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Abstract
We analyze the convergence of a novel policy gradient algorithm (referred to as SPMA) for multi-
armed bandits and tabular Markov decision processes (MDPs). SPMA is an instantiation of mirror
ascent and uses the softmax parameterization with a log-sum-exp mirror map. Given access to the
exact policy gradients, we prove that SPMA with a constant step-size requires O(log(1/ϵ)) iterations
to converge to an ϵ-optimal policy. The resulting convergence rate is better than both the Θ(1/ϵ) rate
for constant step-size softmax policy gradient (SPG) and the O (1/

√
ϵ) rate for SPG with Nesterov

acceleration. Furthermore, unlike the SPG results, the convergence rate for SPMA does not depend
on potentially large problem-dependent constants, and matches the rate achieved by natural policy
gradient (NPG). Furthermore, for multi-armed bandits, we prove that SPMA with gap-dependent
step-sizes can result in global super-linear convergence. Our experimental evaluations on tabular
MDPs and continuous control tasks demonstrate that SPMA consistently outperforms SPG while
achieving similar or better performance compared to NPG.

1. Introduction

Policy gradient (PG) methods have been critical to the achievements of deep reinforcement learning
(RL) [20, 23]. While the PG objective is non-concave and thus potentially difficult to analyze, recent
theoretical research [1, 3, 11, 13–16, 21] studied PG methods in simplified settings, exploiting the
objective’s properties to guarantee global convergence to an optimal policy. Such analyses of PG
methods are helpful in understanding the underlying optimization issues and providing a systematic
approach to designing new practical PG methods.

We focus on PG methods that parameterize the policy using the softmax function and consider
the tabular setting where the number of parameters scales with the number of states and actions.
Given access to the exact policy gradients (corresponding to the case where the rewards and transition
probabilities are known or can be efficiently estimated), Agarwal et al. [1] proved that the common
softmax policy gradient (SPG) method can attain asymptotic convergence to an optimal policy despite
the non-concave nature of the PG objective. Mei et al. [15] improved this result and quantified the
rate of convergence, proving that constant step-size SPG requires Θ(1/ϵ) iterations to converge
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to an ϵ-optimal policy. Recently, Chen et al. [6] combined constant step-size SPG with Nesterov
acceleration to achieve an O (1/

√
ϵ) convergence; while [13, 14] use SPG with adaptive step-sizes to

achieve a linear O(log(1/ϵ)) convergence rate. However, it is known that SPG incurs a dependence
on the distribution mismatch ratio which can be exponential in the size of the state space [12],
consequently rendering these rates vacuous.

On the other hand, policy mirror descent (PMD) [8, 11, 28] or natural policy gradient (NPG) [9] use
a different policy parameterization. These methods directly parameterize the probability of taking an
action in a particular state. In the tabular setting with access to exact policy gradients, these methods
correspond to mirror ascent (with the negative entropy mirror map) in the space of probabilities and
have been shown to achieve linear convergence to the optimal policy [3, 8, 11, 13, 28]. Furthermore,
unlike SPG, NPG does not incur the bad dependence on the mismatch ratio.

Given these results, it is unclear whether PG methods using the softmax parameterization can
lead to comparable results as NPG or PMD. In this paper, we resolve this question in the affirmative.
In particular, we analyze a recently proposed algorithm [26] that uses the softmax parameterization
and consists of a mirror ascent update with the log-sum-exp mirror map. We prove that the resulting
update referred to as Softmax Policy Mirror Ascent (SPMA) results in convergence comparable to
that of constant step-size NPG. In particular, we make the following contributions.
Contribution 1: Global linear convergence of SPMA: While Vaswani et al. [26] argue that SPMA
has desirable theoretical properties when used with general function approximation, they only prove
that it results in an O (1/ϵ) convergence to a stationary point. In contrast, for both the multi-armed
bandit and tabular MDP settings, we prove that SPMA with a constant step-size and access to
exact policy gradients achieves a linear O(log (1/ϵ)) convergence rate without a dependence on the
distribution mismatch ratio, thus matching the convergence results of NPG (Section 4.1).
Contribution 2: Global super-linear convergence of SPMA for multi-armed bandits: For multi-
armed bandits, we prove that SPMA with specific gap-dependent step-sizes can achieve a global
super-linear convergence rate (Section 4.2).
Contribution 3: Experimental results: In Section 5, we empirically show that SPMA is more
robust than SPG and matches the performance of NPG on tabular MDPs. In Appendix D, we follow
the idea in Vaswani et al. [26] and describe how to effectively use the SPMA algorithm in more
realistic settings that require handling stochasticity and function approximation. We use the resulting
technique for continuous control Mujoco tasks and demonstrate that SPMA outperforms SPG, while
resulting in similar or better performance compared to MDPO [25], a generalization of NPG.

