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ABSTRACT

Recent efforts in fine-tuning language models often rely on automatic data
selection, commonly using Nearest Neighbors retrieval from large datasets.
However, we theoretically show that this approach tends to select redundant
data, limiting its effectiveness or even hurting performance. To address this, we
introduce SIFT, a data selection algorithm designed to reduce uncertainty about
the model’s response given a prompt, which unifies ideas from retrieval and active
learning. Whereas Nearest Neighbor retrieval typically fails in the presence of
information duplication, SIFT accounts for information duplication and optimizes
the overall information gain of the selected examples. We focus our evaluations
on fine-tuning at test-time for prompt-specific language modeling on the Pile
dataset, and show that SIFT consistently outperforms Nearest Neighbor retrieval,
with minimal computational overhead. Moreover, we show that our uncertainty
estimates can predict the performance gain of test-time fine-tuning, and use this
to develop an adaptive algorithm that invests test-time compute proportional to
realized performance gains. We provide the activeft (Active Fine-Tuning)
library which can be used as a drop-in replacement for Nearest Neighbor retrieval.

1 INTRODUCTION
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Figure 1: Selecting fine-tuning data
using SIFT (red) robustly outperforms
Nearest Neighbor retrieval (black) and
avoids the failure-mode of Nearest
Neighbor retrieval where the same data
is selected repeatedly, which is a com-
mon result of information duplication.

The standard paradigm of machine learning separates
training and testing. Training aims to learn a model by
inductively extracting general rules from data, and testing
applies this model to new, unseen data. We investigate
an alternative transductive paradigm where the model
is fine-tuned at test-time specifically to the given task.
Variations of this paradigm have been studied since the
inception of machine learning as a field. Early examples
are local learning (Cleveland, 1979; Cleveland & Devlin,
1988; Atkeson et al., 1997) and local fine-tuning (Bottou
& Vapnik, 1992). More recently, with the advent of large
pre-trained models which have good representations
and are strong foundations for fine-tuning, the idea of
test-time fine-tuning has re-gained attention (Krause
et al., 2018; 2019; Sun et al., 2020). Hardt & Sun (2024)
show that fine-tuning on data related to the prompt to a
large language model (LLM) can significantly improve
performance. Also, test-time fine-tuning is the central
component of state-of-the-art approaches to the ARC chal-
lenge (Chollet, 2019; Cole & Osman, 2023; Akyürek et al., 2024), a non-saturated benchmark which
is intended to test reasoning capabilities based on “core knowledge” rather than mere memorization.

Active Fine-Tuning: Effective data selection for fine-tuning LLMs Test-time fine-tuning
demands automatic data selection since manually selecting data for each test instance is infeasible.
Moreover, the sample efficiency of test-time fine-tuning is a central bottleneck as the number
of gradient steps is directly proportional to inference time. Previous works on data selection for
fine-tuning LLMs have fundamentally relied on Nearest Neighbor retrieval within some embedding
space (Hardt & Sun, 2024; Xia et al., 2024). We show theoretically and empirically that Nearest
Neighbor retrieval is insufficient for fine-tuning LLMs since it can lead to the selection of redundant
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data. Notably, recent works using influence functions for data selection such as Xia et al. (2024)
have pointed out this limitation. In contrast, a large body of work on (inductive) active learning
has studied non-redundant data selection (e.g., Sener & Savarese, 2017; Ash et al., 2020; Yehuda
et al., 2021; Kirsch et al., 2018) that covers the data manifold well (cf. Figure 2). Retrieval and active
learning can be seen as two extreme ends of a spectrum: retrieval selects relevant but potentially
redundant data, while active learning selects diverse but potentially irrelevant data.

Figure 2: We consider a scenario where
we have a pre-trained language model
capturing a latent manifold (red) in the
large sequence space (white). We aim
to improve the models performance on
a given prompt (blue) by efficiently fine-
tuning the model on few relevant and
diverse data points (black) at test-time.

We bridge this gap by unifying ideas from retrieval and
active learning in SIFT, an algorithm based on emerging
literature on transductive active learning (Hübotter et al.,
2024) that Selects Informative data for Fine-Tuning as
illustrated in Figure 2. Our results show that SIFT leads
to substantial improvements in performance and efficiency.
Concretely, we show the following:

1. Nearest Neighbor retrieval is insufficient (§2): We
prove that selecting the top-N highest scoring points
from a large dataset according to a fixed scoring
function leads to the selection of redundant data.

2. SIFT estimates uncertainty about responses (§3):
We develop the notion of uncertainty about the
response to the prompt, and derive an anytime high
probability bound to the total variation distance
between the model’s distribution over responses and
the ground truth which is governed by this uncertainty.

3. SIFT provably reduces uncertainty (§4): We propose SIFT, an algorithm that selects data
which reduces uncertainty about the response to the prompt. We prove statistical rates for the
uncertainty reduction (§4.1) and show that SIFT is compute-efficient, with minimal overhead
compared to Nearest Neighbor retrieval (§4.2).

4. SIFT performs better and is more robust than Nearest Neighbor retrieval (§5): We find that
fine-tuning an LLM on data selected by SIFT consistently and robustly improves performance,
which is not the case with Nearest Neighbor retrieval. Moreover, our results suggest that at test-
time, an LLM might be able to learn more effectively through fine-tuning than from its context.

5. SIFT can invest test-time compute proportionally to performance gains (§6): We observe
that our uncertainty estimates can accurately predict the performance gain of test-time fine-tuning.
Motivated by this, we dynamically adapt compute to the expected performance gain.

2 TEST-TIME FINE-TUNING

We define test-time fine-tuning of LLMs (Hardt & Sun, 2024) as follows. We consider a domain X
of token sequences and assume that we have access to a large dataset of examples D ⊆ X which we
call the data space. We further assume that we have access to a pre-trained autoregressive language
model that maps token sequences X to probability distributions over the next token from a vocabulary
of size V . Our work addresses the central question:

Given a prompt x⋆ ∈ X , how can we effectively select fine-tuning data
from the large dataset D such that the fine-tuned model performs well on the prompt?

We then fine-tune the model for a single gradient step on each selected sequence.

Locally adjusting a model at test-time has gained popularity with few-shot in-context learning (Brown
et al., 2020; Wei et al., 2022b; Bubeck et al., 2023; OpenAI, 2024) and retrieval augmented
generation (RAG, Lewis et al., 2019; Guu et al., 2020; Borgeaud et al., 2022). In contrast to this
approach, test-time fine-tuning works by fine-tuning the parameters of a pre-trained model at test-time
specifically to each prompt. Notably, test-time fine-tuning takes time linear in the number of tokens
whereas in-context learning with a transformer has quadratic complexity (Vaswani et al., 2017).
Next to this, Hardt & Sun (2024) and other works have found (test-time) fine-tuning to perform
substantially better than in-context learning (Hu et al., 2022; Mosbach et al., 2023). This work further
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improves the performance of test-time fine-tuning. Prior work has also studied how one can explicitly
meta-learn the ability to perform test-time fine-tuning (Finn et al., 2017; Sun et al., 2024), though
we find this capability to emerge even from models that are not explicitly trained in this way.

The central question studied in this work also arises when fine-tuning LLMs during post-training. For
example, in targeted instruction tuning, the goal is to fine-tune a model to obtain desired capabilities,
which are commonly embodied by a set of examples x⋆ (Xia et al., 2024). The extension of our
work to such a “batched” setting is straightforward.

2.1 NEAREST NEIGHBOR RETRIEVAL IS INSUFFICIENT

Prompt: What is the age of Michael Jordan
and how many kids does he have?
Nearest Neighbor:
1. The age of Michael Jordan is 61 years.

2. Michael Jordan was born on February 17, 1963.

SIFT (ours):
1. The age of Michael Jordan is 61 years.

2. Michael Jordan has five children.

Figure 3: We retrieve two data points to answer the
prompt. Nearest Neighbor selects redundant data,
while SIFT yields maximal information (cf. §L).

Prior work on data selection for fine-tuning has
relied on Nearest Neighbor retrieval. The idea
of making predictions on x⋆ depending on its
nearest neighbors has been around as long as
machine learning itself (Fix, 1951; Cover &
Hart, 1967). Bottou & Vapnik (1992) were the
first to apply this idea to the fine-tuning of convo-
lutional neural networks by selecting the nearest
neighbors of a test image in pixel-space. More
recently, due to advances in representation learn-
ing (Devlin et al., 2018; Reimers & Gurevych,
2019) and efficiency (e.g., Johnson et al., 2019;
Aumüller et al., 2020), Nearest Neighbor
retrieval has regained attention and been applied
to test-time fine-tuning (Hardt & Sun, 2024).

Xia et al. (2024) use influence functions (Cook, 1977; Koh & Liang, 2017; Pruthi et al., 2019) to
select data for fine-tuning LLMs. This line of work aims to select data that reduces a first-order
Taylor approximation to the test loss after fine-tuning, an approach that corresponds to Nearest
Neighbor retrieval in a certain embedding space. They highlight two main limitations of the use
of influence functions and Nearest Neighbor retrieval for data selection:

• Nearest Neighbor retrieval leads to the selection of redundant data. Figure 3 illustrates this
limitation with a qualitative example. We formalize this limitation in Proposition K.1, which we
summarize here informally:

Informal Proposition 2.1. Selecting the top-N nearest neighbors from the data space (according
to cosine similarity or Euclidean distance) may not reduce the uncertainty about the response to
the prompt beyond fine-tuning on the closest neighbor. Every additional passage may be redundant.

• Nearest Neighbor retrieval selects data with high positive cosine similarity to the prompt. Yet, data
with high negative cosine similarity can be equally informative as data with high positive cosine
similarity (Xia et al., 2024, Appendix K.2), but is ignored by standard Nearest Neighbor retrieval.

In this work, we propose SIFT and show that it naturally addresses both limitations.

3 PRELIMINARIES: UNCERTAINTY ESTIMATION FOR FINE-TUNING

We suppose the assigned probability that y ∈ [V ] is the class label of an input x ∈ X is given by
sy(f

⋆(x)), where sy is the softmax sy(f) =̇ exp(fy)/(
∑V

i=1 exp(fi)). That is, f⋆(x) denotes the
“ground truth” logits for a given input x. In the context of language modeling, V is the number of
tokens in the vocabulary, and y denotes the index of the next token. We defer all proofs to Appendix K.

We use a surrogate model to quantify the informativeness of data, which we define next.

Assumption 3.1 (Surrogate model: Linear model class within a known latent space). We assume
f⋆(x) = W ⋆ϕ(x) with W ⋆ ∈ RV×d and where ϕ(·) ∈ Rd denotes known embeddings.

The surrogate model uses the latent space induced by the pre-trained model to describe the data
manifold. We emphasize that while SIFT relies on this surrogate model for data selection, it still fine-
tunes the full pre-trained model, including latent features. Surrogate dense embedding models of this
kind have been used extensively for data selection via Nearest Neighbor retrieval (e.g., Lewis et al.,
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2019; Karpukhin et al., 2020; Borgeaud et al., 2022; Xia et al., 2024), and to understand the training
dynamics and generalization of large neural networks (e.g., Jacot et al., 2017; Lee et al., 2018; Malladi
et al., 2023; Templeton et al., 2024; Park et al., 2024). Furthermore, a surrogate model that assumes
linearity in some fixed latent space may be a reasonable approximation for test-time fine-tuning since
the latent space of the unfrozen model is not expected to change substantially by a few gradient steps.

In this work, we explore a scenario where we have a pre-trained model fpre(x) = W preϕ(x). We
let f(x;W ) =̇ Wϕ(x) and denote by L(W ;D) the negative log-likelihood loss of f(·;W ) on a
datasetD of inputs x with corresponding class labels y: L(W ;D) =̇ −∑

(x,y)∈D log sy(f(x;W )).

Uncertainty Estimation Our first intermediate goal is to estimate the uncertainty about the response
to a given prompt x⋆ after having fine-tuned on selected data Dn of size n. To this end, we
generalize prior work on confidence sets under categorical feedback (i.e., class feedback, Amani &
Thrampoulidis, 2020; Zhang & Sugiyama, 2023) to our fine-tuning setting. We consider the function
classWB =̇ {W ∈ RV×d | ∥W −W pre∥F ≤ B} where ∥·∥F denotes the Frobenius norm and with
B a constant such that W ⋆ ∈ WB . Then given data Dn, we can refine the prior estimate W pre

of W ⋆ by minimizing the regularized negative log-likelihood loss

Lλ(W ;Dn) =̇ L(W ;Dn) +
λ

2
∥W −W pre∥2F (1)

with regularization coefficient λ > 0. We write its minimizer as Wn =̇ argminW∈WB
Lλ(W ;Dn).

We will further denote the ground truth probability distribution over the response to x by
s⋆(x) =̇ s(f⋆(x)) and our approximation after selection of n samples by sn(x) =̇ s(f(x;Wn)).

We construct confidence sets of the form [sn(x) ± βn(δ)σn(x)] centered around this prediction,
and show their uniform anytime validity. The width of these sets is characterized by our central
quantity σn(x) which we define next. We consider the inner-product kernel k(x,x′) =̇ ϕ(x)⊤ϕ(x′)
and define for a set of inputs X = {x1, . . . ,xn} ⊆ D:

σ2
X(x) =̇ k(x,x)− k⊤

X(x)(KX + λκIn)
−1kX(x) (2)

where kX(x) = (k(x1,x), . . . , k(xn,x)) ∈ Rn, KX ∈ Rn×n is the kernel matrix satisfying
(KX)i,j = k(xi,xj), and κ =̇ supx∈X ,W∈WB

1/λmin(A(x;W )). Here, A(x;W ) ∈ RV×V is
the matrix satisfying (A(x;W ))i,j =̇ si(x;W )(1{i = j} − sj(x;W )) which is the proper gener-
alization of the derivative of the sigmoid function, standard in the analysis of binary feedback (Faury
et al., 2020; Pásztor et al., 2024). We write σ2

n(x) =̇ σ2
Xn

(x) where Xn ⊆ D ⊆ X are the inputs
in Dn. With this we are ready to state our first result, namely that for careful choice of βn(δ), the
confidence sets contain s⋆(x) simultaneously for all x ∈ X and n ≥ 1 with probability at least 1− δ.
Theorem 3.2 (Confidence Sets). Let Assumption 3.1 hold and W ⋆ ∈ WB . Let δ ∈ (0, 1) and set

βn(δ) =̇ 2
√
V (1 + 2B)

[
B +

LV 3/2d

λ
log

(
2

δ

√
1 +

n

dλ

)]
∈ O(log(n/δ)) (3)

where L =̇ supx∈X ,W∈WB
λmax(A(x;W )). Then

P(∀n ≥ 1,x ∈ X : dTV(sn(x), s
⋆(x)) ≤ βn(δ)σn(x)) ≥ 1− δ

where dTV (s, s′) =̇ 1
2

∑
i |si − s′i| is the total variation distance.

We use σn(x) as a proxy to the uncertainty about the response to x after having fine-tuned on
the selected data Dn, since it directly governs the size of the confidence sets around our current
estimate of response probabilities. This uncertainty is a key quantity not just in classification: In
Appendix K.5, we state analogous confidence sets for regression with the standard squared error
loss, building on results by Abbasi-Yadkori (2013) and Chowdhury & Gopalan (2017).

