negative real part.

Armed with this classical result, we prove in the appendix the following proposition.

Proposition 4.10. The equilibria of the dynamical system associated with the SG or the EMA pro-
cedure, if any, are, in general, asymptotically stable.

Note that Proposition 4.10 does not imply that a nontrivial equilibrium exists or that the dynamics
converge to such an equilibrium. It is, however, valid even in the case where α = 1.
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Figure 3: Integration paths for the SG (top) and EMA (bottom) procedures. In the top (resp. bottom) part
of the figure, the left diagram shows a sample path for the 8 (resp. 6) coefficients of a,B, c (resp. a,B), the
central one shows a path where all parameters converge toward 0, and the right diagram shows 15 trajectories
in the a (resp. a, c) plane, starting from random locations. One of the trajectories has the origin as a limit point.

4.3 EXPERIMENTS WITH SYNTHETIC DATA

For these experiments, we consider the case of a scalar input space (m = 1) since A is now a vector,
which simplifies visualizations and numerical simulations, and denote by ρ and τ the scalars [xxT ]
and [yxT ]. To emphasize that these quantities are vectors, let us use a for A and c for C. In this
simplified setting, equilibria are characterized by the following proposition.

Proposition 4.11. In the case m = 1, a necessary and sufficient condition for the existence of
nonzero equilibria of the SG and EMA algorithms is that ∆ = τ2−4ρλ ≥ 0. When this condition is
satisfied, these equilibria are the pairs (a,B) such that a lies on either one of the hyperspheres S1

and S2 of Rn centered at the origin with radii r1 = (|τ | −
√
∆)/2ρ and r2 = (|τ |+

√
∆)/2ρ, and

B verifies Eq. (7). The equilibria associated with S2 are asymptotically stable, but those associated
with S1 are saddle points. The equilibria (a,B, c) of the EMA algorithm and their stability can be
characterized in a similar fashion, with the additional condition that c = a.

Proposition 4.11 shows that the case m = 1 is both illustrative of the general case because the two
spheres S1 and S2 are just the algebraic varieties identified in Proposition 4.5 and Corollary 4.6,
and extremely nongeneric since the equilibria associated with S1 are saddle points, which never
happens when m > 1. See the proof of Proposition 4.11 in the appendix for an explanation of this
phenomenon.

Results and conclusions. Figure 3 shows sample trajectories obtained by numerical simulations for
n = 2, so a and c are points in the plane, and equilibria are located at the origin and on two circles
centered at the origin with radii r1 < r2. We have (arbitrarily) taken ρ = 3, τ = 2 and λ = 0.1
with T = 300 time steps. For the SG algorithm (Figure 3, top), we show on the left the evolution
of a (red and blue lines) and B (in other colors), and in the middle a case where all coefficients
converge to zero. Fifteen trajectories initialized from random positions and drawn in the a plane are
shown on the right. Figure 3 (bottom) illustrates the EMA algorithm. We use αt = 0.9 + 0.1t/T
in this experiment, so α = 1 at t = T , following Grill et al. (2020). Although c is not guaranteed
to converge to a in this case, it has done so in all our trials. This is illustrated on the left, where the
a parameters are shown as solid red and blue curves, and the c parameters are shown as dashed red
and blue curves (the other 4 curves correspond to B). The center part of the figure is an example
where all parameters converge to zero. Sample trajectories starting from various random positions
are shown on the right as red curves for a and blue curves for c. Although we have not been able to
prove the convergence of the EMA and SG algorithms so far, Figure 3 is typical of our observations:
In 10,000 trials with parameters drawn at random,4 the two algorithms always converge, 92.8%

4Values for ρ, τ and λ are respectively drawn uniformly in [0, 3], [−1, 1] and [0.01, 0.1]. The coordinates
of initial points are drawn from normal distributions with zero mean and unit variance.
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Figure 4: Top: Two trajectories for the SG algorithm plotted in the a plane (left) and the evolution of Ē(a,B)
values along these trajectories (right). The error appears to decrease steadily with time in the first case, but not
in the second one. Bottom: A similar diagram for the EMA algorithm. In this case we show in red the curve
Ē(a,B) and in blue the curve F̄ (a,B, c).

(resp. 82.0%) to a limit point on the outer circle S2 for EMA (resp. SG), and the rest of the time
to the origin (as noted in Section 4.1, contrary to the generic nonlinear case, A = 0 and B = 0 are
equilibria in the linear case). As expected, we have never observed convergence to the saddle points
of S1. As in the nonlinear case, the SG and EMA procedures do not appear to minimize Ē or F̄ .
This is illustrated by Figure 4, where we plot the values of Ē(a,B) as a function of time for some
trajectories of the SG and EMA algorithms. Although Ē(a,B) appears to steadily decrease in some
cases, it definitely does not in other cases.