2. Problem Formulation

We consider an infinite-horizon discounted Markov decision process (MDP) [17] defined by M =
⟨S,A,P, r, ρ, γ⟩, where S and A represent the states and actions, P : S ×A → ∆S is the transition
probability function, r : S×A → [0, 1] is the reward function, ρ ∈ ∆S is the initial state distribution,
and γ ∈ [0, 1) represents the discount factor. In this paper, we only consider the tabular setting where
the number of states and actions is finite. Given s ∈ S , the policy π induces a probability distribution
π(.|s) over the actions. The action-value function Qπ : S × A → R induced by π is Qπ(s, a) :=
E[
∑∞

t=0 γ
tr(st, at)|s0 = s, a0 = a] where st ∼ p(.|st−1, at−1), and at ∼ π(.|s) for t ≥ 1. The

value function corresponding to Qπ starting from state s is defined as Js(π) = Ea∼π(.|s)[Q
π(s, a)]

with J(π) := Es∼ρ[Js(π)] representing the expected discounted cumulative reward. Furthermore,
the advantage function Aπ : S × A → R is defined as Aπ(s, a) := Qπ(s, a) − Js(π). The policy
also induces a discounted state-occupancy measure dπ(s) := (1− γ)

∑∞
t=0 γ

tPrπ[st = s|s0 ∼ ρ].
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Given this setup, the goal is to find the optimal policy π∗ that maximizes the expected reward
objective J(π). As a special case, in the bandit setting, |S| = 1, |A| = K, γ = 0, and J(π) = ⟨π, r⟩,
with K representing the number of arms. Throughout this paper, we parameterize the policy using a
softmax representation, i.e., π(a|s) = exp(z(s,a))∑

a′ exp(z(s,a
′)) , where z ∈ RS×A. In the tabular setting, we

aim to learn the SA-dimensional vector of logits. In the next section, we present SPMA that uses the
softmax parameterization with the log-sum-exp mirror map.

3. Algorithm

Mirror ascent is an iterative algorithm whose update at iteration t ∈ {0, 1, . . . , T − 1} is given as:

zt+1 = argmax [⟨z,∇zJ(zt)⟩ − 1/ηDΦ(z, zt)] or ∇Φ(zt+1) = ∇Φ(zt) + η∇J(zt) (1)

where zt is the logit at iteration t, η is the step-size, and DΦ is the Bregman divergence (in-
duced by the mirror map Φ) between the logits z and zt. Using the policy gradient theorem [23],
[∇J(zt)](s, a) = dπt(s)πt(a|s)Aπt(s, a). Following Vaswani et al. [26], we use the log-sum-exp
mirror map: ϕ(z(s, .)) = ln(

∑
a exp(z(s, a)) for each state s, implying that Dϕ(z(s, ·), zt(s, ·)) =

KL(πt(·|s)||π(·|s)) [27, Lemma 11]. Weighting these per-state divergences by dπ(s) results in the
following update rule for each state s ∈ S:

πt+1(a|s) = πt(a|s) (1 + ηAπt(s, a)) (2)

We first ensure that πt+1(·|s) is a valid probability distribution. Assuming r(s, a) ∈ [0, 1], ∀s ∈
S, a ∈ A, |A(s, a)| ≤ 1

1−γ implying that η ≤ 1 − γ is sufficient to guarantee that πt+1(a|s)
is non-negative for every (s, a). We also ensure that

∑
a πt+1(s, a) = 1 for each s ∈ S: since∑

a πt(a|s)Aπt(s, a) = 0,
∑

a πt+1(a|s) =
∑

a πt(a|s) + η
∑

a πt(a|s)Aπt(s, a)) = 1. For the
bandit setting where |S| = 1, the above update simplifies to:

πt+1(a) = πt(a) (1 + η [r(a)− ⟨πt, r⟩]) = πt(a) [1 + η
∑
a′ ̸=a

πt(a
′)∆(a, a′)] , (3)

where ∆(a, a′) := r(a) − r(a′) represents the reward gap between arms a and a′. Similar to the
MDP case, using η < 1 ensures that πt+1 is a valid probability distribution.

