
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EFFICIENTLY LEARNING AT TEST-TIME:
ACTIVE FINE-TUNING OF LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent efforts in fine-tuning language models often rely on automatic data
selection, commonly using Nearest Neighbors retrieval from large datasets.
However, we theoretically show that this approach tends to select redundant
data, limiting its effectiveness or even hurting performance. To address this, we
introduce SIFT, a data selection algorithm designed to reduce uncertainty about
the model’s response given a prompt, which unifies ideas from retrieval and active
learning. Whereas Nearest Neighbor retrieval typically fails in the presence of
information duplication, SIFT accounts for information duplication and optimizes
the overall information gain of the selected examples. We focus our evaluations
on fine-tuning at test-time for prompt-specific language modeling on the Pile
dataset, and show that SIFT consistently outperforms Nearest Neighbor retrieval,
with minimal computational overhead. Moreover, we show that our uncertainty
estimates can predict the performance gain of test-time fine-tuning, and use this
to develop an adaptive algorithm that invests test-time compute proportional to
realized performance gains. We provide the activeft (Active Fine-Tuning)
library which can be used as a drop-in replacement for Nearest Neighbor retrieval.

1 INTRODUCTION

0 20 40

Test-Time Iterations

0.8

1.0

1.2

1.4

1.6

B
its

pe
rB

yt
e

(↓
be

tte
r)

SIFT (ours)

Nearest Neighbor
with duplication

Nearest Neighbor
without duplication

Figure 1: Selecting fine-tuning data
using SIFT (red) robustly outperforms
Nearest Neighbor retrieval (black) and
avoids the failure-mode of Nearest
Neighbor retrieval where the same data
is selected repeatedly, which is a com-
mon result of information duplication.

The standard paradigm of machine learning separates
training and testing. Training aims to learn a model by
inductively extracting general rules from data, and testing
applies this model to new, unseen data. We investigate
an alternative transductive paradigm where the model
is fine-tuned at test-time specifically to the given task.
Variations of this paradigm have been studied since the
inception of machine learning as a field. Early examples
are local learning (Cleveland, 1979; Cleveland & Devlin,
1988; Atkeson et al., 1997) and local fine-tuning (Bottou
& Vapnik, 1992). More recently, with the advent of large
pre-trained models which have good representations
and are strong foundations for fine-tuning, the idea of
test-time fine-tuning has re-gained attention (Krause
et al., 2018; 2019; Sun et al., 2020). Hardt & Sun (2024)
show that fine-tuning on data related to the prompt to a
large language model (LLM) can significantly improve
performance. Also, test-time fine-tuning is the central
component of state-of-the-art approaches to the ARC chal-
lenge (Chollet, 2019; Cole & Osman, 2023; Akyürek et al., 2024), a non-saturated benchmark which
is intended to test reasoning capabilities based on “core knowledge” rather than mere memorization.

Active Fine-Tuning: Effective data selection for fine-tuning LLMs Test-time fine-tuning
demands automatic data selection since manually selecting data for each test instance is infeasible.
Moreover, the sample efficiency of test-time fine-tuning is a central bottleneck as the number
of gradient steps is directly proportional to inference time. Previous works on data selection for
fine-tuning LLMs have fundamentally relied on Nearest Neighbor retrieval within some embedding
space (Hardt & Sun, 2024; Xia et al., 2024). We show theoretically and empirically that Nearest
Neighbor retrieval is insufficient for fine-tuning LLMs since it can lead to the selection of redundant

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

data. Notably, recent works using influence functions for data selection such as Xia et al. (2024)
have pointed out this limitation. In contrast, a large body of work on (inductive) active learning
has studied non-redundant data selection (e.g., Sener & Savarese, 2017; Ash et al., 2020; Yehuda
et al., 2021; Kirsch et al., 2018) that covers the data manifold well (cf. Figure 2). Retrieval and active
learning can be seen as two extreme ends of a spectrum: retrieval selects relevant but potentially
redundant data, while active learning selects diverse but potentially irrelevant data.

Figure 2: We consider a scenario where
we have a pre-trained language model
capturing a latent manifold (red) in the
large sequence space (white). We aim
to improve the models performance on
a given prompt (blue) by efficiently fine-
tuning the model on few relevant and
diverse data points (black) at test-time.

We bridge this gap by unifying ideas from retrieval and
active learning in SIFT, an algorithm based on emerging
literature on transductive active learning (Hübotter et al.,
2024) that Selects Informative data for Fine-Tuning as
illustrated in Figure 2. Our results show that SIFT leads
to substantial improvements in performance and efficiency.
Concretely, we show the following:

1. Nearest Neighbor retrieval is insufficient (§2): We
prove that selecting the top-N highest scoring points
from a large dataset according to a fixed scoring
function leads to the selection of redundant data.

2. SIFT estimates uncertainty about responses (§3):
We develop the notion of uncertainty about the
response to the prompt, and derive an anytime high
probability bound to the total variation distance
between the model’s distribution over responses and
the ground truth which is governed by this uncertainty.

3. SIFT provably reduces uncertainty (§4): We propose SIFT, an algorithm that selects data
which reduces uncertainty about the response to the prompt. We prove statistical rates for the
uncertainty reduction (§4.1) and show that SIFT is compute-efficient, with minimal overhead
compared to Nearest Neighbor retrieval (§4.2).

4. SIFT performs better and is more robust than Nearest Neighbor retrieval (§5): We find that
fine-tuning an LLM on data selected by SIFT consistently and robustly improves performance,
which is not the case with Nearest Neighbor retrieval. Moreover, our results suggest that at test-
time, an LLM might be able to learn more effectively through fine-tuning than from its context.

5. SIFT can invest test-time compute proportionally to performance gains (§6): We observe
that our uncertainty estimates can accurately predict the performance gain of test-time fine-tuning.
Motivated by this, we dynamically adapt compute to the expected performance gain.

2 TEST-TIME FINE-TUNING

We define test-time fine-tuning of LLMs (Hardt & Sun, 2024) as follows. We consider a domain X
of token sequences and assume that we have access to a large dataset of examples D ⊆ X which we
call the data space. We further assume that we have access to a pre-trained autoregressive language
model that maps token sequences X to probability distributions over the next token from a vocabulary
of size V . Our work addresses the central question:

Given a prompt x⋆ ∈ X , how can we effectively select fine-tuning data
from the large dataset D such that the fine-tuned model performs well on the prompt?

We then fine-tune the model for a single gradient step on each selected sequence.

Locally adjusting a model at test-time has gained popularity with few-shot in-context learning (Brown
et al., 2020; Wei et al., 2022b; Bubeck et al., 2023; OpenAI, 2024) and retrieval augmented
generation (RAG, Lewis et al., 2019; Guu et al., 2020; Borgeaud et al., 2022). In contrast to this
approach, test-time fine-tuning works by fine-tuning the parameters of a pre-trained model at test-time
specifically to each prompt. Notably, test-time fine-tuning takes time linear in the number of tokens
whereas in-context learning with a transformer has quadratic complexity (Vaswani et al., 2017).
Next to this, Hardt & Sun (2024) and other works have found (test-time) fine-tuning to perform
substantially better than in-context learning (Hu et al., 2022; Mosbach et al., 2023). This work further

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

improves the performance of test-time fine-tuning. Prior work has also studied how one can explicitly
meta-learn the ability to perform test-time fine-tuning (Finn et al., 2017; Sun et al., 2024), though
we find this capability to emerge even from models that are not explicitly trained in this way.

The central question studied in this work also arises when fine-tuning LLMs during post-training. For
example, in targeted instruction tuning, the goal is to fine-tune a model to obtain desired capabilities,
which are commonly embodied by a set of examples x⋆ (Xia et al., 2024). The extension of our
work to such a “batched” setting is straightforward.

2.1 NEAREST NEIGHBOR RETRIEVAL IS INSUFFICIENT

Prompt: What is the age of Michael Jordan
and how many kids does he have?
Nearest Neighbor:
1. The age of Michael Jordan is 61 years.

2. Michael Jordan was born on February 17, 1963.

SIFT (ours):
1. The age of Michael Jordan is 61 years.

2. Michael Jordan has five children.

Figure 3: We retrieve two data points to answer the
prompt. Nearest Neighbor selects redundant data,
while SIFT yields maximal information (cf. §L).

Prior work on data selection for fine-tuning has
relied on Nearest Neighbor retrieval. The idea
of making predictions on x⋆ depending on its
nearest neighbors has been around as long as
machine learning itself (Fix, 1951; Cover &
Hart, 1967). Bottou & Vapnik (1992) were the
first to apply this idea to the fine-tuning of convo-
lutional neural networks by selecting the nearest
neighbors of a test image in pixel-space. More
recently, due to advances in representation learn-
ing (Devlin et al., 2018; Reimers & Gurevych,
2019) and efficiency (e.g., Johnson et al., 2019;
Aumüller et al., 2020), Nearest Neighbor
retrieval has regained attention and been applied
to test-time fine-tuning (Hardt & Sun, 2024).

Xia et al. (2024) use influence functions (Cook, 1977; Koh & Liang, 2017; Pruthi et al., 2019) to
select data for fine-tuning LLMs. This line of work aims to select data that reduces a first-order
Taylor approximation to the test loss after fine-tuning, an approach that corresponds to Nearest
Neighbor retrieval in a certain embedding space. They highlight two main limitations of the use
of influence functions and Nearest Neighbor retrieval for data selection:

• Nearest Neighbor retrieval leads to the selection of redundant data. Figure 3 illustrates this
limitation with a qualitative example. We formalize this limitation in Proposition K.1, which we
summarize here informally:

Informal Proposition 2.1. Selecting the top-N nearest neighbors from the data space (according
to cosine similarity or Euclidean distance) may not reduce the uncertainty about the response to
the prompt beyond fine-tuning on the closest neighbor. Every additional passage may be redundant.

• Nearest Neighbor retrieval selects data with high positive cosine similarity to the prompt. Yet, data
with high negative cosine similarity can be equally informative as data with high positive cosine
similarity (Xia et al., 2024, Appendix K.2), but is ignored by standard Nearest Neighbor retrieval.

In this work, we propose SIFT and show that it naturally addresses both limitations.

3 PRELIMINARIES: UNCERTAINTY ESTIMATION FOR FINE-TUNING

We suppose the assigned probability that y ∈ [V] is the class label of an input x ∈ X is given by
sy(f

⋆(x)), where sy is the softmax sy(f) =̇ exp(fy)/(
∑V

i=1 exp(fi)). That is, f⋆(x) denotes the
“ground truth” logits for a given input x. In the context of language modeling, V is the number of
tokens in the vocabulary, and y denotes the index of the next token. We defer all proofs to Appendix K.

We use a surrogate model to quantify the informativeness of data, which we define next.

Assumption 3.1 (Surrogate model: Linear model class within a known latent space). We assume
f⋆(x) = W ⋆ϕ(x) with W ⋆ ∈ RV×d and where ϕ(·) ∈ Rd denotes known embeddings.

The surrogate model uses the latent space induced by the pre-trained model to describe the data
manifold. We emphasize that while SIFT relies on this surrogate model for data selection, it still fine-
tunes the full pre-trained model, including latent features. Surrogate dense embedding models of this
kind have been used extensively for data selection via Nearest Neighbor retrieval (e.g., Lewis et al.,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2019; Karpukhin et al., 2020; Borgeaud et al., 2022; Xia et al., 2024), and to understand the training
dynamics and generalization of large neural networks (e.g., Jacot et al., 2017; Lee et al., 2018; Malladi
et al., 2023; Templeton et al., 2024; Park et al., 2024). Furthermore, a surrogate model that assumes
linearity in some fixed latent space may be a reasonable approximation for test-time fine-tuning since
the latent space of the unfrozen model is not expected to change substantially by a few gradient steps.

In this work, we explore a scenario where we have a pre-trained model fpre(x) = W preϕ(x). We
let f(x;W) =̇ Wϕ(x) and denote by L(W ;D) the negative log-likelihood loss of f(·;W) on a
datasetD of inputs x with corresponding class labels y: L(W ;D) =̇ −∑

(x,y)∈D log sy(f(x;W)).

Uncertainty Estimation Our first intermediate goal is to estimate the uncertainty about the response
to a given prompt x⋆ after having fine-tuned on selected data Dn of size n. To this end, we
generalize prior work on confidence sets under categorical feedback (i.e., class feedback, Amani &
Thrampoulidis, 2020; Zhang & Sugiyama, 2023) to our fine-tuning setting. We consider the function
classWB =̇ {W ∈ RV×d | ∥W −W pre∥F ≤ B} where ∥·∥F denotes the Frobenius norm and with
B a constant such that W ⋆ ∈ WB . Then given data Dn, we can refine the prior estimate W pre

of W ⋆ by minimizing the regularized negative log-likelihood loss

Lλ(W ;Dn) =̇ L(W ;Dn) +
λ

2
∥W −W pre∥2F (1)

with regularization coefficient λ > 0. We write its minimizer as Wn =̇ argminW∈WB
Lλ(W ;Dn).

We will further denote the ground truth probability distribution over the response to x by
s⋆(x) =̇ s(f⋆(x)) and our approximation after selection of n samples by sn(x) =̇ s(f(x;Wn)).

We construct confidence sets of the form [sn(x) ± βn(δ)σn(x)] centered around this prediction,
and show their uniform anytime validity. The width of these sets is characterized by our central
quantity σn(x) which we define next. We consider the inner-product kernel k(x,x′) =̇ ϕ(x)⊤ϕ(x′)
and define for a set of inputs X = {x1, . . . ,xn} ⊆ D:

σ2
X(x) =̇ k(x,x)− k⊤

X(x)(KX + λκIn)
−1kX(x) (2)

where kX(x) = (k(x1,x), . . . , k(xn,x)) ∈ Rn, KX ∈ Rn×n is the kernel matrix satisfying
(KX)i,j = k(xi,xj), and κ =̇ supx∈X ,W∈WB

1/λmin(A(x;W)). Here, A(x;W) ∈ RV×V is
the matrix satisfying (A(x;W))i,j =̇ si(x;W)(1{i = j} − sj(x;W)) which is the proper gener-
alization of the derivative of the sigmoid function, standard in the analysis of binary feedback (Faury
et al., 2020; Pásztor et al., 2024). We write σ2

n(x) =̇ σ2
Xn

(x) where Xn ⊆ D ⊆ X are the inputs
in Dn. With this we are ready to state our first result, namely that for careful choice of βn(δ), the
confidence sets contain s⋆(x) simultaneously for all x ∈ X and n ≥ 1 with probability at least 1− δ.
Theorem 3.2 (Confidence Sets). Let Assumption 3.1 hold and W ⋆ ∈ WB . Let δ ∈ (0, 1) and set

βn(δ) =̇ 2
√
V (1 + 2B)

[
B +

LV 3/2d

λ
log

(
2

δ

√
1 +

n

dλ

)]
∈ O(log(n/δ)) (3)

where L =̇ supx∈X ,W∈WB
λmax(A(x;W)). Then

P(∀n ≥ 1,x ∈ X : dTV(sn(x), s
⋆(x)) ≤ βn(δ)σn(x)) ≥ 1− δ

where dTV (s, s′) =̇ 1
2

∑
i |si − s′i| is the total variation distance.

We use σn(x) as a proxy to the uncertainty about the response to x after having fine-tuned on
the selected data Dn, since it directly governs the size of the confidence sets around our current
estimate of response probabilities. This uncertainty is a key quantity not just in classification: In
Appendix K.5, we state analogous confidence sets for regression with the standard squared error
loss, building on results by Abbasi-Yadkori (2013) and Chowdhury & Gopalan (2017).

The Close Relationship of Regularized Loss Minimization and Test-Time Fine-Tuning Recall
that test-time fine-tuning does not solve the regularized objective of Equation (1), but instead takes a
single gradient step. So why do we expect the surrogate model f(·;Wn) be closely related to the
fine-tuned fpre? To answer this question, we contrast two alternative models:

• Wλ =̇ argminW Lλ(W), (minimizer of regularized loss)

• Ŵη =̇ W pre − η∇L(W pre) with any step size η > 0, (single gradient-step fine-tuning)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where we keep the dataset D fixed and omit the dependency on D. Our following proposition shows
that both models are close if the loss landscape is relatively smooth and for careful choice of λ ≈ 1

η .

Proposition 3.3. It holds that ∥W1/η − Ŵη ∥F ≤ η ∥∇L(W1/η)−∇L(W pre)∥F.

Recent works have also observed W1/η ≈ Ŵη empirically (Ali et al., 2019; 2020). Intuitively,
with a larger step size, Ŵη is farther away from W pre, and hence corresponds to the regularized
estimate with less regularization. This connection between regularized loss minimization and
test-time fine-tuning is closely linked to the tight connection between regularization and early
stopping (Morgan & Bourlard, 1989; Yao et al., 2007; Li et al., 2020). We will use this connection
in the following to derive SIFT in the context of fine-tuning.

4 SIFT: EFFICIENTLY REDUCING UNCERTAINTY ABOUT THE RESPONSE

We introduce SIFT, an algorithm for selecting data for fine-tuning that effectively reduces the uncer-
tainty about the response to the prompt x⋆ ∈ X . Note that we can compute the uncertainty σX(x⋆)
about the response to the prompt x⋆ for any selected data X ⊆ D in closed-form, since its definition
(cf. Equation (2)) depends only on the selected inputs X . SIFT minimizes this uncertainty about x⋆:

xn+1 =̇ argmin
x∈D

σ2
Xn∪{x}(x

⋆) = argmax
x∈D

k⊤
Xn∪{x}(x

⋆)(KXn∪{x} + λ′In+1)
−1kXn∪{x}(x

⋆).

(SIFT(λ′))

SIFT selects data that minimizes a bound on the approximation error of the surrogate model, and then
fine-tunes the full LLM using this data. We discuss the design choices, including the choice of embed-
dings, that make SIFT efficient in §4.2. In §C.1, we illustrate with an example of how SIFT balances
relevance and diversity, where we also see that the free parameter λ′ = λκ controls this trade-off.
Larger λ′ emphasize relevance of selected data, while smaller λ′ emphasize diversity. Probabilistically,
SIFT can be interpreted as maximizing the information gain of the selected data Xn on the response
to the prompt x⋆ in a tractable model. We formally introduce this interpretation of SIFT in §G.

4.1 UNCERTAINTY PROVABLY VANISHES

We prove that unlike with Nearest Neighbor retrieval, the uncertainty about the response to the prompt
vanishes if SIFT is used to select data for fine-tuning. We give an informal overview here, and defer
the formal treatment to §C.2. Our theoretical analysis shows that test-time fine-tuning can fully
reduce uncertainty only if the data space contains sufficient information to determine the correct
response. If the data space does not contain all relevant information, the remaining uncertainty is
quantified by the limiting uncertainty after seeing “all data in the data space infinitely often”, which
we call the irreducible uncertainty and denote by σ∞(x⋆). We provide the formal definition in §C.2,
but intuitively, the irreducible uncertainty is the largest quantity satisfying σX(x⋆) ≥ σ∞(x⋆) for all
X ⊆ D. We then specialize the result of Hübotter et al. (2024) to show that the uncertainty about the
response to the prompt shrinks at the rate Õ(1/

√
n) until it reaches the irreducible uncertainty:

Informal Theorem 4.1 (Convergence Guarantee). Fix any λ′ > 0 and let SIFT(λ′) select Xn from
the data space D. Then for all n ≥ 1 and x⋆ ∈ X ,

σ2
n(x

⋆)− σ2
∞(x⋆) ≤ O(λ′ log n)√

n
.

Naturally, convergence is slower with a larger regularization parameter / smaller step size. Notably,
the irreducible uncertainty depends on the data space. With a large and diverse data space, the
irreducible uncertainty is typically negligible. This statistical guarantee is a key property of SIFT.
As we show in Proposition K.1, Nearest Neighbor retrieval fails to satisfy a guarantee of this kind.

4.2 COMPUTE-EFFICIENT DATA SELECTION

We have established how to select informative data for fine-tuning. Next to good statistical efficiency,
good computational efficiency is key for selecting data at test-time. In the following, we describe
design choices such that SIFT has negligible overhead compared to Nearest Neighbor retrieval.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Sequence-Level Selection In the self-supervised paradigm, each sequence of tokens x ∈ D
corresponds to a dataset of next-token predictions x1:k 7→ xk+1. Rather than selecting individual
next-token predictions from the data space of all sub-sequences x1:k, we select full sequences x from
the significantly smaller data space D, then fine-tune for a single gradient step on each sub-sequence
within x. This is a common practice in prior works that use Nearest Neighbor retrieval for data
selection (e.g., Xia et al., 2024; Hardt & Sun, 2024).

Surrogate Sequence Embedders We use a surrogate sequence embedding model to generate
embeddings of the data space and prompts. We use the same embedding model as Hardt & Sun
(2024) which is a large Roberta model (Liu, 2019) with 355M parameters that was fine-tuned for
one pass on the Pile training set. The embedding dimension is 1024. Unlike Hardt & Sun (2024),
we additionally normalize the embeddings to unit length, the reasons for which we discuss in §D.