5 CONCLUSIONS

We have shown that the SG and EMA algorithms are not, in general, proper optimization procedures:
In particular, they do not minimize any well defined objective function. On the other hand, they
do not lead in general to collapse when they converge, and they enjoy interesting properties as
dynamical systems since in the linear case any nontrivial limit point is asymptotically stable thus
will not devolve into a trivial one by longer training. This point is important in practice since the SG
and EMA training procedures empirically give good results, as shown for example in (Bardes et al.,
2024; Grill et al., 2020; Chen and He, 2021), and appear, in the general nonlinear case, to prevent
falling into the degenerate global minima they are designed to avoid. But then, what is it they really
learn in the classical sense of the word? Much work remains to be done.
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6 PROOFS

We will use, when convenient, the notation f(θ, x) for fθ(x) and g(ψ, z) for gψ(z). For a given
matrix A we denote by vec(A) the vector collecting all the components of the matrix A.

PROOF OF PROPOSITION 3.1

As noted before, Ē(θ, ψ) = F̄ (θ, ψ, θ) for any values of θ and ψ. However, there is no a priori
reason for a limit point of SG (if and when it converges) to be a critical point of Ē. Let us write

F (θ, ψ, ξ, x, y) = l[u(θ, ψ, x), v(ξ, y)] + Ω(θ, ψ), (9)
where u(θ, ψ, x) = gψ ◦ fθ(x) and v(ξ, y) = fξ(y), and denote by Jθu(θ, ψ, x) and Jψu(θ, ψ, x)
the n× p and n× q Jacobians of u(θ, ψ, x) = gψ ◦ fθ(x) with respect to θ and ψ. We also introduce
l(θ, ψ, ξ, x, y) = l[u(θ, ψ, x), v(ξ, y)]. We have{

∇θF = Jθu(θ, ψ, x)
T∇ul(θ, ψ, θ, x, y) +∇θΩ(θ, ψ),

∇ψF = Jψu(θ, ψ, x)
T∇ul(θ, ψ, θ, x, y) +∇ψΩ(θ, ψ),

(10)

and the means of these two gradients (also gradients of F̄ ) should vanish at any limit point of SG.
But {

∇θĒ(θ, ψ) = ∇θF̄ (θ, ψ, θ) + Ex,y[Jθf(θ, y)T∇vl[u(θ, ψ, x), v(θ, x, y)]],
∇ψĒ(θ, ψ) = ∇ψF̄ (θ, ψ, θ),

(11)

where Jθf(θ, y) = Jξv(θ, y) is the n×p Jacobian of f with respect to θ. There is a priori no reason
why the second term of the gradient of Ē with respect to θ, which depends on the data, should be
zero at a critical point of F̄ and thus at a limit point of SG (and thus of EMA) if such a point exists.

To establish this, we consider a counter example in the linear case where fθ(x) = Ax and gψ = Bz
where A is an n × m matrix and B an n × n matrix with n > m. Here θ = vec(A) and
ξ = vec(B). Anticipating the result of Proposition 4.7, we know that we can always find an ar-
bitrarily small perturbation to the data distribution, call it Pϵ so that there exists a matrix A⋆ of
maximal rank and a matrix B⋆, that are critical points of the dynamics. Set θ⋆ = vec(A⋆) and
ψ⋆ = vec(B⋆). Hence, fθ⋆(x) and gψ⋆(z) cannot be degenerate solutions of the EMA or SG dy-
namics. Now, we wish to further establish that ∇θĒPϵ(θ

⋆, ψ⋆) is not 0 in a generic sense. Let us
first express ∇θĒPϵ(θ, ψ) := E(x̃,ỹ)∼Pϵ

[∇θE(θ, ψ, x̃, ỹ)] in terms of the matrices A⋆ and B⋆ and
∇F̄Pϵ

(θ⋆, ψ⋆, θ⋆) := E(x̃,ỹ)∼Pϵ
[∇θF (θ, ψ, θ, x̃, ỹ)]:

∇θĒPϵ
(θ⋆, ψ⋆) = ∇F̄Pϵ

(θ⋆, ψ⋆, θ⋆) +A⋆[ỹỹ⊤]−B⋆A⋆[x̃ỹ⊤]
= A⋆[ỹỹ⊤]−B⋆A⋆[x̃ỹ⊤].

Note that ∇θF̄Pϵ(θ, ψ, θ) and ∇ψF̄Pϵ(θ, ψ, θ) are independent of the matrix [ỹỹ⊤] by virtue of the
expression:

∇θF̄Pϵ
(θ, ψ, θ) = B⊤(BA[x̃x̃⊤]−A[ỹx̃⊤]) + λA

∇ψF̄Pϵ
(θ, ψ, θ) = BA[x̃x̃⊤]A⊤ −A[ỹx̃⊤]A⊤ + λB.