The Close Relationship of Regularized Loss Minimization and Test-Time Fine-Tuning Recall
that test-time fine-tuning does not solve the regularized objective of Equation (1), but instead takes a
single gradient step. So why do we expect the surrogate model f(·;Wn) be closely related to the
fine-tuned fpre? To answer this question, we contrast two alternative models:

• Wλ =̇ argminW Lλ(W ), (minimizer of regularized loss)

• Ŵη =̇ W pre − η∇L(W pre) with any step size η > 0, (single gradient-step fine-tuning)

4
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where we keep the dataset D fixed and omit the dependency on D. Our following proposition shows
that both models are close if the loss landscape is relatively smooth and for careful choice of λ ≈ 1

η .

Proposition 3.3. It holds that ∥W1/η − Ŵη ∥F ≤ η ∥∇L(W1/η)−∇L(W pre)∥F.

Recent works have also observed W1/η ≈ Ŵη empirically (Ali et al., 2019; 2020). Intuitively,
with a larger step size, Ŵη is farther away from W pre, and hence corresponds to the regularized
estimate with less regularization. This connection between regularized loss minimization and
test-time fine-tuning is closely linked to the tight connection between regularization and early
stopping (Morgan & Bourlard, 1989; Yao et al., 2007; Li et al., 2020). We will use this connection
in the following to derive SIFT in the context of fine-tuning.

4 SIFT: EFFICIENTLY REDUCING UNCERTAINTY ABOUT THE RESPONSE

We introduce SIFT, an algorithm for selecting data for fine-tuning that effectively reduces the uncer-
tainty about the response to the prompt x⋆ ∈ X . Note that we can compute the uncertainty σX(x⋆)
about the response to the prompt x⋆ for any selected data X ⊆ D in closed-form, since its definition
(cf. Equation (2)) depends only on the selected inputs X . SIFT minimizes this uncertainty about x⋆:

xn+1 =̇ argmin
x∈D

σ2
Xn∪{x}(x

⋆) = argmax
x∈D

k⊤
Xn∪{x}(x

⋆)(KXn∪{x} + λ′In+1)
−1kXn∪{x}(x

⋆).

(SIFT(λ′))

SIFT selects data that minimizes a bound on the approximation error of the surrogate model, and then
fine-tunes the full LLM using this data. We discuss the design choices, including the choice of embed-
dings, that make SIFT efficient in §4.2. In §C.1, we illustrate with an example of how SIFT balances
relevance and diversity, where we also see that the free parameter λ′ = λκ controls this trade-off.
Larger λ′ emphasize relevance of selected data, while smaller λ′ emphasize diversity. Probabilistically,
SIFT can be interpreted as maximizing the information gain of the selected data Xn on the response
to the prompt x⋆ in a tractable model. We formally introduce this interpretation of SIFT in §G.

4.1 UNCERTAINTY PROVABLY VANISHES

We prove that unlike with Nearest Neighbor retrieval, the uncertainty about the response to the prompt
vanishes if SIFT is used to select data for fine-tuning. We give an informal overview here, and defer
the formal treatment to §C.2. Our theoretical analysis shows that test-time fine-tuning can fully
reduce uncertainty only if the data space contains sufficient information to determine the correct
response. If the data space does not contain all relevant information, the remaining uncertainty is
quantified by the limiting uncertainty after seeing “all data in the data space infinitely often”, which
we call the irreducible uncertainty and denote by σ∞(x⋆). We provide the formal definition in §C.2,
but intuitively, the irreducible uncertainty is the largest quantity satisfying σX(x⋆) ≥ σ∞(x⋆) for all
X ⊆ D. We then specialize the result of Hübotter et al. (2024) to show that the uncertainty about the
response to the prompt shrinks at the rate Õ(1/

√
n) until it reaches the irreducible uncertainty:

Informal Theorem 4.1 (Convergence Guarantee). Fix any λ′ > 0 and let SIFT(λ′) select Xn from
the data space D. Then for all n ≥ 1 and x⋆ ∈ X ,

σ2
n(x

⋆)− σ2
∞(x⋆) ≤ O(λ′ log n)√

n
.

Naturally, convergence is slower with a larger regularization parameter / smaller step size. Notably,
the irreducible uncertainty depends on the data space. With a large and diverse data space, the
irreducible uncertainty is typically negligible. This statistical guarantee is a key property of SIFT.
As we show in Proposition K.1, Nearest Neighbor retrieval fails to satisfy a guarantee of this kind.

4.2 COMPUTE-EFFICIENT DATA SELECTION

We have established how to select informative data for fine-tuning. Next to good statistical efficiency,
good computational efficiency is key for selecting data at test-time. In the following, we describe
design choices such that SIFT has negligible overhead compared to Nearest Neighbor retrieval.

5
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Sequence-Level Selection In the self-supervised paradigm, each sequence of tokens x ∈ D
corresponds to a dataset of next-token predictions x1:k 7→ xk+1. Rather than selecting individual
next-token predictions from the data space of all sub-sequences x1:k, we select full sequences x from
the significantly smaller data space D, then fine-tune for a single gradient step on each sub-sequence
within x. This is a common practice in prior works that use Nearest Neighbor retrieval for data
selection (e.g., Xia et al., 2024; Hardt & Sun, 2024).

Surrogate Sequence Embedders We use a surrogate sequence embedding model to generate
embeddings of the data space and prompts. We use the same embedding model as Hardt & Sun
(2024) which is a large Roberta model (Liu, 2019) with 355M parameters that was fine-tuned for
one pass on the Pile training set. The embedding dimension is 1024. Unlike Hardt & Sun (2024),
we additionally normalize the embeddings to unit length, the reasons for which we discuss in §D.

We obtain decent performance with this surrogate model. Nevertheless, our theoretical results
indicate that using embeddings extracted from the LLM to be fine-tuned could further improve the
performance of SIFT. Empirical neural tangent embeddings (Wei et al., 2022a; Holzmüller et al.,
2023) and influence function embeddings (Xia et al., 2024) can be implemented efficiently and offer
alternative latent spaces capturing the pre-trained model. We hypothesize that the decent performance
of the surrogate model is explained by the similarity of emergent latent spaces of language models
that were trained on similar data.
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Figure 4: The (multiplicative) compu-
tational overhead of SIFT compared to
Nearest Neighbor retrieval is minimal.
The compute overhead with a 1k data
space is less than 1.05×.

Efficient Implementation of SIFT In our experiments,
we pre-select 200 candidates via Nearest Neighbor
retrieval with Faiss (Johnson et al., 2019) and then apply
SIFT to select 50 sequences from this smaller data space.
On the Pile dataset, we find that performance can be
increased further by pre-selecting more candidates (cf. Fig-
ure 18 in §H) but the marginal gains diminish. The precise
performance benefit of pre-selecting more candidates may
differ on other datasets. We describe in §H how SIFT can
be solved iteratively without computing the inverse in ev-
ery iteration. When a matrix of the size of the pre-selected
data space fits in GPU memory, we find that SIFT has
a negligible computational overhead compared to Nearest
Neighbor retrieval. We report results with an NVIDIA
RTX 4090 GPU in Figure 4.1 While our main implemen-
tation of SIFT is fast if the data space is small, it does not scale linearly with the size of the data
space K. In §H, we show that a priority queue can be used to achieve an almost-linear runtime in K.

5 RESULTS

We focus on language modeling with causal language models. Following Hardt & Sun (2024), we
fine-tune a pre-trained LLM for a single gradient step each on N = 50 selected data points in the
order that they are selected, most to least relevant. We use the Pile dataset (Gao et al., 2020) for
evaluation, restricting our use to data which is obtained and used in compliance with the terms of
service of the data host. This version of the Pile contains a diverse set of 17 high-quality sub-datasets,
ranging from Q&A to code, scientific publications, math, and more. Concretely, we use the Pile
training set containing 210M sequences of total size 1.3TB as data space for data selection, and we
evaluate on the Pile test set.2 We report the bits per byte metric as recommended by Gao et al. (2020),
which is proportional to the negative log-likelihood loss normalized by a dataset-specific constant.
Error bars correspond to 90% confidence intervals computed via bootstrapping with 1‘000 samples.

Base Models and Baselines We evaluate the GPT-2 model (Radford et al., 2019) with 124M param-
eters also evaluated by Hardt & Sun (2024), with the default learning rate of the transformers
library (Wolf et al., 2020). We obtain analogous results with GPT-2-large (774M parameters) and
the state-of-the-art Phi-3 (3.8B, Abdin et al., 2024).3 With Phi-3, we use low-rank adaptation (LoRA,
Hu et al., 2022), fine-tuning slightly less than 1% of the model’s total parameters. We compare SIFT

1We use the client-server architecture described by Hardt & Sun (2024) with CPU-only servers.
2We evaluate on 1% of the test set (0.1% with Phi-3), corresponding to 1‘812 sequences.
3We detail hyperparameter choices for larger models in §I.
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Figure 5: Bits per byte (in % relative to the base model, ↓ better) after 50 test-time iterations.
Left: Performance gains of SIFT are consistent across models. The failure-mode of Nearest
Neighbor consistently performs worse than the base model. Tables 4 and 5 in §F detail our results
with GPT-2-large and Phi-3 analogously to Table 1. Right: Most choices of λ′ lead to comparable
performance. With λ′ →∞, SIFT(λ′) repeatedly selects the nearest neighbor.

with λ′ = 0.01 to Nearest Neighbor retrieval (NN) and the failure mode of Nearest Neighbor retrieval
that repeatedly selects the closest neighbor. The failure mode of Nearest Neighbor retrieval (NN-F)
corresponds to an extreme case of redundancy in the data space which we suspect to be a realistic
scenario in larger or less curated datasets. Finally, we compare to Uncertainty Sampling (US), which
is a widely used active learning strategy (Lewis, 1995; Settles, 2009) that selects the data with the
highest uncertainty in the model’s response by selecting according to xn+1 = argmaxx∈D σ

2
n(x).

We compare to the heuristic that uses US to choose from the 200 nearest neighbors, in which case
US can be understood as finding a diverse cover of this pre-selected data space (see, e.g., Holzmüller
et al., 2023; Kirsch et al., 2018). In contrast, SIFT minimizes the uncertainty in the model’s response
to the prompt x⋆, leading to a “denser” cover close to x⋆ and a “coarser” cover further away from x⋆.

US NN NN-F SIFT ∆

NIH Grants 93.1 (1.1) 84.9 (2.1) 91.6 (16.7) 53.8 (8.9) ↓31.1
US Patents 85.6 (1.5) 80.3 (1.9) 108.8 (6.6) 62.9 (3.5) ↓17.4
GitHub 45.6 (2.2) 42.1 (2.0) 53.2 (4.0) 30.0 (2.2) ↓12.1
Enron Emails 68.6 (9.8) 64.4 (10.1) 91.6 (20.6) 53.1 (11.4) ↓11.3
Wikipedia 67.5 (1.9) 66.3 (2.0) 121.2 (3.5) 62.7 (2.1) ↓3.6
Common Crawl 92.6 (0.4) 90.4 (0.5) 148.8 (1.5) 87.5 (0.7) ↓2.9
PubMed Abstr. 88.9 (0.3) 87.2 (0.4) 162.6 (1.3) 84.4 (0.6) ↓2.8
ArXiv 85.4 (1.2) 85.0 (1.6) 166.8 (6.4) 82.5 (1.4) ↓2.5
PubMed Central 81.7 (2.6) 81.7 (2.6) 155.6 (5.1) 79.5 (2.6) ↓2.2
Stack Exchange 78.6 (0.7) 78.2 (0.7) 141.9 (1.5) 76.7 (0.7) ↓1.5
Hacker News 80.4 (2.5) 79.2 (2.8) 133.1 (6.3) 78.4 (2.8) ↓0.8
FreeLaw 63.9 (4.1) 64.1 (4.0) 122.4 (7.1) 64.0 (4.1) ↑0.1
DeepMind Math 69.4 (2.1) 69.6 (2.1) 121.8 (3.1) 69.7 (2.1) ↑0.3
All 80.2 (0.5) 78.3 (0.5) 133.3 (1.2) 73.5 (0.6) ↓4.8

Table 1: Bits per byte (in % relative to the base model, ↓)
after 50 test-time iterations on individual datasets of the Pile.
We only include datasets with at least 10 examples in our test
set. Bold numbers denote the best performing selected subset.
Numbers in parentheses are standard errors. ∆ denotes the
performance gain of SIFT over the strongest baseline.

Insight 1: SIFT consistently se-
lects better data for fine-tuning than
Nearest Neighbor retrieval.
We show in Figure 1 that SIFT out-
performs NN and avoids its failure
mode where the same data point is
selected repeatedly. In Figure 5 (left),
we show that the performance gains
of SIFT are consistent across models.
Table 1 compares the performance of
SIFT against NN across all datasets of
the Pile, using GPT-2 as base model.
Overall, we find that SIFT improves
performance both on datasets where
NN already performs well, such as
GitHub, and on datasets where NN
performs poorly, such as NIH Grants.
On all datasets of the Pile, SIFT per-
forms at least as well as the strongest
baseline (within margin of error), sug-
gesting that it is a robust method for
data selection. We observe the trend
that relative performance gains of
SIFT over Nearest Neighbor retrieval
increase with model capability. That
is, with stronger base models, informativeness of selected data appears to become more important.

Insight 2: SIFT is robust to the choice of λ′. We evaluate SIFT with varying choices of λ′, and
summarize the results in Figure 5 (right). We include extended results in Table 11 of §J, showing that
for all evaluated λ′ between 1e−8 and 10, SIFT performs at least on-par with Nearest Neighbor re-
trieval on all datasets of the Pile, often outperforming it. This suggests that SIFT is robust to the choice
of λ′. Nevertheless, there may be an advantage to adaptively tuning λ′ (e.g., via cross-validation).
In particular, choosing the best λ′ for each dataset, SIFT outperforms all baselines on every dataset.
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Figure 7: Bits per byte (↓ better), comparing fine-tuning and in-context learning with 50 test-time
examples selected by SIFT. We find that fine-tuning systematically outperforms or performs on-par
with in-context learning, even when fine-tuning only a LoRA adapter as with Phi-3. Test-time
fine-tuning with Phi-3 (3.8B) surpasses the performance of the more than 3× larger Phi-3 (14B)
and the 7× larger Gemma-2 (27B).

Insight 3: SIFT selects data the “right” number of times. Nearest Neighbor retrieval implicitly
relies on non-redundancy within the data space to not select duplicate information, as illustrated in
the example of Figure 3. This is almost never the case in practice, and in the extreme case of duplicate
data, Nearest Neighbor selects the same data point repeatedly. SIFT does not rely on excluding
previously selected data points. Instead, SIFT may select the same data point any number of times,
adaptively taking more than one gradient step on it, if beneficial. To ensure that the selected data is
maximally informative, SIFT takes into account the redundancy of data points explicitly. This makes
SIFT robust to information duplication by design.

overall # = 1 # ≥ 25

0%

50%

100%
B

its
pe

rB
yt

e

Nearest Neighbor
over NN
over NN-F

Figure 6: Bits per byte (in % relative
to NN / NN-F, ↓ better) after 50 test-
time iterations. Error bars correspond to
standard errors. The left bars measure
the performance gain over all of the Pile.
The middle and right bars measure the
performance gain for all prompts where
SIFT selects # unique points.