In contrast to the natural policy gradient (NPG) update: πt+1(a|s) ∝ πt(a|s) exp(η Aπt(s, a)),
the SPMA update in Eq. (2) is linear in both η and Aπt(s, a) and does not require an explicit
normalization across actions to ensure valid probability distributions. The softmax policy gradient
(SPG) update corresponds to choosing the mirror map ϕ in Eq. (1) to be the Euclidean norm and
has the following update: zt+1(s, a) = zt(s, a) + η πt(a|s)Aπt(s, a). Compared to SPG that uses
the softmax policy gradient to update the logits, SPMA uses the softmax policy gradient to directly
update the probabilities. As we demonstrate subsequently, this desirable property enables SPMA to
achieve faster rates than SPG. Finally, we note that for the bandit case, the update rule in Eq. (3) is
related to the PROD algorithm [5] used in the online learning literature. In contrast to SPMA which
is derived from mirror ascent, the PROD algorithm is derived using a linearization of the Hedge [7]
algorithm and requires explicit normalization to obtain probabilities.

4. Theoretical Results

In this section, we prove convergence guarantees for SPMA in the multi-armed bandit and tabular MDP
settings. In Section 4.1, we prove that SPMA with a constant step-size achieves linear convergence
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rates. In Section 4.2, we prove that SPMAwith specific gap-dependent step-sizes achieves super-linear
convergence for multi-armed bandits. We defer all the proofs to Appendices A and B.

4.1. Linear Convergence Rates

We first establish linear convergence for SPMA for multi-armed bandits for any constant η ≤ 1.

Theorem 4.1 The SPMA update in Eq. (3) with (i) a constant step-size η ≤ 1 and (ii) uniform
initialization i.e. π0(a) = 1

K for all a results in the following convergence:

r(a∗)− ⟨πT , r⟩ ≤
(
1− 1

K

)
exp

(
−η∆min T

K

)
,

where T is the number of iterations, a∗ is the optimal arm and ∆min := mina′ ̸=a∗ ∆(a∗, a′) =
r(a∗)− r(a) is the gap.

The above theorem shows that for multi-armed bandit problems, SPMA can achieve linear
convergence to the optimal arm, and the resulting rate depends on both the gap and the number of
arms. In the next theorem, we extend this result to tabular MDPs and prove that when given access to
the exact policy gradients, SPMA results in linear convergence to the optimal value function for any
sufficiently small constant step-size. To state our theoretical result, we abuse the notation a little and
use J(πt) to mean J(zt) where πt(a|s) ∝ exp(zt(s, a)).

Theorem 4.2 Using the SPMA update in Eq. 2 with (i) a step-size η < min
{
1− γ, 1

Ct(1−γ)

}
results in the following convergence:

∥J(π∗)− J(πT )∥∞ ≤

(
T−1∏
t=0

(1− ηCt (1− γ))

)
∥J(π∗)− J(π0)∥∞ ,

where T is the number of iterations, π∗ is the optimal policy, Ct := mins{πt(ãt(s)|s)∆t(s)},
ãt(s) := argmaxaQ

πt(s, a) and ∆t(s) := maxaQ
πt(s, a)−maxa̸=ãQ

πt(s, a).

For rewards in (0, 1), Ct (1 − γ) ∈ (0, 1) and depends on the initialization. In order to put
the above convergence result in context, note that SPG with a constant step-size results in a Θ(1/ϵ)
convergence [15]. Recently, Chen et al. [6] prove that constant step-size SPG with Nesterov ac-
celeration can obtain an O(1/

√
ϵ) convergence. In contrast, the above theorem demonstrates that

by choosing the appropriate mirror map, constant step-size SPMA can achieve a faster O(log(1/ϵ))
rate of convergence. On the other hand, Liu et al. [13], Lu et al. [14] prove that SPG with adaptive
step-sizes can result in linear convergence. However, the resulting rate depends on the distribution
mismatch ratio

∥∥∥dπ
∗

ρ

∥∥∥
∞

that can be exponentially large in the size of the state space [12] making
these rates vacuous. In contrast, the convergence result in Theorem 4.2 has no such dependence on
the distribution mismatch ratio. The linear convergence rate in Theorem 4.2 matches that of NPG
with a constant step-size [13] and compared to Liu et al. [13, Theorem 5.4], it results in a better
dependence (exponential vs polynomial) on the gap ∆t(s).