Therefore, the critical points (A⋆, B⋆) are independent of the matrix [ỹỹ⊤]. We treat two cases:
either ∇θĒPϵ(θ

⋆, ψ⋆) ̸= 0, and there is nothing to prove, or ∇θĒPϵ(θ
⋆, ψ⋆) = 0. In this case, we

will construct a second perturbed data distribution Qϵ from Pϵ as follows:

x′ = x̃ y′ = ỹ + ϵ
1
2 z, (12)

where (x̃, ỹ) are samples from Pϵ and z is a standard centered gaussian independent of x̃ and ỹ. It is
easy to check that [x′(x′)⊤] = [x̃x̃⊤] and that [y′(x′)⊤] = [ỹx̃⊤] so that the critical points A⋆ and
B⋆ remain unchanged. On the other hand [y′(y′)⊤] = [ỹỹ⊤] + ϵId. It follows, under such perturbed
distribution Qϵ that:

∇θĒQϵ
(θ⋆, ψ⋆) = ∇F̄Qϵ

(θ⋆, ψ⋆, θ⋆) +A⋆[y′(y′)⊤]−B⋆A⋆[[x′(y′)⊤]
= A⋆[ỹỹ⊤]−B⋆A⋆[x̃ỹ⊤] + ϵA⋆

= ϵA⋆ ̸= 0.

Hence, we have established that one can always find a small perturbation Qϵ to the data distribution
so that the equilibrium is not degenerate and does not correspond to a critical point of the objective
E(x′,y′)∼Qϵ

[E(θ, ψ, x′, y′)].
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PROOF OF PROPOSITION 3.2

Define for simplicity, the following vector fields:

P (θ, ψ, x, y) = ∇θF (θ, ψ, θ, x, y) (13)
Q(θ, ψ, x, y) = ∇ψF (θ, ψ, θ, x, y). (14)

Let D be some probability distribution over data (x, y) and define P̄D(θ, ψ) :=
E(x,y)∼D [P (θ, ψ, x, y)] and Q̄D(θ, ψ) := E(x,y)∼D [Q(θ, ψ, x, y)]. According to Schwarz’s inte-
grability theorem, a necessary condition for P̄D and Q̄D to be the gradient field of a smooth scalar
function is that their second-order cross derivatives be the transposes of each other. We have

∂P

∂ψ
(θ, ψ, x, y) = Hθ,ψu(θ, ψ, x)[u(θ, ψ, x)− v(θ, y)] + Jθu(θ, ψ, x)

TJψu(θ, ψ, x),

∂Q

∂θ
(θ, ψ, x, y) = Hψ,θu(θ, ψ, x)[u(θ, ψ, x)− v(θ, y)] + Jψu(θ, ψ, x)

T [Jθu(θ, ψ, x)− Jθv(θ, y)],
(15)

where Jθv(θ, y) denotes the n × p Jacobian of v with respect to θ, which is equal to the Jacobian
Jθf(θ, y), and Hθ,ψu (resp. Hψ,θu) is the p × q × n (resp. q × p × n) tensor associated with the
second partial derivative of u with respect to θ and ψ (resp. ψ and θ). The products of these tensors
by the vector u− v yield p× q and q × p matrices that are transposes of each other, and we obtain

∆̄D(θ, ψ)
def
=

∂P̄D

∂ψ
(θ, ψ)− ∂Q̄D

∂θ
(θ, ψ)T = Ex,y[Jθf(θ, y)TJψg(ψ, f(θ, x))︸ ︷︷ ︸

∆(θ,ξ,x,y)

]. (16)

We wish to establish that ∆̄D ̸= 0 in a generic sense over all possible data distributions. This means
that even if for some data distribution D0 we have ∆̄D0

= 0, we can always construct a perturbed
data distribution Dϵ that gets arbitrarily close to D0 as ϵ approaches 0 and for which ∆̄Dϵ

̸= 0. To
this end, let’s consider a case for which ∆̄D0

= 0 for some D0, otherwise there is nothing to prove.

By Proposition 6.1 stated below, we know that the integrand ∆ appearing in the expression of ∆̄D0

is a function that is not identically 0. Hence, there exists θ, ξ, x0 and y0 so that ∥∆(θ, ξ, x0, y0)∥F ≥
2η for some positive η. Since both function f and g are assumed to be continuously differentiable,
we know that ∆ must be a continuous map. Hence, there exists a positive radius r > 0 small
enough so that ∥∆(θ, ξ, x, y) − ∆(θ, ξ, x0, y0)∥F ≤ η for any (x, y) in a ball B centered around
(x0, y0) of radius r. Consider uniform distribution q over such ball. It is then easy to see that
∥E(x,y)∼q[∆(θ, ξ, x, y)]−∆(θ, ξ, x0, y0)∥F ≤ η, so that:

η ≤ ∥∆(θ, ξ, x0, y0)∥F − ∥E(x,y)∼q[∆(θ, ξ, x, y)]−∆(θ, ξ, x0, y0)∥F . (17)

Now, define the following perturbed distribution by convex mixture of D0 and q:

Dϵ = (1− ϵ)D0 + ϵq. (18)

We will show that ∥∆̄Dϵ
∥F ≥ ϵη. To see this, we first notice that:

∆̄Dϵ
= (1− ϵ) ∆̄D0︸︷︷︸

=0

+ϵE(x,y)∼q[∆(θ, ξ, x, y)]. (19)

Hence, by direct application of the triangle inequality, we have that:

ϵη ≤ ϵ
(
∥∆(θ, ξ, x0, y0)∥F − ∥E(x,y)∼q[∆(θ, ξ, x, y)]−∆(θ, ξ, x0, y0)∥F

)
≤ ∥∆̄Dϵ∥F . (20)

We have, therefore shown an arbitrarily small perturbation on the data distribution suffices to ensure
that ∆̄Dϵ

̸= 0, which in turn implies that that a the corresponding vector fields P̄Dϵ
and Q̄Dϵ

are not
the gradient of any scalar function.

The interested reader may wonder how the integrability condition of Proposition 3.2 translates in the
linear case. As shown below, a necessary condition for P̄ and Q̄ to be the gradient field of a smooth
function for linear encoders and predictors is that A[xyT ] = 0. This condition depends on the data
and is not in general satisfied by A, as expected.

The proof goes as follows: Given any s × t matrix U with rows uTi (i = 1, . . . , s) and vector v in
Rt, let (Uv)i = ui · v denote the ith entry of Uv. We have ∂(Uv)i/∂ui = v and ∂(Uv)i/∂uj = 0
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for any j ̸= i, and it follows that the two Jacobians Jθ(Ay) and Jψ(BAx) are respectively the n×p
and n× q matrices y

T . . . 0T

...
. . .

...
0T . . . yT

 and

x
TAT . . . 0T

...
. . .

...
0T . . . xTAT

 . (21)

Substituting these values in Eq. (16) shows that ∆(θ, ψ) is a p × q block diagonal matrix whose n
(m× n) diagonal blocks are all equal to [yxT ]AT . Transposing ∆(θ, ψ) = 0 concludes the proof.

We end this section with the main proposition used in the proof above.
Proposition 6.1. Assume that the parametric encoder and predictor are not identically 0, i.e. there
exists θ0, ψ0, x0 and z0 so that f(θ0, x0) ̸= 0 and g(ψ0, z0) ̸= 0. Furthermore, assume both f and
g have a final linear layer, In other words, they can be expressed in the following form:

f(θ, x) := Aϕ(U, x), g(ψ, z) := Bh(V, z) (22)
where A and B are n× k and n× d matrices for some positive integers k and d, while U and V are
parameters so that θ = vec(A,U) and ψ = vec(B, V ). Here, ϕ and h are differentiable functions
with values in Rk and Rd. Furthermore, consider the quantity

∆(θ, ψ, x, y) := Jθf(θ, y)
⊤Jψg(ψ, f(θ, x)), (23)

where Jθf and Jψg denote the Jacobians of f and g w.r.t. θ and ψ. Then ∆(θ, ψ, x, y) cannot be
identically 0.

Proof. It suffices to show that the components ∆̃ of ∆ corresponding to the partial derivatives w.r.t.
the linear parameters A and B are not identically 0. Hence, by contradiction, we will assume that
∆̃ vanishes everywhere. Hence, ∆̃ must vanish, when applied to any arbitrary perturbation matrices
δA and δB of A and B, so that the following holds:

∆̃(θ, ψ, x, y)(δA, δB) = (δAϕ(U, y))⊤δBh(V,Aϕ(U, x)) = 0. (24)
The above identity is obtained by standard calculus. Furthermore, since f and g are non vanish-
ing, there exists parameter values U0 and V0 so that x 7→ ϕ(U0, x) and z 7→ h(V0, z) are not
identically 0. Let y0 be a vector in Rm so that ϕ(U0, y0) ̸= 0. Moreover, fix any arbitrary vec-
tor z ∈ Rn. There must exist a perturbation matrix δA so that z = δAϕ(U0, y0) (simply take
δA = 1

∥ϕ(U0,y0)∥2 zϕ(U0, y0)
⊤). Therefore, by Equation 24 it follows:

z⊤(δBh(V,Aϕ(U0, x))) = 0, (25)
for any z in Rn and any matrix δB. This directly implies that h(V,Aϕ(U0, x)) = 0 for any A, x and
V . Furthermore, by choosing V = V0, x = y0 and A = 1

∥ϕ(U0,y0)∥2 zϕ(U0, y0)
⊤ for any arbitrary

z ∈ Rn, we get that: h(V0, z) = 0. This contradicts the fact that z 7→ h(V0, z) is not identically
0. Hence, we have shown that ∆̃ is not identically 0 which, a fortiori, implies that ∆ is itself not
identically null.