We illustrate this in Figure 6 where we evaluate the
performance gain of SIFT over Nearest Neighbor and its
failure mode. As expected, we find that on all test prompts
where SIFT selects many unique points, SIFT outper-
forms repeatedly selecting the closest neighbor by a large
margin. Interestingly, we also find that on all test prompts
where SIFT selects only a single point, SIFT outperforms
Nearest Neighbor by a large margin. This suggests that in
some cases repeatedly taking gradient steps on the closest
neighbor is beneficial, and SIFT identifies these cases.

Insight 4: Test-time fine-tuning can significantly
improve language modeling ability. Our results from
Figure 7 indicate that test-time fine-tuning improves the
performance of the base LLM substantially, surprisingly,
even with a state-of-the-art model such as Phi-3. Our Phi-3
with test-time fine-tuning and SIFT achieves 0.595 bits
per byte, outperforming the previous leader in the Pile language modeling benchmark, a 30× larger
model.4 We also evaluate the recent Llama-3.2 family of models (Dubey et al., 2024), and with
Llama-3.2 (3B) as base model we achieve 0.557 bits per byte, a significant improvement upon the
previous state-of-the-art. We compare test-time fine-tuning to the common in-context learning, where
we include as much of the data as possible into the context window of the test instance, in addition
to its original context, by concatenating text in order of selection. While in-context learning tends to
improve the performance of the base model, we find that fine-tuning at test-time tends to outperform
or perform on-par with in-context learning. Furthermore, the compute cost of in-context learning
grows quadratically with the context window size, meaning that including long texts within large
context windows is expensive. Remarkably, test-time fine-tuning consistently outperforms in-context
learning by more than 25% on math and coding, tasks that require more complex reasoning (§F).

Further Insights In §D, we discuss additional findings on active fine-tuning such as that the per-
formance gains of SIFT over Nearest Neighbor retrieval grow with dataset size, and that normalizing
embeddings is important for the effectiveness of data selection. In §E, we discuss additional findings
on test-time fine-tuning, for example, the trend that larger models learn faster at test-time.

4We compare to prior work in the Pile language modeling benchmark in Table 2 of §A.
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Figure 8: Left: We visualize the empirical density of the uncertainty estimates σ̂n wrt. the bits per
byte bpbn. Brighter colors indicate higher density on a logarithmic scale. We observe a strong linear
relationship between uncertainty estimates and bits per byte. Middle: We construct a “reliability
diagram” of uncertainty estimates. Notably, since we evaluate with respect to bits per byte rather
than an accuracy, canonical calibration plots are not applicable. In particular, it is well known that
bits per byte do not go to zero for perfect models due to irreducible aleatoric uncertainty, which is
not captured by our epistemic uncertainty estimates. Nevertheless, we observe that our epistemic
uncertainty estimates are predictive of the model’s performance. The red line indicates a linear fit.
Right: We visualize the bits per byte (in % relative to the base model, ↓ better) of all prompts whose
model is fine-tuned at a given iteration. We find that by adaptively stopping with respect to the known
uncertainties σn, we can spend test-time compute proportional to realized performance gains (see
also Figure 26 in §J). Remarks: Results are with GPT-2. In the left and middle plots, we remove the
lowest and highest 0.25% of uncertainty estimates (i.e., the outliers) for better visualization. In the
left plot, we additionally remove the lowest and highest 0.25% of bits per byte.

6 COMPUTE-PROPORTIONAL TEST-TIME FINE-TUNING

We have shown that test-time fine-tuning can improve language modeling ability and that SIFT
is a robust method for data selection, outperforming Nearest Neighbor retrieval. However, a key
shortcoming of previous approaches to test-time fine-tuning is that they spend a fixed amount of
test-time compute, regardless of the nature of the prompt, the available data, or the model. This is not
computationally scalable in many practical applications, since a fixed test-time compute budget leads
to non-proportionate performance gains. For example, for the prompt “Hello” to a chatbot we would
not like to spend any test-time compute, while for a more complex prompt we would like to spend
more compute. In this section, we evaluate whether uncertainty estimates can be used to adaptively
stop test-time fine-tuning such that the realized performance gain is proportional to the compute used.

Insight 5: The response uncertainty can predict performance gain. We find that σn(x⋆) is mono-
tonically and linearly correlated at coefficient ≈ 0.4 with the model error after n test-time iterations,
i.e., the bits per byte bpbn(x

⋆). This is remarkable because σn contains information only from the
surrogate embedding model, and is normalized such that σ0(x⋆) = 1. To determine the importance of
the base model, we also evaluate the denormalized uncertainty estimate σ̂n(x⋆) =̇ σn(x

⋆)·bpb0(x⋆),
which unlike σn cannot be evaluated at test-time. We multiply σn by bpb0 to ensure that the uncer-
tainty measure is in the same units as the performance metric, correcting for the use of normalized
surrogate embeddings. We find that σ̂n(x⋆) is strongly correlated at coefficient ⪆ 0.5 with the bits
per byte. We summarize correlations in Table 12 of §J and visualize the predictive capability of σ̂n in
Figure 8 (left) and Figure 8 (middle). Our findings indicate that approximations of the base model’s
uncertainty, before test-time fine-tuning, can be beneficial. In future work, we intend to determine
whether generating embeddings from the base model can provide such scale-correction.

Recall that SIFT minimizes the response uncertainty σn to the given prompt. The predictive ability
of uncertainty estimates provides an intuitive explanation for the effectiveness of SIFT.

Compute-Proportional Performance Gains: Early stopping at the “right” time. Motivated by
the predictive power of uncertainty estimates, we evaluate whether they can be used to adaptively
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stop test-time fine-tuning such that the realized performance gain is proportional to the compute used.
In the following, we propose a such a stopping criterion for SIFT. Using the approximation of the
error via uncertainty estimates discussed above and that σ0(x⋆) = 1:

performance gain =
bpb0(x

⋆)

bpbn(x
⋆)
≈ σ0(x

⋆)

σn(x⋆)
=

1

σn(x⋆)
. (4)

We would like to stop fine-tuning when further test-time compute does not yield proportional
performance gain, i.e., when “performance gain < α · n” with n approximating the compute of n
iterations and α a constant comparing the units of compute and performance. Plugging in our above
approximation of the performance gain, we propose to stop test-time fine-tuning before iteration n if

σn(x
⋆) > (αn)−1. (ADAPTIVE SIFT)

Intuitively, this stops fine-tuning the LLM when its progress in crafting a better response stalls. For
complex prompts that benefit from fine-tuning, ADAPTIVE SIFT spends more test-time compute,
whereas for prompts where the model is already strong or where the data space is not informative,
ADAPTIVE SIFT spends less test-time compute. Figure 8 (right) shows that the performance gains of
this approach are proportional to the compute used.

Towards Scaling Laws of Test-Time Fine-Tuning Interestingly, our results bear resemblance
to scaling laws of LLM pre-training (Kaplan et al., 2020; Henighan et al., 2020; Hoffmann et al.,
2022). These scaling laws express the performance of a model as a function of the compute used
for pre-training (e.g., the number of parameters or training tokens). Such scaling laws are crucial for
determining how to optimally spend a fixed amount of compute. Recently, scaling laws for “test-time
inference” have gained attention, where test-time compute is usually spent on search (e.g., beam
search) with a variable number of forward passes of a few-shot prompted base LLM (Brown et al.,
2024; Snell et al., 2024). Our results suggest that similar scaling laws exist for test-time fine-tuning,
expressing the performance of a model as a function of the compute used for fine-tuning at test-time.
Such scaling laws can be an important tool to determine how to spend test-time compute. There
are many open questions in this direction, which we do not address in this work. For example, how
does model size affect the scaling laws of test-time fine-tuning? Or, can a model be fine-tuned at
test-time to build reasoning chains? Based on our results and previous evaluations of fine-tuning and
in-context learning (e.g., Hu et al., 2022; Mosbach et al., 2023; Hardt & Sun, 2024), we conjecture
that test-time fine-tuning may lead to a more efficient use of compute than repeatedly prompting
a base LLM. We believe that these open questions are exciting directions for future work.

7 DISCUSSION AND FUTURE WORK

We propose a data selection algorithm, SIFT, unifying ideas from retrieval and active learning. SIFT
estimates the uncertainty about the response to a given prompt after having been fine-tuned on some
data (§3), and then selects the data that minimizes this uncertainty (§4). This addresses the limitations
of Nearest Neighbor retrieval (§2). SIFT can be seen as a generalization of Nearest Neighbor
retrieval from a search method to a learning method, which ensures explicitly that the retrieved data
is maximally informative. We show on the Pile dataset that SIFT consistently outperforms Nearest
Neighbor retrieval in prompt-specific fine-tuning at test-time and that this kind of local learning
can be more effective than locally learning from examples in-context (§5). Finally, we observe that
our uncertainty estimates can predict the performance gain of test-time fine-tuning, and use this to
develop an adaptive algorithm which achieves compute-proportional performance gains (§6).

Test-time fine-tuning addresses a fundamental limitation of in-context learning, namely that in-context
learning is typically limited to a fixed and finite context window. In contrast, test-time fine-tuning
allows the LLM to dynamically and effectively access a potentially unbounded non-parametric
memory. By improving the effectiveness of test-time fine-tuning, this work opens up several exciting
directions for future research. Test-time fine-tuning may be used to ground the model on a trusted
dataset, mitigate biases against under-represented groups in the training data, or to dynamically
include private data depending on user privileges. Particularly interesting would be a broad evaluation
on non-perplexity tasks such as code generation or in the life sciences with large-scale medical or
protein data. Unlike few-shot in-context learning which is limited in scope to autoregressive models,
test-time fine-tuning and SIFT may be extended to other model classes such as diffusion models.
Furthermore, SIFT may be used effectively in other settings that require automatic data selection,
such as targeted instruction tuning during post-training of LLMs. Finally, our results suggest scaling
laws for test-time fine-tuning and we outline several exciting open questions (§6).
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A COMPARISON TO THE STATE-OF-THE-ART ON THE PILE LANGUAGE
MODELING BENCHMARK

Table 2 summarizes the state-of-the-art in the Pile language modeling benchmark.

Model Bits per Byte Bits per Byte (without Wikipedia)

Jurassic-1 (178B, Lieber et al., 2021) n/a 0.601*
GLM (130B, Zeng et al., 2022) n/a 0.622*
GPT-2 (124M, Radford et al., 2019) 1.241
GPT-2 (774M, Radford et al., 2019) 1.093
Llama-3.2-Instruct (1B, Dubey et al., 2024) 0.807
Llama-3.2-Instruct (3B, Dubey et al., 2024) 0.737
Gemma-2 (2B, Team et al., 2024) 0.721
Llama-3.2 (1B, Dubey et al., 2024) 0.697 0.684
Phi-3.5 (3.8B, Abdin et al., 2024) 0.690
Phi-3 (3.8B, Abdin et al., 2024) 0.679 0.678
Phi-3 (7B, Abdin et al., 2024) 0.678
Gemma-2 (9B, Team et al., 2024) 0.670
GPT-3 (175B, Brown et al., 2020) 0.666*
Phi-3.5-MoE (16×3.8B, Abdin et al., 2024) 0.656
Phi-3 (14B, Abdin et al., 2024) 0.651
Llama-3.2 (3B, Dubey et al., 2024) 0.640 0.627
Gemma-2 (27B, Team et al., 2024) 0.629

Test-Time FT with SIFT + GPT-2 (124M) 0.862
Test-Time FT with SIFT + GPT-2 (774M) 0.762
Test-Time FT with SIFT + Llama-3.2 (1B) 0.606 0.607
Test-Time FT with SIFT + Phi-3 (3.8B) 0.595 0.599
Test-Time FT with SIFT + Llama-3.2 (3B) 0.557 0.559

Table 2: Evaluation of state-of-the-art models on the Pile language modeling benchmark, without
copyrighted datasets. (*): Results with GPT-3 are from Gao et al. (2020); results with Jurassic-1
and GLM are from Zeng et al. (2022) and do not report on the Wikipedia dataset. For a complete
comparison, we also evaluate our Phi-3 with test-time fine-tuning when excluding the Wikipedia
dataset. Bold numbers denote the best performing model. Underlined numbers denote a model that
is better than the previous state-of-the-art.

Due to our dataset being restricted to the non-copyrighted part of the Pile, the data distribution
changes slightly. To account for this, we take the reported results of prior work and exclude the
datasets that have copyright restrictions from the evaluation. Notably, some prior reported results
of state-of-the-art models miss evaluation of the Wikipedia dataset, which we therefore also exclude
for a direct comparison. To the best of our knowledge, our results with test-time fine-tuning and
SIFT achieve a new state-of-the-art on the Pile benchmark.
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B EXTENDED RELATED WORK

B.1 LEARNING AT TEST-TIME

The subject of learning at test-time has a rich history in statistics and machine learning. By “learning
at test-time” we refer to models that are constructed specifically for a given test instance, differing
from the model used for other test instances. The following discussion provides a brief overview
with emphasis on the most recent developments.

k-Nearest Neighbors (since 1950s) One of the most basic forms of learning at test-time was
developed by Fix (1951) and Cover & Hart (1967). Given the supervised data D ⊆ X × Y with
input domain X ⊆ Rd and labels Y = {0, . . . ,K}, the k-NN algorithm predicts the label of a test
instance x⋆ ∈ X by taking the majority vote of the k nearest neighbors of x⋆ in D according to
some distance metric on X such as Euclidean distance. In the case of regression, Y = R and the
prediction is the average of the labels of the k nearest neighbors. This is a simple and often effective
method if the inputs are well-structured and low-dimensional, e.g., if X is a learned low-dimensional
manifold (Geirhos et al., 2024). When K is large, as for example when Y is the set of all tokens
in a language modeling task, naı̈ve application of k-NNs is difficult, nevertheless they have been
shown to be effective when mixed with parametric language models (Khandelwal et al., 2020).

Local Learning (since 1970s) Local learning is the idea of using data “relevant” to the test in-
stance x⋆ to train a parametric model. Formally, given a test instance x⋆, conventually a model f is
used to predict f(x⋆) where f is trained to minimize the average loss over the training data. Instead,
local learning trains a model fx⋆ specifically for x⋆ and predicts fx⋆(x⋆). Original works train a lin-
ear model by weighting data according to their proximity to x⋆ (Cleveland, 1979; Cleveland & Devlin,
1988; Atkeson et al., 1997). Here, each test instance trains a model from scratch since the optimal
solution of linear regression is independent of initialization. This perspective has regained interest
recently in the context of neural networks, with Sun et al. (2020) naming it “test-time training”.

Transductive Learning (since 1990s) Vladimir Vapnik developed the general principle of trans-
duction which he states in Vapnik (2013) as follows:

Vladimir Vapnik: “When solving a problem of interest, do not solve a more general
problem as an intermediate step. Try to get the answer that you really need but not
a more general one.”