In the next section, we demonstrate that SPMA with specific gap-dependent step-sizes can achieve
a global super-linear convergence rate for multi-armed bandits.
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4.2. Super-linear Convergence Rates for Bandits

In order to achieve the desired fast rate of convergence, we modify the update in Eq. (3) to use a set
of
(
K
2

)
constant gap-dependent step-sizes {ηa,a′}a,a′∈[K]. The new update can be written as:

πt+1(a) = πt(a) [1 +
∑
a′ ̸=a

πt(a
′) ηa,a′ ∆(a, a′)] (4)

The following theorem shows that the above update results in super-linear convergence.

Theorem 4.3 Using the SPMA update in Eq. (4) with (i) ηa,a′ = 1
|∆(a,a′)| and a (ii) uniform

initialization similar to Theorem 4.1 results in valid probability distributions and converges as:

r(a∗)− ⟨πT , r⟩ ≤
[(

1− 1

K

)]2T
where T is the number of iterations, a∗ is the optimal arm and ∆(a, a′) := r(a)− r(a′) represents
the reward gap between arms a and a′.

To the best of our knowledge, these are the first global super-linear rates for policy gradient
methods on multi-armed bandit problems. In the next section, we evaluate SPMA empirically.

5. Empirical Evaluation

We evaluate SPMA on two types of problems: (i) tabular MDPs with access to the exact policy
gradients, and (ii) MDPs with continuous state-actions spaces with inexact policy gradients. For the
baselines, we consider mirror descent policy optimization (MDPO) [25], a generalization of PMD to
handle function approximation. Note that MDPO is exactly equal to PMD (and hence NPG [9]) in the
tabular setting. We also compare to constant step-size SPG [23]. For each of the continuous control
Mujoco [24] tasks, we use the actor-critic architecture from stable baselines [18] and parameterize
the policy using a neural network. In order to handle function approximation with SPMA, we follow
the idea in Vaswani et al. [26] and describe the resulting approach in Appendix D. We present the
tabular MDP results in Appendix C, while focusing on the continuous control tasks in the main paper.

5.1. Experimental Results

We follow the experimental protocol of Tomar et al. [25], running our experiments using 5 seeds and
reporting the average results along with their 95% confidence intervals. To select η, we perform a grid
search over 2×106 iterations and choose the η that provides the best area under the curve. We then use
this same η for 2×107 iterations. The results in Fig. 1 suggest that SPMA can significantly outperform
MDPO in the HalfCheetah and Ant environments, while the performance remains comparable for
Hopper and Walker. For more details about the experimental setup please see Appendix E. By
default, stable baselines [18] does not include the SPG surrogate, and our preliminary results show
its performance is much worse than MDPO and SPMA.

6. Discussion

We analyzed the theoretical and empirical performance of SPMA, a softmax policy mirror ascent
algorithm. For tabular MDPs, we demonstrated that SPMA outperforms SPG both theoretically and
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Figure 1: SPMA matches or outperforms MDPO across various MuJoCo environments.

empirically, while obtaining similar convergence guarantees and empirical performance as NPG. For
continuous control tasks, we demonstrated that SPMA with function approximation can outperform
MDPO, a generalization of NPG. In the future, we aim to prove convergence guarantees of SPMA
with function approximation and inexact policy gradients and benchmark its performance against
commonly used methods such as PPO [20] and TRPO [19].
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Supplementary Material

Organization of the Appendix

A Multi-armed Bandit Proofs

B MDP Proofs

C Tabular MDP Experiments

D Handling Function Approximation

E Additional Details for Stable Baselines Experiments

Appendix A. Multi-armed Bandit Proofs

Theorem 4.1 The SPMA update in Eq. (3) with (i) a constant step-size η ≤ 1 and (ii) uniform
initialization i.e. π0(a) = 1

K for all a results in the following convergence:

r(a∗)− ⟨πT , r⟩ ≤
(
1− 1

K

)
exp

(
−η∆min T

K

)
,

where T is the number of iterations, a∗ is the optimal arm and ∆min := mina′ ̸=a∗ ∆(a∗, a′) =
r(a∗)− r(a) is the gap.