PROOF OF LEMMA 4.1

We can rewrite F in this case as

F (A,B,C, x, y) = 1
2∥BAx− Cy∥

2 + λ
2 (∥A∥

2
F + ∥B∥2F ),

= 1
2x

TATBTBAx− yTCTBAx+ 1
2y
TCTCy + λ

2 (∥A∥
2
F + ∥B∥2F ).

(26)

We know from Eqs. [70] and [82] in the matrix cookbook (Petersen and Pedersen, 2012) that
∂
∂U

(aTUb) = abT ,

∂
∂U

(bTUTV Uc) = V TUbcT + V UcbT .
(27)

It follows that: {
∂F
∂A

(A,B,C, x, y) = BT (BAx− Cy)xT + λA,
∂F
∂B

(A,B,C, x, y) = (BAx− Cy)xTAT + λB.
(28)
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PROOF OF LEMMA 4.2

Multiplying the first equation in (4) by AT on the right and subtracting the second one multiplied
by BT on the left immediately yields BTB − AAT = 0 at a limit point since both derivatives
P̄ (A,B,C) and Q̄(A,B,C) are zero at such a point.

PROOF OF LEMMA 4.3

Let us first write the derivative of E with respect to A. We have

∂E

∂A
=
∂F

∂A
+AyyT −BAxyT = BT (BAx−Ay)xT − (BAx−Ay)yT + λA, (29)

and thus Ȧ = −(BTR(A,B)−S(A,B)+λA), where S(A,B) = BA[xyT ]−A[yyT ]. Substituting
in the temporal derivative of 1/2∥A∥2F , we obtain
d
dt [

1
2∥A∥

2
F ] = d

dt [
1
2 [tr(A

TA)] = −tr(AT Ȧ) = tr(ATBTR(A,B) +ATS(A,B) + λATA)
= −tr(Ex,y[xTATBTBAx+ yTATAy − xTATBTAy − yTATBAx] + λATA)
= −(Ex,y[∥BAx−Ay∥2] + λ∥A∥2F )
≤ −λ∥A∥2F

(30)
which implies the exponential convergence of ∥A∥2F toward zero.

PROOF OF LEMMA 4.4

Multiplying on both sides the first equality in Eq. (5) on the right by AT and the second one on the
left by BT and taking the difference yields

BT (Ḃ + λB) = (Ȧ+ λA)AT (31)

Adding this equation to its transpose and multiplying both sides by e2λt now yields

e2λt(ḂTB +BT Ḃ + 2λBTB) = e2λt(AȦT + ȦAT + 2λAAT ), (32)

from which we conclude that
d

dt
[e2λtBTB] =

d

dt
[e2λtAAT ], (33)

and obtain AAT = BTB + e−2λtK, where K is a constant independent of the data. This implies
in particular that BTB −AAT → 0 as t→ +∞.

PROOF OF PROPOSITION 4.5

We only give there the proof for the SG algorithm since the proof for the EMA algorithm follows
the exact same reasoning with the extra parameter C known to be equal to A at an equilibrium.

The equilibria (A,B) of the SG algorithm are characterized by the two equations{
0 = BT (BA[xxT ]−A[yxT ]) + λA,
0 = (BA[xxT ]−A[yxT ])AT + λB = BW −A[yxT ]AT = 0.

(34)

The fact that BTB = AAT follows immediately from multiplying both sides of the first condition
by AT on the right and both sides of the second one by BT on the left, then taking the difference.
Equation (7) follows immediately from the second condition, the inverse being well defined when
λ > 0 since W is symmetric positive definite in this case. Substituting this value in the first equality
of Eq. (34) now yields

W−1A[xyT ]AT
(
A[yxT ]ATW−1A[xxT ]−A[yxT ]

)
+ λA = 0, (35)

and equilibria of the SG algorithm are exactly the pairs (A,B) where A satisfies this condition and
B is given by Eq. (7). Assuming that A has full rank m and multiplying both sides of this equation
on the left by W and on the right by AT yields the equivalent condition

A[xyT ]AT
(
A[yxT ]ATW−1(W − λId)−A[yxT ]AT

)
+ λWAAT = 0. (36)
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Multiplying both sides of this equation on the right by W , we obtain the condition

A(UTU − V TV )AT = 0, where
{
U = ATA[xxT ] + λId,
V = A[yxT ],

(37)

which is equivalent to UTU = V TV since we have assumed thatA has full rank, and thus to Eq. (6)
as well.

Note that Tian et al. (2021) give in Appendix D of their paper an alternative characterization of the
equilibria in the case where λ = 0, which essentially corresponds to the condition of Eq. (7) in this
case, without the characterization of S = ATA by Eq. (6).