This is perhaps the most general principle behind learning at test-time, and directly opposed to
the principle of induction — extracting the most general rules from data — which has arguably
dominated machine learning research over the last decades. In a way, local learning is pushing
the principle of transduction to the opposite extreme: Each test instance defines its own learning
problem, with the test instance alone being the target of prediction.

Local Fine-Tuning (since 1990s) Bottou & Vapnik (1992) were the first to use local learning in
conjunction with a pre-trained parametric model. They train (i.e., “fine-tune”) the last layer of a con-
volutional neural network for handwritten digit classification based on the nearest neighbors to the test
instance in pixel space. Very recently, Hardt & Sun (2024) applied the same idea to language models,
showing that local fine-tuning can significantly improve the performance of large language models on
standard benchmarks. Previously, this idea has also been evaluated by Li et al. (2018) and Basu et al.
(2023). “Test-time fine-tuning” (as well as “active inference”) has frequently been used to refer to this
approach of locally fine-tuning a pre-trained model. Within the last few years, test-time fine-tuning
has regained substantial interest in the context of self-supervised learning, where the pre-trained model
is fine-tuned on the test instance itself. Notable applications of this approach are in vision (Jain &
Learned-Miller, 2011; Shocher et al., 2018; Luo et al., 2020; Sun et al., 2020; Wang et al., 2021b) and
in language modeling (Krause et al., 2018; 2019), where it is called dynamic evaluation. As one would
also naı̈vely expect, test-time fine-tuning yields the largest improvements when the prompt is not (well-
) represented in the pre-training data, e.g., due to a distribution shift (Gandelsman et al., 2021; Hardt &
Sun, 2024). Notably, test-time fine-tuning is the central component of the state-of-the-art approaches
to the ARC challenge (Chollet, 2019; Cole & Osman, 2023), a non-saturated benchmark which is
intended to test reasoning capabilities based on “core knowledge” rather than mere memorization.

(Few-Shot) In-Context Learning (since 2020s) Very recently, with the advent of large language
models (LLMs), learning at test-time has regained interest. Brown et al. (2020) showed that GPT-3
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can learn in-context from input-label pairs that are appended to the prompt, an emergent phenomenon
of LLMs that has been widely studied since (Von Oswald et al., 2023; Kossen et al., 2024;
Bhattamishra et al., 2024). In contrast to standard in-weights learning, in-context learning requires
no parameter updates. Interestingly, in-context learning adopts the same paradigm as local learning
wherein a model is adapted specifically for the test instance x⋆, here by skewing the autoregressive
distribution towards the data included in the prompt. This is often combined with the automatic
sourcing of nearest neighbors to x⋆ in an external dataset, which is known as “retrieval augmented
generation” (RAG, Lewis et al., 2019; Borgeaud et al., 2022), and is akin to the other methods of
test-time learning discussed above. A crucial difference between test-time fine-tuning and in-context
learning appears to be that learning from context works by changing the test instance (Bhargava et al.,
2023) whereas in-weights learning works by changing the model. With small datasets, in-context
learning is therefore often more computationally efficient than test-time fine-tuning, however this
ceases to be the case when the dataset grows since the complexity of transformers grows quadratically
in the number of context tokens whereas the complexity of test-time fine-tuning grows linearly.

B.2 DATA SELECTION

Clearly, the choice of data to learn from at test-time is crucial for predictive performance. Selecting
uninformative data can increase inference time or even degrade performance (see, e.g., Kolossov
et al., 2024). Today, datasets for fine-tuning are often hand-designed, however, this is not possible in a
test-time setting. Automatic data selection has a rich history in machine learning, studied extensively
in search, experimental design (Chaloner & Verdinelli, 1995), and active learning (Settles, 2009).
The following attempts to give a brief overview of the most recent developments.

(Document) Retrieval (since 1970s) Retrieval methods aim to search a dataset D for the most
relevant data to a given query/prompt. The most classical methods such as TF-IDF (Sparck Jones,
1972) and BM25 (Robertson et al., 2009) are based on keyword matching, and were developed
alongside the first search engines. Due to their reliance on “bags of words”, i.e., sets of one-hot-
encoded word vectors, they are known as sparse retrievers. An alternative idea is to select the data x
that maximizes the likelihood of the query x⋆ given the data, i.e., argmaxx∈D p(x

⋆ | x), known as
query likelihood retrievers (Ponte & Croft, 1998; Wang et al., 2023). Here, the conditional probability
can be a non-parametric term frequency or a parametric language model. More recently, due to
significant advances in representation learning (Devlin et al., 2018; Reimers & Gurevych, 2019),
dense retrievers have become popular (e.g., Lewis et al., 2019; Karpukhin et al., 2020; Borgeaud et al.,
2022). A dense retriever embeds dataset and query into a metric vector space, and retrieves the nearest
neighbors to the query. Standard vector-based search methods use cosine similarity or (equivalently5)
Euclidean distance. Recent advances in algorithms and implementation mean that (approximate)
nearest neighbor retrieval can be performed efficiently with databases of billions or even trillions of
tokens (e.g., Johnson et al., 2019; Aumüller et al., 2020). The most common metric is cosine distance,
which coincides with Euclidean distance when vectors are normalized to unit length. Nearest neighbor
retrieval has been the de-facto standard for data selection in RAG and local learning.6

Influence Functions (since 1970s) Influence functions measure the change in a model’s prediction
when a single data point is removed from the training data. First proposed by Cook (1977) for linear
regression, they have since been used extensively to interpret predictions (Koh & Liang, 2017; Pruthi
et al., 2019). Very recently, Xia et al. (2024) applied influence functions to select data that leads to
the largest (approximate) reduction in test-loss. Concretely, using a first-order Taylor approximation
of the loss ℓ and if the model at time t is updated via stochastic gradient descent with step size ηt on
data x, the loss reduction can be approximated as

ℓ(x⋆;θt+1)− ℓ(x⋆;θt) ≈ −ηt⟨∇θ ℓ(x;θt),∇θ ℓ(x
⋆;θt)⟩.

That is, the data x whose loss gradient is most aligned with the loss gradient of the test instance x⋆,
can be expected to lead to the largest loss reduction.7 Note that this simply leads to nearest neighbor
retrieval in an embedding space informed by the model at time t. A major limitation of using
influence functions for data selection is that they implicitly assume that the influence of selected

5Here we assume that vectors are normalized to unit length, cf. Appendix K.2.
6There is substantial literature that investigates selection of “informative” data for RAG (e.g., Ye et al., 2023).
7Xia et al. (2024) normalize embeddings before computing the inner product (thus, maximizing cosine

similarity) to account for varying gradient norms depending on sequence lengths.
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data adds linearly (i.e., two equally scored data points are expected to doubly improve the model
performance, Xu & Kazantsev, 2019, Section 3.2). This assumption does quite obviously not hold in
practice as seen, e.g., by simply duplicating data. The same limitation applies to the related approach
of datamodels (Ilyas et al., 2022). A recent line of work aims to address this limitation by designing
simulators that can be probed with datasets to estimate their effect on a prediction requiring less
compute than training the full model (Guu et al., 2023), yet, this does not address the data selection
problem as the space of possible datasets is exponentially large.

Coverage & Inductive Active Learning Next we discuss an orthogonal line of work, which takes
into account the interaction between selected data, but not the interaction of that data with respect
to a test instance. Roughly speaking classical active learning studies how to most effectively select
data from a domain X for learning a model over this domain X . Intuitively, this task can be thought
of as selecting a subset X ⊆ X of fixed size that captures the most “information” about the target
function f . As such, this task is of an inductive nature: we aim to extract general rules from the data
that can be applied to unseen data later, without concrete specification of the unseen data. Approaches
to (inductive) active learning are broadly aiming to select diverse data that covers the data manifold
in X well. Methods include those that maximize the mutual distances between selected data (e.g.,
CORESET (Sener & Savarese, 2017), BADGE (Ash et al., 2020), and PROBCOVER (Yehuda
et al., 2021)) with respect to a latent distance metric and those “uncertainty sampling” methods
that select data that the model is most uncertain about (e.g., D-optimal design (Wynn, 1970) and
BATCHBALD (Kirsch et al., 2018)).8 Both families of methods can be seen as determining some
decent covering of the data manifold in X . In a probabilistic sense, uncertainty sampling can be
seen to minimize the “posterior predictive entropy” in expectation over the observed data.

B.3 SIFT UNIFIES WORK ON RETRIEVAL AND WORK ON COVERAGE

In this work, we make the following central observation:

Learning and prediction is not a search problem;
it requires synthesizing non-redundant relevant information.

Current means of automatic data selection fall on to two extreme ends of a spectrum: Retrieval
methods search for relevant data without ensuring that data is non-redundant. As such, naı̈ve
application of search methods is insufficient for a learning task since those generally do not take
“distinctiveness” into account (cf. Section 2.1). In contrast, coverage methods select non-redundant
data without ensuring that data is relevant.

Transductive Active Learning: Unifying retrieval & coverage Transductive active learn-
ing (Hübotter et al., 2024) unifies approaches to search and coverage. In this work, we propose
SIFT, an approach to test-time transductive active learning (i.e., transductive active learning with
a single prediction target), which extends previously proposed algorithms (MacKay, 1992; Seo et al.,
2000; Yu et al., 2006; Hübotter et al., 2024). Similar algorithmic ideas have recently been evaluated
empirically in a variety of other settings (Kothawade et al., 2020; Wang et al., 2021a; Kothawade
et al., 2022; Bickford Smith et al., 2023) such as Bayesian optimization (Hübotter et al., 2024),
multi-task reinforcement learning (Bagatella et al., 2024), and the amortized fine-tuning of neural
networks (Hübotter et al., 2024). SIFT aims to select data that is both relevant and non-redundant
with respect to the already seen data, whereby the hyperparameter λ′ controls the trade-off between
relevance and redundancy. Hübotter et al. (2024) introduce extensions of SIFT to more than one
prediction target, i.e., amortizing learning across multiple prompts. They show that if the prediction
targets include all of X , then the method reduces to a form of inductive active learning.

8Section 5.2 of Holzmüller et al. (2023) provides a comprehensive overview.
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C FURTHER DETAILS ON SIFT

C.1 HOW SIFT BALANCES RELEVANCE AND DIVERSITY

Let us look more closely at the points selected by SIFT. We will assume here for ease of notation
that embeddings have unit length.9 The first point selected by SIFT has the largest (absolute) cosine
similarity to the prompt within the latent space:

x1 = argmin
x∈D

σ2
{x}(x

⋆) = argmax
x∈D

(ϕ(x⋆)⊤ϕ(x))2

1 + λ′
= argmax

x∈D

(
∡ϕ(x

⋆,x)︸ ︷︷ ︸
cosine similarity of ϕ(x⋆),ϕ(x)

)2
. (1st point)

This recovers the standard approach of Nearest Neighbor retrieval with respect to cosine similarity,
provided cosine similarities are non-negative. However, we show next that selecting more than one
point, SIFT not only considers the relevance with respect to the prompt x⋆, but also the redundancy
with respect to the already seen data x1.

x2 = argmin
x∈D

σ2
{x1,x}(x

⋆) = argmax
x∈D

[
∡ϕ(x

⋆,x1)
∡ϕ(x

⋆,x)

]⊤[
1 + λ′ ∡ϕ(x1,x)

∡ϕ(x1,x) 1 + λ′

]−1[
∡ϕ(x

⋆,x1)
∡ϕ(x

⋆,x)

]
.

(2nd point)

To illustrate how SIFT balances relevance and diversity, we compare the value of observing x1 twice
to observing a different x with cosine similarity ∡ϕ(x1,x) = 0. We show in Appendix K.4 that
SIFT(λ′) prefers x over x1 for selecting x2 if and only if

∡ϕ(x
⋆,x)2 >

λ′

2 + λ′
∡ϕ(x

⋆,x1)
2

Parameter Relation Div.
regularization λ λ ↓
step size η 1/η ↑
noise ρ (cf. §G) ρ2 ↓

Table 3: The effect of λ and its other
interpretations on diversity of selected
data (as the parameter is increased).

The hyperparameter λ′ controls the trade-off between
relevance and diversity: if λ′ = 1 then even if x has one
third the relevance of x1, it is still preferred. As λ′ →∞,
SIFT(λ′) performs retrieval by repeatedly selecting the
same point; and as λ′ → 0, SIFT(λ′) aims only to select
the most diverse points. We observe the same relationship
empirically on the Pile dataset (cf. Figure 9 (left)). Table 3
summarizes the effect of the regularization parameter λ
and its interpretations.

C.2 THE UNCERTAINTY OF SIFT PROVABLY VANISHES

We now formally prove that unlike with Nearest Neighbor retrieval, the uncertainty σ2
n(x

⋆) about
the response to the prompt vanishes if SIFT is used to select data for fine-tuning. As discussed
in §4.1, this requires that the data space contains sufficient information to determine the correct
response. In general, there might be an irreducible error remaining. We will denote a basis of the
embeddings {ϕ(x) : x ∈ D} within the data space D by Φ ∈ Rm×d with size m and dimension
d, and we denote by ΠΦ its orthogonal projection onto the orthogonal complement of the span of Φ.
Hübotter et al. (2024) show that for all X ⊆ D,

σ2
X(x⋆) ≥ ∥ϕ(x⋆)∥2ΠΦ

(5)

where ∥v∥A =
√
v⊤Av denotes the Mahalanobis distance. We call σ2

∞(x⋆) =̇ ∥ϕ(x⋆)∥2ΠΦ
the irre-

ducible uncertainty about x⋆. It can be seen that σ2
∞(x∥) = 0 for all x∥ ∈ X with ϕ(x∥) ∈ spanΦ.

That is, the irreducible uncertainty is zero for points in the span of the data space. In contrast,
for points x⊥ with ϕ(x⊥) ∈ (spanΦ)⊥, the irreducible uncertainty equals the initial uncertainty:
σ2
∞(x⊥) = σ2

0(x
⊥). The irreducible uncertainty of any prompt x⋆ can be computed by simple

decomposition of ϕ(x⋆) into parallel and orthogonal components. Hence, if the data space is large
and includes all relevant information to answer the prompt, the irreducible uncertainty is negligible.

We will denote the uncertainty reduction about the prompt x⋆ achieved by fine-tuning on X by
ψx⋆(X) =̇ σ2

0(x
⋆)− σ2

X(x⋆) and note that SIFT selects xn+1 = argmaxx∈D ψx⋆(Xn ∪ {x}).
Stating the convergence guarantee of SIFT requires one straightforward assumption.
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Figure 9: Left: The parameter λ′ controls the trade-off between relevance and diversity of the selected
data. As λ′ →∞, SIFT selects the same point repeatedly whereas as λ′ → 0, SIFT selects a diverse
set of points. Middle: The irreducible uncertainty of test prompts from the Pile given neighbors
selected from fractions of the Pile training dataset in the data space. The irreducible uncertainty
captures how much information is available, and decays quickly. Right: We empirically observe that
ψx⋆ is monotone submodular, i.e., its “marginal gains” decrease as the number of iterations increases.
The shaded region denotes the standard deviation, gray lines are from 10 randomly selected prompts.