Proof . As in equation (3), we can write the update for arm a as following where ∆(a, a′) =
r(a)− r(a′),

πt+1(a) = πt(a)

1 + η
∑
a′ ̸=a

πt(a
′)∆(a, a′)



1− πt+1(a
∗) = 1− πt(a

∗)− η πt(a
∗)

∑
a′ ̸=a∗

πt(a
′)∆(a∗, a′)

 (5)

We first find a lower-bound for
∑

a′ ̸=a∗ πt(a
′)∆(a∗, a′):∑

a′ ̸=a∗

πt(a
′)∆(a∗, a′) ≥ ∆min

∑
a′ ̸=a∗

πt(a
′)

= ∆min(1− πt(a
∗))

(6)

Next, we observe that
∑

a′ ̸=a∗ πt(a
′)∆(a∗, a′) ≥ 0. Using this information and starting with a

uniform initialization for selecting an arm implies a monotonic improvement on the probability of
selecting the optimal arm:

πt+1(a
∗) > πt(a

∗) > ... > π0(a
∗) =

1

K
(7)

9
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Let ϵt = 1− πt(a
∗).

ϵt+1 = ϵt − η πt(a
∗)

∑
a′ ̸=a∗

πt(a
′)∆(a∗, a′)


≤ ϵt −

η

K

∑
a′ ̸=a∗

πt(a
′)∆(a∗, a′)

 (using (7))

≤ ϵt −
η∆min

K
ϵt (using (6))

= ϵt(1−
η∆min

K
)

Recursing from t = 0 to t = T − 1 we have:

ϵT ≤ ϵ0(1−
η∆min

K
)T

≤ ϵ0 exp(
−η∆minT

K
) (using 1− x ≤ exp(−x))

= (1− 1

K
) exp(

−η∆minT

K
)

Finally, we define the sub-optimality gap, δT := r(a∗)− ⟨πT , r⟩:

δT =
∑
a′

πT (a
′)
[
r(a∗)− r(a′)

]
=
∑
a′ ̸=a

πT (a)∆(a∗, a)

≤ max
a′

∆(a∗, a′)
∑
a′ ̸=a

πT (a)

= max
a′

∆(a∗, a′)(1− πT (a
∗))

≤ 1− πT (a
∗) (using the fact 0 ≤ r ≤ 1)

= ϵT

≤ (1− 1

K
) exp(

−η∆minT

K
)

10
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Theorem 4.3 Using the SPMA update in Eq. (4) with (i) ηa,a′ = 1
|∆(a,a′)| and a (ii) uniform

initialization similar to Theorem 4.1 results in valid probability distributions and converges as:

r(a∗)− ⟨πT , r⟩ ≤
[(

1− 1

K

)]2T
where T is the number of iterations, a∗ is the optimal arm and ∆(a, a′) := r(a)− r(a′) represents
the reward gap between arms a and a′.

Proof We define ∆(a, a′) := r(a)− r(a′),

Aπt = r(a)− ⟨πt, r⟩

=
∑
a′

πt(a
′)[r(a)− r(a′)]

=
∑
a′

πt(a
′)∆(a, a′)

Choosing different step sizes for every pair of arms, depending on their corresponding gap,
ηa,a′ =

1
|∆(a,a′)| we get the following update for πt+1(a):

πt+1(a) = πt(a)

1 + ∑
a′ ̸=a

ηa,a′πt(a
′)∆(a, a′)


= πt(a)

1 + ∑
a′ ̸=a

πt(a
′) sign (∆(a, a′))

 (i)

Now we check if πt+1 is a probability distribution with this choice of η. Note that ∆(a, a′) =
−∆(a′, a).∑

a

πt+1(a) =
∑
a

πt(a) +
∑
a

πt(a)
∑
a′ ̸=a

πt(a
′) sign (∆(a, a′))

= 1 +
∑

(a,a′),a ̸=a′

πt(a)πt(a
′)(sign (∆(a, a′)) + sign (∆(a′, a)))

= 1 +
∑

(a,a′),a ̸=a′

πt(a)πt(a
′)(sign (∆(a, a′))− sign (∆(a, a′)))

( since ∆(a, a′) = −∆(a′, a))

= 1

Furthermore, it is clear that πt(a) ∈ [0, 1]. Based on this we just need to show that the probability of
the optimal arm a∗ converges to 1.