We obtain decent performance with this surrogate model. Nevertheless, our theoretical results
indicate that using embeddings extracted from the LLM to be fine-tuned could further improve the
performance of SIFT. Empirical neural tangent embeddings (Wei et al., 2022a; Holzmüller et al.,
2023) and influence function embeddings (Xia et al., 2024) can be implemented efficiently and offer
alternative latent spaces capturing the pre-trained model. We hypothesize that the decent performance
of the surrogate model is explained by the similarity of emergent latent spaces of language models
that were trained on similar data.

50 200 1 000 6 000

Size of Pre-Selected Data Space

1.0×

1.2×

1.4×

1.6×

C
om

pu
te

O
ve

rh
ea

d Retrieval + Training
Retrieval

Figure 4: The (multiplicative) compu-
tational overhead of SIFT compared to
Nearest Neighbor retrieval is minimal.
The compute overhead with a 1k data
space is less than 1.05×.

Efficient Implementation of SIFT In our experiments,
we pre-select 200 candidates via Nearest Neighbor
retrieval with Faiss (Johnson et al., 2019) and then apply
SIFT to select 50 sequences from this smaller data space.
On the Pile dataset, we find that performance can be
increased further by pre-selecting more candidates (cf. Fig-
ure 18 in §H) but the marginal gains diminish. The precise
performance benefit of pre-selecting more candidates may
differ on other datasets. We describe in §H how SIFT can
be solved iteratively without computing the inverse in ev-
ery iteration. When a matrix of the size of the pre-selected
data space fits in GPU memory, we find that SIFT has
a negligible computational overhead compared to Nearest
Neighbor retrieval. We report results with an NVIDIA
RTX 4090 GPU in Figure 4.1 While our main implemen-
tation of SIFT is fast if the data space is small, it does not scale linearly with the size of the data
space K. In §H, we show that a priority queue can be used to achieve an almost-linear runtime in K.

5 RESULTS

We focus on language modeling with causal language models. Following Hardt & Sun (2024), we
fine-tune a pre-trained LLM for a single gradient step each on N = 50 selected data points in the
order that they are selected, most to least relevant. We use the Pile dataset (Gao et al., 2020) for
evaluation, restricting our use to data which is obtained and used in compliance with the terms of
service of the data host. This version of the Pile contains a diverse set of 17 high-quality sub-datasets,
ranging from Q&A to code, scientific publications, math, and more. Concretely, we use the Pile
training set containing 210M sequences of total size 1.3TB as data space for data selection, and we
evaluate on the Pile test set.2 We report the bits per byte metric as recommended by Gao et al. (2020),
which is proportional to the negative log-likelihood loss normalized by a dataset-specific constant.
Error bars correspond to 90% confidence intervals computed via bootstrapping with 1‘000 samples.

Base Models and Baselines We evaluate the GPT-2 model (Radford et al., 2019) with 124M param-
eters also evaluated by Hardt & Sun (2024), with the default learning rate of the transformers
library (Wolf et al., 2020). We obtain analogous results with GPT-2-large (774M parameters) and
the state-of-the-art Phi-3 (3.8B, Abdin et al., 2024).3 With Phi-3, we use low-rank adaptation (LoRA,
Hu et al., 2022), fine-tuning slightly less than 1% of the model’s total parameters. We compare SIFT

1We use the client-server architecture described by Hardt & Sun (2024) with CPU-only servers.
2We evaluate on 1% of the test set (0.1% with Phi-3), corresponding to 1‘812 sequences.
3We detail hyperparameter choices for larger models in §I.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

GPT-2 (124M) GPT-2-large (774M) Phi-3 (3.8B)
70

80

90

100

B
its

pe
rB

yt
e

in
% US

NN
SIFT (ours)

10−4 10−1 102

λ′

70

75

80

85

90
SIFT (ours)
NN

Figure 5: Bits per byte (in % relative to the base model, ↓ better) after 50 test-time iterations.
Left: Performance gains of SIFT are consistent across models. The failure-mode of Nearest
Neighbor consistently performs worse than the base model. Tables 4 and 5 in §F detail our results
with GPT-2-large and Phi-3 analogously to Table 1. Right: Most choices of λ′ lead to comparable
performance. With λ′ →∞, SIFT(λ′) repeatedly selects the nearest neighbor.

with λ′ = 0.01 to Nearest Neighbor retrieval (NN) and the failure mode of Nearest Neighbor retrieval
that repeatedly selects the closest neighbor. The failure mode of Nearest Neighbor retrieval (NN-F)
corresponds to an extreme case of redundancy in the data space which we suspect to be a realistic
scenario in larger or less curated datasets. Finally, we compare to Uncertainty Sampling (US), which
is a widely used active learning strategy (Lewis, 1995; Settles, 2009) that selects the data with the
highest uncertainty in the model’s response by selecting according to xn+1 = argmaxx∈D σ

2
n(x).

We compare to the heuristic that uses US to choose from the 200 nearest neighbors, in which case
US can be understood as finding a diverse cover of this pre-selected data space (see, e.g., Holzmüller
et al., 2023; Kirsch et al., 2018). In contrast, SIFT minimizes the uncertainty in the model’s response
to the prompt x⋆, leading to a “denser” cover close to x⋆ and a “coarser” cover further away from x⋆.

US NN NN-F SIFT ∆

NIH Grants 93.1 (1.1) 84.9 (2.1) 91.6 (16.7) 53.8 (8.9) ↓31.1
US Patents 85.6 (1.5) 80.3 (1.9) 108.8 (6.6) 62.9 (3.5) ↓17.4
GitHub 45.6 (2.2) 42.1 (2.0) 53.2 (4.0) 30.0 (2.2) ↓12.1
Enron Emails 68.6 (9.8) 64.4 (10.1) 91.6 (20.6) 53.1 (11.4) ↓11.3
Wikipedia 67.5 (1.9) 66.3 (2.0) 121.2 (3.5) 62.7 (2.1) ↓3.6
Common Crawl 92.6 (0.4) 90.4 (0.5) 148.8 (1.5) 87.5 (0.7) ↓2.9
PubMed Abstr. 88.9 (0.3) 87.2 (0.4) 162.6 (1.3) 84.4 (0.6) ↓2.8
ArXiv 85.4 (1.2) 85.0 (1.6) 166.8 (6.4) 82.5 (1.4) ↓2.5
PubMed Central 81.7 (2.6) 81.7 (2.6) 155.6 (5.1) 79.5 (2.6) ↓2.2
Stack Exchange 78.6 (0.7) 78.2 (0.7) 141.9 (1.5) 76.7 (0.7) ↓1.5
Hacker News 80.4 (2.5) 79.2 (2.8) 133.1 (6.3) 78.4 (2.8) ↓0.8
FreeLaw 63.9 (4.1) 64.1 (4.0) 122.4 (7.1) 64.0 (4.1) ↑0.1
DeepMind Math 69.4 (2.1) 69.6 (2.1) 121.8 (3.1) 69.7 (2.1) ↑0.3
All 80.2 (0.5) 78.3 (0.5) 133.3 (1.2) 73.5 (0.6) ↓4.8

Table 1: Bits per byte (in % relative to the base model, ↓)
after 50 test-time iterations on individual datasets of the Pile.
We only include datasets with at least 10 examples in our test
set. Bold numbers denote the best performing selected subset.
Numbers in parentheses are standard errors. ∆ denotes the
performance gain of SIFT over the strongest baseline.

Insight 1: SIFT consistently se-
lects better data for fine-tuning than
Nearest Neighbor retrieval.
We show in Figure 1 that SIFT out-
performs NN and avoids its failure
mode where the same data point is
selected repeatedly. In Figure 5 (left),
we show that the performance gains
of SIFT are consistent across models.
Table 1 compares the performance of
SIFT against NN across all datasets of
the Pile, using GPT-2 as base model.
Overall, we find that SIFT improves
performance both on datasets where
NN already performs well, such as
GitHub, and on datasets where NN
performs poorly, such as NIH Grants.
On all datasets of the Pile, SIFT per-
forms at least as well as the strongest
baseline (within margin of error), sug-
gesting that it is a robust method for
data selection. We observe the trend
that relative performance gains of
SIFT over Nearest Neighbor retrieval
increase with model capability. That
is, with stronger base models, informativeness of selected data appears to become more important.

Insight 2: SIFT is robust to the choice of λ′. We evaluate SIFT with varying choices of λ′, and
summarize the results in Figure 5 (right). We include extended results in Table 11 of §J, showing that
for all evaluated λ′ between 1e−8 and 10, SIFT performs at least on-par with Nearest Neighbor re-
trieval on all datasets of the Pile, often outperforming it. This suggests that SIFT is robust to the choice
of λ′. Nevertheless, there may be an advantage to adaptively tuning λ′ (e.g., via cross-validation).
In particular, choosing the best λ′ for each dataset, SIFT outperforms all baselines on every dataset.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

GPT-2 (124M) GPT-2-large (774M) Phi-3 (3.8B) Phi-3 (14B) Gemma-2 (27B)

0.50

0.75

1.00

1.25

B
its

pe
rB

yt
e

Base Context Fine-Tuning

Figure 7: Bits per byte (↓ better), comparing fine-tuning and in-context learning with 50 test-time
examples selected by SIFT. We find that fine-tuning systematically outperforms or performs on-par
with in-context learning, even when fine-tuning only a LoRA adapter as with Phi-3. Test-time
fine-tuning with Phi-3 (3.8B) surpasses the performance of the more than 3× larger Phi-3 (14B)
and the 7× larger Gemma-2 (27B).

Insight 3: SIFT selects data the “right” number of times. Nearest Neighbor retrieval implicitly
relies on non-redundancy within the data space to not select duplicate information, as illustrated in
the example of Figure 3. This is almost never the case in practice, and in the extreme case of duplicate
data, Nearest Neighbor selects the same data point repeatedly. SIFT does not rely on excluding
previously selected data points. Instead, SIFT may select the same data point any number of times,
adaptively taking more than one gradient step on it, if beneficial. To ensure that the selected data is
maximally informative, SIFT takes into account the redundancy of data points explicitly. This makes
SIFT robust to information duplication by design.

overall # = 1 # ≥ 25

0%

50%

100%
B

its
pe

rB
yt

e

Nearest Neighbor
over NN
over NN-F

Figure 6: Bits per byte (in % relative
to NN / NN-F, ↓ better) after 50 test-
time iterations. Error bars correspond to
standard errors. The left bars measure
the performance gain over all of the Pile.
The middle and right bars measure the
performance gain for all prompts where
SIFT selects # unique points.

We illustrate this in Figure 6 where we evaluate the
performance gain of SIFT over Nearest Neighbor and its
failure mode. As expected, we find that on all test prompts
where SIFT selects many unique points, SIFT outper-
forms repeatedly selecting the closest neighbor by a large
margin. Interestingly, we also find that on all test prompts
where SIFT selects only a single point, SIFT outperforms
Nearest Neighbor by a large margin. This suggests that in
some cases repeatedly taking gradient steps on the closest
neighbor is beneficial, and SIFT identifies these cases.

Insight 4: Test-time fine-tuning can significantly
improve language modeling ability. Our results from
Figure 7 indicate that test-time fine-tuning improves the
performance of the base LLM substantially, surprisingly,
even with a state-of-the-art model such as Phi-3. Our Phi-3
with test-time fine-tuning and SIFT achieves 0.595 bits
per byte, outperforming the previous leader in the Pile language modeling benchmark, a 30× larger
model.4 We also evaluate the recent Llama-3.2 family of models (Dubey et al., 2024), and with
Llama-3.2 (3B) as base model we achieve 0.557 bits per byte, a significant improvement upon the
previous state-of-the-art. We compare test-time fine-tuning to the common in-context learning, where
we include as much of the data as possible into the context window of the test instance, in addition
to its original context, by concatenating text in order of selection. While in-context learning tends to
improve the performance of the base model, we find that fine-tuning at test-time tends to outperform
or perform on-par with in-context learning. Furthermore, the compute cost of in-context learning
grows quadratically with the context window size, meaning that including long texts within large
context windows is expensive. Remarkably, test-time fine-tuning consistently outperforms in-context
learning by more than 25% on math and coding, tasks that require more complex reasoning (§F).

Further Insights In §D, we discuss additional findings on active fine-tuning such as that the per-
formance gains of SIFT over Nearest Neighbor retrieval grow with dataset size, and that normalizing
embeddings is important for the effectiveness of data selection. In §E, we discuss additional findings
on test-time fine-tuning, for example, the trend that larger models learn faster at test-time.

4We compare to prior work in the Pile language modeling benchmark in Table 2 of §A.

8

https://paperswithcode.com/sota/language-modelling-on-the-pile

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

10−1

Uncertainty Estimate σ̂n(x⋆)

100

B
its

pe
rB

yt
e

0.2 0.4 0.6

Uncertainty Estimate σ̂n(x⋆)

0.5

1.0

1.5

0 20 40

Test-Time Compute

0%

50%

100%
ADAPTIVE SIFT
SIFT

Compute-Performance Ratio α
0.15 0.2 0.25 0.35 0.5 0.75 1.0 2.0

Figure 8: Left: We visualize the empirical density of the uncertainty estimates σ̂n wrt. the bits per
byte bpbn. Brighter colors indicate higher density on a logarithmic scale. We observe a strong linear
relationship between uncertainty estimates and bits per byte. Middle: We construct a “reliability
diagram” of uncertainty estimates. Notably, since we evaluate with respect to bits per byte rather
than an accuracy, canonical calibration plots are not applicable. In particular, it is well known that
bits per byte do not go to zero for perfect models due to irreducible aleatoric uncertainty, which is
not captured by our epistemic uncertainty estimates. Nevertheless, we observe that our epistemic
uncertainty estimates are predictive of the model’s performance. The red line indicates a linear fit.
Right: We visualize the bits per byte (in % relative to the base model, ↓ better) of all prompts whose
model is fine-tuned at a given iteration. We find that by adaptively stopping with respect to the known
uncertainties σn, we can spend test-time compute proportional to realized performance gains (see
also Figure 26 in §J). Remarks: Results are with GPT-2. In the left and middle plots, we remove the
lowest and highest 0.25% of uncertainty estimates (i.e., the outliers) for better visualization. In the
left plot, we additionally remove the lowest and highest 0.25% of bits per byte.

6 COMPUTE-PROPORTIONAL TEST-TIME FINE-TUNING

We have shown that test-time fine-tuning can improve language modeling ability and that SIFT
is a robust method for data selection, outperforming Nearest Neighbor retrieval. However, a key
shortcoming of previous approaches to test-time fine-tuning is that they spend a fixed amount of
test-time compute, regardless of the nature of the prompt, the available data, or the model. This is not
computationally scalable in many practical applications, since a fixed test-time compute budget leads
to non-proportionate performance gains. For example, for the prompt “Hello” to a chatbot we would
not like to spend any test-time compute, while for a more complex prompt we would like to spend
more compute. In this section, we evaluate whether uncertainty estimates can be used to adaptively
stop test-time fine-tuning such that the realized performance gain is proportional to the compute used.

Insight 5: The response uncertainty can predict performance gain. We find that σn(x⋆) is mono-
tonically and linearly correlated at coefficient ≈ 0.4 with the model error after n test-time iterations,
i.e., the bits per byte bpbn(x

⋆). This is remarkable because σn contains information only from the
surrogate embedding model, and is normalized such that σ0(x⋆) = 1. To determine the importance of
the base model, we also evaluate the denormalized uncertainty estimate σ̂n(x⋆) =̇ σn(x

⋆)·bpb0(x⋆),
which unlike σn cannot be evaluated at test-time. We multiply σn by bpb0 to ensure that the uncer-
tainty measure is in the same units as the performance metric, correcting for the use of normalized
surrogate embeddings. We find that σ̂n(x⋆) is strongly correlated at coefficient ⪆ 0.5 with the bits
per byte. We summarize correlations in Table 12 of §J and visualize the predictive capability of σ̂n in
Figure 8 (left) and Figure 8 (middle). Our findings indicate that approximations of the base model’s
uncertainty, before test-time fine-tuning, can be beneficial. In future work, we intend to determine
whether generating embeddings from the base model can provide such scale-correction.

Recall that SIFT minimizes the response uncertainty σn to the given prompt. The predictive ability
of uncertainty estimates provides an intuitive explanation for the effectiveness of SIFT.

Compute-Proportional Performance Gains: Early stopping at the “right” time. Motivated by
the predictive power of uncertainty estimates, we evaluate whether they can be used to adaptively

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

stop test-time fine-tuning such that the realized performance gain is proportional to the compute used.
In the following, we propose a such a stopping criterion for SIFT. Using the approximation of the
error via uncertainty estimates discussed above and that σ0(x⋆) = 1:

performance gain =
bpb0(x

⋆)

bpbn(x
⋆)
≈ σ0(x

⋆)

σn(x⋆)
=

1

σn(x⋆)
. (4)

We would like to stop fine-tuning when further test-time compute does not yield proportional
performance gain, i.e., when “performance gain < α · n” with n approximating the compute of n
iterations and α a constant comparing the units of compute and performance. Plugging in our above
approximation of the performance gain, we propose to stop test-time fine-tuning before iteration n if

σn(x
⋆) > (αn)−1. (ADAPTIVE SIFT)

Intuitively, this stops fine-tuning the LLM when its progress in crafting a better response stalls. For
complex prompts that benefit from fine-tuning, ADAPTIVE SIFT spends more test-time compute,
whereas for prompts where the model is already strong or where the data space is not informative,
ADAPTIVE SIFT spends less test-time compute. Figure 8 (right) shows that the performance gains of
this approach are proportional to the compute used.

Towards Scaling Laws of Test-Time Fine-Tuning Interestingly, our results bear resemblance
to scaling laws of LLM pre-training (Kaplan et al., 2020; Henighan et al., 2020; Hoffmann et al.,
2022). These scaling laws express the performance of a model as a function of the compute used
for pre-training (e.g., the number of parameters or training tokens). Such scaling laws are crucial for
determining how to optimally spend a fixed amount of compute. Recently, scaling laws for “test-time
inference” have gained attention, where test-time compute is usually spent on search (e.g., beam
search) with a variable number of forward passes of a few-shot prompted base LLM (Brown et al.,
2024; Snell et al., 2024). Our results suggest that similar scaling laws exist for test-time fine-tuning,
expressing the performance of a model as a function of the compute used for fine-tuning at test-time.
Such scaling laws can be an important tool to determine how to spend test-time compute. There
are many open questions in this direction, which we do not address in this work. For example, how
does model size affect the scaling laws of test-time fine-tuning? Or, can a model be fine-tuned at
test-time to build reasoning chains? Based on our results and previous evaluations of fine-tuning and
in-context learning (e.g., Hu et al., 2022; Mosbach et al., 2023; Hardt & Sun, 2024), we conjecture
that test-time fine-tuning may lead to a more efficient use of compute than repeatedly prompting
a base LLM. We believe that these open questions are exciting directions for future work.

7 DISCUSSION AND FUTURE WORK

We propose a data selection algorithm, SIFT, unifying ideas from retrieval and active learning. SIFT
estimates the uncertainty about the response to a given prompt after having been fine-tuned on some
data (§3), and then selects the data that minimizes this uncertainty (§4). This addresses the limitations
of Nearest Neighbor retrieval (§2). SIFT can be seen as a generalization of Nearest Neighbor
retrieval from a search method to a learning method, which ensures explicitly that the retrieved data
is maximally informative. We show on the Pile dataset that SIFT consistently outperforms Nearest
Neighbor retrieval in prompt-specific fine-tuning at test-time and that this kind of local learning
can be more effective than locally learning from examples in-context (§5). Finally, we observe that
our uncertainty estimates can predict the performance gain of test-time fine-tuning, and use this to
develop an adaptive algorithm which achieves compute-proportional performance gains (§6).

Test-time fine-tuning addresses a fundamental limitation of in-context learning, namely that in-context
learning is typically limited to a fixed and finite context window. In contrast, test-time fine-tuning
allows the LLM to dynamically and effectively access a potentially unbounded non-parametric
memory. By improving the effectiveness of test-time fine-tuning, this work opens up several exciting
directions for future research. Test-time fine-tuning may be used to ground the model on a trusted
dataset, mitigate biases against under-represented groups in the training data, or to dynamically
include private data depending on user privileges. Particularly interesting would be a broad evaluation
on non-perplexity tasks such as code generation or in the life sciences with large-scale medical or
protein data. Unlike few-shot in-context learning which is limited in scope to autoregressive models,
test-time fine-tuning and SIFT may be extended to other model classes such as diffusion models.
Furthermore, SIFT may be used effectively in other settings that require automatic data selection,
such as targeted instruction tuning during post-training of LLMs. Finally, our results suggest scaling
laws for test-time fine-tuning and we outline several exciting open questions (§6).

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Yasin Abbasi-Yadkori. Online learning for linearly parametrized control problems. PhD thesis,
University of Alberta, 2013.

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany
Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat Behl, et al. Phi-3 technical report:
A highly capable language model locally on your phone. arXiv preprint arXiv:2404.14219, 2024.