Assumption C.1. The uncertainty reduction ψx⋆(X) is submodular.
Intuitively, Assumption C.1 states that the marginal uncertainty reduction achieved by adding a point
to the selected data (i.e., the ‘marginal gain’) decreases as the size of the selected data increases,
which is a common assumption in prior work.10 Formally Assumption C.1 is satisfied if, for all
x ∈ D and X ′ ⊆ X ⊆ D,

∆x⋆(x | X ′) ≥ ∆x⋆(x | X) (6)

where ∆x⋆(x | X) =̇ ψx⋆(X ∪{x})−ψx⋆(X) is the marginal uncertainty reduction of x given X .

Though theoretically this assumption may be violated by some instances (Hübotter et al., 2024,
Example C.8), we observe that it is satisfied in practice (cf. Figure 9 (right)). Under this assumption,
ψx⋆(Xn) ≥ (1− 1/e)maxX⊆D,|X|≤n ψx⋆(X) due to the seminal result on monotone submodular
function maximization of Nemhauser et al. (1978). That is, the iterative scheme of SIFT achieves
a constant factor approximation of the optimal uncertainty reduction. Moreover, recent work on
transductive active learning of Hübotter et al. (2024) which we restate here shows that the uncertainty
of SIFT converges to the irreducible uncertainty. We assume w.l.o.g. that ∥ϕ(x)∥22 ≤ 1 for all x ∈ X .
Theorem C.2 (Convergence Guarantee, formalization of Informal Theorem 4.1). Let Assumption C.1
hold and Xn be selected by SIFT(λ′) from the data space D. Then for all n ≥ 1 and x⋆ ∈ X ,

σ2
n(x

⋆) ≤ σ2
∞(x⋆) +

d(1 + 2dλ′λ−1
min) log(1 +

λ̂n

λ′ )√
n

where λmin is the smallest eigenvalue of ΦΦ⊤ with Φ ∈ Rm×d a basis of {ϕ(x) : x ∈ D}, and
where λ̂n ≤ O(n) is the largest eigenvalue of ΦnΦ

⊤
n .

Proof. Theorem C.2 follows from Theorem 3.2 of Hübotter et al. (2024) noting that

• The SIFT objective is a special case of VTL (Variance-based Transductive Active Learning)
with “target space” A = {x⋆}.

• Theorem 3.2 of Hübotter et al. (2024) can be extended to finite-dimensional reproducing
kernel Hilbert spaces (Hübotter et al., 2024, Appendix C.6.4).

• The “maximum information gain of n iterations”, γn, in the statement of Hübotter et al.
(2024) is bounded as follows (Srinivas et al., 2009, Appendix C.3): γn ≤ d log(1 + λ̂n/λ

′).

9See Appendix K.4 for the expressions with non-normalized embeddings.
10Similar assumptions have been made by Bogunovic et al. (2015) and Kothawade et al. (2020).
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D FURTHER INSIGHTS ON ACTIVE FINE-TUNING

We expand the analysis of our results that we summarized in §5. We analyze aspects of the two key
contributions of our work separately: In the following, we analyze the performance of SIFT in active
fine-tuning, and in §E, we analyze the performance of test-time fine-tuning more generally.

Insight 6: SIFT’s improvement over NN grows with dataset size. As shown in Figure 10, we
find that the relative improvement of SIFT over Nearest Neighbor retrieval grows with dataset size.
We suspect that going from a small-size dataset to a medium-size dataset, the additional performance
stems mainly from the ability of SIFT to adaptively select the same data for multiple gradient steps.
Going from a medium-size dataset to a large-size dataset, we suspect that the additional performance
stems mainly from the ability of SIFT to select more diverse data points.
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Figure 10: Bits per byte (in % relative to the Nearest Neighbor retrieval baseline, ↓ better). We
evaluate data selection from 3%, 33%, and 100% of the Pile training dataset. We see a clear trend
that SIFT’s improvement over Nearest Neighbor retrieval grows with dataset size — even from 33%
to 100% with the highly curated Pile dataset.

Insight 7: Points with high negative cosine similarity may help. With the Roberta embedding
model, we find that there are no negative cosine similarities in the data (cf. Figure 21 in §J). Choosing
different embeddings such as influence embeddings can give negative cosine similarities (Xia et al.,
2024, Appendix K.2). Inspection of those points found by Xia et al. (2024) suggests that they can be
equally informative as points with high positive cosine similarity. Our derivation of SIFT naturally
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Figure 11: Data selection via SIFT (red)
and Nearest Neighbor (black) performs
best with normalized embeddings.

addresses this by selecting points with large absolute
cosine similarity. Geometrically, points with positive or
negative cosine similarity are both equally “parallel” to
the test prompt. Our theoretical results suggest that the
informativeness of a data point is closely related to how
parallel its embedding is to the test prompt. We leave
further investigation to future work.

Insight 8: Normalizing embeddings helps. We eval-
uate the performance of Nearest Neighbor retrieval and
SIFT with or without explicitly normalized embeddings
in Figure 11. We find that for both selection strategies,
normalizing embeddings consistently improves perfor-
mance. Previously, Hardt & Sun (2024) minimized the
Euclidean distance between unnormalized embeddings,
which we find to perform identically to maximizing cosine similarity.
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E FURTHER INSIGHTS ON TEST-TIME FINE-TUNING

Insight 9: Scaling pre-training compute may not be all you need. In Table 2 of §A, we compare
state-of-the-art LLMs to our test-time fine-tuned models. We show that our Phi-3 with test-time
fine-tuning outperforms all evaluated base models, from a wide selection of state-of-the-art LLMs,
by a large margin. Notably, we see a clear advantage of using stronger base models, i.e., better
initializations. The leading base model Gemma-2 (27B, Team et al., 2024), which is 7× larger and
more recent than Phi-3, achieves 0.629 bits per byte, whereas our test-time fine-tuned Phi-3 achieves
0.595 bits per byte. This indicates that scaling pre-training compute is not all you need to achieve
state-of-the-art performance, and that test-time fine-tuning can be an effective method for improving
the performance of a base LLM.

Insight 10: Test-time fine-tuning outperforms in-context learning in “hard” tasks. Interestingly,
we observe that across all evaluated models, updating the base model via fine-tuning as opposed
to augmenting the models’ context leads to large improvements on the DeepMind Math, GitHub,
ArXiv, and FreeLaw datasets. We include the per-dataset results in §F.2. These datasets contain
school-level math problems, code, scientific papers, and court opinions, which are often colloquially
understood as tasks that require “understanding” or “reasoning”. In the case of DeepMind Math
and ArXiv, augmenting the models’ context does consistently not improve the performance of the
base model at all, whereas test-time fine-tuning can lead to significant performance improvements.
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Figure 12: Improvement of 50 test-time
iterations over the base model (blue;
↓ better) with SIFT against the percent-
age of bytes occupied by the dataset in
the Pile. Error bars correspond to stan-
dard errors. We observe the trend that
test-time fine-tuning benefits prompts at
the “boundary” of the data distribution
most. The “outlier” GitHub dataset is
highlighted in red.

Insight 11: Test-time fine-tuning yields largest gains
at the boundary of the data distribution. In Figure 12,
we plot the improvement of test-time fine-tuning with
SIFT over the base model against the weight of a dataset
in the Pile. We observe the trend that test-time fine-tuning
yields largest performance improvements for datasets that
have a smaller weight in the Pile. We hypothesize that this
trend occurs because the weight of a dataset in the Pile
corresponds roughly to the weight of similar data in the
pre-training dataset of GPT-2, in which case the perfor-
mance gains would be largest for prompts that are at the
“boundary” of the data distribution. Notable is the outlier
of the large GitHub dataset where test-time fine-tuning
leads to large performance gains. We hypothesize that this
is because coding is relatively dissimilar to other data in
the Pile, and therefore the GitHub dataset can be seen as
“small” relative to the rest of the data.

We make the observation that if the problem domain
is large (like general language modeling), almost every
sub-task can be seen as at the “boundary” / as an “outlier”.
We see that datasets closest to the center of mass of the data distribution do not benefit as much from
test-time fine-tuning as datasets that are further away from the center of mass. Therefore, we expect
test-time fine-tuning to benefit those models most that are learning a diverse data distribution as
opposed to models that are learning a very concentrated data distribution.

Insight 12: The order of fine-tuning data does not matter. In Figure 13, we evaluate the
performance of test-time fine-tuning with Nearest Neighbor retrieval when taking gradient steps
in the order of selected data compared to reversed order. We find that the order of gradient steps
does not affect the final performance. This indicates that sequentially fine-tuning on selected data
is not necessary, and that batched gradient steps can be used to further speed up test-time fine-tuning.
We leave a detailed exploration of batched updates to future work.
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Figure 13: Taking gradient steps in order of selected data compared to reversed order. Data is
selected using Nearest neighbor retrieval. We observe that the order of gradient steps does not affect
the final performance.
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Figure 14: Bits per byte (↓ better)
against the number of test-time iterations.
We compare fine-tuning only the linear
head to fine-tuning the full model. We
use learning rate 1e−4 and evaluate on
0.1% of the full test set.

Insight 13: Test-time fine-tuning works also when
fine-tuning only the last linear layer. Motivated by
the linear representation hypothesis (cf. Assumption 3.1)
which informs SIFT’s surrogate model for data selection,
we evaluate whether we can fine-tune this surrogate model
directly instead of fine-tuning the full model. Concretely,
we fine-tune only the last linear layer of the LLM, keeping
its latent space fixed. The gradients for this linear surrogate
model can be computed efficiently at almost no cost. Re-
markably, we find in Figure 14 that large gains of test-time
fine-tuning can already be realized by fine-tuning only
the last linear layer. Given these preliminary results with
GPT-2 it would be interesting to evaluate the performance
gains of fine-tuning the linear head of larger base models.

Insight 14: Test-time fine-tuning works also with
parameter-efficient fine-tuning. In our experiments
with Phi-3, we use Low-Rank Adaptation (Lora, Hu et al., 2022) with a rank of 64. We find that
LoRA converges slower than fine-tuning the full model, and therefore use the learning rate 5e−4,
which is a factor 10 larger than the learning rate used for fine-tuning the full model. In Figure 15,
we evaluate the performance of LoRA compared to fine-tuning the full model. On the smaller GPT-2
and GPT-2-large we use a rank of 32. We generally observe that fine-tuning with LoRA can recover
roughly the same performance as fine-tuning the full model. We expect that with more careful tuning
of the learning rate, learning curves could be made more similar.
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Figure 15: Bits per byte (↓ better) against the number of test-time iterations. We compare parameter-
efficient fine-tuning with LoRA and fine-tuning the full model. We use 0.1% of the full test set.
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Figure 16: Bits per byte (↓ better) with
GPT-2-large and varying λ′. A larger λ′
can lead to overfitting in later iterations.
We use 0.1% of the full test set.

Insight 15: Larger models appear to learn faster
at test-time. We find that with a larger model (e.g.,
GPT-2-large vs GPT-2), a smaller λ′ tends to be more
beneficial. For example, keeping the learning rate fixed at
5e−5, using SIFT(0.1) is the best choice for GPT-2, but
leads to slight overfitting at later iterations for GPT-2-large
as shown in Figure 16. Recall that a smaller λ′ leads
to more diverse sampling of the data space. Thus, this
observed trend indicates that larger models learn faster,
and therefore benefit more from less redundant training
data. The same trend can also be observed from the
behavior of NN-F from Figure 17: GPT-2-large overfits
much faster with NN-F than GPT-2. This offers a potential
explanation why the advantage of SIFT over Nearest
Neighbor retrieval grows with larger models (cf. §F.1).
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Figure 17: Bits per byte (↓ better) against the number of test-time iterations with various base models.
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F EXTENDED RESULTS

This section includes additional per-dataset results to support our findings on active fine-tuning and
test-time fine-tuning.

F.1 ACTIVE FINE-TUNING

We compare SIFT against the data selection baselines Uncertainty Sampling (US), Nearest Neighbor
retrieval (NN), and the failure-mode of Nearest Neighbor retrieval (with information duplication) that
repeatedly retrieves the same point (NN-F). Our results with GPT-2 as base model are summarized in
the main text in Table 1.

• In Table 4, we include the comparison with GPT-2-large.
• In Table 5, we include the comparison with Phi-3.

We find that our results on GPT-2 are consistent across all models. In particular, test-time fine-
tuning with SIFT improves the base model on all datasets of the Pile, often significantly. SIFT
outperforms Uncertainty Sampling and Nearest Neighbor retrieval consistently. Notably, we find
that the improvement of SIFT over Nearest Neighbor retrieval is larger with stronger base models,
indicating that informativeness of data becomes more important the stronger the base model.

F.2 TEST-TIME FINE-TUNING

We compare the in-context baseline against test-time fine-tuning.

• In Table 6, we include the comparison with GPT-2.
• In Table 7, we include the comparison with GPT-2-large.
• In Table 8, we include the comparison with Phi-3.

We find that test-time fine-tuning consistently outperforms in-context learning with GPT-2 and GPT-
2-large. With Phi-3, in-context learning and test-time fine-tuning have roughly matching performance,
though test-time fine-tuning is more computationally efficient (cf. Figure 7). Interestingly, we observe
that test-time fine-tuning leads to large gains on math (“DeepMind Math”) and coding (“GitHub”) on
all models, two tasks that require more complex reasoning.

US NN NN-F SIFT ∆

NIH Grants 96.6 (1.6) 77.9 (4.8) 107.6 (19.8) 51.9 (9.3) ↓26.0
US Patents 86.8 (2.3) 78.9 (2.6) 129.1 (7.7) 64.7 (3.8) ↓14.2
Enron Emails 73.9 (12.3) 68.6 (13.6) 102.9 (23.1) 55.5 (12.2) ↓13.1
GitHub 45.2 (2.4) 42.8 (2.2) 62.0 (4.5) 31.0 (2.2) ↓11.8
Wikipedia 71.0 (2.0) 71.5 (2.0) 141.3 (3.5) 64.4 (2.2) ↓6.6
PubMed Abstr. 94.5 (0.4) 93.7 (0.6) 202.6 (1.6) 87.8 (0.7) ↓5.9
ArXiv 90.6 (1.8) 90.2 (2.0) 175.8 (5.7) 84.8 (2.1) ↓5.4
Hacker News 79.4 (2.6) 79.0 (2.9) 138.7 (4.4) 75.6 (3.6) ↓3.4
Stack Exchange 84.1 (0.7) 84.6 (0.8) 165.2 (1.8) 80.7 (0.9) ↓3.4
Common Crawl 93.7 (0.6) 89.9 (0.7) 163.6 (2.1) 87.1 (1.0) ↓2.8
PubMed Central 87.9 (2.7) 87.6 (2.7) 157.8 (4.6) 85.4 (3.1) ↓2.2
FreeLaw 66.8 (4.2) 67.4 (4.1) 132.0 (6.4) 68.3 (4.2) ↑1.5
DeepMind Math 71.2 (2.2) 72.2 (2.0) 186.1 (4.1) 74.2 (2.3) ↑3.0
All 82.6 (0.6) 80.6 (0.6) 153.3 (1.4) 74.9 (0.7) ↓5.7

Table 4: Results with GPT-2-large. Bits per byte (in % relative to the base model, ↓) after 50 test-time
iterations on individual datasets of the Pile. We only include datasets with at least 10 examples in
our test set. Bold numbers denote the best performing selected subset. Numbers in parentheses are
standard errors. ∆ denotes the performance gain of SIFT over the strongest baseline.
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US NN NN-F SIFT ∆

GitHub 80.6 80.8 105.2 46.5 ↓34.1
US Patents 95.4 94.2 274.6 83.7 ↓10.5
Enron Emails 113.6 86.6 319.9 78.7 ↓7.9
Wikipedia 84.6 85.5 263.2 79.2 ↓5.4
PubMed Abstr. 93.5 93.3 301.8 89.5 ↓3.8
NIH Grants 100.4 100.1 327.6 98.6 ↓1.5
ArXiv 95.5 96.5 282.4 94.3 ↓1.2
Common Crawl 95.3 94.9 257.0 93.7 ↓1.2
PubMed Central 80.3 82.1 204.9 79.7 ↓0.6
DeepMind Math 76.4 75.5 221.4 75.3 ↓0.2
Hacker News 95.1 94.8 243.8 95.0 ↑0.2
FreeLaw 66.9 67.8 178.0 67.2 ↑0.3
Stack Exchange 99.7 98.7 309.9 99.4 ↑0.7
All 92.0 (1.1) 91.6 (1.1) 256.6 (7.1) 85.7 (2.0) ↓5.9

Table 5: Results with Phi-3. Bits per byte (in % relative to the base model, ↓) after 50 test-time
iterations on individual datasets of the Pile. Bold numbers denote the best performing selected subset.
Numbers in parentheses are standard errors. ∆ denotes the performance gain of SIFT over the
strongest baseline.