11
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Computing the probability of pulling the optimal arm using update (i):

πt+1(a
∗) = πt(a

∗)

1 + ∑
a′ ̸=a∗

πt(a
′) sign (∆(a∗, a′))


= πt(a

∗)

1 + ∑
a′ ̸=a∗

πt(a
′)

 (∆(a∗, a′) > 0 ∀a′)

= πt(a
∗) [2− πt(a

∗)] (ii)

We use induction to show πt(a
∗) = 1−

[
(1− 1

K )
]2t solves the recurrence relation (ii). We consider

the uniform distribution over the arms at the initialization i.e. π0(a) = 1
K , ∀a ∈ A. For the base

case, we show the suggested solution satisfies recursion (ii):

π1(a
∗) =

1

K
(2− 1

K
) (using the recursion in (ii))

= (1− 1 +
1

K
)(1 + 1− 1

K
)

= 1− [(1− 1

K
)]2

Assuming the suggested solution is true for t, we show it is also true for t+ 1:

πt+1(a
∗) = [1− (1− 1

K
)2

t
][2− 1 + (1− 1

K
)2

t
]

= 1− [(1− 1

K
)2

t+1
]

Let δT := r(a∗)− ⟨πT , r⟩ represent the sub-optimality gap.

δT =
∑
a′

πT (a
′)
[
r(a∗)− r(a′)

]
=
∑
a′ ̸=a

πT (a)∆(a∗, a)

≤ max
a′

∆(a∗, a′)
∑
a′ ̸=a

πT (a)

≤ 1− πT (a
∗) (using the fact 0 ≤ r ≤ 1)

=

[
(1− 1

K
)

]2T
(using the formula for πT (a∗))

12
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Appendix B. MDP Proofs

Theorem 4.2 Using the SPMA update in Eq. 2 with (i) a step-size η < min
{
1− γ, 1

Ct(1−γ)

}
results

in the following convergence:

∥J(π∗)− J(πT )∥∞ ≤

(
T−1∏
t=0

(1− ηCt (1− γ))

)
∥J(π∗)− J(π0)∥∞ ,

where T is the number of iterations, π∗ is the optimal policy, Ct := mins{πt(ãt(s)|s)∆t(s)},
ãt(s) := argmaxaQ

πt(s, a) and ∆t(s) := maxaQ
πt(s, a)−maxa̸=ãQ

πt(s, a).

Proof First, we use the value difference Lemma to show the sMDPO update leads to a monotonic
improvement in the value function.

J(πt+1)− J(πt) =
1

1− γ
Es∼dπt+1

[∑
a

πt+1(a|s)Aπt(s, a)

]
(8)

Plugging in the sMDPO update into the term in the bracket we obtain:∑
a

πt+1(a|s)Aπt(s, a) =
∑
a

πt(a|s)Aπt(s, a)[1 + ηAπt(s, a)]

=
∑
a

πt(a|s)Aπt(s, a) + η
∑
a

πt(a|s)[Aπt(s, a)]2

= η
∑
a

πt(a|s)[Aπt(s, a)]2

> 0

Hence J(πt+1) ≥ J(πt) =⇒ Js(πt+1) ≥ Js(πt). We now compare sMDPO with a greedy update
to show:

η
∑
a

πt(a|s)[Aπt(s, a)]2 ≥ η Ctmax
a

Aπt(s, a) (9)

Recall ãt(s) := argmaxaA
πt(s, a). We can split the sum on the LHS of the above over ãt(s):

η
∑
a

πt(a|s)[Aπt(s, a)]2 = η πt(ãt(s)|s)[max
a

Aπt(s, a)][max
a

Aπt(s, a)]

+ η
∑

a̸=ãt(s)

πt(a|s)[Aπt(s, a)]2
(10)

Let π̃t be the following distribution over the actions.

π̃t(a|s) =

{
0 if a = ãt(s)

πt(a|s)
1−πt(ãt(s)|s) otherwise

Re-writing
∑

a πt(a|s)Aπt(s, a) = 0 using the above distribution we obtain:

(1− πt(ãt(s)|s)) Ea∼π̃t [A
πt(s, a)] + πt(ãt(s)|s)Aπt(s, ãt(s)) = 0

13
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(1− πt(ãt(s)|s)) Ea∼π̃t [A
πt(s, a)] = −πt(ãt(s)|s)Aπt(s, ãt(s)) (11)

Expanding the second term in Eq. 10 using π̃t we obtain:

η
∑

a̸=ãt(s)

πt(a|s)[Aπt(s, a)]2 = η (1− πt(ãt(s)|s)) Ea∼π̃t [A
πt(s, a)]2

≥ η (1− πt(ãt(s)|s)) (Ea∼π̃t [A
πt(s, a)])2 (using E[x2] ≥ (E[x])2)

= η (1− πt(ãt(s)|s)) (Ea∼π̃t [A
πt(s, a)]) (Ea∼π̃t [A

πt(s, a)])

= −η πt(ãt(s)|s)Aπt(s, ãt(s)) (Ea∼π̃t [A
πt(s, a)]) (using Eq. 11)