Ekin Akyürek, Mehul Damani, Linlu Qiu, Han Guo, Yoon Kim, and Jacob Andreas. The surprising
effectiveness of test-time training for abstract reasoning. arXiv preprint arXiv:2411.07279, 2024.

Alnur Ali, J Zico Kolter, and Ryan J Tibshirani. A continuous-time view of early stopping for least
squares regression. In AISTATS, 2019.

Alnur Ali, Edgar Dobriban, and Ryan Tibshirani. The implicit regularization of stochastic gradient
flow for least squares. In ICML, 2020.

Sanae Amani and Christos Thrampoulidis. Ucb-based algorithms for multinomial logistic regression
bandits. NeurIPS, 2020.

Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski. A latent variable model
approach to pmi-based word embeddings. Transactions of the Association for Computational
Linguistics, 4, 2016.

Jordan T Ash, Chicheng Zhang, Akshay Krishnamurthy, John Langford, and Alekh Agarwal. Deep
batch active learning by diverse, uncertain gradient lower bounds. In ICLR, 2020.

Christopher G Atkeson, Andrew W Moore, and Stefan Schaal. Locally weighted learning. Lazy
learning, 1997.

Martin Aumüller, Erik Bernhardsson, and Alexander Faithfull. Ann-benchmarks: A benchmarking
tool for approximate nearest neighbor algorithms. Information Systems, 87, 2020.

Marco Bagatella, Jonas Hübotter, Georg Martius, and Andreas Krause. Active fine-tuning of generalist
policies. arXiv preprint arXiv:2410.05026, 2024.

Soumya Basu, Ankit Singh Rawat, and Manzil Zaheer. A statistical perspective on retrieval-based
models. In ICML, 2023.

Aman Bhargava, Cameron Witkowski, Manav Shah, and Matt Thomson. What’s the magic word? a
control theory of llm prompting. arXiv preprint arXiv:2310.04444, 2023.

Satwik Bhattamishra, Arkil Patel, Phil Blunsom, and Varun Kanade. Understanding in-context
learning in transformers and llms by learning to learn discrete functions. In ICLR, 2024.

Freddie Bickford Smith, Andreas Kirsch, Sebastian Farquhar, Yarin Gal, Adam Foster, and Tom
Rainforth. Prediction-oriented bayesian active learning. In AISTATS, 2023.

Ilija Bogunovic, Jonathan Scarlett, Andreas Krause, and Volkan Cevher. Truncated variance reduction:
A unified approach to bayesian optimization and level-set estimation. In NeurIPS, 2015.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Millican,
George Bm Van Den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, et al.
Improving language models by retrieving from trillions of tokens. In ICML, 2022.

Léon Bottou and Vladimir Vapnik. Local learning algorithms. Neural computation, 4(6), 1992.

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald Clark, Quoc V Le, Christopher Ré, and
Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling.
arXiv preprint arXiv:2407.21787, 2024.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. arXiv preprint ArXiv:2005.14165, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence:
Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Kathryn Chaloner and Isabella Verdinelli. Bayesian experimental design: A review. Statistical
science, 1995.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost. arXiv preprint arXiv:1604.06174, 2016.

François Chollet. On the measure of intelligence. arXiv preprint arXiv:1911.01547, 2019.

Sayak Ray Chowdhury and Aditya Gopalan. On kernelized multi-armed bandits. In ICML, 2017.

William S Cleveland. Robust locally weighted regression and smoothing scatterplots. Journal of the
American statistical association, 74(368), 1979.

William S Cleveland and Susan J Devlin. Locally weighted regression: an approach to regression
analysis by local fitting. Journal of the American statistical association, 83(403), 1988.

Jack Cole and Mohamed Osman. Dataset-induced meta-learning (and other tricks): Improving model
efficiency on arc. https://lab42.global/community-model-efficiency/, 2023.
[Accessed 22-08-2024].

R Dennis Cook. Detection of influential observation in linear regression. Technometrics, 19(1), 1977.

Thomas Cover and Peter Hart. Nearest neighbor pattern classification. IEEE transactions on
information theory, 13(1), 1967.

Thomas M Cover. Elements of information theory. John Wiley & Sons, 1999.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In NAACL, 2018.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-Emmanuel
Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library. arXiv preprint
arXiv:2401.08281, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, et al. Toy models of superposition.
arXiv preprint arXiv:2209.10652, 2022.

Louis Faury, Marc Abeille, Clément Calauzènes, and Olivier Fercoq. Improved optimistic algorithms
for logistic bandits. In ICML, 2020.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In ICML, 2017.

Evelyn Fix. Discriminatory analysis: nonparametric discrimination, consistency properties, volume 1.
USAF school of Aviation Medicine, 1951.

Yossi Gandelsman, Yu Sun, Xinlei Chen, and Alexei Efros. Test-time training with masked autoen-
coders. In NeurIPS, 2021.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text for
language modeling. arXiv preprint arXiv:2101.00027, 2020.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, et al. A framework for few-shot language model
evaluation, 2024.

12

https://lab42.global/community-model-efficiency/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Robert Geirhos, Priyank Jaini, Austin Stone, Sourabh Medapati, Xi Yi, George Toderici, Abhijit
Ogale, and Jonathon Shlens. Towards flexible perception with visual memory. arXiv preprint
arXiv:2408.08172, 2024.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang. Retrieval augmented
language model pre-training. In ICML, 2020.

Kelvin Guu, Albert Webson, Ellie Pavlick, Lucas Dixon, Ian Tenney, and Tolga Bolukbasi. Simfluence:
Modeling the influence of individual training examples by simulating training runs. arXiv preprint
arXiv:2303.08114, 2023.

Moritz Hardt and Yu Sun. Test-time training on nearest neighbors for large language models. In
ICLR, 2024.

Tom Henighan, Jared Kaplan, Mor Katz, Mark Chen, Christopher Hesse, Jacob Jackson, Heewoo
Jun, Tom B Brown, Prafulla Dhariwal, Scott Gray, et al. Scaling laws for autoregressive generative
modeling. arXiv preprint arXiv:2010.14701, 2020.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

David Holzmüller, Viktor Zaverkin, Johannes Kästner, and Ingo Steinwart. A framework and
benchmark for deep batch active learning for regression. JMLR, 2023.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. In ICLR, 2022.

Jonas Hübotter, Bhavya Sukhija, Lenart Treven, Yarden As, and Andreas Krause. Transductive active
learning: Theory and applications. In NeurIPS, 2024.

Andrew Ilyas, Sung Min Park, Logan Engstrom, Guillaume Leclerc, and Aleksander Madry. Data-
models: Predicting predictions from training data. In ICML, 2022.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. NeurIPS, 2017.

Vidit Jain and Erik Learned-Miller. Online domain adaptation of a pre-trained cascade of classifiers.
In CVPR, 2011.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus. IEEE
Transactions on Big Data, 7(3), 2019.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi
Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In EMNLP,
2020.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. Generalization
through memorization: Nearest neighbor language models. In ICLR, 2020.

Diederik P Kingma and Jimmy L Ba. Adam: A method for stochastic optimization. In ICLR, 2014.

Andreas Kirsch, Joost Van Amersfoort, and Yarin Gal. Batchbald: Efficient and diverse batch
acquisition for deep bayesian active learning. In NeurIPS, 2018.

Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
ICML, 2017.

Germain Kolossov, Andrea Montanari, and Pulkit Tandon. Towards a statistical theory of data
selection under weak supervision. In ICLR, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Jannik Kossen, Yarin Gal, and Tom Rainforth. In-context learning learns label relationships but is not
conventional learning. In ICLR, 2024.

Suraj Kothawade, Nathan Beck, Krishnateja Killamsetty, and Rishabh Iyer. Similar: Submodular
information measures based active learning in realistic scenarios. In NeurIPS, 2020.

Suraj Kothawade, Vishal Kaushal, Ganesh Ramakrishnan, Jeff Bilmes, and Rishabh Iyer. Prism: A
rich class of parameterized submodular information measures for guided data subset selection. In
AAAI, 2022.

Ben Krause, Emmanuel Kahembwe, Iain Murray, and Steve Renals. Dynamic evaluation of neural
sequence models. In ICML, 2018.

Ben Krause, Emmanuel Kahembwe, Iain Murray, and Steve Renals. Dynamic evaluation of trans-
former language models. arXiv preprint arXiv:1904.08378, 2019.

Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
under gradient descent. NeurIPS, 2018.

David D Lewis. A sequential algorithm for training text classifiers: Corrigendum and additional data.
In ACM Sigir Forum, volume 29, 1995.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
tion for knowledge-intensive nlp tasks. In NeurIPS, 2019.

Mingchen Li, Mahdi Soltanolkotabi, and Samet Oymak. Gradient descent with early stopping is
provably robust to label noise for overparameterized neural networks. In AISTATS, 2020.

Xiaoqing Li, Jiajun Zhang, and Chengqing Zong. One sentence one model for neural machine
translation. In LREC, 2018.

Opher Lieber, Or Sharir, Barak Lenz, and Yoav Shoham. Jurassic-1: Technical details and evaluation.
Technical report, AI21 Labs, 2021.

Yinhan Liu. Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

Xuan Luo, Jia-Bin Huang, Richard Szeliski, Kevin Matzen, and Johannes Kopf. Consistent video
depth estimation. ACM Transactions on Graphics (ToG), 2020.

David JC MacKay. Information-based objective functions for active data selection. Neural computa-
tion, 4(4), 1992.

Sadhika Malladi, Alexander Wettig, Dingli Yu, Danqi Chen, and Sanjeev Arora. A kernel-based view
of language model fine-tuning. In ICML, 2023.

Tomáš Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space word
representations. In NAACL, 2013.

Michel Minoux. Accelerated greedy algorithms for maximizing submodular set functions. Optimiza-
tion Techniques, 7, 1978.

Nelson Morgan and Hervé Bourlard. Generalization and parameter estimation in feedforward nets:
Some experiments. NeurIPS, 1989.

Marius Mosbach, Tiago Pimentel, Shauli Ravfogel, Dietrich Klakow, and Yanai Elazar. Few-shot
fine-tuning vs. in-context learning: A fair comparison and evaluation. In ACL, 2023.

Kevin P Murphy. Probabilistic machine learning: Advanced topics. MIT press, 2023.

George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of approximations for
maximizing submodular set functions—i. Mathematical programming, 14, 1978.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

OpenAI. Learning to reason with llms. OpenAI blog, 2024.

Kiho Park, Yo Joong Choe, and Victor Veitch. The linear representation hypothesis and the geometry
of large language models. In ICML, 2024.

Barna Pásztor, Parnian Kassraie, and Andreas Krause. Bandits with preference feedback: A stackel-
berg game perspective. In NeurIPS, 2024.

Jay M. Ponte and W. Bruce Croft. A language modeling approach to information retrieval. In SIGIR.
Association for Computing Machinery, 1998.

Garima Pruthi, Frederick Liu, Satyen Kale, and Mukund Sundararajan. Estimating training data
influence by tracing gradient descent. In NeurIPS, 2019.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
In IJCNLP, 2019.

Stephen Robertson, Hugo Zaragoza, et al. The probabilistic relevance framework: Bm25 and beyond.
Foundations and Trends® in Information Retrieval, 3(4), 2009.

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
approach. In ICLR, 2017.

Sambu Seo, Marko Wallat, Thore Graepel, and Klaus Obermayer. Gaussian process regression:
Active data selection and test point rejection. In Mustererkennung. Springer, 2000.

Burr Settles. Active learning literature survey. Technical report, University of Wisconsin-Madison
Department of Computer Sciences, 2009.

Jack Sherman and Winifred J Morrison. Adjustment of an inverse matrix corresponding to a change
in one element of a given matrix. The Annals of Mathematical Statistics, 21(1), 1950.

Assaf Shocher, Nadav Cohen, and Michal Irani. “zero-shot” super-resolution using deep internal
learning. In CVPR, 2018.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Karen Sparck Jones. A statistical interpretation of term specificity and its application in retrieval.
Journal of documentation, 28(1), 1972.

Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger. Gaussian process
optimization in the bandit setting: No regret and experimental design. In ICML, 2009.

Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, and Moritz Hardt. Test-time training
with self-supervision for generalization under distribution shifts. In ICML, 2020.

Yu Sun, Xinhao Li, Karan Dalal, Jiarui Xu, Arjun Vikram, Genghan Zhang, Yann Dubois, Xinlei
Chen, Xiaolong Wang, Sanmi Koyejo, et al. Learning to (learn at test time): Rnns with expressive
hidden states. arXiv preprint arXiv:2407.04620, 2024.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al.
Gemma 2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118,
2024.

Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken, Brian Chen, Adam
Pearce, Craig Citro, Emmanuel Ameisen, Andy Jones, et al. Scaling monosemanticity: Extracting
interpretable features from claude 3 sonnet. Transformer Circuits Thread, Anthropic, 2024.

Vladimir Vapnik. The nature of statistical learning theory. Springer science & business media, 2013.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev,
Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent. In
ICML, 2023.

Chaoqi Wang, Shengyang Sun, and Roger Grosse. Beyond marginal uncertainty: How accurately can
bayesian regression models estimate posterior predictive correlations? In AISTATS, 2021a.

Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent: Fully
test-time adaptation by entropy minimization. In ICLR, 2021b.

Xinyi Wang, Wanrong Zhu, Michael Saxon, Mark Steyvers, and William Yang Wang. Large language
models are latent variable models: Explaining and finding good demonstrations for in-context
learning. In NeurIPS, 2023.

Alexander Wei, Wei Hu, and Jacob Steinhardt. More than a toy: Random matrix models predict how
real-world neural representations generalize. In ICML, 2022a.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. In NeurIPS,
2022b.

Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for machine learning,
volume 2. MIT press, 2006.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2020.

Henry P Wynn. The sequential generation of d-optimum experimental designs. The Annals of
Mathematical Statistics, 1970.

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. Less:
Selecting influential data for targeted instruction tuning. In ICML, 2024.

Minjie Xu and Gary Kazantsev. Understanding goal-oriented active learning via influence functions.
In NeurIPS Workshop on Machine Learning with Guarantees, 2019.

Yuan Yao, Lorenzo Rosasco, and Andrea Caponnetto. On early stopping in gradient descent learning.
Constructive Approximation, 26(2), 2007.

Jiacheng Ye, Zhiyong Wu, Jiangtao Feng, Tao Yu, and Lingpeng Kong. Compositional exemplars for
in-context learning. In ICML, 2023.

Ofer Yehuda, Avihu Dekel, Guy Hacohen, and Daphna Weinshall. Active learning through a covering
lens. In NeurIPS, 2021.

Kai Yu, Jinbo Bi, and Volker Tresp. Active learning via transductive experimental design. In ICML,
2006.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu,
Wendi Zheng, Xiao Xia, et al. Glm-130b: An open bilingual pre-trained model. arXiv preprint
arXiv:2210.02414, 2022.

Yu-Jie Zhang and Masashi Sugiyama. Online (multinomial) logistic bandit: Improved regret and
constant computation cost. NeurIPS, 2023.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

APPENDICES

CONTENTS

A Comparison to the State-of-the-Art on the Pile Language Modeling Benchmark 19

B Extended Related Work 20

B.1 Learning at Test-Time . 20

B.2 Data Selection . 21

B.3 SIFT Unifies Work on Retrieval and Work on Coverage 22

C Further Details on SIFT 23

C.1 How SIFT Balances Relevance and Diversity . 23

C.2 The Uncertainty of SIFT Provably Vanishes . 23

D Further Insights on Active Fine-Tuning 25

E Further Insights on Test-Time Fine-Tuning 26

F Extended Results 29

F.1 Active Fine-Tuning . 29

F.2 Test-Time Fine-Tuning . 29

G SIFT Maximizes Information Gain 32

G.1 Preliminaries: Information Theory and Gaussian Processes 32

G.2 Probabilistic Observation Model . 33

G.3 The Probabilistic Interpretation of SIFT . 33

G.4 How SIFT Balances Relevance and Diversity . 34

G.5 The Perspective of Classification . 34

H Efficient Computation of SIFT 35

H.1 Exact Implementation . 35

H.2 Fast (Exact) Implementation . 35

H.3 Pre-Selecting Data via Nearest Neighbor Retrieval 36

H.4 Future Work: Improving GPU Utilization of SIFT-FAST 36

I Experiment Details 39

I.1 Properties of the Pile Dataset . 40

I.2 In-Context Baseline . 40

I.3 Inference Cost with Test-Time Fine-Tuning . 41

J Ablations 42

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

K Proofs 46

K.1 Notation . 46

K.2 Insufficiency of Nearest Neighbor Retrieval (Informal Proposition 2.1) 46

K.3 The close relationship of Regularized Loss Minimization and Test-Time Fine-Tuning
(Proposition 3.3) . 47

K.4 How SIFT Balances Relevance and Diversity . 47

K.5 Confidence Sets for Regression . 48

K.6 Confidence Sets for Classification (Theorem 3.2) 49

L Qualitative Examples 51

L.1 Balancing Relevance and Diversity . 51

L.2 Examples from the Pile . 51

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

A COMPARISON TO THE STATE-OF-THE-ART ON THE PILE LANGUAGE
MODELING BENCHMARK

Table 2 summarizes the state-of-the-art in the Pile language modeling benchmark.

Model Bits per Byte Bits per Byte (without Wikipedia)

Jurassic-1 (178B, Lieber et al., 2021) n/a 0.601*
GLM (130B, Zeng et al., 2022) n/a 0.622*
GPT-2 (124M, Radford et al., 2019) 1.241
GPT-2 (774M, Radford et al., 2019) 1.093
Llama-3.2-Instruct (1B, Dubey et al., 2024) 0.807
Llama-3.2-Instruct (3B, Dubey et al., 2024) 0.737
Gemma-2 (2B, Team et al., 2024) 0.721
Llama-3.2 (1B, Dubey et al., 2024) 0.697 0.684
Phi-3.5 (3.8B, Abdin et al., 2024) 0.690
Phi-3 (3.8B, Abdin et al., 2024) 0.679 0.678
Phi-3 (7B, Abdin et al., 2024) 0.678
Gemma-2 (9B, Team et al., 2024) 0.670
GPT-3 (175B, Brown et al., 2020) 0.666*
Phi-3.5-MoE (16×3.8B, Abdin et al., 2024) 0.656
Phi-3 (14B, Abdin et al., 2024) 0.651
Llama-3.2 (3B, Dubey et al., 2024) 0.640 0.627
Gemma-2 (27B, Team et al., 2024) 0.629

Test-Time FT with SIFT + GPT-2 (124M) 0.862
Test-Time FT with SIFT + GPT-2 (774M) 0.762
Test-Time FT with SIFT + Llama-3.2 (1B) 0.606 0.607
Test-Time FT with SIFT + Phi-3 (3.8B) 0.595 0.599
Test-Time FT with SIFT + Llama-3.2 (3B) 0.557 0.559

Table 2: Evaluation of state-of-the-art models on the Pile language modeling benchmark, without
copyrighted datasets. (*): Results with GPT-3 are from Gao et al. (2020); results with Jurassic-1
and GLM are from Zeng et al. (2022) and do not report on the Wikipedia dataset. For a complete
comparison, we also evaluate our Phi-3 with test-time fine-tuning when excluding the Wikipedia
dataset. Bold numbers denote the best performing model. Underlined numbers denote a model that
is better than the previous state-of-the-art.

Due to our dataset being restricted to the non-copyrighted part of the Pile, the data distribution
changes slightly. To account for this, we take the reported results of prior work and exclude the
datasets that have copyright restrictions from the evaluation. Notably, some prior reported results
of state-of-the-art models miss evaluation of the Wikipedia dataset, which we therefore also exclude
for a direct comparison. To the best of our knowledge, our results with test-time fine-tuning and
SIFT achieve a new state-of-the-art on the Pile benchmark.

19

https://paperswithcode.com/sota/language-modelling-on-the-pile

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

B EXTENDED RELATED WORK

B.1 LEARNING AT TEST-TIME

The subject of learning at test-time has a rich history in statistics and machine learning. By “learning
at test-time” we refer to models that are constructed specifically for a given test instance, differing
from the model used for other test instances. The following discussion provides a brief overview
with emphasis on the most recent developments.

k-Nearest Neighbors (since 1950s) One of the most basic forms of learning at test-time was
developed by Fix (1951) and Cover & Hart (1967). Given the supervised data D ⊆ X × Y with
input domain X ⊆ Rd and labels Y = {0, . . . ,K}, the k-NN algorithm predicts the label of a test
instance x⋆ ∈ X by taking the majority vote of the k nearest neighbors of x⋆ in D according to
some distance metric on X such as Euclidean distance. In the case of regression, Y = R and the
prediction is the average of the labels of the k nearest neighbors. This is a simple and often effective
method if the inputs are well-structured and low-dimensional, e.g., if X is a learned low-dimensional
manifold (Geirhos et al., 2024). When K is large, as for example when Y is the set of all tokens
in a language modeling task, naı̈ve application of k-NNs is difficult, nevertheless they have been
shown to be effective when mixed with parametric language models (Khandelwal et al., 2020).