Context Fine-Tuning ∆

GitHub 74.5 (2.5) 28.6 (2.2) ↓45.9
DeepMind Math 100.4 (0.1) 70.1 (2.1) ↓30.3
US Patents 86.8 (2.5) 62.2 (3.6) ↓24.6
Enron Emails 73.3 (9.8) 52.4 (11.8) ↓20.9
FreeLaw 85.5 (4.0) 65.5 (4.2) ↓20.0
Stack Exchange 96.7 (0.3) 77.0 (0.7) ↓19.7
ArXiv 99.2 (1.4) 81.6 (1.9) ↓17.6
Wikipedia 77.4 (2.1) 63.7 (2.1) ↓13.7
PubMed Central 92.8 (3.1) 80.6 (2.7) ↓12.2
Hacker News 89.0 (3.8) 77.8 (3.5) ↓11.2
NIH Grants 63.7 (9.5) 52.9 (9.0) ↓10.8
Common Crawl 93.4 (0.7) 86.1 (0.9) ↓7.3
PubMed Abstr. 91.8 (0.6) 84.8 (0.7) ↓7.0
All 89.3 (0.5) 73.2 (0.7) ↓16.1

Table 6: Comparison between the in-context baseline and test-time fine-tuning with GPT-2. Bits per
byte (in % relative to the base model, ↓) after 50 test-time iterations on individual datasets of the
Pile. We only include datasets with at least 10 examples in our test set. Bold numbers denote the best
performing selected subset. Numbers in parentheses are standard errors. ∆ denotes the performance
gain of test-time fine-tuning over in-context learning.
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Context Fine-Tuning ∆

GitHub 74.6 (2.5) 31.0 (2.2) ↓43.6
DeepMind Math 100.2 (0.7) 74.2 (2.3) ↓26.0
US Patents 87.4 (2.5) 64.7 (3.8) ↓22.7
FreeLaw 87.2 (3.6) 68.3 (4.2) ↓18.9
Hacker News 92.6 (2.7) 75.6 (3.6) ↓17.0
Stack Exchange 97.2 (0.4) 80.7 (0.9) ↓16.5
NIH Grants 67.7 (9.4) 51.9 (9.3) ↓15.8
Enron Emails 71.9 (10.2) 55.5 (12.2) ↓15.5
ArXiv 98.8 (1.8) 84.8 (2.1) ↓14.0
Wikipedia 76.6 (2.1) 64.4 (2.2) ↓12.2
PubMed Central 92.3 (3.3) 85.4 (3.1) ↓6.9
Common Crawl 93.5 (0.7) 87.1 (1.0) ↓6.4
PubMed Abstr. 91.6 (0.6) 87.8 (0.7) ↓3.8
All 89.4 (0.5) 74.9 (0.7) ↓14.5

Table 7: Comparison between the in-context baseline and test-time fine-tuning with GPT-2-large.
Bits per byte (in % relative to the base model, ↓) after 50 test-time iterations on individual datasets of
the Pile. We only include datasets with at least 10 examples in our test set. Bold numbers denote
the best performing selected subset. Numbers in parentheses are standard errors. ∆ denotes the
performance gain of test-time fine-tuning over in-context learning.

Context Fine-Tuning ∆

DeepMind Math 100.8 75.3 ↓25.5
GitHub 71.3 46.5 ↓24.8
FreeLaw 78.2 67.2 ↓11.0
ArXiv 101.0 94.3 ↓6.4
Enron Emails 81.8 78.7 ↓3.1
Hacker News 97.6 95.0 ↓2.6
Stack Exchange 100.9 99.4 ↓1.4
PubMed Central 79.9 79.7 ↓0.2
US Patents 83.3 83.7 ↑0.4
Wikipedia 77.1 79.2 ↑2.1
NIH Grants 95.1 98.6 ↑3.5
Common Crawl 89.9 93.7 ↑3.8
PubMed Abstr. 85.7 89.5 ↑3.8
All 87.1 (1.7) 85.7 (2.0) ↓1.4

Table 8: Comparison between the in-context baseline and test-time fine-tuning with Phi-3. Bits per
byte (in % relative to the base model, ↓) after 50 test-time iterations on individual datasets of the
Pile. Bold numbers denote the best performing selected subset. Numbers in parentheses are standard
errors. ∆ denotes the performance gain of test-time fine-tuning over in-context learning.
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G SIFT MAXIMIZES INFORMATION GAIN

We discuss here briefly that SIFT can be interpreted as maximizing the information gain of data Xn

on the response to the prompt x⋆.

This probabilistic interpretation takes the perspective that the sequence model predicting the next
token is a probabilistic model with a prior belief over its state W which induces an epistemic
prior belief over what might be the next token.11 Our main text describes a closed loop where this
sequence model interacts with a non-parametric memory (i.e., the data space) to update its epistemic
beliefs about W , obtaining posterior beliefs W | D conditional on the selected data D. Again, these
posterior epistemic beliefs induce an epistemic uncertainty over what might be the next token. We
discuss in the following how SIFT can be interpreted probabilistically; as the model interacting with
the non-parametric memory with the goal of reducing its posterior uncertainty about the next token.

Our brief overview will proceed as follows:

• We establish fundamentals from information theory and Gaussian processes, which are a
tractable probabilistic model (§G.1).

• We define the prior belief and probabilistic observation model and derive the posterior
belief (§G.2).

• We show that, in this probabilistic model, SIFT can be interpreted as maximizing the
information gain of the data about the response to the prompt x⋆ (§G.3).

• We show that balancing relevance and diversity of data is a natural consequence of maximiz-
ing information gain (§G.4).

SIFT uses relatively simple probabilistic surrogate models that are tractable, and which remarkably
lead to strong empirical performance. Hübotter et al. (2024) cover the probabilistic interpretation
in greater detail.

G.1 PRELIMINARIES: INFORMATION THEORY AND GAUSSIAN PROCESSES

Information Theory We briefly recap several important concepts from information theory. The
(differential) entropy H[f ] =̇ Ep(f)[− log p(f)] of a random vector f is one possible measure of
uncertainty about f . Here, − log p(f) is also called the suprisal about an event with density p(f).
The entropy can be interpreted as the expected suprisal about f upon realization. The conditional
entropy H[f | y] =̇ Ep(f ,y)[− log p(f | y)] is the (expected) posterior uncertainty about f after
observing the random vector y. The information gain I(f ;y) = H[f ]−H[f | y] measures the
(expected) reduction in uncertainty about f due to y. Refer to Cover (1999) for more details.

Gaussian Processes The stochastic process f is a Gaussian process (GP, Williams & Rasmussen
(2006)), denoted f ∼ GP(µ, k), with mean function µ and kernel k if for any finite subset
X = {x1, . . . ,xn} ⊆ X , fX ∼ N (µX ,KX) is jointly Gaussian with mean vector (µX)i = µ(xi)
and covariance matrix (KX)i,j = k(xi,xj). A Gaussian process can be interpreted as capturing
an epistemic functional belief, i.e., a belief over functions. Our linear surrogate model from
Assumption 3.1 leads to a Gaussian process with the linear kernel described in the main text. That
is, our surrogate model assumption can be interpreted as the prior belief that the ground truth
function predicting the next token is a logit-linear function in a latent representation space. This
is closely linked to the hypothesis that LLMs learn linear representations of high-level concepts,
which is widely known as the “linear representation hypothesis” (e.g., Park et al., 2024; Mikolov
et al., 2013; Arora et al., 2016; Elhage et al., 2022). There are two lenses through which to view
such linear Gaussian processes: the weight-space view which considers a belief about weights W ,
or the function-space view which directly considers the belief about functions f . Both views are
equivalent, and we will focus on the function-space view in the following.

For Gaussian random vectors f and y, the entropy is H[f ] = d
2 log(2πe) +

1
2 log detVar(f) and

the information gain is I(f ;y) = 1
2 (log detVar(f)− log detVar(f | y)).

11This epistemic uncertainty is distinct from the irreducible aleatoric uncertainty of natural language, such as
uncertainty about the continuation of “I love . . . ”.
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G.2 PROBABILISTIC OBSERVATION MODEL

We will focus in the following on the case of regression, which we introduced in Appendix K.5. We
suppose that observations of f follow the probabilistic model

yx = fx + εx,

where we make the following assumptions about the prior distribution of f and the noise εx:
Assumption G.1 (Gaussian prior). We assume that f ∼ GP(µ, k) with known mean function µ and
kernel k.
Assumption G.2 (Gaussian noise). We assume that the noise εx is mutually independent and
zero-mean Gaussian with known variance ρ2 > 0.

Under Assumptions G.1 and G.2, the posterior distribution of f after observing points X with
values yX is GP(µn, kn) with

µn(x) = µ(x) + k⊤
X(x)(KXX + ρ2I)−1(yX − µX),

kn(x,x
′) = k(x,x′)− k⊤

X(x)(KXX + ρ2I)−1kX(x′),

σ2
n(x) = kn(x,x).

G.3 THE PROBABILISTIC INTERPRETATION OF SIFT

Observe that the above definition of σ2
n matches the definition from Equation (2).12 That is, under the

above probabilistic model,

σ2
n(x) = Var(f(x) | y1:n).

As such, SIFT(ρ2) is minimizing the variance of the response to the prompt x⋆ after observing the
data Xn:

xn+1 = argmin
x∈D

Var(f(x⋆) | y1:n, y(x)).

By simple algebraic manipulation this can be seen to be equivalent to maximizing the information
gain of the data on the response to the prompt x⋆:

xn+1 = argmax
x∈D

1

2

(
log Var(f(x⋆) | y1:n)︸ ︷︷ ︸

const

− log Var(f(x⋆) | y1:n, y(x))
)

= argmax
x∈D

I(f(x⋆); y(x) | y1:n) . (7)

Discussion The above offers a very intuitive probabilistic interpretation of SIFT(ρ2). In this prob-
abilistic interpretation, the regularization parameter λ′ of SIFT is equal to the observation noise ρ2.
Intuitively, larger observation noise leads to slower convergence of the estimate of f , analogously
to our discussion of larger regularization parameter and smaller step size in Proposition 3.3.

The reason why SIFT(ρ2) can be interpreted both as minimizing the variance and as minimizing the
entropy of the response to the prompt x⋆ is that for Gaussians, variance is proportional to the entropy
of the response to the prompt x⋆. As observed by Hübotter et al. (2024), if learning is amortized with
respect to multiple prompts {x⋆

1, . . . ,x
⋆
m} = A, this ceases to be the case and the two objectives lead

to different data selection schemes. It appears to be a special property of non-amortized transductive
active learning that measures of uncertainty and resulting data selection schemes are interchangeable.

A quick remark is in order. SIFT does not only maximize the marginal information gain as
shown in Equation (7), if Assumption C.1 is satisfied, it also maximizes the joint information
gain I(f(x⋆); y1:n). That is, in this case the “entropy reduction” of data Xn selected by SIFT
achieves a constant factor approximation of the maximum possible joint information gain
maxX⊆D,|X|≤n I(f(x

⋆);y(X)) due to the seminal result on monotone submodular function
maximization of Nemhauser et al. (1978).

12Notably, it can also be shown that µn is the closed-form solution to the regularized loss from Equation (10).
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G.4 HOW SIFT BALANCES RELEVANCE AND DIVERSITY

In §C.1, we discussed how SIFT chooses data that is both relevant and diverse. The probabilistic inter-
pretation offers a simple explanation for how this behavior naturally emerges from selecting the most
informative data. To this end, observe that the information gain from Equation (7) can be expressed as

I(f(x⋆); y(x) | y1:n) = I(f(x⋆); y(x))︸ ︷︷ ︸
relevance

− I(f(x⋆); y(x); y1:n)︸ ︷︷ ︸
redundancy

(8)

where I(f ;x;y) =̇ I(f ;x)− I(f ;x | y) = I(f ;x) + I(f ;y)− I(f ;x,y) denotes the multivariate
information gain (Murphy, 2023). The multivariate information gain is a measure of the redundancy
of x and y in predicting f , and is therefore often called simply “redundancy” (which is the opposite
of “synergy”). Equation (8) shows that the balancing of relevance and non-redundancy (i.e., diversity)
arises naturally from maximizing the information gain.

G.5 THE PERSPECTIVE OF CLASSIFICATION

The above interpretation takes the perspective of regression. However, the above interpretation
can be extended to classification. We will focus here on the case of binary classification for
notational convenience, but the same argument can be made for multi-class classification (Williams
& Rasmussen, 2006, Section 3.5).

In (binary) Gaussian Process Classification the logit f ∼ GP(µ, k) is modeled as a Gaussian process,
and the likelihood follows the model introduced in Section 3: y(x) ∼ Bern(s(f(x))) where we
have Bernoulli rather than categorical feedback and use the logistic function s(a) =̇ 1/(1 + e−a)
rather than the softmax by virtue of restricting to binary classification.

The standard approach (Williams & Rasmussen, 2006, Section 3.4) is to approximate the poste-
rior distribution of the latent function f given observations y1:n by a Gaussian using Laplace’s
method. This Gaussian can be shown to have covariance (K−1

Xn
+W )−1 with W ⪰ κ−1In where

κ =̇ supa≤B 1/ṡ(a) and ṡ(a) = s(a)(1− s(a)) denotes the derivative of the logistic function.13 It
is then straightforward to derive that

σ2
n(x

⋆) = k(x⋆,x⋆)− k⊤
Xn

(x⋆)(KXn
+W−1)−1kXn

(x⋆)

≤ k(x⋆,x⋆)− k⊤
Xn

(x⋆)(KXn
+ κIn)

−1kXn
(x⋆)

Thus, SIFT minimizes a tight upper bound to the (approximate) posterior variance of the latent
function f at the prompt x⋆. The same relationship to maximizing information gain that was
discussed above applies.