= −η πt(ãt(s)|s)[max
a

Aπt(s, a)] (Ea∼π̃t [A
πt(s, a)])

(using the definition of ãt(s))

Plugging in the result above into Eq. 10 we obtain:

η
∑
a

πt(a|s)[Aπt(s, a)]2 ≥ η πt(ãt(s)|s)[max
a

Aπt(s, a)][max
a

Aπt(s, a)]

− η πt(ãt(s)|s)[max
a

Aπt(s, a)] (Ea∼π̃t [A
πt(s, a)])

≥ η πt(ãt(s)|s)[max
a

Aπt(s, a)]
[
max
a

Aπt(s, a)− Ea∼π̃t [A
πt(s, a)]

]

≥ η πt(ãt(s)|s)[max
a

Aπt(s, a)]

max
a

Aπt(s, a)−max
a̸=ã

Aπt(s, a)︸ ︷︷ ︸
:=∆t(s)


= η πt(ãt(s)|s)[max

a
Aπt(s, a)]∆t(s)

≥ η Ctmax
a

Aπt(s, a)

So far we have shown: ∑
a

πt+1(a|s)Aπt(s, a) = η
∑
a

πt(a|s)[Aπt(s, a)]2

≥ η Ctmax
a

Aπt(s, a)
(12)

We now show a linear convergence when using the sMDPO update. Let T be the Bellman optimality
operator defined as:

(Tv)(s) = max
a

{r(s, a) + γ
∑
s′

Pr[s′|s, a]v(s′)}

Applying the T at iteration t we observe:

TJs(πt)− Js(πt) = max
a

Qπt(s, a)− Js(πt) = max
a

Aπt(s, a) (13)

Let T π be an operator w.r.t π defined as:

T π(v) =
∑
a

π(a|s)r(s, a) + γ
∑
a

π(a|s)
∑
s′

Pr[s′|s, a]v(s′)

14
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Applying T π to Js(π
′) results in:

T πJs(π
′) =

∑
a

π(a|s)r(s, a) + γ
∑
a

π(a|s)
∑
s′

Pr[s′|s, a]Js(π′)

=
∑
a

π(a|s)Qπ′
(s, a)

Using the above we obtain:

T πt+1Js(πt)− Js(πt) =
∑
a

πt+1(a|s)Aπt(s, a)

≥ η Ctmax
a

Aπt(s, a) (using Ineq. 12)

= η Ct [TJs(πt)− Js(πt)] (using Eq. 13)

Assuming π∗ is the optimal policy we have:

Js(π
∗)− Js(πt+1) = Js(π

∗)− T πt+1J(πt+1) (since T πJs(π) = Js(π))

≤ Js(π
∗)− T πt+1Js(πt) (since Js(πt+1) ≥ Js(πt) ∀s)

= Js(π
∗)− Js(πt)− [T πt+1Js(πt)− Js(πt)] (add and subtract Js(πt))

≤ Js(π
∗)− Js(πt)− η Ct [TJs(πt)− Js(πt)]

= η Ct[Js(π
∗)− Js(πt)] + (1− η Ct)[Js(π

∗)− Js(πt)]− η Ct [TJs(πt)− Js(πt)]

= η Ct [TJs(π
∗)− Js(πt)− TJs(πt) + Js(πt)] + (1− η Ct) [Js(π

∗)− Js(πt)]

= η Ct [TJs(π
∗)− TJs(πt)] + (1− η Ct) [Js(π

∗)− Js(πt)]

≤ γ η Ct [Js(π
∗)− Js(πt)] + (1− η Ct) [Js(π

∗)− Js(πt)]
(T is a γ contraction map)

= [1− η Ct(1− γ)] [Js(π
∗)− Js(πt)]

If η < 1
Ct(1−γ) , both sides of the inequality above are positive leading to |Js(π∗) − Js(πt+1)| ≤

(1− η Ct(1− γ))|Js(π∗)− Js(πt)|. This is true for all s ∈ S, hence we have:

∥J(π∗)− J(πt+1)∥∞ ≤ (1− η Ct(1− γ)) ∥Js(π∗)− J(πt)∥∞
= αt ∥Js(π∗)− J(πt)∥∞

Recursing from t = 0 to t = T − 1 we obtain a linear convergence:

∥J(π∗)− J(πt+1)∥∞ ≤

(
T−1∏
t=0

αt

)
∥Js(π∗)− J(π0)∥∞
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Appendix C. Tabular MDP Experiments