Local Learning (since 1970s) Local learning is the idea of using data “relevant” to the test in-
stance x⋆ to train a parametric model. Formally, given a test instance x⋆, conventually a model f is
used to predict f(x⋆) where f is trained to minimize the average loss over the training data. Instead,
local learning trains a model fx⋆ specifically for x⋆ and predicts fx⋆(x⋆). Original works train a lin-
ear model by weighting data according to their proximity to x⋆ (Cleveland, 1979; Cleveland & Devlin,
1988; Atkeson et al., 1997). Here, each test instance trains a model from scratch since the optimal
solution of linear regression is independent of initialization. This perspective has regained interest
recently in the context of neural networks, with Sun et al. (2020) naming it “test-time training”.

Transductive Learning (since 1990s) Vladimir Vapnik developed the general principle of trans-
duction which he states in Vapnik (2013) as follows:

Vladimir Vapnik: “When solving a problem of interest, do not solve a more general
problem as an intermediate step. Try to get the answer that you really need but not
a more general one.”

This is perhaps the most general principle behind learning at test-time, and directly opposed to
the principle of induction — extracting the most general rules from data — which has arguably
dominated machine learning research over the last decades. In a way, local learning is pushing
the principle of transduction to the opposite extreme: Each test instance defines its own learning
problem, with the test instance alone being the target of prediction.

Local Fine-Tuning (since 1990s) Bottou & Vapnik (1992) were the first to use local learning in
conjunction with a pre-trained parametric model. They train (i.e., “fine-tune”) the last layer of a con-
volutional neural network for handwritten digit classification based on the nearest neighbors to the test
instance in pixel space. Very recently, Hardt & Sun (2024) applied the same idea to language models,
showing that local fine-tuning can significantly improve the performance of large language models on
standard benchmarks. Previously, this idea has also been evaluated by Li et al. (2018) and Basu et al.
(2023). “Test-time fine-tuning” (as well as “active inference”) has frequently been used to refer to this
approach of locally fine-tuning a pre-trained model. Within the last few years, test-time fine-tuning
has regained substantial interest in the context of self-supervised learning, where the pre-trained model
is fine-tuned on the test instance itself. Notable applications of this approach are in vision (Jain &
Learned-Miller, 2011; Shocher et al., 2018; Luo et al., 2020; Sun et al., 2020; Wang et al., 2021b) and
in language modeling (Krause et al., 2018; 2019), where it is called dynamic evaluation. As one would
also naı̈vely expect, test-time fine-tuning yields the largest improvements when the prompt is not (well-
) represented in the pre-training data, e.g., due to a distribution shift (Gandelsman et al., 2021; Hardt &
Sun, 2024). Notably, test-time fine-tuning is the central component of the state-of-the-art approaches
to the ARC challenge (Chollet, 2019; Cole & Osman, 2023), a non-saturated benchmark which is
intended to test reasoning capabilities based on “core knowledge” rather than mere memorization.

(Few-Shot) In-Context Learning (since 2020s) Very recently, with the advent of large language
models (LLMs), learning at test-time has regained interest. Brown et al. (2020) showed that GPT-3

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

can learn in-context from input-label pairs that are appended to the prompt, an emergent phenomenon
of LLMs that has been widely studied since (Von Oswald et al., 2023; Kossen et al., 2024;
Bhattamishra et al., 2024). In contrast to standard in-weights learning, in-context learning requires
no parameter updates. Interestingly, in-context learning adopts the same paradigm as local learning
wherein a model is adapted specifically for the test instance x⋆, here by skewing the autoregressive
distribution towards the data included in the prompt. This is often combined with the automatic
sourcing of nearest neighbors to x⋆ in an external dataset, which is known as “retrieval augmented
generation” (RAG, Lewis et al., 2019; Borgeaud et al., 2022), and is akin to the other methods of
test-time learning discussed above. A crucial difference between test-time fine-tuning and in-context
learning appears to be that learning from context works by changing the test instance (Bhargava et al.,
2023) whereas in-weights learning works by changing the model. With small datasets, in-context
learning is therefore often more computationally efficient than test-time fine-tuning, however this
ceases to be the case when the dataset grows since the complexity of transformers grows quadratically
in the number of context tokens whereas the complexity of test-time fine-tuning grows linearly.

B.2 DATA SELECTION

Clearly, the choice of data to learn from at test-time is crucial for predictive performance. Selecting
uninformative data can increase inference time or even degrade performance (see, e.g., Kolossov
et al., 2024). Today, datasets for fine-tuning are often hand-designed, however, this is not possible in a
test-time setting. Automatic data selection has a rich history in machine learning, studied extensively
in search, experimental design (Chaloner & Verdinelli, 1995), and active learning (Settles, 2009).
The following attempts to give a brief overview of the most recent developments.

(Document) Retrieval (since 1970s) Retrieval methods aim to search a dataset D for the most
relevant data to a given query/prompt. The most classical methods such as TF-IDF (Sparck Jones,
1972) and BM25 (Robertson et al., 2009) are based on keyword matching, and were developed
alongside the first search engines. Due to their reliance on “bags of words”, i.e., sets of one-hot-
encoded word vectors, they are known as sparse retrievers. An alternative idea is to select the data x
that maximizes the likelihood of the query x⋆ given the data, i.e., argmaxx∈D p(x

⋆ | x), known as
query likelihood retrievers (Ponte & Croft, 1998; Wang et al., 2023). Here, the conditional probability
can be a non-parametric term frequency or a parametric language model. More recently, due to
significant advances in representation learning (Devlin et al., 2018; Reimers & Gurevych, 2019),
dense retrievers have become popular (e.g., Lewis et al., 2019; Karpukhin et al., 2020; Borgeaud et al.,
2022). A dense retriever embeds dataset and query into a metric vector space, and retrieves the nearest
neighbors to the query. Standard vector-based search methods use cosine similarity or (equivalently5)
Euclidean distance. Recent advances in algorithms and implementation mean that (approximate)
nearest neighbor retrieval can be performed efficiently with databases of billions or even trillions of
tokens (e.g., Johnson et al., 2019; Aumüller et al., 2020). The most common metric is cosine distance,
which coincides with Euclidean distance when vectors are normalized to unit length. Nearest neighbor
retrieval has been the de-facto standard for data selection in RAG and local learning.6

Influence Functions (since 1970s) Influence functions measure the change in a model’s prediction
when a single data point is removed from the training data. First proposed by Cook (1977) for linear
regression, they have since been used extensively to interpret predictions (Koh & Liang, 2017; Pruthi
et al., 2019). Very recently, Xia et al. (2024) applied influence functions to select data that leads to
the largest (approximate) reduction in test-loss. Concretely, using a first-order Taylor approximation
of the loss ℓ and if the model at time t is updated via stochastic gradient descent with step size ηt on
data x, the loss reduction can be approximated as

ℓ(x⋆;θt+1)− ℓ(x⋆;θt) ≈ −ηt⟨∇θ ℓ(x;θt),∇θ ℓ(x
⋆;θt)⟩.

That is, the data x whose loss gradient is most aligned with the loss gradient of the test instance x⋆,
can be expected to lead to the largest loss reduction.7 Note that this simply leads to nearest neighbor
retrieval in an embedding space informed by the model at time t. A major limitation of using
influence functions for data selection is that they implicitly assume that the influence of selected

5Here we assume that vectors are normalized to unit length, cf. Appendix K.2.
6There is substantial literature that investigates selection of “informative” data for RAG (e.g., Ye et al., 2023).
7Xia et al. (2024) normalize embeddings before computing the inner product (thus, maximizing cosine

similarity) to account for varying gradient norms depending on sequence lengths.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

data adds linearly (i.e., two equally scored data points are expected to doubly improve the model
performance, Xu & Kazantsev, 2019, Section 3.2). This assumption does quite obviously not hold in
practice as seen, e.g., by simply duplicating data. The same limitation applies to the related approach
of datamodels (Ilyas et al., 2022). A recent line of work aims to address this limitation by designing
simulators that can be probed with datasets to estimate their effect on a prediction requiring less
compute than training the full model (Guu et al., 2023), yet, this does not address the data selection
problem as the space of possible datasets is exponentially large.

Coverage & Inductive Active Learning Next we discuss an orthogonal line of work, which takes
into account the interaction between selected data, but not the interaction of that data with respect
to a test instance. Roughly speaking classical active learning studies how to most effectively select
data from a domain X for learning a model over this domain X . Intuitively, this task can be thought
of as selecting a subset X ⊆ X of fixed size that captures the most “information” about the target
function f . As such, this task is of an inductive nature: we aim to extract general rules from the data
that can be applied to unseen data later, without concrete specification of the unseen data. Approaches
to (inductive) active learning are broadly aiming to select diverse data that covers the data manifold
in X well. Methods include those that maximize the mutual distances between selected data (e.g.,
CORESET (Sener & Savarese, 2017), BADGE (Ash et al., 2020), and PROBCOVER (Yehuda
et al., 2021)) with respect to a latent distance metric and those “uncertainty sampling” methods
that select data that the model is most uncertain about (e.g., D-optimal design (Wynn, 1970) and
BATCHBALD (Kirsch et al., 2018)).8 Both families of methods can be seen as determining some
decent covering of the data manifold in X . In a probabilistic sense, uncertainty sampling can be
seen to minimize the “posterior predictive entropy” in expectation over the observed data.

B.3 SIFT UNIFIES WORK ON RETRIEVAL AND WORK ON COVERAGE

In this work, we make the following central observation:

Learning and prediction is not a search problem;
it requires synthesizing non-redundant relevant information.

Current means of automatic data selection fall on to two extreme ends of a spectrum: Retrieval
methods search for relevant data without ensuring that data is non-redundant. As such, naı̈ve
application of search methods is insufficient for a learning task since those generally do not take
“distinctiveness” into account (cf. Section 2.1). In contrast, coverage methods select non-redundant
data without ensuring that data is relevant.

Transductive Active Learning: Unifying retrieval & coverage Transductive active learn-
ing (Hübotter et al., 2024) unifies approaches to search and coverage. In this work, we propose
SIFT, an approach to test-time transductive active learning (i.e., transductive active learning with
a single prediction target), which extends previously proposed algorithms (MacKay, 1992; Seo et al.,
2000; Yu et al., 2006; Hübotter et al., 2024). Similar algorithmic ideas have recently been evaluated
empirically in a variety of other settings (Kothawade et al., 2020; Wang et al., 2021a; Kothawade
et al., 2022; Bickford Smith et al., 2023) such as Bayesian optimization (Hübotter et al., 2024),
multi-task reinforcement learning (Bagatella et al., 2024), and the amortized fine-tuning of neural
networks (Hübotter et al., 2024). SIFT aims to select data that is both relevant and non-redundant
with respect to the already seen data, whereby the hyperparameter λ′ controls the trade-off between
relevance and redundancy. Hübotter et al. (2024) introduce extensions of SIFT to more than one
prediction target, i.e., amortizing learning across multiple prompts. They show that if the prediction
targets include all of X , then the method reduces to a form of inductive active learning.

8Section 5.2 of Holzmüller et al. (2023) provides a comprehensive overview.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

C FURTHER DETAILS ON SIFT

C.1 HOW SIFT BALANCES RELEVANCE AND DIVERSITY

Let us look more closely at the points selected by SIFT. We will assume here for ease of notation
that embeddings have unit length.9 The first point selected by SIFT has the largest (absolute) cosine
similarity to the prompt within the latent space:

x1 = argmin
x∈D

σ2
{x}(x

⋆) = argmax
x∈D

(ϕ(x⋆)⊤ϕ(x))2

1 + λ′
= argmax

x∈D

(
∡ϕ(x

⋆,x)︸ ︷︷ ︸
cosine similarity of ϕ(x⋆),ϕ(x)

)2
. (1st point)

This recovers the standard approach of Nearest Neighbor retrieval with respect to cosine similarity,
provided cosine similarities are non-negative. However, we show next that selecting more than one
point, SIFT not only considers the relevance with respect to the prompt x⋆, but also the redundancy
with respect to the already seen data x1.

x2 = argmin
x∈D

σ2
{x1,x}(x

⋆) = argmax
x∈D

[
∡ϕ(x

⋆,x1)
∡ϕ(x

⋆,x)

]⊤[
1 + λ′ ∡ϕ(x1,x)

∡ϕ(x1,x) 1 + λ′

]−1[
∡ϕ(x

⋆,x1)
∡ϕ(x

⋆,x)

]
.

(2nd point)

To illustrate how SIFT balances relevance and diversity, we compare the value of observing x1 twice
to observing a different x with cosine similarity ∡ϕ(x1,x) = 0. We show in Appendix K.4 that
SIFT(λ′) prefers x over x1 for selecting x2 if and only if

∡ϕ(x
⋆,x)2 >

λ′

2 + λ′
∡ϕ(x

⋆,x1)
2

Parameter Relation Div.
regularization λ λ ↓
step size η 1/η ↑
noise ρ (cf. §G) ρ2 ↓

Table 3: The effect of λ and its other
interpretations on diversity of selected
data (as the parameter is increased).

The hyperparameter λ′ controls the trade-off between
relevance and diversity: if λ′ = 1 then even if x has one
third the relevance of x1, it is still preferred. As λ′ →∞,
SIFT(λ′) performs retrieval by repeatedly selecting the
same point; and as λ′ → 0, SIFT(λ′) aims only to select
the most diverse points. We observe the same relationship
empirically on the Pile dataset (cf. Figure 9 (left)). Table 3
summarizes the effect of the regularization parameter λ
and its interpretations.

C.2 THE UNCERTAINTY OF SIFT PROVABLY VANISHES

We now formally prove that unlike with Nearest Neighbor retrieval, the uncertainty σ2
n(x

⋆) about
the response to the prompt vanishes if SIFT is used to select data for fine-tuning. As discussed
in §4.1, this requires that the data space contains sufficient information to determine the correct
response. In general, there might be an irreducible error remaining. We will denote a basis of the
embeddings {ϕ(x) : x ∈ D} within the data space D by Φ ∈ Rm×d with size m and dimension
d, and we denote by ΠΦ its orthogonal projection onto the orthogonal complement of the span of Φ.
Hübotter et al. (2024) show that for all X ⊆ D,

σ2
X(x⋆) ≥ ∥ϕ(x⋆)∥2ΠΦ

(5)

where ∥v∥A =
√
v⊤Av denotes the Mahalanobis distance. We call σ2

∞(x⋆) =̇ ∥ϕ(x⋆)∥2ΠΦ
the irre-

ducible uncertainty about x⋆. It can be seen that σ2
∞(x∥) = 0 for all x∥ ∈ X with ϕ(x∥) ∈ spanΦ.

That is, the irreducible uncertainty is zero for points in the span of the data space. In contrast,
for points x⊥ with ϕ(x⊥) ∈ (spanΦ)⊥, the irreducible uncertainty equals the initial uncertainty:
σ2
∞(x⊥) = σ2

0(x
⊥). The irreducible uncertainty of any prompt x⋆ can be computed by simple

decomposition of ϕ(x⋆) into parallel and orthogonal components. Hence, if the data space is large
and includes all relevant information to answer the prompt, the irreducible uncertainty is negligible.

We will denote the uncertainty reduction about the prompt x⋆ achieved by fine-tuning on X by
ψx⋆(X) =̇ σ2

0(x
⋆)− σ2

X(x⋆) and note that SIFT selects xn+1 = argmaxx∈D ψx⋆(Xn ∪ {x}).
Stating the convergence guarantee of SIFT requires one straightforward assumption.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

0 20 40

Number of Unique Points

0.0001

0.01

0.1

1

10

10 000

λ
′

0 20 40

Number of Neighbors

0.1

0.02

0.03

0.06

Ir
re

du
ci

bl
e

U
nc

er
ta

in
ty

10% of data
50% of data
100% of data

0 20 40

Test-Time Iterations

0.90

0.93

0.95

0.97

1.00

V
ar

ia
nc

e
R

ed
uc

tio
n
ψ
x
⋆

Figure 9: Left: The parameter λ′ controls the trade-off between relevance and diversity of the selected
data. As λ′ →∞, SIFT selects the same point repeatedly whereas as λ′ → 0, SIFT selects a diverse
set of points. Middle: The irreducible uncertainty of test prompts from the Pile given neighbors
selected from fractions of the Pile training dataset in the data space. The irreducible uncertainty
captures how much information is available, and decays quickly. Right: We empirically observe that
ψx⋆ is monotone submodular, i.e., its “marginal gains” decrease as the number of iterations increases.
The shaded region denotes the standard deviation, gray lines are from 10 randomly selected prompts.

Assumption C.1. The uncertainty reduction ψx⋆(X) is submodular.
Intuitively, Assumption C.1 states that the marginal uncertainty reduction achieved by adding a point
to the selected data (i.e., the ‘marginal gain’) decreases as the size of the selected data increases,
which is a common assumption in prior work.10 Formally Assumption C.1 is satisfied if, for all
x ∈ D and X ′ ⊆ X ⊆ D,

∆x⋆(x | X ′) ≥ ∆x⋆(x | X) (6)

where ∆x⋆(x | X) =̇ ψx⋆(X ∪{x})−ψx⋆(X) is the marginal uncertainty reduction of x given X .

Though theoretically this assumption may be violated by some instances (Hübotter et al., 2024,
Example C.8), we observe that it is satisfied in practice (cf. Figure 9 (right)). Under this assumption,
ψx⋆(Xn) ≥ (1− 1/e)maxX⊆D,|X|≤n ψx⋆(X) due to the seminal result on monotone submodular
function maximization of Nemhauser et al. (1978). That is, the iterative scheme of SIFT achieves
a constant factor approximation of the optimal uncertainty reduction. Moreover, recent work on
transductive active learning of Hübotter et al. (2024) which we restate here shows that the uncertainty
of SIFT converges to the irreducible uncertainty. We assume w.l.o.g. that ∥ϕ(x)∥22 ≤ 1 for all x ∈ X .
Theorem C.2 (Convergence Guarantee, formalization of Informal Theorem 4.1). Let Assumption C.1
hold and Xn be selected by SIFT(λ′) from the data space D. Then for all n ≥ 1 and x⋆ ∈ X ,

σ2
n(x

⋆) ≤ σ2
∞(x⋆) +

d(1 + 2dλ′λ−1
min) log(1 +

λ̂n

λ′)√
n

where λmin is the smallest eigenvalue of ΦΦ⊤ with Φ ∈ Rm×d a basis of {ϕ(x) : x ∈ D}, and
where λ̂n ≤ O(n) is the largest eigenvalue of ΦnΦ

⊤
n .

Proof. Theorem C.2 follows from Theorem 3.2 of Hübotter et al. (2024) noting that

• The SIFT objective is a special case of VTL (Variance-based Transductive Active Learning)
with “target space” A = {x⋆}.

• Theorem 3.2 of Hübotter et al. (2024) can be extended to finite-dimensional reproducing
kernel Hilbert spaces (Hübotter et al., 2024, Appendix C.6.4).

• The “maximum information gain of n iterations”, γn, in the statement of Hübotter et al.
(2024) is bounded as follows (Srinivas et al., 2009, Appendix C.3): γn ≤ d log(1 + λ̂n/λ

′).

9See Appendix K.4 for the expressions with non-normalized embeddings.
10Similar assumptions have been made by Bogunovic et al. (2015) and Kothawade et al. (2020).

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

D FURTHER INSIGHTS ON ACTIVE FINE-TUNING

We expand the analysis of our results that we summarized in §5. We analyze aspects of the two key
contributions of our work separately: In the following, we analyze the performance of SIFT in active
fine-tuning, and in §E, we analyze the performance of test-time fine-tuning more generally.

Insight 6: SIFT’s improvement over NN grows with dataset size. As shown in Figure 10, we
find that the relative improvement of SIFT over Nearest Neighbor retrieval grows with dataset size.
We suspect that going from a small-size dataset to a medium-size dataset, the additional performance
stems mainly from the ability of SIFT to adaptively select the same data for multiple gradient steps.
Going from a medium-size dataset to a large-size dataset, we suspect that the additional performance
stems mainly from the ability of SIFT to select more diverse data points.

0 10 20 30 40 50

Test-Time Iterations

90.0

92.5

95.0

97.5

100.0

B
its

pe
rB

yt
e

in
%

3%
33%
100%

Figure 10: Bits per byte (in % relative to the Nearest Neighbor retrieval baseline, ↓ better). We
evaluate data selection from 3%, 33%, and 100% of the Pile training dataset. We see a clear trend
that SIFT’s improvement over Nearest Neighbor retrieval grows with dataset size — even from 33%
to 100% with the highly curated Pile dataset.

Insight 7: Points with high negative cosine similarity may help. With the Roberta embedding
model, we find that there are no negative cosine similarities in the data (cf. Figure 21 in §J). Choosing
different embeddings such as influence embeddings can give negative cosine similarities (Xia et al.,
2024, Appendix K.2). Inspection of those points found by Xia et al. (2024) suggests that they can be
equally informative as points with high positive cosine similarity. Our derivation of SIFT naturally

0 20 40

Test-Time Iterations

1.0

1.2

B
its

pe
rB

yt
e

Cosine Similarity
Inner Product

Figure 11: Data selection via SIFT (red)
and Nearest Neighbor (black) performs
best with normalized embeddings.

addresses this by selecting points with large absolute
cosine similarity. Geometrically, points with positive or
negative cosine similarity are both equally “parallel” to
the test prompt. Our theoretical results suggest that the
informativeness of a data point is closely related to how
parallel its embedding is to the test prompt. We leave
further investigation to future work.