PROOF OF COROLLARY 4.6

The proof is textbook material and included for completeness. When U is column orthogo-
nal and A = U

√
Sk, we obviously have ATA = Sk. Conversely, when ATA = Sk, let us

take U = A
√
S
−1

k (the inverse is guaranteed to exist since Sk is positive definite). We have
UTU =

√
S
−1

k Sk
√
S
−1

k = Id.

PROOF OF PROPOSITION 4.7

Fix ϵ > 0. There exist 0 < δ ≤ ϵ positive so that T := [yx⊤] + δI and R := [xx⊤] + δI are
both invertible. To see this, it suffices to notice that δ 7→ det([yx⊤] + δI) is a non-zero polynomial,
thus vanishes for a finite number of values δ. Therefore, we can always find δ < ϵ for which
det([yx⊤] + δI) ̸= 0, so that T is invertible. Furthemore, R is necessarily invertible since it is
the sum of the PSD matrix [xx⊤] and the PD matrix δI . The matrices R and T correspond to the
covariances of the following perturbed variables:

x̃ = x+ δ
1
2 z, ỹ = y + δ

1
2 z, (38)

where z is a standard isotropic gaussian. Thus we have R = [x̃x̃⊤] and T = [ỹx̃⊤]. We will
show that there exists a positive λ0 small enough so that the following equation always admits a PD
solution for any 0 ≤ λ ≤ λ0:

([x̃x̃⊤]S + λId)(S[x̃x̃⊤] + λId) = [ỹx̃⊤]S[ỹx̃⊤]. (39)

We will first establish existence of the solution for λ = 0, then show that the property still holds for
λ small enough.

Case λ = 0. In this case, the equation simplifies to:

RS2R = T⊤ST, (40)

where we used the notation R and T for simplicity. Since, R is invertible, we multiply both sides by
R−1 (left and right), which yields:

S2 = (TR−1)⊤S(TR−1). (41)

Since the matrix TR−1 is invertible, we can directly apply the technical Lemma 6.2, stated below,
which guarantees the existence of a PD solution S⋆ to the above equation.

Case λ > 0. We will apply the implicit function theorem to show the existence of solutions for λ
small enough. Consider the matrix valued map G(λ, S) defined as:

G(λ, S) = S2 + λ(SR−1 +R−1S) + λ2Id− (TR−1)⊤S(TR−1). (42)

We have already established that the equation G(0, S) = 0 admits a solution S⋆. It suffices to prove
that the partial differential dSG(0, S⋆) at (0, S⋆) is invertible. Since dSG(0, S⋆) is a linear map from
the set of m ×m matrices to itself, it suffices to establish its injectivity. Direct calculations show
that H 7→ dSG(0, S⋆)(H) is given by:

dSG(0, S⋆)(H) = S⋆H +HS⋆ − (TR−1)⊤H(TR−1). (43)

Using again the technical Lemma 6.2, we know that the only solution to the equation
dSG(0, S⋆)(H) = 0 is H = 0. Hence, dSG(0, S⋆) is injective. Therefore, by the implicit function
theorem, there exists a positive λ0 so that for any 0 ≤ λ ≤ λ0, the equation G(λ, S) = 0 admits a
solution S⋆.
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Lemma 6.2. Let C be an invertible m×m matrix. There exists a symmetric PD solution X⋆ to the
following equation:

X2 = C⊤XC.

Moreover, consider the following linear system X⋆H +HX⋆−C⊤HC = 0 with unknown H . The
only solution to such system is H = 0.

Proof. Existence. We will apply Brouwer’s fixed point theorem to a suitable operator. Denote
by µ and ρ its smallest and largest eigenvalues of C⊤C which are positive. Define the following
continuous map G over the set of S+m of symmetric PSD matrices of size m×m:

G(X) = (C⊤XC)
1
2 ,

where the square root denotes the unique PSD square root of a PSD matrix. Note that G(X) is well
defined for any X ∈ S+m. Consider the following set of matrices:

M = {X ∈ S+m : µI ≤ X ≤ ρI}.
Then M is a convex compact subset of vector space of n×nmatrices. We will show that G(M) ⊂M,
which will allow us to apply Brouwer fixed point theorem. Indeed, for any X in M, simple matrix
inequalities yield:

µC⊤C ≤ C⊤XC ≤ ρC⊤C.

Recalling that the symmetric square root preserves the matrix order, we directly get:

µ
1
2 (C⊤C)

1
2 ≤ G(X) ≤ ρ 1

2 (C⊤C)
1
2 .

However, by definition of ρ and µ, we have that µI ≤ C⊤C ≤ ρI . Consequently, it follows that
µI ≤ G(X) ≤ ρI . Hence, we have established that M is a stable set of the map G. Since the map
G(X) is continuous and M is a convex compact subset of the space of square matrices, it follows
by Brouwer’s fixed point theorem that there exists X⋆ satisfying the equation G(X⋆) = X⋆. After
taking the square of such equation, we get that X⋆ is a solution to X2 = C⊤XC.