13In the binary case, this is equal to the more general κ from the main text.

34



1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

H EFFICIENT COMPUTATION OF SIFT

In the following, we show how to select data via SIFT at low computational cost. Our implementation
extends the Faiss library (Johnson et al., 2019; Douze et al., 2024) for Nearest Neighbor retrieval. We
open-source the activeft (Active Fine-Tuning) library which can be used as a drop-in replacement
for Nearest Neighbor retrieval.

In our runtime analysis, we will denote by K the size of the data space D, and by N the number of
points to be selected. We describe two implementations of SIFT:

1. The first exact implementation has sequential computation cost O
(
K2N

)
, however, compu-

tation can be effectively parallelized on a GPU.
2. The second “fast” implementation assumes submodularity (i.e., Assumption C.1) and

has computation cost Õ
(
K +N3

)
where Õ(·) suppresses log-factors. This cost is only

marginally above the cost of Nearest Neighbor retrieval.

Both implementations achieve virtually identical performance gains (cf. Figure 19 (right)), which is
further evidence that Assumption C.1 is satisfied in our language modeling setting.

H.1 EXACT IMPLEMENTATION

The central object of the first implementation is the conditional kernel matrix of the data space given
the selected points Xn:

Kn =̇ KD −KD,Xn(KXn + λ′In)
−1KXn,D.

The entries kn(x,x′) of this matrix can be updated efficiently via the following relation (Chowdhury
& Gopalan, 2017, Appendix F) arising from properties of the Schur complement:

kn(x,x
′) = kn−1(x,x

′)− kn−1(x,xn)kn−1(xn,x
′)

kn−1(xn,xn) + λ′
. (9)

The implementation is detailed in Algorithm 1. The computation of the objective value in line 4
and the kernel matrix update in line 5 can be parallelized on a GPU. Thus, the main bottleneck of
this implementation is the requirement that the kernel matrix of size K × K fits onto a GPU. In
case this is not possible, such as with large data spaces, the following two sections detail methods
to reduce the computational cost.

Algorithm 1 SIFT(λ′)
1: Input: prompt x⋆, data space D, (initial) kernel matrix k0(x,x′) = ϕ(x)⊤ϕ(x′), x,x′ ∈ D,

number of points to select N
2: Output: set of selected points {x1, . . . ,xN}
3: for n from 1 to N do
4: xn ← argmaxx∈D

k2
n−1(x

⋆,x)

kn−1(x,x)+λ′ {Select next point}
5: for each x,x′ ∈ D do
6: Update kn(x,x′)← kn−1(x,x

′)− kn−1(x,xn)kn−1(xn,x
′)

kn−1(xn,xn)+λ′ {Update kernel matrix}
7: end for
8: end for

H.2 FAST (EXACT) IMPLEMENTATION

The following “fast” implementation of SIFT rests on the assumption that the objective function
optimized by SIFT is submodular (cf. Assumption C.1). Recall that this objective function can be
expressed as xn+1 = argmaxx∈D ψx⋆(Xn ∪ {x}) where ψx⋆(X) = σ2

0(x
⋆) − σ2

X(x⋆) denotes
the uncertainty reduction about x⋆ upon fine-tuning the model on data X .

The “trick” of the fast implementation is to use a max-heap (with O(1) lookup and O(logK)
insertion) to keep track of upper bounds of ψx⋆(Xn ∪ {x}) for each x ∈ D. The upper bounds come
directly from the submodularity assumption:

ψx⋆(Xi ∪ {x}) ≥ ψx⋆(Xj ∪ {x}) ∀j ≥ i.

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

At iteration n, we evaluate ψx⋆(Xn−1 ∪ {x}) for x in max-heap order. As soon as we find a x
whose re-computed upper bound is smaller than a previously re-computed upper bound, we stop
the evaluation. In the worst case, one might iterate through all K points in each iteration, but in
practice, it can sometimes be reasonable to assume that one only needs to consider O(1) points
per iteration. This algorithm is known as the “lazy greedy algorithm” in submodular function
maximization (Minoux, 1978) where it is typically seen to result in large speed-ups.

We summarize the fast implementation in Algorithm 2. The kernel matrix K tracks the conditional
kernel matrix of the prompt x⋆ and the previously selected data Xn−1. Λ tracks the (regularized)
inverse of the kernel matrix of the previously selected data Xn−1. Whenever necessary, the cached
kernel matrix and cached inverse are updated. We denote by Φ ∈ R(n−1)×d the matrix of embeddings
of previously selected points and by Φ̃ ∈ Rn×d the same matrix extended by ϕ(x⋆) as the first row.

Initializing the max-heap takes time Õ(K) and is analogous to standard Nearest Neighbor retrieval.
Additionally, SIFT-FAST performs a data selection loop for N iterations where each operation takes
O
(
N2

)
time requiring persistent memory of size O

(
N2

)
. Notably, only the kernel matrix of the

prompt and the previously selected data is kept in memory.

Algorithm 2 SIFT-FAST(λ′)
1: Input: prompt x⋆, data space D, number of points to select N
2: Output: set of selected points {x1, . . . ,xN}
{Initializing max-heap (“Nearest Neighbor retrieval”)}

3: for x ∈ D do
4: αx ← (ϕ(x⋆)⊤ϕ(x))2

∥ϕ(x)∥2
2+λ′

5: Insert (x, αx) into max-heap
6: end for
{Data selection}

7: Initialize K =
[
∥ϕ(x⋆)∥22

]
and Λ as an empty square matrix

8: for n from 1 to N do
9: Initialize lower bound α⋆ ← −∞

10: for each popped (x, α) in max-heap order do
11: if α = α⋆ then
12: xn ← x {x maximizes the SIFT(λ′) objective}
13: break
14: end if
15: αx,Λ,K

′ ← RECOMPUTE(x,K,Λ) {Recompute objective value}
16: α⋆ ← max{α⋆, αx}
17: Insert (x, αx) into max-heap
18: end for
19: K ← UPDATESTATE(xn,K

′) {Update cached kernel matrix}
20: end for

H.3 PRE-SELECTING DATA VIA NEAREST NEIGHBOR RETRIEVAL

The reason for SIFT-FAST being so efficient is that it effectively “discards” all points in D that are
completely irrelevant to the prompt. Whereas SIFT recomputes the objective value of every point in
D at each iteration, SIFT-FAST only reevaluates points that are potentially relevant. An alternative to
make SIFT fast is therefore simply to preemptively discard irrelevant points. In our experiments we do
so by pre-selecting a subset of size K = 200 via Nearest Neighbor retrieval within D (cf. Appendix I
for more details). This step aims to eliminate all points from the data space that SIFT would not end
up picking anyway while retaining a diverse set of relevant points. Figure 18 shows the effect of K
on statistical performance and Figure 4 shows the effect on computational performance.

H.4 FUTURE WORK: IMPROVING GPU UTILIZATION OF SIFT-FAST

In our experiments on the Pile dataset, we find that SIFT-FAST is less efficient than SIFT (cf. Fig-
ure 19 (left)). We attribute this to the fact that for any given prompt, the closest neighbors in the
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Algorithm 3 SIFT-FAST(λ′): RECOMPUTE

1: Input: prompt x⋆, current iteration n, candidate x, cached kernel matrix K, cached inverse Λ
2: Output: objective value αx, updated cached inverse Λ, expanded kernel matrix K

{Expand cached kernel matrix K (if required)}
3: if x is has not been selected yet then
4: {Update Λ with the Sherman-Morrison-Woodbury formula (Sherman & Morrison, 1950)}
5: Let i denote the size of Λ
6: if i < n− 1 then
7: A← ΦiΦ

⊤
i+1:n−1

8: B ← Φi+1:n−1Φ
⊤
i+1:n−1

9: C ← (B −A⊤ΛA)−1

10: Λ←
[
Λ+ΛACA⊤Λ −ΛAC

−CA⊤Λ C

]
11: end if

{Expand kernel matrix K}
12: A← I −Φ⊤ΛΦ
13: k← Φ̃Aϕ(x)

14: K ←
[
K k

k⊤ ∥ϕ(x)∥2A

]
15: end if

16: αx ← k2(x⋆,x)
k(x,x)+λ′ {Compute objective value using the relation from Equation (9)}

Algorithm 4 SIFT-FAST(λ′): UPDATESTATE

1: Input: selected point xn, expanded kernel matrix K ′

2: Output: new conditional kernel matrix K

{Update kernel matrix using the relation from Equation (9)}
3: for each x,x′ ∈ {x⋆} ∪Xn do
4: Update k(x,x′)← k′(x,x′)− k′(x,xn)k

′(xn,x
′)

k′(xn,xn)+λ′

5: end for
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Figure 18: We run SIFT (λ′ = 1) with various values of K and report the bits per byte (↓ better)
after 50 test-time iterations. We find that performance on the Pile plateaus after K = 1‘000. Even at
K = 50, which equals the number of points selected, SIFT outperforms Nearest Neighbor retrieval
due to being able to select the same points multiple times.
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Figure 19: Left: Computational overhead of SIFT-FAST over Nearest Neighbor retrieval. This
overhead is larger than the overhead of SIFT over Nearest Neighbor retrieval (cf. Figure 4).
Right: SIFT-FAST achieves identical statistical performance to SIFT, which is further evidence
that Assumption C.1 is satisfied in our language modeling setting.

data space are all relatively similar to the prompt (cf. Figure 20), meaning that each iteration of
SIFT-FAST has to loop (sequentially) over the entire priority queue. In contrast, SIFT performs this
operation in parallel on a GPU.
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Figure 20: Average cosine similarities of
test prompts to closest 1‘000 neighbors
in the data space of the Pile; with the
Roberta embedding model.

We believe that a promising computational approach is to
combine the advantages of the SIFT and SIFT-FAST im-
plementations. This could be achieved by keeping a large
sub-selected kernel matrix on the GPU (akin to the SIFT
implementation) and selectively using the SIFT-FAST im-
plementation if points on the priority queue that are not
in the sub-selected kernel matrix may be selected. This
would allow for a more efficient use of the GPU mem-
ory of SIFT-FAST, which we expect to yield comparable
computational performance to the SIFT implementation
in most cases, while still being able to handle large data
spaces.
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I EXPERIMENT DETAILS

We fine-tune the pre-trained model for a single gradient step each on N = 50 selected data points.
We evaluate the performance on 1% of the test instances of the Pile. We use the Pile training dataset
as data space for data selection, which notably does not include data from the validation and test sets.

Evaluation We use the standard implementation of the lm-evaluation-harness li-
brary (Gao et al., 2024) for computing the bits per byte. This implementation computes the
log-likelihood of a document using a rolling-window approach, which ensures that the model’s
maximum context window is fully utilized.

Truncation of Long Sequences Analogously to Hardt & Sun (2024), to generate embeddings,
we naively truncate long sequences to the maximum sequence length of the embedding model, that
is, we only consider the prefixes of long sequences for data selection.

Learning Rate and Optimizer Following Hardt & Sun (2024), we use the Adam optimizer
(Kingma & Ba, 2014) with ϵ-value 1e−8. We use the default learning rate 5e−5 of the
transformers library (Wolf et al., 2020) unless noted otherwise. Hardt & Sun (2024) used
a learning rate of 2e−5 for their experiments. We show in Figure 24 that 5e−5 leads to strictly
better performance of the Nearest Neighbor baseline. In our ablation study over metrics for Nearest
Neighbor retrieval (cf. Figure 11), which was conducted concurrently, we still used learning rate
2e−5 of Hardt & Sun (2024).

Low-Rank Adaptation (LoRA) We use LoRA (Hu et al., 2022) for fine-tuning Phi-3, and also eval-
uate the performance of LoRA with GPT-2 and GPT-2-large (cf. §E). We use LoRAs with rank 64, out-
put scaling 16, without dropout and bias. When fine-tuning with LoRA, we use the learning rate 5e−4.

Gradient Checkpointing We additionally use gradient checkpointing (Chen et al., 2016) for
fine-tuning Phi-3 to reduce memory footprint and allow fine-tuning on our hardware.

Uncopyrighted Pile Dataset We use only those datasets of the Pile where our use is in compliance
with the terms of service of the data host (Gao et al., 2020). This excludes the Books3, BookCorpus2,
OpenSubtitles, YTSubtitles, and OWT2 datasets.

We provide an overview of all hyperparameters of test-time fine-tuning in Table 9.

Model family GPT-2 Phi-3 Llama-3.2

λ′ 0.01 0.01 0.01
Learning rate 5e−5 5e−4 1e−4
Adam’s ϵ-value 1e−8 1e−8 1e−8
Max. sequence length (in tokens) 1024 4096 4096
LoRA no yes yes
Gradient checkpointing no yes yes

Table 9: Hyperparameters during test-time fine-tuning, unless noted otherwise.
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I.1 PROPERTIES OF THE PILE DATASET

Figure 21 shows the average cosine similarities of test prompts to neighbors in the data space of the
Pile. Table 10 shows the weight of each dataset in the Pile.
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Figure 21: Average cosine similarities of test prompts to neighbors in the data space of the Pile; with
the Roberta embedding model.

Weight

Common Crawl 24.14%
PubMed Central 19.19%
ArXiv 11.94%
GitHub 10.12%
FreeLaw 8.18%
Stack Exchange 6.84%
US Patents 4.87%
PubMed Abstracts 4.09%
Project Gutenberg 2.89%
Wikipedia 2.04%
DeepMind Math 1.65%
Ubuntu IRC 1.17%
EuroParl 0.97%
Hacker News 0.83%
PhilPapers 0.51%
NIH ExPorter Grants 0.40%
Enron Emails 0.19%

Table 10: Overview of datasets in the (uncopyrighted) Pile. Weight is the percentage of bytes in the
final dataset occupied by each dataset. Numbers are taken from Gao et al. (2020) and renormalized.

I.2 IN-CONTEXT BASELINE

In our evaluation of in-context learning, we use the following format to insert the selected data into the
context of the model: We separate all retrieved token sequences with the string "\n\n" which can be
seen as a paragraph separator, and additionally add this string between the data string and the prompt.

Notably, our results with in-context learning on GPT-2-large outperform the results previously
reported by Hardt & Sun (2024). We suspect that this is due to a combination of a more reasonable
evaluation and using SIFT as opposed to Nearest Neighbor retrieval for data selection.

Evaluation of Inference Cost of In-Context Baseline We estimate the inference cost of in-context
learning as follows. We evaluate the time it takes compute the rolling log-likelihood of the test
instance with context included and subtract the time it takes to compute the rolling log-likelihood of
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the test instance without context. This is a lower-bound of the inference cost of in-context learning,
as unlike autoregressive generation, computing the log-likelihood is partially parallelized.

To compute the token throughput of the in-context baseline, we divide the total compute time by the
number of tokens added to the context.

I.3 INFERENCE COST WITH TEST-TIME FINE-TUNING

Figure 22 evaluates the inference cost of test-time fine-tuning on all the Pile and the largest datasets.
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Figure 22: Cost of taking a single gradient step. Results are with an NVIDIA GH200.
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J ABLATIONS

This section summarizes ablations that we conducted to investigate test-time fine-tuning and SIFT.