Insight 8: Normalizing embeddings helps. We eval-
uate the performance of Nearest Neighbor retrieval and
SIFT with or without explicitly normalized embeddings
in Figure 11. We find that for both selection strategies,
normalizing embeddings consistently improves perfor-
mance. Previously, Hardt & Sun (2024) minimized the
Euclidean distance between unnormalized embeddings,
which we find to perform identically to maximizing cosine similarity.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

E FURTHER INSIGHTS ON TEST-TIME FINE-TUNING

Insight 9: Scaling pre-training compute may not be all you need. In Table 2 of §A, we compare
state-of-the-art LLMs to our test-time fine-tuned models. We show that our Phi-3 with test-time
fine-tuning outperforms all evaluated base models, from a wide selection of state-of-the-art LLMs,
by a large margin. Notably, we see a clear advantage of using stronger base models, i.e., better
initializations. The leading base model Gemma-2 (27B, Team et al., 2024), which is 7× larger and
more recent than Phi-3, achieves 0.629 bits per byte, whereas our test-time fine-tuned Phi-3 achieves
0.595 bits per byte. This indicates that scaling pre-training compute is not all you need to achieve
state-of-the-art performance, and that test-time fine-tuning can be an effective method for improving
the performance of a base LLM.

Insight 10: Test-time fine-tuning outperforms in-context learning in “hard” tasks. Interestingly,
we observe that across all evaluated models, updating the base model via fine-tuning as opposed
to augmenting the models’ context leads to large improvements on the DeepMind Math, GitHub,
ArXiv, and FreeLaw datasets. We include the per-dataset results in §F.2. These datasets contain
school-level math problems, code, scientific papers, and court opinions, which are often colloquially
understood as tasks that require “understanding” or “reasoning”. In the case of DeepMind Math
and ArXiv, augmenting the models’ context does consistently not improve the performance of the
base model at all, whereas test-time fine-tuning can lead to significant performance improvements.

10−2 10−1

Dataset Weight in Pile

25

50

75

100

B
its

pe
rB

yt
e

in
%

Figure 12: Improvement of 50 test-time
iterations over the base model (blue;
↓ better) with SIFT against the percent-
age of bytes occupied by the dataset in
the Pile. Error bars correspond to stan-
dard errors. We observe the trend that
test-time fine-tuning benefits prompts at
the “boundary” of the data distribution
most. The “outlier” GitHub dataset is
highlighted in red.

Insight 11: Test-time fine-tuning yields largest gains
at the boundary of the data distribution. In Figure 12,
we plot the improvement of test-time fine-tuning with
SIFT over the base model against the weight of a dataset
in the Pile. We observe the trend that test-time fine-tuning
yields largest performance improvements for datasets that
have a smaller weight in the Pile. We hypothesize that this
trend occurs because the weight of a dataset in the Pile
corresponds roughly to the weight of similar data in the
pre-training dataset of GPT-2, in which case the perfor-
mance gains would be largest for prompts that are at the
“boundary” of the data distribution. Notable is the outlier
of the large GitHub dataset where test-time fine-tuning
leads to large performance gains. We hypothesize that this
is because coding is relatively dissimilar to other data in
the Pile, and therefore the GitHub dataset can be seen as
“small” relative to the rest of the data.

We make the observation that if the problem domain
is large (like general language modeling), almost every
sub-task can be seen as at the “boundary” / as an “outlier”.
We see that datasets closest to the center of mass of the data distribution do not benefit as much from
test-time fine-tuning as datasets that are further away from the center of mass. Therefore, we expect
test-time fine-tuning to benefit those models most that are learning a diverse data distribution as
opposed to models that are learning a very concentrated data distribution.

Insight 12: The order of fine-tuning data does not matter. In Figure 13, we evaluate the
performance of test-time fine-tuning with Nearest Neighbor retrieval when taking gradient steps
in the order of selected data compared to reversed order. We find that the order of gradient steps
does not affect the final performance. This indicates that sequentially fine-tuning on selected data
is not necessary, and that batched gradient steps can be used to further speed up test-time fine-tuning.
We leave a detailed exploration of batched updates to future work.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

0 20 40

Test-Time Iterations

0.9

1.0

1.1

1.2

1.3

B
its

pe
rB

yt
e

20 40

Neighbors

0.96

0.97

0.98

C
os

in
e

Si
m

ila
ri

ty

In Order Reverse Order

Figure 13: Taking gradient steps in order of selected data compared to reversed order. Data is
selected using Nearest neighbor retrieval. We observe that the order of gradient steps does not affect
the final performance.

0 20 40
0.8

1.0

1.2

1.4

B
its

pe
rB

yt
e

Test-Time Iterations

Linear Head
Full Model

Figure 14: Bits per byte (↓ better)
against the number of test-time iterations.
We compare fine-tuning only the linear
head to fine-tuning the full model. We
use learning rate 1e−4 and evaluate on
0.1% of the full test set.

Insight 13: Test-time fine-tuning works also when
fine-tuning only the last linear layer. Motivated by
the linear representation hypothesis (cf. Assumption 3.1)
which informs SIFT’s surrogate model for data selection,
we evaluate whether we can fine-tune this surrogate model
directly instead of fine-tuning the full model. Concretely,
we fine-tune only the last linear layer of the LLM, keeping
its latent space fixed. The gradients for this linear surrogate
model can be computed efficiently at almost no cost. Re-
markably, we find in Figure 14 that large gains of test-time
fine-tuning can already be realized by fine-tuning only
the last linear layer. Given these preliminary results with
GPT-2 it would be interesting to evaluate the performance
gains of fine-tuning the linear head of larger base models.

Insight 14: Test-time fine-tuning works also with
parameter-efficient fine-tuning. In our experiments
with Phi-3, we use Low-Rank Adaptation (Lora, Hu et al., 2022) with a rank of 64. We find that
LoRA converges slower than fine-tuning the full model, and therefore use the learning rate 5e−4,
which is a factor 10 larger than the learning rate used for fine-tuning the full model. In Figure 15,
we evaluate the performance of LoRA compared to fine-tuning the full model. On the smaller GPT-2
and GPT-2-large we use a rank of 32. We generally observe that fine-tuning with LoRA can recover
roughly the same performance as fine-tuning the full model. We expect that with more careful tuning
of the learning rate, learning curves could be made more similar.

0 20 40
0.8

1.0

1.2

B
its

pe
rB

yt
e

0 20 40

0.8

1.0

1.2

Test-Time Iterations

with LoRA without LoRA

Figure 15: Bits per byte (↓ better) against the number of test-time iterations. We compare parameter-
efficient fine-tuning with LoRA and fine-tuning the full model. We use 0.1% of the full test set.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

0 20 40

0.8

1.0

1.2

B
its

pe
rB

yt
e

Test-Time Iterations

λ′ = 0.1

λ′ = 0.01

Figure 16: Bits per byte (↓ better) with
GPT-2-large and varying λ′. A larger λ′
can lead to overfitting in later iterations.
We use 0.1% of the full test set.

Insight 15: Larger models appear to learn faster
at test-time. We find that with a larger model (e.g.,
GPT-2-large vs GPT-2), a smaller λ′ tends to be more
beneficial. For example, keeping the learning rate fixed at
5e−5, using SIFT(0.1) is the best choice for GPT-2, but
leads to slight overfitting at later iterations for GPT-2-large
as shown in Figure 16. Recall that a smaller λ′ leads
to more diverse sampling of the data space. Thus, this
observed trend indicates that larger models learn faster,
and therefore benefit more from less redundant training
data. The same trend can also be observed from the
behavior of NN-F from Figure 17: GPT-2-large overfits
much faster with NN-F than GPT-2. This offers a potential
explanation why the advantage of SIFT over Nearest
Neighbor retrieval grows with larger models (cf. §F.1).

0 20 40
0.8

1.0

1.2

B
its

pe
rB

yt
e

GPT-2

0 20 40

0.8

1.0

1.2
GPT-2-large

0 20 40

0.6

0.7

0.8
Phi-3

Test-Time Iterations

SIFT (ours) NN Failure-mode of NN

Figure 17: Bits per byte (↓ better) against the number of test-time iterations with various base models.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

F EXTENDED RESULTS

This section includes additional per-dataset results to support our findings on active fine-tuning and
test-time fine-tuning.

F.1 ACTIVE FINE-TUNING

We compare SIFT against the data selection baselines Uncertainty Sampling (US), Nearest Neighbor
retrieval (NN), and the failure-mode of Nearest Neighbor retrieval (with information duplication) that
repeatedly retrieves the same point (NN-F). Our results with GPT-2 as base model are summarized in
the main text in Table 1.

• In Table 4, we include the comparison with GPT-2-large.
• In Table 5, we include the comparison with Phi-3.

We find that our results on GPT-2 are consistent across all models. In particular, test-time fine-
tuning with SIFT improves the base model on all datasets of the Pile, often significantly. SIFT
outperforms Uncertainty Sampling and Nearest Neighbor retrieval consistently. Notably, we find
that the improvement of SIFT over Nearest Neighbor retrieval is larger with stronger base models,
indicating that informativeness of data becomes more important the stronger the base model.

F.2 TEST-TIME FINE-TUNING

We compare the in-context baseline against test-time fine-tuning.

• In Table 6, we include the comparison with GPT-2.
• In Table 7, we include the comparison with GPT-2-large.
• In Table 8, we include the comparison with Phi-3.

We find that test-time fine-tuning consistently outperforms in-context learning with GPT-2 and GPT-
2-large. With Phi-3, in-context learning and test-time fine-tuning have roughly matching performance,
though test-time fine-tuning is more computationally efficient (cf. Figure 7). Interestingly, we observe
that test-time fine-tuning leads to large gains on math (“DeepMind Math”) and coding (“GitHub”) on
all models, two tasks that require more complex reasoning.

US NN NN-F SIFT ∆

NIH Grants 96.6 (1.6) 77.9 (4.8) 107.6 (19.8) 51.9 (9.3) ↓26.0
US Patents 86.8 (2.3) 78.9 (2.6) 129.1 (7.7) 64.7 (3.8) ↓14.2
Enron Emails 73.9 (12.3) 68.6 (13.6) 102.9 (23.1) 55.5 (12.2) ↓13.1
GitHub 45.2 (2.4) 42.8 (2.2) 62.0 (4.5) 31.0 (2.2) ↓11.8
Wikipedia 71.0 (2.0) 71.5 (2.0) 141.3 (3.5) 64.4 (2.2) ↓6.6
PubMed Abstr. 94.5 (0.4) 93.7 (0.6) 202.6 (1.6) 87.8 (0.7) ↓5.9
ArXiv 90.6 (1.8) 90.2 (2.0) 175.8 (5.7) 84.8 (2.1) ↓5.4
Hacker News 79.4 (2.6) 79.0 (2.9) 138.7 (4.4) 75.6 (3.6) ↓3.4
Stack Exchange 84.1 (0.7) 84.6 (0.8) 165.2 (1.8) 80.7 (0.9) ↓3.4
Common Crawl 93.7 (0.6) 89.9 (0.7) 163.6 (2.1) 87.1 (1.0) ↓2.8
PubMed Central 87.9 (2.7) 87.6 (2.7) 157.8 (4.6) 85.4 (3.1) ↓2.2
FreeLaw 66.8 (4.2) 67.4 (4.1) 132.0 (6.4) 68.3 (4.2) ↑1.5
DeepMind Math 71.2 (2.2) 72.2 (2.0) 186.1 (4.1) 74.2 (2.3) ↑3.0
All 82.6 (0.6) 80.6 (0.6) 153.3 (1.4) 74.9 (0.7) ↓5.7

Table 4: Results with GPT-2-large. Bits per byte (in % relative to the base model, ↓) after 50 test-time
iterations on individual datasets of the Pile. We only include datasets with at least 10 examples in
our test set. Bold numbers denote the best performing selected subset. Numbers in parentheses are
standard errors. ∆ denotes the performance gain of SIFT over the strongest baseline.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

US NN NN-F SIFT ∆

GitHub 80.6 80.8 105.2 46.5 ↓34.1
US Patents 95.4 94.2 274.6 83.7 ↓10.5
Enron Emails 113.6 86.6 319.9 78.7 ↓7.9
Wikipedia 84.6 85.5 263.2 79.2 ↓5.4
PubMed Abstr. 93.5 93.3 301.8 89.5 ↓3.8
NIH Grants 100.4 100.1 327.6 98.6 ↓1.5
ArXiv 95.5 96.5 282.4 94.3 ↓1.2
Common Crawl 95.3 94.9 257.0 93.7 ↓1.2
PubMed Central 80.3 82.1 204.9 79.7 ↓0.6
DeepMind Math 76.4 75.5 221.4 75.3 ↓0.2
Hacker News 95.1 94.8 243.8 95.0 ↑0.2
FreeLaw 66.9 67.8 178.0 67.2 ↑0.3
Stack Exchange 99.7 98.7 309.9 99.4 ↑0.7
All 92.0 (1.1) 91.6 (1.1) 256.6 (7.1) 85.7 (2.0) ↓5.9

Table 5: Results with Phi-3. Bits per byte (in % relative to the base model, ↓) after 50 test-time
iterations on individual datasets of the Pile. Bold numbers denote the best performing selected subset.
Numbers in parentheses are standard errors. ∆ denotes the performance gain of SIFT over the
strongest baseline.

Context Fine-Tuning ∆

GitHub 74.5 (2.5) 28.6 (2.2) ↓45.9
DeepMind Math 100.4 (0.1) 70.1 (2.1) ↓30.3
US Patents 86.8 (2.5) 62.2 (3.6) ↓24.6
Enron Emails 73.3 (9.8) 52.4 (11.8) ↓20.9
FreeLaw 85.5 (4.0) 65.5 (4.2) ↓20.0
Stack Exchange 96.7 (0.3) 77.0 (0.7) ↓19.7
ArXiv 99.2 (1.4) 81.6 (1.9) ↓17.6
Wikipedia 77.4 (2.1) 63.7 (2.1) ↓13.7
PubMed Central 92.8 (3.1) 80.6 (2.7) ↓12.2
Hacker News 89.0 (3.8) 77.8 (3.5) ↓11.2
NIH Grants 63.7 (9.5) 52.9 (9.0) ↓10.8
Common Crawl 93.4 (0.7) 86.1 (0.9) ↓7.3
PubMed Abstr. 91.8 (0.6) 84.8 (0.7) ↓7.0
All 89.3 (0.5) 73.2 (0.7) ↓16.1

Table 6: Comparison between the in-context baseline and test-time fine-tuning with GPT-2. Bits per
byte (in % relative to the base model, ↓) after 50 test-time iterations on individual datasets of the
Pile. We only include datasets with at least 10 examples in our test set. Bold numbers denote the best
performing selected subset. Numbers in parentheses are standard errors. ∆ denotes the performance
gain of test-time fine-tuning over in-context learning.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Context Fine-Tuning ∆

GitHub 74.6 (2.5) 31.0 (2.2) ↓43.6
DeepMind Math 100.2 (0.7) 74.2 (2.3) ↓26.0
US Patents 87.4 (2.5) 64.7 (3.8) ↓22.7
FreeLaw 87.2 (3.6) 68.3 (4.2) ↓18.9
Hacker News 92.6 (2.7) 75.6 (3.6) ↓17.0
Stack Exchange 97.2 (0.4) 80.7 (0.9) ↓16.5
NIH Grants 67.7 (9.4) 51.9 (9.3) ↓15.8
Enron Emails 71.9 (10.2) 55.5 (12.2) ↓15.5
ArXiv 98.8 (1.8) 84.8 (2.1) ↓14.0
Wikipedia 76.6 (2.1) 64.4 (2.2) ↓12.2
PubMed Central 92.3 (3.3) 85.4 (3.1) ↓6.9
Common Crawl 93.5 (0.7) 87.1 (1.0) ↓6.4
PubMed Abstr. 91.6 (0.6) 87.8 (0.7) ↓3.8
All 89.4 (0.5) 74.9 (0.7) ↓14.5

Table 7: Comparison between the in-context baseline and test-time fine-tuning with GPT-2-large.
Bits per byte (in % relative to the base model, ↓) after 50 test-time iterations on individual datasets of
the Pile. We only include datasets with at least 10 examples in our test set. Bold numbers denote
the best performing selected subset. Numbers in parentheses are standard errors. ∆ denotes the
performance gain of test-time fine-tuning over in-context learning.

Context Fine-Tuning ∆

DeepMind Math 100.8 75.3 ↓25.5
GitHub 71.3 46.5 ↓24.8
FreeLaw 78.2 67.2 ↓11.0
ArXiv 101.0 94.3 ↓6.4
Enron Emails 81.8 78.7 ↓3.1
Hacker News 97.6 95.0 ↓2.6
Stack Exchange 100.9 99.4 ↓1.4
PubMed Central 79.9 79.7 ↓0.2
US Patents 83.3 83.7 ↑0.4
Wikipedia 77.1 79.2 ↑2.1
NIH Grants 95.1 98.6 ↑3.5
Common Crawl 89.9 93.7 ↑3.8
PubMed Abstr. 85.7 89.5 ↑3.8
All 87.1 (1.7) 85.7 (2.0) ↓1.4

Table 8: Comparison between the in-context baseline and test-time fine-tuning with Phi-3. Bits per
byte (in % relative to the base model, ↓) after 50 test-time iterations on individual datasets of the
Pile. Bold numbers denote the best performing selected subset. Numbers in parentheses are standard
errors. ∆ denotes the performance gain of test-time fine-tuning over in-context learning.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

G SIFT MAXIMIZES INFORMATION GAIN

We discuss here briefly that SIFT can be interpreted as maximizing the information gain of data Xn

on the response to the prompt x⋆.

This probabilistic interpretation takes the perspective that the sequence model predicting the next
token is a probabilistic model with a prior belief over its state W which induces an epistemic
prior belief over what might be the next token.11 Our main text describes a closed loop where this
sequence model interacts with a non-parametric memory (i.e., the data space) to update its epistemic
beliefs about W , obtaining posterior beliefs W | D conditional on the selected data D. Again, these
posterior epistemic beliefs induce an epistemic uncertainty over what might be the next token. We
discuss in the following how SIFT can be interpreted probabilistically; as the model interacting with
the non-parametric memory with the goal of reducing its posterior uncertainty about the next token.

Our brief overview will proceed as follows:

• We establish fundamentals from information theory and Gaussian processes, which are a
tractable probabilistic model (§G.1).

• We define the prior belief and probabilistic observation model and derive the posterior
belief (§G.2).

• We show that, in this probabilistic model, SIFT can be interpreted as maximizing the
information gain of the data about the response to the prompt x⋆ (§G.3).

• We show that balancing relevance and diversity of data is a natural consequence of maximiz-
ing information gain (§G.4).

SIFT uses relatively simple probabilistic surrogate models that are tractable, and which remarkably
lead to strong empirical performance. Hübotter et al. (2024) cover the probabilistic interpretation
in greater detail.

G.1 PRELIMINARIES: INFORMATION THEORY AND GAUSSIAN PROCESSES

Information Theory We briefly recap several important concepts from information theory. The
(differential) entropy H[f] =̇ Ep(f)[− log p(f)] of a random vector f is one possible measure of
uncertainty about f . Here, − log p(f) is also called the suprisal about an event with density p(f).
The entropy can be interpreted as the expected suprisal about f upon realization. The conditional
entropy H[f | y] =̇ Ep(f ,y)[− log p(f | y)] is the (expected) posterior uncertainty about f after
observing the random vector y. The information gain I(f ;y) = H[f]−H[f | y] measures the
(expected) reduction in uncertainty about f due to y. Refer to Cover (1999) for more details.

Gaussian Processes The stochastic process f is a Gaussian process (GP, Williams & Rasmussen
(2006)), denoted f ∼ GP(µ, k), with mean function µ and kernel k if for any finite subset
X = {x1, . . . ,xn} ⊆ X , fX ∼ N (µX ,KX) is jointly Gaussian with mean vector (µX)i = µ(xi)
and covariance matrix (KX)i,j = k(xi,xj). A Gaussian process can be interpreted as capturing
an epistemic functional belief, i.e., a belief over functions. Our linear surrogate model from
Assumption 3.1 leads to a Gaussian process with the linear kernel described in the main text. That
is, our surrogate model assumption can be interpreted as the prior belief that the ground truth
function predicting the next token is a logit-linear function in a latent representation space. This
is closely linked to the hypothesis that LLMs learn linear representations of high-level concepts,
which is widely known as the “linear representation hypothesis” (e.g., Park et al., 2024; Mikolov
et al., 2013; Arora et al., 2016; Elhage et al., 2022). There are two lenses through which to view
such linear Gaussian processes: the weight-space view which considers a belief about weights W ,
or the function-space view which directly considers the belief about functions f . Both views are
equivalent, and we will focus on the function-space view in the following.