Uniqueness of the solution to the linear system. Let H be an m×m matrix solution to the linear
system:

X⋆H +HX⋆ − C⊤HC = 0.

We wish to show that H = 0. We can multiply such equation (left and right) by (X⋆)−
1
2 to get:

(X⋆)
1
2H(X⋆)−

1
2 + (X⋆)−

1
2H(X⋆)

1
2 − (X⋆)−

1
2C⊤HC(X⋆)−

1
2 = 0

Define E = (X⋆)−
1
2C⊤(X⋆)

1
2 . By direct calculation and using the definition of X⋆ (i.e. the

solution to the equation X2 = C⊤XC), we have that E satisfies EE⊤ = X⋆. Now, consider the
change of variables H̃ = (X⋆)−

1
2H(X⋆)−

1
2 . We can thus express the above equation in terms of

H̃ and E and X⋆ as follows:

X⋆H̃ + H̃X⋆ − EH̃E⊤ = 0.

Since E is invertible, we can further multiply the equation by E−1 on the left and by E−⊤ on the
right and use the identity EE⊤ = X⋆ to get:

E⊤H̃E−⊤ + E−1H̃E = H̃.

The above equation directly implies that H̃ must be symmetric. Furthermore, by direct calculation,
we obtain the following expression for ∥H̃∥2F :

∥H̃∥2F = Tr
(
(E⊤H̃E−⊤ + E−1H̃E)⊤(E⊤H̃E−⊤ + E−1H̃E)

)
= tr(ET H̃2E−⊤) + 2tr(E⊤H̃E−⊤E−1H̃E) + tr(E−1H̃2E)

= 2∥H̃2∥2F + 2∥E−1H̃E∥2F .

The above identity can only be true if ∥H̃∥2F = 0 which directly implies that H = 0 since X⋆ is
invertible.
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PROOF OF PROPOSITION 4.10

We only present here the proof for the EMA procedure. The SG case is similar and slightly simpler,
and thus omitted for conciseness. Let (A,B,C) be an equilibrium point of our dynamical system
and (A+D,B + E,C + F ) a point in its neighborhood, where, like A, B and C, the matrices D,
E and F are respectively of size n×m, n× n and n×m. To first order, we have Ȧ(A+D,B + E,C + F ) ≈ −BT ((EA+BD)[xxT ]− F [yxT ])− ETR(A,B,C)− λD,

Ḃ(A+D,B + E,C + F ) ≈ −((EA+BD)[xxT ]− F [yxT ])AT −R(A,B,C)DT − λE,
Ċ(A+D,B + E,C + F ) = (1− α)(D − F ).

(44)
The eigenvectors of the corresponding linear operator in D, E and F and the corresponding eigen-
values µ are thus characterized by 0 = BT ((EA+BD)[xxT ]− F [yxT ]) + ETR(A,B,C) + (λ+ µ)D,

0 = ((EA+BD)[xxT ]− F [yx]T )AT +R(A,B,C)DT + (λ+ µ)E,
(1− α)D = (1− α+ µ)F.

(45)

Let us first consider the trivial equilibrium where A = C = 0 and B = 0. Substituting these
values in Eq. (45) shows that for any triplet (D,E, F ) satisfying this equation we must have either
µ = −λ < 0 if D or E is nonzero, or µ = α − 1 if D and E are both zero. But, as noted before,
α is normally taken smaller than or equal to 1 and we assume here that α ̸= 1 (the moving average
would not make much sense otherwise since ξt would be constant in that case), so µ < 0 in that case
as well. It follows that trivial equilibria are asymptotically stable

Let us now consider the case of nontrivial equilibria where, in particular, A ̸= 0. Note that for any
eigenvector triplet (D,E, F ) and associated eigenvalue µ satisfying Eq. (45), either 1 − α + µ is
zero, in which case F can take any value and, as just observed, µ < 0, or it is not, in which case
F = βD with β = (1− α)/(1− α+ µ) so we can focus on the first two equations.

Multiplying the first one on the right by AT and the second one on the left by BT , subtracting the
two and using Eq. (34) yields

(λ+ µ)M = −λMT where M = (DAT −BTE). (46)

Now, any matrix U such that UT = aU for some scalar a also verifies U = aUT by taking the
transpose on both sides, and thus U = aUT = a(aU) = a2U , which means that, either U = 0 or
U ̸= 0 and a2 = 1, with either a = 1 and U symmetric or a = −1 and U skew-symmetric. In our
case, whenM ̸= 0, it is either symmetric with µ = −2λ, or skew-symmetric with µ = 0. In the first
case, any equilibrium is asymptotically stable according to Theorem 4.9 while, in the second one,
all eigenvalues vanish and nothing can be said to first order, which should not happen generically.