For the tabular MDP experiments, we use Cliff World [22] and Frozen Lake [4] as configured in [27]
and initialize z ∈ RS×A uniformly , i.e., π0(a|s) = 1

|A| for each a and s. Furthermore, for each
algorithm, we set η using a grid search and pick the ones that result in the best area under the curve.
The tabular MDP results suggest SPMA and MDPO [25] achieve similar performance and they both
outperform SPG [20, 23] (see Fig. 2). To analyze the sensitivity of each algorithm to the choice of η,
we examine each optimizer across different values of η. The results in Fig. 3 suggest that overall
SPG [20, 23] (in green) is more sensitive to different values of η compared to SPMA (blue) and MDPO
(red) [25]

Figure 2: SPMA matches the performance of MDPO and they both outperform SPG.

Figure 3: SPG’s (green) is more sensitive to η compared to SPMA and MDPO (blue and red).
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Appendix D. Handling Function Approximation

In order to incorporate function approximation, Vaswani et al. [26] distinguish between a pol-
icy’s functional representation and parameterization. The functional representation of a policy
defines its sufficient statistics. For example, for the direct representation, we represent a policy
via the set of distributions π(·|s) ∈ ∆A for state s ∈ S. On the other hand, for the softmax
representation, we represent a policy by the set of logits zπ(s, a) for each (s, a) pair such that
π(a|s) = exp(zπ(s,a))/

∑
a′ exp(z

π(s,a′)). Furthermore, the policy parameterization is determined by
a model (with parameters θ) that realizes these statistics. For example, we could use a neural-
network to parameterize the logits corresponding to the policy’s softmax representation, rewriting
zπ(s, a) = zπ(s, a|θ) where the model is implicit in the zπ(s, a|θ) notation. Note that the policy
parameterization can be chosen independently of its functional representation and defines the set Π
of realizable policies that can be expressed with the parametric model at hand.

In the special case of the tabular parameterization (no function approximation), a policy’s
representation is the same as it parameterization, which corresponds to having a parameter for each
state-action pair and is equivalent to the setup analyzed in Section 4. Vaswani et al. [26] show that
using functional mirror ascent with direct representation and negative entropy mirror map recovers
the surrogate function ℓt(θ) for MDPO [25] at iteration t:

ℓt(θ) = Es∼dπt

[
Ea∼πt(.|s)

[
π(a|s, θ)
πt(a|s)

(
Q̂πt(s, a)− 1

η
log

(
π(a|s, θ)
πt(a|s)

))]]
,

where Q̂πt(s, a) is the inexact Q function estimated via interacting with the environment. In the
special case of tabular parameterization, the MDPO surrogate can be solved in closed form at each
iteration and results in the PMD update. Similarly, using functional mirror ascent with the softmax
representation and the log-sum-exp mirror map recovers the following surrogate function (referred to
as sMDPO in Vaswani et al. [26]) at iteration t:

ℓt(θ) = Es∼dπt

[
Ea∼πt(.|s)

[(
Âπt(s, a) +

1

η

)
log

(
π(a|s, θ)
πt(a|s)

)]]
,

where Âπt(s, a) is the inexact advantage function estimated via interacting with the environment. In
the special case of tabular parameterization, the above surrogate can be solved in closed form at each
iteration and results in the SPMA update in Eq. (2).

In each iteration t, the agent first collects data, including visited states, actions taken, and rewards
received, through interactions with the environment. This data is used to (i) construct a surrogate
objective ℓt(θ) for the actor-network and (ii) compute the mean squared error loss between the
expected returns and the critic network’s predictions. Both networks are optimized for m epochs in
each iteration t.

17



FAST CONVERGENCE OF SOFTMAX POLICY MIRROR ASCENTFOR BANDITS & TABULAR MDPS

Appendix E. Additional Details for Stable Baselines Experiments

We use m = 5 epochs in each iteration t of the optimization. For all hyper-parameters not mentioned
in the main paper, we use their default values from stable baselines [18], except for the batch size and
the Adam optimizer [10], which is used to optimize the surrogate objective for m epochs. Instead,
we employ a full batch and minimize the surrogate in the deterministic setting using the Armijo line
search [2]. This approach is motivated by two factors: (i) performing a grid search for the functional
step size η is already computationally expensive, making an additional grid search for the inner loop
step sizes infeasible, and (ii) this method yields better results compared to the default settings in
stable baselines [18].
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