For Gaussian random vectors f and y, the entropy is H[f] = d
2 log(2πe) +

1
2 log detVar(f) and

the information gain is I(f ;y) = 1
2 (log detVar(f)− log detVar(f | y)).

11This epistemic uncertainty is distinct from the irreducible aleatoric uncertainty of natural language, such as
uncertainty about the continuation of “I love . . . ”.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

G.2 PROBABILISTIC OBSERVATION MODEL

We will focus in the following on the case of regression, which we introduced in Appendix K.5. We
suppose that observations of f follow the probabilistic model

yx = fx + εx,

where we make the following assumptions about the prior distribution of f and the noise εx:
Assumption G.1 (Gaussian prior). We assume that f ∼ GP(µ, k) with known mean function µ and
kernel k.
Assumption G.2 (Gaussian noise). We assume that the noise εx is mutually independent and
zero-mean Gaussian with known variance ρ2 > 0.

Under Assumptions G.1 and G.2, the posterior distribution of f after observing points X with
values yX is GP(µn, kn) with

µn(x) = µ(x) + k⊤
X(x)(KXX + ρ2I)−1(yX − µX),

kn(x,x
′) = k(x,x′)− k⊤

X(x)(KXX + ρ2I)−1kX(x′),

σ2
n(x) = kn(x,x).

G.3 THE PROBABILISTIC INTERPRETATION OF SIFT

Observe that the above definition of σ2
n matches the definition from Equation (2).12 That is, under the

above probabilistic model,

σ2
n(x) = Var(f(x) | y1:n).

As such, SIFT(ρ2) is minimizing the variance of the response to the prompt x⋆ after observing the
data Xn:

xn+1 = argmin
x∈D

Var(f(x⋆) | y1:n, y(x)).

By simple algebraic manipulation this can be seen to be equivalent to maximizing the information
gain of the data on the response to the prompt x⋆:

xn+1 = argmax
x∈D

1

2

(
log Var(f(x⋆) | y1:n)︸ ︷︷ ︸

const

− log Var(f(x⋆) | y1:n, y(x))
)

= argmax
x∈D

I(f(x⋆); y(x) | y1:n) . (7)

Discussion The above offers a very intuitive probabilistic interpretation of SIFT(ρ2). In this prob-
abilistic interpretation, the regularization parameter λ′ of SIFT is equal to the observation noise ρ2.
Intuitively, larger observation noise leads to slower convergence of the estimate of f , analogously
to our discussion of larger regularization parameter and smaller step size in Proposition 3.3.

The reason why SIFT(ρ2) can be interpreted both as minimizing the variance and as minimizing the
entropy of the response to the prompt x⋆ is that for Gaussians, variance is proportional to the entropy
of the response to the prompt x⋆. As observed by Hübotter et al. (2024), if learning is amortized with
respect to multiple prompts {x⋆

1, . . . ,x
⋆
m} = A, this ceases to be the case and the two objectives lead

to different data selection schemes. It appears to be a special property of non-amortized transductive
active learning that measures of uncertainty and resulting data selection schemes are interchangeable.

A quick remark is in order. SIFT does not only maximize the marginal information gain as
shown in Equation (7), if Assumption C.1 is satisfied, it also maximizes the joint information
gain I(f(x⋆); y1:n). That is, in this case the “entropy reduction” of data Xn selected by SIFT
achieves a constant factor approximation of the maximum possible joint information gain
maxX⊆D,|X|≤n I(f(x

⋆);y(X)) due to the seminal result on monotone submodular function
maximization of Nemhauser et al. (1978).

12Notably, it can also be shown that µn is the closed-form solution to the regularized loss from Equation (10).

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

G.4 HOW SIFT BALANCES RELEVANCE AND DIVERSITY

In §C.1, we discussed how SIFT chooses data that is both relevant and diverse. The probabilistic inter-
pretation offers a simple explanation for how this behavior naturally emerges from selecting the most
informative data. To this end, observe that the information gain from Equation (7) can be expressed as

I(f(x⋆); y(x) | y1:n) = I(f(x⋆); y(x))︸ ︷︷ ︸
relevance

− I(f(x⋆); y(x); y1:n)︸ ︷︷ ︸
redundancy

(8)

where I(f ;x;y) =̇ I(f ;x)− I(f ;x | y) = I(f ;x) + I(f ;y)− I(f ;x,y) denotes the multivariate
information gain (Murphy, 2023). The multivariate information gain is a measure of the redundancy
of x and y in predicting f , and is therefore often called simply “redundancy” (which is the opposite
of “synergy”). Equation (8) shows that the balancing of relevance and non-redundancy (i.e., diversity)
arises naturally from maximizing the information gain.

G.5 THE PERSPECTIVE OF CLASSIFICATION

The above interpretation takes the perspective of regression. However, the above interpretation
can be extended to classification. We will focus here on the case of binary classification for
notational convenience, but the same argument can be made for multi-class classification (Williams
& Rasmussen, 2006, Section 3.5).

In (binary) Gaussian Process Classification the logit f ∼ GP(µ, k) is modeled as a Gaussian process,
and the likelihood follows the model introduced in Section 3: y(x) ∼ Bern(s(f(x))) where we
have Bernoulli rather than categorical feedback and use the logistic function s(a) =̇ 1/(1 + e−a)
rather than the softmax by virtue of restricting to binary classification.

The standard approach (Williams & Rasmussen, 2006, Section 3.4) is to approximate the poste-
rior distribution of the latent function f given observations y1:n by a Gaussian using Laplace’s
method. This Gaussian can be shown to have covariance (K−1

Xn
+W)−1 with W ⪰ κ−1In where

κ =̇ supa≤B 1/ṡ(a) and ṡ(a) = s(a)(1− s(a)) denotes the derivative of the logistic function.13 It
is then straightforward to derive that

σ2
n(x

⋆) = k(x⋆,x⋆)− k⊤
Xn

(x⋆)(KXn
+W−1)−1kXn

(x⋆)

≤ k(x⋆,x⋆)− k⊤
Xn

(x⋆)(KXn
+ κIn)

−1kXn
(x⋆)

Thus, SIFT minimizes a tight upper bound to the (approximate) posterior variance of the latent
function f at the prompt x⋆. The same relationship to maximizing information gain that was
discussed above applies.

13In the binary case, this is equal to the more general κ from the main text.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

H EFFICIENT COMPUTATION OF SIFT

In the following, we show how to select data via SIFT at low computational cost. Our implementation
extends the Faiss library (Johnson et al., 2019; Douze et al., 2024) for Nearest Neighbor retrieval. We
open-source the activeft (Active Fine-Tuning) library which can be used as a drop-in replacement
for Nearest Neighbor retrieval.

In our runtime analysis, we will denote by K the size of the data space D, and by N the number of
points to be selected. We describe two implementations of SIFT:

1. The first exact implementation has sequential computation cost O
(
K2N

)
, however, compu-

tation can be effectively parallelized on a GPU.
2. The second “fast” implementation assumes submodularity (i.e., Assumption C.1) and

has computation cost Õ
(
K +N3

)
where Õ(·) suppresses log-factors. This cost is only

marginally above the cost of Nearest Neighbor retrieval.

Both implementations achieve virtually identical performance gains (cf. Figure 19 (right)), which is
further evidence that Assumption C.1 is satisfied in our language modeling setting.

H.1 EXACT IMPLEMENTATION

The central object of the first implementation is the conditional kernel matrix of the data space given
the selected points Xn:

Kn =̇ KD −KD,Xn(KXn + λ′In)
−1KXn,D.

The entries kn(x,x′) of this matrix can be updated efficiently via the following relation (Chowdhury
& Gopalan, 2017, Appendix F) arising from properties of the Schur complement:

kn(x,x
′) = kn−1(x,x

′)− kn−1(x,xn)kn−1(xn,x
′)

kn−1(xn,xn) + λ′
. (9)

The implementation is detailed in Algorithm 1. The computation of the objective value in line 4
and the kernel matrix update in line 5 can be parallelized on a GPU. Thus, the main bottleneck of
this implementation is the requirement that the kernel matrix of size K × K fits onto a GPU. In
case this is not possible, such as with large data spaces, the following two sections detail methods
to reduce the computational cost.

Algorithm 1 SIFT(λ′)
1: Input: prompt x⋆, data space D, (initial) kernel matrix k0(x,x′) = ϕ(x)⊤ϕ(x′), x,x′ ∈ D,

number of points to select N
2: Output: set of selected points {x1, . . . ,xN}
3: for n from 1 to N do
4: xn ← argmaxx∈D

k2
n−1(x

⋆,x)

kn−1(x,x)+λ′ {Select next point}
5: for each x,x′ ∈ D do
6: Update kn(x,x′)← kn−1(x,x

′)− kn−1(x,xn)kn−1(xn,x
′)

kn−1(xn,xn)+λ′ {Update kernel matrix}
7: end for
8: end for

H.2 FAST (EXACT) IMPLEMENTATION

The following “fast” implementation of SIFT rests on the assumption that the objective function
optimized by SIFT is submodular (cf. Assumption C.1). Recall that this objective function can be
expressed as xn+1 = argmaxx∈D ψx⋆(Xn ∪ {x}) where ψx⋆(X) = σ2

0(x
⋆) − σ2

X(x⋆) denotes
the uncertainty reduction about x⋆ upon fine-tuning the model on data X .

The “trick” of the fast implementation is to use a max-heap (with O(1) lookup and O(logK)
insertion) to keep track of upper bounds of ψx⋆(Xn ∪ {x}) for each x ∈ D. The upper bounds come
directly from the submodularity assumption:

ψx⋆(Xi ∪ {x}) ≥ ψx⋆(Xj ∪ {x}) ∀j ≥ i.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

At iteration n, we evaluate ψx⋆(Xn−1 ∪ {x}) for x in max-heap order. As soon as we find a x
whose re-computed upper bound is smaller than a previously re-computed upper bound, we stop
the evaluation. In the worst case, one might iterate through all K points in each iteration, but in
practice, it can sometimes be reasonable to assume that one only needs to consider O(1) points
per iteration. This algorithm is known as the “lazy greedy algorithm” in submodular function
maximization (Minoux, 1978) where it is typically seen to result in large speed-ups.

We summarize the fast implementation in Algorithm 2. The kernel matrix K tracks the conditional
kernel matrix of the prompt x⋆ and the previously selected data Xn−1. Λ tracks the (regularized)
inverse of the kernel matrix of the previously selected data Xn−1. Whenever necessary, the cached
kernel matrix and cached inverse are updated. We denote by Φ ∈ R(n−1)×d the matrix of embeddings
of previously selected points and by Φ̃ ∈ Rn×d the same matrix extended by ϕ(x⋆) as the first row.

Initializing the max-heap takes time Õ(K) and is analogous to standard Nearest Neighbor retrieval.
Additionally, SIFT-FAST performs a data selection loop for N iterations where each operation takes
O
(
N2

)
time requiring persistent memory of size O

(
N2

)
. Notably, only the kernel matrix of the

prompt and the previously selected data is kept in memory.

Algorithm 2 SIFT-FAST(λ′)
1: Input: prompt x⋆, data space D, number of points to select N
2: Output: set of selected points {x1, . . . ,xN}
{Initializing max-heap (“Nearest Neighbor retrieval”)}

3: for x ∈ D do
4: αx ← (ϕ(x⋆)⊤ϕ(x))2

∥ϕ(x)∥2
2+λ′

5: Insert (x, αx) into max-heap
6: end for
{Data selection}

7: Initialize K =
[
∥ϕ(x⋆)∥22

]
and Λ as an empty square matrix

8: for n from 1 to N do
9: Initialize lower bound α⋆ ← −∞

10: for each popped (x, α) in max-heap order do
11: if α = α⋆ then
12: xn ← x {x maximizes the SIFT(λ′) objective}
13: break
14: end if
15: αx,Λ,K

′ ← RECOMPUTE(x,K,Λ) {Recompute objective value}
16: α⋆ ← max{α⋆, αx}
17: Insert (x, αx) into max-heap
18: end for
19: K ← UPDATESTATE(xn,K

′) {Update cached kernel matrix}
20: end for

H.3 PRE-SELECTING DATA VIA NEAREST NEIGHBOR RETRIEVAL

The reason for SIFT-FAST being so efficient is that it effectively “discards” all points in D that are
completely irrelevant to the prompt. Whereas SIFT recomputes the objective value of every point in
D at each iteration, SIFT-FAST only reevaluates points that are potentially relevant. An alternative to
make SIFT fast is therefore simply to preemptively discard irrelevant points. In our experiments we do
so by pre-selecting a subset of size K = 200 via Nearest Neighbor retrieval within D (cf. Appendix I
for more details). This step aims to eliminate all points from the data space that SIFT would not end
up picking anyway while retaining a diverse set of relevant points. Figure 18 shows the effect of K
on statistical performance and Figure 4 shows the effect on computational performance.

H.4 FUTURE WORK: IMPROVING GPU UTILIZATION OF SIFT-FAST

In our experiments on the Pile dataset, we find that SIFT-FAST is less efficient than SIFT (cf. Fig-
ure 19 (left)). We attribute this to the fact that for any given prompt, the closest neighbors in the

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Algorithm 3 SIFT-FAST(λ′): RECOMPUTE

1: Input: prompt x⋆, current iteration n, candidate x, cached kernel matrix K, cached inverse Λ
2: Output: objective value αx, updated cached inverse Λ, expanded kernel matrix K

{Expand cached kernel matrix K (if required)}
3: if x is has not been selected yet then
4: {Update Λ with the Sherman-Morrison-Woodbury formula (Sherman & Morrison, 1950)}
5: Let i denote the size of Λ
6: if i < n− 1 then
7: A← ΦiΦ

⊤
i+1:n−1

8: B ← Φi+1:n−1Φ
⊤
i+1:n−1

9: C ← (B −A⊤ΛA)−1

10: Λ←
[
Λ+ΛACA⊤Λ −ΛAC

−CA⊤Λ C

]
11: end if

{Expand kernel matrix K}
12: A← I −Φ⊤ΛΦ
13: k← Φ̃Aϕ(x)

14: K ←
[
K k

k⊤ ∥ϕ(x)∥2A

]
15: end if

16: αx ← k2(x⋆,x)
k(x,x)+λ′ {Compute objective value using the relation from Equation (9)}

Algorithm 4 SIFT-FAST(λ′): UPDATESTATE

1: Input: selected point xn, expanded kernel matrix K ′

2: Output: new conditional kernel matrix K

{Update kernel matrix using the relation from Equation (9)}
3: for each x,x′ ∈ {x⋆} ∪Xn do
4: Update k(x,x′)← k′(x,x′)− k′(x,xn)k

′(xn,x
′)

k′(xn,xn)+λ′

5: end for

50 200 1 000 6 000

K

70

75

80

85

90

B
its

pe
rB

yt
e

in
% SIFT (ours)

NN

Figure 18: We run SIFT (λ′ = 1) with various values of K and report the bits per byte (↓ better)
after 50 test-time iterations. We find that performance on the Pile plateaus after K = 1‘000. Even at
K = 50, which equals the number of points selected, SIFT outperforms Nearest Neighbor retrieval
due to being able to select the same points multiple times.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

50 200 1 000 6 000

Size of Pre-Selected Data Space

100

101
C

om
pu

te
O

ve
rh

ea
d

0 10 20 30 40 50

Test-Time Iterations

0.8

1.0

1.2

B
its

pe
rB

yt
e

Training + Retrieval
Only Retrieval

SIFT-FAST

SIFT

Figure 19: Left: Computational overhead of SIFT-FAST over Nearest Neighbor retrieval. This
overhead is larger than the overhead of SIFT over Nearest Neighbor retrieval (cf. Figure 4).
Right: SIFT-FAST achieves identical statistical performance to SIFT, which is further evidence
that Assumption C.1 is satisfied in our language modeling setting.

data space are all relatively similar to the prompt (cf. Figure 20), meaning that each iteration of
SIFT-FAST has to loop (sequentially) over the entire priority queue. In contrast, SIFT performs this
operation in parallel on a GPU.

100 101 102 103

Neighbors

0.900

0.925

0.950

0.975

1.000

C
os

in
e

Si
m

ila
ri

ty
Pile
Indiv. Datasets

Figure 20: Average cosine similarities of
test prompts to closest 1‘000 neighbors
in the data space of the Pile; with the
Roberta embedding model.

We believe that a promising computational approach is to
combine the advantages of the SIFT and SIFT-FAST im-
plementations. This could be achieved by keeping a large
sub-selected kernel matrix on the GPU (akin to the SIFT
implementation) and selectively using the SIFT-FAST im-
plementation if points on the priority queue that are not
in the sub-selected kernel matrix may be selected. This
would allow for a more efficient use of the GPU mem-
ory of SIFT-FAST, which we expect to yield comparable
computational performance to the SIFT implementation
in most cases, while still being able to handle large data
spaces.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

I EXPERIMENT DETAILS

We fine-tune the pre-trained model for a single gradient step each on N = 50 selected data points.
We evaluate the performance on 1% of the test instances of the Pile. We use the Pile training dataset
as data space for data selection, which notably does not include data from the validation and test sets.

Evaluation We use the standard implementation of the lm-evaluation-harness li-
brary (Gao et al., 2024) for computing the bits per byte. This implementation computes the
log-likelihood of a document using a rolling-window approach, which ensures that the model’s
maximum context window is fully utilized.

Truncation of Long Sequences Analogously to Hardt & Sun (2024), to generate embeddings,
we naively truncate long sequences to the maximum sequence length of the embedding model, that
is, we only consider the prefixes of long sequences for data selection.

Learning Rate and Optimizer Following Hardt & Sun (2024), we use the Adam optimizer
(Kingma & Ba, 2014) with ϵ-value 1e−8. We use the default learning rate 5e−5 of the
transformers library (Wolf et al., 2020) unless noted otherwise. Hardt & Sun (2024) used
a learning rate of 2e−5 for their experiments. We show in Figure 24 that 5e−5 leads to strictly
better performance of the Nearest Neighbor baseline. In our ablation study over metrics for Nearest
Neighbor retrieval (cf. Figure 11), which was conducted concurrently, we still used learning rate
2e−5 of Hardt & Sun (2024).

Low-Rank Adaptation (LoRA) We use LoRA (Hu et al., 2022) for fine-tuning Phi-3, and also eval-
uate the performance of LoRA with GPT-2 and GPT-2-large (cf. §E). We use LoRAs with rank 64, out-
put scaling 16, without dropout and bias. When fine-tuning with LoRA, we use the learning rate 5e−4.

Gradient Checkpointing We additionally use gradient checkpointing (Chen et al., 2016) for
fine-tuning Phi-3 to reduce memory footprint and allow fine-tuning on our hardware.

Uncopyrighted Pile Dataset We use only those datasets of the Pile where our use is in compliance
with the terms of service of the data host (Gao et al., 2020). This excludes the Books3, BookCorpus2,
OpenSubtitles, YTSubtitles, and OWT2 datasets.

We provide an overview of all hyperparameters of test-time fine-tuning in Table 9.

Model family GPT-2 Phi-3 Llama-3.2

λ′ 0.01 0.01 0.01
Learning rate 5e−5 5e−4 1e−4
Adam’s ϵ-value 1e−8 1e−8 1e−8
Max. sequence length (in tokens) 1024 4096 4096
LoRA no yes yes
Gradient checkpointing no yes yes

Table 9: Hyperparameters during test-time fine-tuning, unless noted otherwise.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

I.1 PROPERTIES OF THE PILE DATASET

Figure 21 shows the average cosine similarities of test prompts to neighbors in the data space of the
Pile. Table 10 shows the weight of each dataset in the Pile.

0.0 0.5 1.0 1.5

Neighbors ×108

0.0

0.5

1.0

C
os

in
e

Si
m

ila
ri

ty
Pile
Indiv. Datasets

Figure 21: Average cosine similarities of test prompts to neighbors in the data space of the Pile; with
the Roberta embedding model.

Weight

Common Crawl 24.14%
PubMed Central 19.19%
ArXiv 11.94%
GitHub 10.12%
FreeLaw 8.18%
Stack Exchange 6.84%
US Patents 4.87%
PubMed Abstracts 4.09%
Project Gutenberg 2.89%
Wikipedia 2.04%
DeepMind Math 1.65%
Ubuntu IRC 1.17%
EuroParl 0.97%
Hacker News 0.83%
PhilPapers 0.51%
NIH ExPorter Grants 0.40%
Enron Emails 0.19%

Table 10: Overview of datasets in the (uncopyrighted) Pile. Weight is the percentage of bytes in the
final dataset occupied by each dataset. Numbers are taken from Gao et al. (2020) and renormalized.

I.2 IN-CONTEXT BASELINE

In our evaluation of in-context learning, we use the following format to insert the selected data into the
context of the model: We separate all retrieved token sequences with the string "\n\n" which can be
seen as a paragraph separator, and additionally add this string between the data string and the prompt.