Let us now prove that µ < 0 in the slightly more complicated case M = 0. Using BTE = DAT ,
multiplying again the first equation in (45) on the right by AT (or the second one by BT on the left)
and using Eq. (34) now yields

0 = BT ((EA+BD)[xxT ]− F [yxT ])AT + ETR(A,B,C)AT + (λ+ µ)DAT

= (DATA+AATD)[xxT ]−BTF [yxT ])AT − λADT + (λ+ µ)DAT ,
= N + P + µDAT ,

(47)

where {
N = AATD[xxT ]AT − βBTD[yxT ]AT − λADT ,
P = DATA[xxT ]AT + λDAT = DAT (A[xxT ]AT + λId). (48)

Here, N is an n× n matrix of rank at most m with n > m. It is therefore singular with a kernel of
dimension n−m. So is its transpose. Let us pick u in Ker(NT ) such that ADTu ̸= 0. Generically
this is always possible since there is no reason for Ker(NT ) and Ker(ADT ) to coincide.

Multiplying the second equation in (48) on the left by uT and on the right by v = ADTu ̸= 0 now
yields

vT (A[xxT ]AT + λId)v + µ∥v∥2 = 0, (49)
and since A[xxT ]AT + λId is positive definite, we conclude that µ < 0.
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PROOF OF PROPOSITION 4.11

When m = 1, S = ∥a∥2 and Eq. (6) can be rewritten as

(ρ∥a∥2 + λ)2 = τ2∥a∥2, (50)

or equivalently
ρ∥a∥2 − ετ∥a∥+ λ = 0 where ε = ∓1. (51)

A necessary and sufficient condition for real solutions of this quadratic equation in ∥a∥ to exist is
that its discriminant ∆ be nonnegative and they are nonnegative when ετ is itself nonnegative, i.e.,
ε = sign(τ), so

ρ∥a∥2 − |τ | ∥a∥+ λ = 0. (52)
These solutions indeed correspond to the two hyperspheres S1 and S2 defined above, which con-
cludes the proof of the first part of the proposition. These correspond exactly to the varieties A1

and A2 associated with the two positive roots r21 and r22 of the quadratic equation Eq. (6) in ∥a∥2 of
course. Now, let a be an element of Si (i = 1, 2). According to Eqs. (7) and (52), we have

B = τaaTW−1 =
τ

ρ∥a∥2 + λ
aaT =

1

ri
sign(τ)aaT . (53)

This concludes the first part of the proof of the proposition.

Let us now turn to its second part, assume ∆ ≥ 0 and consider an equilibrium with a in Si. As shown
in the proof of Prop. 4.10, generically, all eigenvalues are negative unless M = daT − BTE =
0. Substituting the value of B in this equation shows that daT = (sign(τ)/ri)aaTE, and since
eigenvectors are only defined up to scale we can pick d = a and ETa = sign(τ)ria (note that there
exists an infinity of n × n matrices E verifying this equality, including E = B). Substituting in
Eq. (45) and using Eqs. (51) and (52) now yields

0 = (3ρr2i − 2sign(τ)ri + λ+ µ)a = (µ− λ+ ρr2i )a = (µ− 2λ+ |τ | ri)a, (54)

and thus, when a ̸= 0, µ = 2λ− |τ |ri (note that with this value for µ, d = a and any matrix E such
that ETa = sign(τ)ria satisfy Eq. (45) and are thus indeed the (d,E) part of the corresponding
eigenvector). Now, a ri = (|τ |+ ηi

√
∆)/2ρ where η1 = −1 and η2 = 1, so we have

µ = 2λ− 1

2ρ
|τ |(|τ |+ ηi|τ |

√
∆) =

−1
2ρ

(∆ + ηi|τ |
√
∆) =

−∆
2ρ

(
√
∆+ ηi|τ |). (55)

In particular, a necessary and sufficient condition for µ to be positive is that η1 = −1, corresponding
to the hypersphere of radius r1, and that

τ2 > ∆ = τ2 − 4ρλ, (56)

which is always true.

Proposition 4.11 appears to contradict Proposition 4.10. It does not since the case m = 1 where
A = a is a vector is non generic: in this case ρ = [xxT ] is a scalar (and thus commutes with all
matrices involved) and B = (ε/∥a∥)aaT , and we can rewrite NT as

NT = [(ρ− ετ

∥a∥
)(d · a)a− λd]aT = −λ( 1

∥a∥2
aaT + Id)daT = −λ( 1

∥a∥2
aaT + Id)aaT . (57)

In particular, since ((1/∥a∥2)aaT + Id) is positive definite, Ker(NT ) = Ker(aaT ) = Ker(adT ),
and we cannot conclude that µ is negative in the last part of the proof of Proposition 4.10. This is
generically not the case for m > 1, so there is no contradiction.
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