Notably, our results with in-context learning on GPT-2-large outperform the results previously
reported by Hardt & Sun (2024). We suspect that this is due to a combination of a more reasonable
evaluation and using SIFT as opposed to Nearest Neighbor retrieval for data selection.

Evaluation of Inference Cost of In-Context Baseline We estimate the inference cost of in-context
learning as follows. We evaluate the time it takes compute the rolling log-likelihood of the test
instance with context included and subtract the time it takes to compute the rolling log-likelihood of

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

the test instance without context. This is a lower-bound of the inference cost of in-context learning,
as unlike autoregressive generation, computing the log-likelihood is partially parallelized.

To compute the token throughput of the in-context baseline, we divide the total compute time by the
number of tokens added to the context.

I.3 INFERENCE COST WITH TEST-TIME FINE-TUNING

Figure 22 evaluates the inference cost of test-time fine-tuning on all the Pile and the largest datasets.

10−1

100

GPT-2 (124M)

10−1

100

GPT-2-large (774M)

10−1

100

Phi-3 (3.8B)

10−1

100

Llama-3.2 (1B)

All
ArXiv

FreeLaw
GitHub

Common Crawl

PubMed Abstra
cts

PubMed Central

Stack Exchange

US Patents
Wikipedia

10−1

100

Llama-3.2 (3B)

Te
st

-T
im

e
C

om
pu

te
(s

ec
on

ds
)

Figure 22: Cost of taking a single gradient step. Results are with an NVIDIA GH200.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

J ABLATIONS

This section summarizes ablations that we conducted to investigate test-time fine-tuning and SIFT.

• Hyperparameter λ′: Table 11
• Learning Curves for Individual Datasets of the Pile: Figure 23
• Learning Rate: Figure 24
• Uncertainty Estimation:

– Summary of correlations (Table 12)
– Visualization of σn (Figure 25)

• Compute-proportional Performance Gain:
– Details on ADAPTIVE SIFT (Figure 26)

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300

Under review as a conference paper at ICLR 2025

1
e−

1
2

1
e−

8
1
e−

4
0
.0
1

0
.1

1
1
0

1
0
0

1
0
‘0
0
0

N
N

N
N

-F
∆

N
IH

G
ra

nt
s

12
3.

9
(6

.9
)

79
.0

(6
.4

)
70

.2
(6

.7
)

53
.8

(8
.9

)
52

.9
(9

.0
)

53
.3

(9
.1

)
54

.2
(9

.1
)

64
.5

(1
0.

9)
93

.5
(1

6.
9)

84
.9

(2
.1

)
91

.6
(1

6.
7)

↓3
2
.0

U
S

Pa
te

nt
s

11
9.

9
(3

.9
)

82
.9

(2
.7

)
70

.2
(3

.1
)

62
.9

(3
.5

)
62

.2
(3

.6
)

62
.7

(3
.7

)
63

.2
(3

.7
)

72
.9

(4
.2

)
10

5.
4

(6
.4

)
80

.3
(1

.9
)

10
8.

8
(6

.6
)

↓1
8
.1

G
itH

ub
54

.6
(3

.1
)

41
.4

(2
.2

)
35

.9
(2

.3
)

30
.0

(2
.2

)
28

.6
(2

.2
)

28
.6

(2
.2

)
29

.2
(2

.2
)

36
.1

(2
.6

)
51

.3
(4

.0
)

42
.1

(2
.0

)
53

.2
(4

.0
)

↓1
3
.5

E
nr

on
E

m
ai

ls
87

.1
(1

6.
5)

68
.6

(9
.4

)
63

.1
(9

.1
)

53
.1

(1
1.

4)
52

.4
(1

1.
8)

53
.8

(1
2.

2)
54

.1
(1

2.
2)

59
.6

(1
3.

4)
89

.4
(2

0.
4)

64
.4

(1
0.

1)
91

.6
(2

0.
6)

↓1
2
.0

C
om

m
on

C
ra

w
l

11
7.

9
(1

.3
)

91
.0

(0
.5

)
90

.7
(0

.5
)

87
.5

(0
.7

)
86

.1
(0

.9
)

87
.8

(0
.9

)
88

.3
(0

.9
)

99
.3

(1
.0

)
14

6.
2

(1
.6

)
90

.4
(0

.5
)

14
8.

8
(1

.5
)

↓4
.3

A
rX

iv
14

5.
9

(7
.0

)
83

.5
(1

.3
)

83
.6

(1
.3

)
82

.5
(1

.4
)

81
.6

(1
.9

)
81

.2
(1

.8
)

82
.8

(1
.9

)
94

.6
(2

.8
)

15
8.

0
(6

.1
)

85
.0

(1
.6

)
16

6.
8

(6
.4

)
↓3

.8

W
ik

ip
ed

ia
10

4.
2

(3
.0

)
64

.9
(2

.1
)

63
.9

(2
.2

)
62

.7
(2

.1
)

63
.7

(2
.1

)
64

.8
(2

.2
)

65
.6

(2
.3

)
77

.5
(2

.5
)

11
8.

1
(3

.7
)

66
.3

(2
.0

)
12

1.
2

(3
.5

)
↓3

.6

Pu
bM

ed
A

bs
tr.

13
2.

3
(1

.6
)

87
.0

(0
.4

)
87

.0
(0

.4
)

84
.4

(0
.6

)
84

.8
(0

.7
)

86
.4

(0
.7

)
86

.7
(0

.7
)

10
2.

0
(0

.9
)

15
8.

9
(1

.4
)

87
.2

(0
.4

)
16

2.
6

(1
.3

)
↓2

.8

Pu
bM

ed
C

en
tr

al
13

1.
9

(4
.9

)
80

.5
(2

.5
)

80
.0

(2
.7

)
79

.5
(2

.6
)

80
.6

(2
.7

)
82

.0
(2

.7
)

83
.8

(2
.9

)
98

.6
(3

.7
)

15
1.

6
(5

.5
)

81
.7

(2
.6

)
15

5.
6

(5
.1

)
↓2

.2

St
ac

k
E

xc
ha

ng
e

11
8.

0
(1

.7
)

77
.6

(0
.7

)
77

.6
(0

.7
)

76
.7

(0
.7

)
77

.0
(0

.7
)

77
.8

(0
.7

)
78

.1
(0

.7
)

85
.9

(0
.9

)
13

6.
9

(1
.6

)
78

.2
(0

.7
)

14
1.

9
(1

.5
)

↓1
.5

H
ac

ke
rN

ew
s

11
3.

9
(7

.2
)

78
.8

(2
.7

)
78

.9
(2

.7
)

78
.4

(2
.8

)
77

.8
(3

.5
)

78
.1

(3
.6

)
78

.4
(3

.6
)

86
.2

(3
.3

)
13

1.
3

(6
.2

)
79

.2
(2

.8
)

13
3.

1
(6

.3
)

↓1
.4

D
ee

pM
in

d
M

at
h

10
4.

7
(6

.2
)

69
.3

(2
.1

)
69

.1
(2

.1
)

69
.7

(2
.1

)
70

.1
(2

.1
)

69
.0

(2
.0

)
70

.1
(2

.1
)

71
.9

(2
.2

)
10

3.
5

(5
.6

)
69

.6
(2

.1
)

12
1.

8
(3

.1
)

↓0
.6

Fr
ee

L
aw

10
2.

5
(6

.3
)

64
.0

(3
.9

)
63

.5
(4

.0
)

64
.0

(4
.1

)
65

.5
(4

.2
)

65
.7

(4
.1

)
67

.0
(4

.2
)

80
.3

(5
.0

)
11

4.
1

(7
.1

)
64

.1
(4

.0
)

12
2.

4
(7

.1
)

↓0
.6

A
ll

11
2.

9
(0

.9
)

78
.5

(0
.6

)
76

.7
(0

.6
)

73
.5

(0
.6

)
73

.2
(0

.7
)

74
.3

(0
.7

)
74

.9
(0

.7
)

85
.6

(0
.8

)
12

9.
8

(1
.2

)
78

.3
(0

.5
)

13
3.

3
(1

.2
)

↓5
.4

Ta
bl

e
11

:
Pe

rc
en

ta
ge

of
bi

ts
pe

r
by

te
af

te
r5

0
te

st
-t

im
e

ite
ra

tio
ns

fo
r

va
ry

in
g
λ
′ ,

re
la

tiv
e

to
th

e
bi

ts
pe

r
by

te
of

th
e

ba
se

m
od

el
.

W
e

on
ly

in
cl

ud
e

da
ta

se
ts

w
ith

at
le

as
t1

0
ex

am
pl

es
in

ou
rt

es
ts

et
.B

ol
d

nu
m

be
rs

de
no

te
th

e
be

st
pe

rf
or

m
in

g
se

le
ct

ed
su

bs
et

.U
nd

er
lin

ed
nu

m
be

rs
de

no
te

be
tte

ro
ro

n-
pa

rp
er

fo
rm

an
ce

w
ith

N
ea

re
st

N
ei

gh
bo

rr
et

rie
va

l.
∆

de
no

te
s

th
e

pe
rf

or
m

an
ce

ga
in

of
SI

FT
w

ith
th

e
st

ro
ng

es
tλ

′ p
er

da
ta

se
to

ve
rN

ea
re

st
N

ei
gh

bo
rr

et
rie

va
l.

N
um

be
rs

in
pa

rte
nt

he
se

s
ar

e
st

an
da

rd
er

ro
rs

.W
e

re
m

ar
k

th
at
λ
′ i

s
on

a
lo

ga
ri

th
m

ic
sc

al
e.

Fo
ra

ny
ch

oi
ce

of
λ
′
∈
[1
e−

8,
1
0
],

S
IF

T
al

w
ay

s
pe

rf
or

m
s

at
le

as
to

n-
pa

rw
ith

N
ea

re
st

N
ei

gh
bo

rr
et

ri
ev

al
.

43

2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354

Under review as a conference paper at ICLR 2025

0 25 50

0.5

1.0

B
its

pe
rB

yt
e

NIH Grants

0 25 50

0.50

0.75

1.00

US Patents

0 25 50

0.5

1.0

1.5

GitHub

0 25 50
0.5

1.0

1.5

Enron Emails

Test-Time Iterations

SIFT (ours) NN Failure-mode of NN

Figure 23: Performance in some of the datasets of the Pile, with GPT-2 as base model. Error bars
correspond to standard errors.

0 10 20 30 40 50

Test-Time Iterations

1.0

1.2

B
its

pe
rB

yt
e

η = 1e−6
η = 5e−6

η = 2e−5
η = 5e−5

η = 1e−4
η = 5e−4

Figure 24: Ablation of the learning rate with data selected by Nearest Neighbor retrieval. We find that
the default learning rate 5e−5 of the transformers library (Wolf et al., 2020) works best, and
conduct our other experiments with this learning rate unless noted otherwise. Hardt & Sun (2024)
had previously used 2e−5 which we find to be suboptimal.

10−1

Uncertainty Estimate σn(x⋆)

100

B
its

pe
rB

yt
e

0.1 0.2 0.3

Uncertainty Estimate σn(x⋆)

0.50

0.75

1.00

1.25

Figure 25: We visualize the predictive ability of the uncertainty estimates σn analogously to Figure 8.

44

2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408

Under review as a conference paper at ICLR 2025

Spearman Pearson

σn
all steps 0.485 0.421
final step 0.496 0.443

σ̂n
all steps 0.722 0.581
final step 0.682 0.482

log σn
all steps 0.485 0.468
final step 0.496 0.466

log σ̂n
all steps 0.722 0.618
final step 0.682 0.526

Table 12: We find a strong / moderate correlation between the uncertainty estimates σ̂n / σn and bits
per byte. We further consider the correlation at all test-time iterations (from 0 to 50) as well as only
at the final iteration. We report both the Spearman and Pearson correlation coefficients, measuring
monotonic and linear relationships, respectively. Before determining the Pearson correlation, we
exclude the 0.25% of the data points with the lowest and highest uncertainty estimates to avoid the
influence of outliers. The p-value of all correlations is below 1e−5 due to the large sample size.

100 101

Test Time Compute

100

B
its

pe
rB

yt
e

ADAPTIVE SIFT
SIFT

0 20 40

Test-Time Compute

0.15

0.2

0.25

0.35

0.5

0.75

1.0

2.0
α

Figure 26: We evaluate ADAPTIVE SIFT with the same choices of α as in Figure 8 (right). Left: Bits
per byte of ADAPTIVE SIFT (↓ better) against test-time compute. Every marker corresponds to
the performance of ADAPTIVE SIFT with a given α, where the associated test-time compute is the
average number of test-time iterations on prompts. We compare ADAPTIVE SIFT to SIFT, where we
spend the same test-time compute on every prompt. We see a slight advantage of ADAPTIVE SIFT
over SIFT, due to adaptively stopping depending on the prompt. Our current experiment exhibits
a bias as test-time compute approaches 50, since we force-stop the compute at 50 iterations. This
biases ADAPTIVE SIFT to perform similarly to SIFT. We hypothesize that the initial advantage of
ADAPTIVE SIFT over SIFT may grow with more test-time compute if compute is not force-stopped
at 50 iterations. Right: Frequency of stopping at a given iteration for given values of α.

45

2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462

Under review as a conference paper at ICLR 2025

K PROOFS

This section provides the formal proofs of the results presented in the main text.

• §K.2 proves the insufficiency of Nearest Neighbor retrieval (Informal Proposition 2.1).

• §K.3 shows the close relationship of regularized loss minimization and test-time fine-
tuning (Proposition 3.3).

• §K.4 details how SIFT balances relevance and diversity (§C.1).

• §K.5 states confidence sets for fine-tuning regression models that are analogous to the
confidence sets for classification from the main text.

• §K.6 derives the confidence sets from the main text (Theorem 3.2).

K.1 NOTATION

Throughout this work, log denotes the natural logarithm. Unless noted otherwise {. . .} denotes a
multiset. We define the feature map Φn =̇ (ϕ(x1), . . . ,ϕ(xn)) ∈ Rn×d, which gives rise to the
kernel matrix Kn =̇ KXn

= ΦnΦ
⊤
n ∈ Rn×n and the covariance operator Σn =̇ Φ⊤

nΦn ∈ Rd×d.

K.2 INSUFFICIENCY OF NEAREST NEIGHBOR RETRIEVAL (INFORMAL PROPOSITION 2.1)

We refer to §C.2 for the formal definition of the irreducible uncertainty σ∞(x⋆;D).
We remark that if embeddings are of unit length, the cosine similarity scoring function is equivalent
to the (negative) Euclidean distance scoring function:

∥x⋆ − x∥22 = (x⋆ − x)⊤(x⋆ − x) = ∥x⋆∥22 + ∥x∥
2
2 − 2x⋆⊤x = 2− 2 cos(x⋆,x).

We henceforth consider the Euclidean distance scoring function.

Proposition K.1 (Insufficiency of Nearest Neighbor Retrieval). Suppose w.l.o.g. that ϕ(x) = x.
Consider the data space D =

⋃d
i=1Di where Di = {ei | j ∈ N} with ei the i-th basis vector

of Rd.14 Let x⋆ = 1√
4+(d−1)

(2, 1, 1, . . . , 1) ∈ Rd.

Then, for all n ≥ 1:

1. If Xn are the n nearest neighbors of x⋆ in D, σ2
n(x

⋆) ≥ σ2
∞(x⋆;D1)≫ 0.

2. If Xn is selected by SIFT, σ2
n(x

⋆)
n→∞−→ σ2

∞(x⋆;D) = 0.

Proof.

1. Clearly, ∥x⋆ − e1∥22 < ∥x⋆ − ei∥22 for all i > 1. Hence, Xn = {e1 | i ∈ [n]} ⊂ D1. This
is as if the data space was restricted to D1, and hence σ2

n(x
⋆) ≥ σ2

∞(x⋆;D1).

2. This follows readily from Theorem C.2 and noting that spanD = Rd, implying
σ2
∞(x⋆;D) = 0.

Discussion The setting examined in Proposition K.1 is an extreme case (where data exists with
exact duplication), yet we deem that it illustrates a realistic scenario. Particularly nowadays that
similar information is accessible from many sources in different forms, it is crucial to explicitly
select diverse data for fine-tuning. We show here theoretically and in Appendix L.1 qualitatively
that SIFT does not have this limitation.

14We remark that {. . .} denotes a multiset.

46

2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516

Under review as a conference paper at ICLR 2025

K.3 THE CLOSE RELATIONSHIP OF REGULARIZED LOSS MINIMIZATION AND TEST-TIME
FINE-TUNING (PROPOSITION 3.3)

Proof. We note that the regularized negative log-likelihood loss Lλ from Equation (1),

Lλ(W ;D) = −
∑

(x,y)∈D

log sy(Wϕ(x))

︸ ︷︷ ︸
L(W ;D)

+
λ

2
∥W −W pre∥2F ,

is strictly convex in W and has a unique minimizer Wλ which satisfies

∇Lλ(Wλ;D) = ∇L(Wλ;D) + λ(Wλ −W pre) = 0.

It follows that Wλ = W pre − 1
λ∇L(Wλ;D).

Finally, recall that Ŵ η = W pre − η∇L(W pre;D). We obtain

∥W1/η − Ŵη∥F = ∥η∇L(W pre;D)− η∇L(W1/η;D)∥F
= η∥∇L(W pre;D)−∇L(W1/η;D)∥F.

K.4 HOW SIFT BALANCES RELEVANCE AND DIVERSITY

1st point For non-unit length embeddings, the first selected point can be expressed as follows:

x1 = argmin
x∈D

σ2
{x}(x

⋆) = argmax
x∈D

(ϕ(x⋆)⊤ϕ(x))2

∥ϕ(x)∥22 + λ′
= argmax

x∈D

{
∡ϕ(x

⋆,x)2 as λ′ → 0

(ϕ(x⋆)⊤ϕ(vx))2 as λ′ →∞.

2nd point Next, we consider the second selected point. We derive the results in terms of the
dot product kernel k(x,x′) = ϕ(x)⊤x′ which is such that k(x,x′) = ∡ϕ(x,x

′) for unit length
embeddings. Let x be such that k(x1,x) = 0. We have

ψx⋆({x1,x1}) =
[
k(x⋆,x1)
k(x⋆,x1)

]⊤ [
1 + λ′ 1

1 1 + λ′

]−1 [
k(x⋆,x1)
k(x⋆,x1)

]
=

1

(1 + λ′)2 − 1

[
k(x⋆,x1)
k(x⋆,x1)

]⊤ [
1 + λ′ −1
−1 1 + λ′

] [
k(x⋆,x1)
k(x⋆,x1)

]
=

2λ′k(x⋆,x1)
2

(1 + λ′)2 − 1

=
2k(x⋆,x1)

2

2 + λ′
.

For x, we have

ψx⋆({x1,x}) =
[
k(x⋆,x1)
k(x⋆,x)

]⊤ [
1 + λ′ 0

0 1 + λ′

]−1 [
k(x⋆,x1)
k(x⋆,x)

]
=

1

(1 + λ′)2

[
k(x⋆,x1)
k(x⋆,x)

]⊤ [
1 + λ′ 0

0 1 + λ′

] [
k(x⋆,x1)
k(x⋆,x)

]
=
k(x⋆,x1)

2 + k(x⋆,x)2

1 + λ′
.

We see that x is preferred over x⋆ if and only if

k(x⋆,x1)
2 + k(x⋆,x)2

1 + λ′
>

2k(x⋆,x1)
2

2 + λ′
⇐⇒ k(x⋆,x)2 >

λ′

2 + λ′︸ ︷︷ ︸
c(λ′)

k(x⋆,x1)
2.

As λ′ →∞, c(λ′)→ 1; whereas as λ′ → 0, c(λ′)→ 0.

We interpret the expressions extensively in Section 4.

47

2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570

Under review as a conference paper at ICLR 2025

K.5 CONFIDENCE SETS FOR REGRESSION

Before moving on to deriving confidence sets for the setting with categorical feedback, we state
analogous results for the regression setting under the following standard assumptions. For ease of
notation, we consider the scalar case.

Assumption K.2 (Linear function in a known latent space). We assume f⋆(x) = ϕ(x)⊤w⋆ with
w⋆ ∈ Rd and where ϕ(·) ∈ Rd denotes known embeddings. We assume that w⋆ has bounded norm,
i.e., ∥w⋆ −wpre∥2 ≤ B for some finite B ∈ R.

Assumption K.3 (Sub-Gaussian Noise). We assume that the data follows

yn = f⋆(xn) + εn

where each εn from the noise sequence {εn}∞n=1 is conditionally zero-mean ρ-sub-Gaussian with
known constant ρ > 0. Formally,

∀n ≥ 1, λ ∈ R : E
[
eλϵn

∣∣ Dn−1

]
≤ exp

(
λ2ρ2

2

)
where Dn−1 corresponds to the σ-algebra generated by the random variables {xi, ϵi}n−1

i=1 and xn.

We consider the standard squared loss L(w;D) =̇ 1
2

∑
(x,y)∈D(f(x;w) − y)2 where we write

f(x;w) =̇ ϕ(w)⊤w. The regularized loss with minimizer wn is then

Lλ(w;Dn) =̇ L(w;Dn) +
λ

2
∥f −wpre∥22 (10)

where λ > 0 is the regularization parameter. In the following, we write fn(x) =̇ f(x;wn) and
fpre(x) =̇ f(x;wpre). The closed-form solution to the optimization problem from Equation (10) is
well-known (see, e.g., Williams & Rasmussen, 2006, Section 6.2.2) to be

fn(x) = fpre(x) + k⊤
Xn

(x)(KXn
+ λIn)

−1(yn − fpre
n)

where fpre
n is the vector of predictions of fpre at Xn and yn is the vector of observations in Dn.

The below result is an almost immediate consequence of the results of Abbasi-Yadkori (2013) and
Chowdhury & Gopalan (2017).

Theorem K.4 (Confidence Sets for Regression). Pick δ ∈ (0, 1) and let Assumptions K.2 and K.3
hold. Let

βn(δ) =̇ B + ρ
√
2(γn + 1 + log(1/δ))

where γn =̇ maxx1,...,xn

1
2 log det (In + λ−1KXn

). Then

P(∀n ≥ 1,x ∈ X : |f⋆(x)− fn(x)| ≤ βn(δ)σn(x)) ≥ 1− δ.

Proof. Let us define the residual of the ground truth and pre-trained model as
f̃⋆(x) =̇ f⋆(x)− fpre(x) with corresponding weight vector w̃. Analogously, let ỹn = f̃⋆(xn)+εn
be the observed error. We have that w̃⋆ =̇ w⋆ − wpre ∈ Rd with norm ∥w⋆ −wpre∥k. The
unbiased estimate of the remaining error is

f̃n = k⊤
Xn

(x)(KXn + λIn)
−1ỹn.

By Theorem 2 of Chowdhury & Gopalan (2017), for all x ∈ X and n ≥ 1, jointly with probability at
least 1− δ, |f̃⋆(x)− f̃n(x)| ≤ βn(δ)σn(x). It remains now only to observe that

|f̃⋆(x)− f̃n(x)| = |f⋆(x)− fn(x)|.

48

2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624

Under review as a conference paper at ICLR 2025

K.6 CONFIDENCE SETS FOR CLASSIFICATION (THEOREM 3.2)

We begin by re-stating Corollary 1 of Amani & Thrampoulidis (2020). Analogous results can be
obtained from Theorem 1 of Zhang & Sugiyama (2023). Substantial work has studied the special
case of binary feedback, K = 2 Faury et al. (2020); Pásztor et al. (2024).

Let A(x;W) ∈ RK×K be the matrix satisfying (A(x;W))i,j =̇ si(x;W)(1{i = j} − sj(x;W)).
Equivalently, A(x;W) = diag{s(x;W)} − s(x;W)s(x;W)⊤. Based on this matrix, we define
L =̇ supx∈X ,W∈WB

λmax(A(x;W)) and κ =̇ supx∈X ,W∈WB
1/λmin(A(x;W)).

Lemma K.5 (Corollary 1 of Amani & Thrampoulidis (2020)). Assume W ⋆ ∈ WB and W pre = 0.
Let δ ∈ (0, 1) and set

β̃n(δ) =̇
√
λ

(
B +

1

2
√
K

)
+

2K3/2d√
λ

log

(
2

δ

√
1 +

n

dλ

)
. (11)

Then,

P
(
∀n ≥ 1,x ∈ X : ∥sn(x)− s⋆(x)∥2 ≤ 2Lβ̃n(δ)

√
κ(1 + 2B) ∥ϕ(x)∥V −1

n

)
≥ 1− δ,

where Vn =̇ Σn + κλId.

Our result follows from two auxiliary lemmas.

Lemma K.6. For any s, s′ ∈ RK , dTV (s, s′) ≤
√
K
2 ∥s− s′∥2.

Proof. We have

dTV (s, s′) =
1

2
∥s− s′∥1 =

1

2

K∑
i=1

|si − s′i| ≤
1

2

√
K

√√√√ K∑
i=1

(si − s′i)2 =

√
K

2
∥s− s′∥2

where the inequality follows from Cauchy-Schwarz.

The following lemma is a standard result in the literature (Srinivas et al., 2009; Chowdhury &
Gopalan, 2017; Pásztor et al., 2024), which we include here for completeness.

Lemma K.7. Let σn be as defined in Equation (2). Then,
√
κλ ∥ϕ(x)∥V −1

n
= σn(x) for any x ∈ X .

Proof. Note that (Σn + κλId)Φ
⊤
n = Φ⊤

n (Kn + κλIn) which implies

(Σn + κλId)
−1Φ⊤

n = Φ⊤
n (Kn + κλIn)

−1. (12)

Further, by definition of kn, kn(x) = Φnϕ(x) which permits writing

(Σn + κλId)ϕ(x) = Φ⊤
nkn(x) + κλϕ(x)

and implies

ϕ(x) = (Σn + κλId)
−1Φ⊤

nkn(x) + κλ(Σn + κλId)
−1ϕ(x)

(12)
= Φ⊤

n (Kn + κλIn)
−1kn(x) + κλ(Σn + κλId)

−1ϕ(x) (13)

We have

k(x,x) = ϕ(x)⊤ϕ(x)

(13)
=

(
Φ⊤

n (Kn + κλIn)
−1kn(x) + κλ(Σn + κλId)

−1ϕ(x)
)⊤

ϕ(x)

= kn(x)
⊤(Kn + κλIn)

−1kn(x) + κλϕ(x)⊤(Σn + κλId)
−1ϕ(x)

= kn(x)
⊤(Kn + κλIn)

−1kn(x) + κλϕ(x)⊤V −1
n ϕ(x).

Reordering this equation, we obtain

κλ ∥ϕ(x)∥2V −1
n

= κλϕ(x)⊤V −1
n ϕ(x) = k(x,x)− kn(x)

⊤(Kn + κλIn)
−1kn(x) = σ2

n(x),

concluding the proof.

49

2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678

Under review as a conference paper at ICLR 2025

We now proceed to prove a version of Theorem 3.2 with W pre = 0.
Theorem K.8. Assume W ⋆ ∈ WB and W pre = 0. Let δ ∈ (0, 1) and βn(δ) as in Equation (3).
Then

P(∀n ≥ 1,x ∈ X : dTV(sn(x), s
⋆(x)) ≤ βn(δ) · σn(x)) ≥ 1− δ.

Proof. We have

dTV(sn(x), s
⋆(x)) ≤

√
K

2
∥sn(x)− s⋆(x)∥2 (Lemma K.6)

w.h.p.
≤ Lβ̃n(δ)

√
Kκ(1 + 2B) ∥ϕ(x)∥V −1

n
(Lemma K.5)

= Lβ̃n(δ)

√
K(1 + 2B)

λ
σn(x). (Lemma K.7)

It remains to note that

Lβ̃n(δ)

√
K(1 + 2B)

λ
= L

√
K(1 + 2B)

(
B +

1

2
√
K

)
+

2LK2d
√
1 + 2B

λ
log

(
2

δ

√
1 +

n

dλ

)
≤ 2

√
K(1 + 2B)

[
B +

LK3/2d

λ
log

(
2

δ

√
1 +

n

dλ

)]
= βn(δ).

With this we are ready to prove Theorem 3.2.

Proof of Theorem 3.2. We will proceed analogously to the proof of Theorem K.4. That is, our
objective will be to bound the deviation of our biased model, which we refer to as Wn =
argminW∈WB

Lλ(W ;Dn), to W ⋆. Let

L̃(W ′;D) =̇ −
∑

(x,y)∈D

log sy((W
′ +W pre)ϕ(x)) and L̃λ(W ′;D) =̇ L̃(W ′;D) +

λ

2

∥∥W ′∥∥2
F

with minimizer W ′
n =̇ argminW ′:∥W ′∥F≤B L̃λ(W ′;Dn). We further define the residual weights

W̃
⋆
=̇ W ⋆ −W pre.

Next, we make the following observation: In their proof of Lemma K.5, Amani & Thrampoulidis
(2020) bound

∥s(f(x;W ′
n))− s(f(x; W̃

⋆
))∥2 ≤ const · ∥vec(W̃ ⋆

)− vec(W ′
n)∥G̃(W̃

⋆
,W ′

n)
(14)

where const is independent of W ⋆,W pre,W ′
n and the matrix G̃(W̃

⋆
,W ′

n) is invariant to a change
of variables, i.e., G̃(W̃

⋆
,W ′

n) = G(W ⋆,W ′
n + W pre) with G̃ defined with respect to the

loss L̃λ and G defined with respect to the loss Lλ. Theorem K.8 applies to s(f(x;W ′
n)) and

s(f(x;W ⋆ −W pre)) since the regularization of L̃λ is unbiased and the residual weights satisfy
∥W̃ ⋆∥F = ∥W ⋆ −W pre∥F ≤ B by assumption.

Since W̃
⋆ −W ′

n = W ⋆ − (W ′
n +W pre), the bounds of Equation (14) as well as Theorem K.8

then also apply to s(f(x;W ′
n +W pre)), s(f(x;W ⋆)). Observing that Wn = W ′

n +W pre as a
direct consequence of the change of variables completes the proof.

50

2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732

Under review as a conference paper at ICLR 2025

L QUALITATIVE EXAMPLES

L.1 BALANCING RELEVANCE AND DIVERSITY

The following details the data space and prompt used in the qualitative example of Figure 3. We
evaluate SIFT with λ′ = 1e−4 and normalized embeddings, using the same embedding model as in
our main experiments.

Prompt

What is the age of Michael Jordan and how many kids does he have?

Data space

1 Michael Jordan was born on February 17, 1963, in Brooklyn, New York.
2 The age of Michael Jordan is 61 years.
3 Michael Jordan has five children.
4 Michael Jordan has 5 kids.

Table 13: Query and information about Michael Jordan within data space

L.2 EXAMPLES FROM THE PILE

The following provides examples of the data selected by SIFT for some queries from the Pile dataset.

DeepMind Math
Query
Find the second derivative of -222966*l*s**2 + 152*l*s - 8111*l + s**2 + 2 wrt s.
-445932*l + 2
What is the third derivative of 175*s**5 - 5*s**4 - 6106*s**3 + 53*s**2 + 169*s - 1753?
10500*s**2 - 120*s - 36636
What is the third derivative of 23679631*b**5 - 2*b**3 + 8*b**2 + 2*b - 6771326 wrt b?
1420777860*b**2 - 12
Find the second derivative of 3263785*m**4 + 141*m + 11251.
39165420*m**2
What is the second derivative of -47089*k*z**3 - 30997*k*z + 59*z**2 + 295*z wrt z?
. . .

1st example
What is the second derivative of 333510825*p**3 - 292254*p + 96 wrt p?
2001064950*p
What is the third derivative of -2862429*f**5 - 5*f**2 + 439*f - 557?
-171745740*f**2
What is the derivative of 32081*i**4 + 10*i**3 - 2*i - 9371139?
128324*i**3 + 30*i**2 - 2
Find the third derivative of -439900344*z**5 - 675051939*z**2 wrt z.
-26394020640*z**2
. . .

2nd example
What is the third derivative of 2322809*k**3 + 38*k**2 + 105*k + 236 wrt k?
13936854
What is the third derivative of 1242810*p**4 - 5*p**3 + 8382*p**2 + 491*p wrt p?
29827440*p - 30
Differentiate -23915071*o**4 + 25970708.
-95660284*o**3
Find the first derivative of -73333026*k - 218757639 wrt k.
-73333026

51

2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786

Under review as a conference paper at ICLR 2025

What is the second derivative of -9350*n**4 + 2047*n**2 - n - 42762066?
-112200*n**2 + 4094
. . .

Enron Emails
Query
Patti,

What do I do with this now? How do I get the $50? Can I wait and get a
series of months reimbursed later or do I have to go through this every month?

Fletch Sturm

1st example
Lucy,

Here is a rentroll for this week.

What is the outstanding balance on #1. It looks like 190 + 110(this week)=
300. I don’t think we should make him pay late fees if can’t communicate
clearly.

#2 still owe deposit?

#9 What day will she pay and is she going to pay monthly or biweekly.

Have a good weekend. I will talk to you next week.

In about two weeks we should know for sure if these buyers are going to buy
the property. I will keep you informed.

Phillip

2nd example
Kim,

I am getting parking deducted twice from my pay check. Who do I contact to
straighten that out?

Thanx

Chris

FreeLaw
Query
In the United States Court of Federal Claims
OFFICE OF SPECIAL MASTERS
No. 15-349V
Filed: August 20, 2015
Unpublished

ARIKA BROWNE, *
*
Petitioner, * Ruling on Entitlement; Concession;
* Influenza; Shoulder Injury (“SIRVA”)

52

2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840

Under review as a conference paper at ICLR 2025

* Special Processing Unit (“SPU”)
SECRETARY OF HEALTH *
AND HUMAN SERVICES, *
*
Respondent. *
*

Andrew Downing, Van Cott & Talamante, PLLC, Phoenix, AZ, for petitioner.
Claudia Barnes Gangi, U.S. Department of Justice, Washington, DC, for respondent.

RULING ON ENTITLEMENT 1

Vowell, Chief Special Master:

On April 7, 2015, Arika Browne filed a petition for compensation under the
National Vaccine Injury Compensation Program, 42 U.S.C. §300aa-10, et seq., 2 [the
“Vaccine Act” or “Program”]. Petitioner alleges that she suffered a left shoulder injury as
a result of the administration of an influenza vaccine. Petition at 1. The case was
assigned to the Special Processing Unit of the Office of Special Masters.

On August 20, 2015, respondent filed her Rule 4(c) report in which she concedes
. . .

1st example
In the United States Court of Federal Claims
OFFICE OF SPECIAL MASTERS
No. 15-349V
Filed: October 5, 2015
Unpublished

ARIKA BROWNE, *
*
Petitioner, * Damages Decision Based on Proffer;
* Influenza; Shoulder Injury (“SIRVA”)
* Special Processing Unit (“SPU”)
SECRETARY OF HEALTH *
AND HUMAN SERVICES, *
*
Respondent. *
*

Andrew Downing, Van Cott & Talamante, PLLC, Phoenix, AZ, for petitioner.
Claudia Barnes Gangi, U.S. Department of Justice, Washington, DC for respondent.

DECISION AWARDING DAMAGES 1

Dorsey, Chief Special Master:

On April 7, 2015, Arika Browne filed a petition for compensation under the
National Vaccine Injury Compensation Program, 42 U.S.C. §300aa-10, et seq., 2 [the
“Vaccine Act” or “Program”]. Petitioner alleges that she suffered a left shoulder injury as
a result of the administration of an influenza vaccine. Petition at 1. The case was
assigned to the Special Processing Unit of the Office of Special Masters.

On August 20, 2015, a ruling on entitlement was issued, finding petitioner entitled
. . .

2nd example

53

2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894

Under review as a conference paper at ICLR 2025

In the United States Court of Federal Claims
OFFICE OF SPECIAL MASTERS
No. 15-936V
Filed: November 23, 2015
Unpublished

JENNIFER SIEKIERSKI, *
*
Petitioner, * Ruling on Entitlement; Concession;
* Influenza;
* Shoulder Injury (“SIRVA”);
SECRETARY OF HEALTH * Special Processing Unit (“SPU”)
AND HUMAN SERVICES, *
*
Respondent. *
*

Katheryn Lee Bruns, Faraci Lange, LLP, Rochester, NY, for petitioner.
Julia Wernett McInerny, U.S. Department of Justice, Washington, DC, for respondent.

RULING ON ENTITLEMENT 1

Dorsey, Chief Special Master:

On August 26, 2015, Petitioner filed a petition for compensation under the
National Vaccine Injury Compensation Program, 42 U.S.C. §300aa-10, et seq., 2 [the
“Vaccine Act” or “Program”]. Petitioner alleges that she experienced a shoulder injury
related to vaccine administration (“SIRVA”) as a result of her receipt of an influenza
vaccine on November 4, 2014. Petition at 1. The case was assigned to the Special
Processing Unit of the Office of Special Masters.

On November 23, 2015, respondent filed her Rule 4(c) report in which she
. . .

GitHub
Query
<?php

/*
* This file is part of PHPExifTool.
*
* (c) 2012 Romain Neutron ¡imprec@gmail.com¿
*
* For the full copyright and license information, please view the LICENSE
* file that was distributed with this source code.
*/

namespace PHPExiftool
Driver
Tag
QuickTime;

use JMS
Serializer
Annotation
ExclusionPolicy;

54

2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948

Under review as a conference paper at ICLR 2025

use PHPExiftool
Driver
AbstractTag;

/**
* @ExclusionPolicy(”all”)
*/
class UserDataDji extends AbstractTag
{

protected $Id = ’xa9dji’;

protected $Name = ’UserData dji’;

protected $FullName = ’QuickTime::UserData’;

protected $GroupName = ’QuickTime’;

protected $g0 = ’QuickTime’;

protected $g1 = ’QuickTime’;

protected $g2 = ’Video’;

protected $Type = ’undef’;

protected $Writable = false;

protected $Description = ’User Data dji’;

protected $flag Binary = true;
}

1st example
<?php

/*
* This file is part of PHPExifTool.
*
* (c) 2012 Romain Neutron ¡imprec@gmail.com¿
*
* For the full copyright and license information, please view the LICENSE
* file that was distributed with this source code.
*/

namespace PHPExiftool
Driver
Tag
QuickTime;

use JMS
Serializer
Annotation
ExclusionPolicy;
use PHPExiftool
Driver
AbstractTag;

55

2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002

Under review as a conference paper at ICLR 2025

/**
* @ExclusionPolicy(”all”)
*/
class UserDataUid extends AbstractTag
{

protected $Id = ’xa9uid’;

protected $Name = ’UserData uid’;

protected $FullName = ’QuickTime::UserData’;

protected $GroupName = ’QuickTime’;

protected $g0 = ’QuickTime’;

protected $g1 = ’QuickTime’;

protected $g2 = ’Video’;

protected $Type = ’undef’;

protected $Writable = false;

protected $Description = ’User Data uid’;

protected $flag Binary = true;
}

2nd example
<?php

/*
* This file is part of PHPExifTool.
*
* (c) 2012 Romain Neutron ¡imprec@gmail.com¿
*
* For the full copyright and license information, please view the LICENSE
* file that was distributed with this source code.
*/

namespace PHPExiftool
Driver
Tag
QuickTime;

use JMS
Serializer
Annotation
ExclusionPolicy;
use PHPExiftool
Driver
AbstractTag;

/**
* @ExclusionPolicy(”all”)
*/

56

3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056

Under review as a conference paper at ICLR 2025

class MovieData extends AbstractTag
{

protected $Id = ’mdat’;

protected $Name = ’MovieData’;

protected $FullName = ’QuickTime::Main’;

protected $GroupName = ’QuickTime’;

protected $g0 = ’QuickTime’;

protected $g1 = ’QuickTime’;

protected $g2 = ’Video’;

protected $Type = ’?’;

protected $Writable = false;

protected $Description = ’Movie Data’;

protected $flag Binary = true;
}

57

	Introduction
	Test-Time Fine-Tuning
	Nearest Neighbor Retrieval is Insufficient

	Preliminaries: Uncertainty Estimation for Fine-Tuning
	SIFT: Efficiently Reducing Uncertainty about the Response
	Uncertainty Provably Vanishes
	Compute-Efficient Data Selection

	Results
	Compute-Proportional Test-Time Fine-Tuning
	Discussion and Future Work
	Comparison to the State-of-the-Art on the Pile Language Modeling Benchmark
	Extended Related Work
	Learning at Test-Time
	Data Selection
	SIFT Unifies Work on Retrieval and Work on Coverage

	Further Details on SIFT
	How SIFT Balances Relevance and Diversity
	The Uncertainty of SIFT Provably Vanishes

	Further Insights on Active Fine-Tuning
	Further Insights on Test-Time Fine-Tuning
	Extended Results
	Active Fine-Tuning
	Test-Time Fine-Tuning

	SIFT Maximizes Information Gain
	Preliminaries: Information Theory and Gaussian Processes
	Probabilistic Observation Model
	The Probabilistic Interpretation of SIFT
	How SIFT Balances Relevance and Diversity
	The Perspective of Classification

	Efficient Computation of SIFT
	Exact Implementation
	Fast (Exact) Implementation
	Pre-Selecting Data via Nearest Neighbor Retrieval
	Future Work: Improving GPU Utilization of SIFT-Fast

	Experiment Details
	Properties of the Pile Dataset
	In-Context Baseline
	Inference Cost with Test-Time Fine-Tuning

	Ablations
	Proofs
	Notation
	Insufficiency of Nearest Neighbor Retrieval (prop:insufficiencynninformal)
	The close relationship of Regularized Loss Minimization and Test-Time Fine-Tuning (prop:reglossminvsttft)
	How SIFT Balances Relevance and Diversity
	Confidence Sets for Regression
	Confidence Sets for Classification (thm:confidencesets)

	Qualitative Examples
	Balancing Relevance and Diversity
	Examples from the Pile