• Hyperparameter λ′: Table 11
• Learning Curves for Individual Datasets of the Pile: Figure 23
• Learning Rate: Figure 24
• Uncertainty Estimation:

– Summary of correlations (Table 12)
– Visualization of σn (Figure 25)

• Compute-proportional Performance Gain:
– Details on ADAPTIVE SIFT (Figure 26)
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Figure 23: Performance in some of the datasets of the Pile, with GPT-2 as base model. Error bars
correspond to standard errors.
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Figure 24: Ablation of the learning rate with data selected by Nearest Neighbor retrieval. We find that
the default learning rate 5e−5 of the transformers library (Wolf et al., 2020) works best, and
conduct our other experiments with this learning rate unless noted otherwise. Hardt & Sun (2024)
had previously used 2e−5 which we find to be suboptimal.
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Figure 25: We visualize the predictive ability of the uncertainty estimates σn analogously to Figure 8.
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Spearman Pearson

σn
all steps 0.485 0.421
final step 0.496 0.443

σ̂n
all steps 0.722 0.581
final step 0.682 0.482

log σn
all steps 0.485 0.468
final step 0.496 0.466

log σ̂n
all steps 0.722 0.618
final step 0.682 0.526

Table 12: We find a strong / moderate correlation between the uncertainty estimates σ̂n / σn and bits
per byte. We further consider the correlation at all test-time iterations (from 0 to 50) as well as only
at the final iteration. We report both the Spearman and Pearson correlation coefficients, measuring
monotonic and linear relationships, respectively. Before determining the Pearson correlation, we
exclude the 0.25% of the data points with the lowest and highest uncertainty estimates to avoid the
influence of outliers. The p-value of all correlations is below 1e−5 due to the large sample size.
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Figure 26: We evaluate ADAPTIVE SIFT with the same choices of α as in Figure 8 (right). Left: Bits
per byte of ADAPTIVE SIFT (↓ better) against test-time compute. Every marker corresponds to
the performance of ADAPTIVE SIFT with a given α, where the associated test-time compute is the
average number of test-time iterations on prompts. We compare ADAPTIVE SIFT to SIFT, where we
spend the same test-time compute on every prompt. We see a slight advantage of ADAPTIVE SIFT
over SIFT, due to adaptively stopping depending on the prompt. Our current experiment exhibits
a bias as test-time compute approaches 50, since we force-stop the compute at 50 iterations. This
biases ADAPTIVE SIFT to perform similarly to SIFT. We hypothesize that the initial advantage of
ADAPTIVE SIFT over SIFT may grow with more test-time compute if compute is not force-stopped
at 50 iterations. Right: Frequency of stopping at a given iteration for given values of α.
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K PROOFS

This section provides the formal proofs of the results presented in the main text.

• §K.2 proves the insufficiency of Nearest Neighbor retrieval (Informal Proposition 2.1).

• §K.3 shows the close relationship of regularized loss minimization and test-time fine-
tuning (Proposition 3.3).

• §K.4 details how SIFT balances relevance and diversity (§C.1).

• §K.5 states confidence sets for fine-tuning regression models that are analogous to the
confidence sets for classification from the main text.

• §K.6 derives the confidence sets from the main text (Theorem 3.2).

K.1 NOTATION

Throughout this work, log denotes the natural logarithm. Unless noted otherwise {. . .} denotes a
multiset. We define the feature map Φn =̇ (ϕ(x1), . . . ,ϕ(xn)) ∈ Rn×d, which gives rise to the
kernel matrix Kn =̇ KXn

= ΦnΦ
⊤
n ∈ Rn×n and the covariance operator Σn =̇ Φ⊤

nΦn ∈ Rd×d.

K.2 INSUFFICIENCY OF NEAREST NEIGHBOR RETRIEVAL (INFORMAL PROPOSITION 2.1)

We refer to §C.2 for the formal definition of the irreducible uncertainty σ∞(x⋆;D).
We remark that if embeddings are of unit length, the cosine similarity scoring function is equivalent
to the (negative) Euclidean distance scoring function:

∥x⋆ − x∥22 = (x⋆ − x)⊤(x⋆ − x) = ∥x⋆∥22 + ∥x∥
2
2 − 2x⋆⊤x = 2− 2 cos(x⋆,x).

We henceforth consider the Euclidean distance scoring function.

Proposition K.1 (Insufficiency of Nearest Neighbor Retrieval). Suppose w.l.o.g. that ϕ(x) = x.
Consider the data space D =

⋃d
i=1Di where Di = {ei | j ∈ N} with ei the i-th basis vector

of Rd.14 Let x⋆ = 1√
4+(d−1)

(2, 1, 1, . . . , 1) ∈ Rd.

Then, for all n ≥ 1:

1. If Xn are the n nearest neighbors of x⋆ in D, σ2
n(x

⋆) ≥ σ2
∞(x⋆;D1)≫ 0.

2. If Xn is selected by SIFT, σ2
n(x

⋆)
n→∞−→ σ2

∞(x⋆;D) = 0.

Proof.

1. Clearly, ∥x⋆ − e1∥22 < ∥x⋆ − ei∥22 for all i > 1. Hence, Xn = {e1 | i ∈ [n]} ⊂ D1. This
is as if the data space was restricted to D1, and hence σ2

n(x
⋆) ≥ σ2

∞(x⋆;D1).

2. This follows readily from Theorem C.2 and noting that spanD = Rd, implying
σ2
∞(x⋆;D) = 0.

Discussion The setting examined in Proposition K.1 is an extreme case (where data exists with
exact duplication), yet we deem that it illustrates a realistic scenario. Particularly nowadays that
similar information is accessible from many sources in different forms, it is crucial to explicitly
select diverse data for fine-tuning. We show here theoretically and in Appendix L.1 qualitatively
that SIFT does not have this limitation.

14We remark that {. . .} denotes a multiset.
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K.3 THE CLOSE RELATIONSHIP OF REGULARIZED LOSS MINIMIZATION AND TEST-TIME
FINE-TUNING (PROPOSITION 3.3)

Proof. We note that the regularized negative log-likelihood loss Lλ from Equation (1),

Lλ(W ;D) = −
∑

(x,y)∈D

log sy(Wϕ(x))

︸ ︷︷ ︸
L(W ;D)

+
λ

2
∥W −W pre∥2F ,

is strictly convex in W and has a unique minimizer Wλ which satisfies

∇Lλ(Wλ;D) = ∇L(Wλ;D) + λ(Wλ −W pre) = 0.

It follows that Wλ = W pre − 1
λ∇L(Wλ;D).

Finally, recall that Ŵ η = W pre − η∇L(W pre;D). We obtain

∥W1/η − Ŵη∥F = ∥η∇L(W pre;D)− η∇L(W1/η;D)∥F
= η∥∇L(W pre;D)−∇L(W1/η;D)∥F.

K.4 HOW SIFT BALANCES RELEVANCE AND DIVERSITY

1st point For non-unit length embeddings, the first selected point can be expressed as follows:

x1 = argmin
x∈D

σ2
{x}(x

⋆) = argmax
x∈D

(ϕ(x⋆)⊤ϕ(x))2

∥ϕ(x)∥22 + λ′
= argmax

x∈D

{
∡ϕ(x

⋆,x)2 as λ′ → 0

(ϕ(x⋆)⊤ϕ(vx))2 as λ′ →∞.

2nd point Next, we consider the second selected point. We derive the results in terms of the
dot product kernel k(x,x′) = ϕ(x)⊤x′ which is such that k(x,x′) = ∡ϕ(x,x

′) for unit length
embeddings. Let x be such that k(x1,x) = 0. We have

ψx⋆({x1,x1}) =
[
k(x⋆,x1)
k(x⋆,x1)

]⊤ [
1 + λ′ 1

1 1 + λ′

]−1 [
k(x⋆,x1)
k(x⋆,x1)

]
=

1

(1 + λ′)2 − 1

[
k(x⋆,x1)
k(x⋆,x1)

]⊤ [
1 + λ′ −1
−1 1 + λ′

] [
k(x⋆,x1)
k(x⋆,x1)

]
=

2λ′k(x⋆,x1)
2

(1 + λ′)2 − 1

=
2k(x⋆,x1)

2

2 + λ′
.

For x, we have

ψx⋆({x1,x}) =
[
k(x⋆,x1)
k(x⋆,x)

]⊤ [
1 + λ′ 0

0 1 + λ′

]−1 [
k(x⋆,x1)
k(x⋆,x)

]
=

1

(1 + λ′)2

[
k(x⋆,x1)
k(x⋆,x)

]⊤ [
1 + λ′ 0

0 1 + λ′

] [
k(x⋆,x1)
k(x⋆,x)

]
=
k(x⋆,x1)

2 + k(x⋆,x)2

1 + λ′
.

We see that x is preferred over x⋆ if and only if

k(x⋆,x1)
2 + k(x⋆,x)2

1 + λ′
>

2k(x⋆,x1)
2

2 + λ′
⇐⇒ k(x⋆,x)2 >

λ′

2 + λ′︸ ︷︷ ︸
c(λ′)

k(x⋆,x1)
2.

As λ′ →∞, c(λ′)→ 1; whereas as λ′ → 0, c(λ′)→ 0.

We interpret the expressions extensively in Section 4.
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K.5 CONFIDENCE SETS FOR REGRESSION

Before moving on to deriving confidence sets for the setting with categorical feedback, we state
analogous results for the regression setting under the following standard assumptions. For ease of
notation, we consider the scalar case.

Assumption K.2 (Linear function in a known latent space). We assume f⋆(x) = ϕ(x)⊤w⋆ with
w⋆ ∈ Rd and where ϕ(·) ∈ Rd denotes known embeddings. We assume that w⋆ has bounded norm,
i.e., ∥w⋆ −wpre∥2 ≤ B for some finite B ∈ R.

Assumption K.3 (Sub-Gaussian Noise). We assume that the data follows

yn = f⋆(xn) + εn

where each εn from the noise sequence {εn}∞n=1 is conditionally zero-mean ρ-sub-Gaussian with
known constant ρ > 0. Formally,

∀n ≥ 1, λ ∈ R : E
[
eλϵn

∣∣ Dn−1

]
≤ exp

(
λ2ρ2

2

)
where Dn−1 corresponds to the σ-algebra generated by the random variables {xi, ϵi}n−1

i=1 and xn.

We consider the standard squared loss L(w;D) =̇ 1
2

∑
(x,y)∈D(f(x;w) − y)2 where we write

f(x;w) =̇ ϕ(w)⊤w. The regularized loss with minimizer wn is then

Lλ(w;Dn) =̇ L(w;Dn) +
λ

2
∥f −wpre∥22 (10)

where λ > 0 is the regularization parameter. In the following, we write fn(x) =̇ f(x;wn) and
fpre(x) =̇ f(x;wpre). The closed-form solution to the optimization problem from Equation (10) is
well-known (see, e.g., Williams & Rasmussen, 2006, Section 6.2.2) to be

fn(x) = fpre(x) + k⊤
Xn

(x)(KXn
+ λIn)

−1(yn − fpre
n )

where fpre
n is the vector of predictions of fpre at Xn and yn is the vector of observations in Dn.

The below result is an almost immediate consequence of the results of Abbasi-Yadkori (2013) and
Chowdhury & Gopalan (2017).

Theorem K.4 (Confidence Sets for Regression). Pick δ ∈ (0, 1) and let Assumptions K.2 and K.3
hold. Let

βn(δ) =̇ B + ρ
√
2(γn + 1 + log(1/δ))

where γn =̇ maxx1,...,xn

1
2 log det (In + λ−1KXn

). Then

P(∀n ≥ 1,x ∈ X : |f⋆(x)− fn(x)| ≤ βn(δ)σn(x)) ≥ 1− δ.

Proof. Let us define the residual of the ground truth and pre-trained model as
f̃⋆(x) =̇ f⋆(x)− fpre(x) with corresponding weight vector w̃. Analogously, let ỹn = f̃⋆(xn)+εn
be the observed error. We have that w̃⋆ =̇ w⋆ − wpre ∈ Rd with norm ∥w⋆ −wpre∥k. The
unbiased estimate of the remaining error is

f̃n = k⊤
Xn

(x)(KXn + λIn)
−1ỹn.

By Theorem 2 of Chowdhury & Gopalan (2017), for all x ∈ X and n ≥ 1, jointly with probability at
least 1− δ, |f̃⋆(x)− f̃n(x)| ≤ βn(δ)σn(x). It remains now only to observe that

|f̃⋆(x)− f̃n(x)| = |f⋆(x)− fn(x)|.
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K.6 CONFIDENCE SETS FOR CLASSIFICATION (THEOREM 3.2)

We begin by re-stating Corollary 1 of Amani & Thrampoulidis (2020). Analogous results can be
obtained from Theorem 1 of Zhang & Sugiyama (2023). Substantial work has studied the special
case of binary feedback, K = 2 Faury et al. (2020); Pásztor et al. (2024).

Let A(x;W ) ∈ RK×K be the matrix satisfying (A(x;W ))i,j =̇ si(x;W )(1{i = j} − sj(x;W )).
Equivalently, A(x;W ) = diag{s(x;W )} − s(x;W )s(x;W )⊤. Based on this matrix, we define
L =̇ supx∈X ,W∈WB

λmax(A(x;W )) and κ =̇ supx∈X ,W∈WB
1/λmin(A(x;W )).

Lemma K.5 (Corollary 1 of Amani & Thrampoulidis (2020)). Assume W ⋆ ∈ WB and W pre = 0.
Let δ ∈ (0, 1) and set

β̃n(δ) =̇
√
λ

(
B +

1

2
√
K

)
+

2K3/2d√
λ

log

(
2

δ

√
1 +

n

dλ

)
. (11)

Then,

P
(
∀n ≥ 1,x ∈ X : ∥sn(x)− s⋆(x)∥2 ≤ 2Lβ̃n(δ)

√
κ(1 + 2B) ∥ϕ(x)∥V −1

n

)
≥ 1− δ,

where Vn =̇ Σn + κλId.

Our result follows from two auxiliary lemmas.

Lemma K.6. For any s, s′ ∈ RK , dTV (s, s′) ≤
√
K
2 ∥s− s′∥2.

Proof. We have

dTV (s, s′) =
1

2
∥s− s′∥1 =

1

2

K∑
i=1

|si − s′i| ≤
1

2

√
K

√√√√ K∑
i=1

(si − s′i)2 =

√
K

2
∥s− s′∥2

where the inequality follows from Cauchy-Schwarz.

The following lemma is a standard result in the literature (Srinivas et al., 2009; Chowdhury &
Gopalan, 2017; Pásztor et al., 2024), which we include here for completeness.

Lemma K.7. Let σn be as defined in Equation (2). Then,
√
κλ ∥ϕ(x)∥V −1

n
= σn(x) for any x ∈ X .

Proof. Note that (Σn + κλId)Φ
⊤
n = Φ⊤

n (Kn + κλIn) which implies

(Σn + κλId)
−1Φ⊤

n = Φ⊤
n (Kn + κλIn)

−1. (12)

Further, by definition of kn, kn(x) = Φnϕ(x) which permits writing

(Σn + κλId)ϕ(x) = Φ⊤
nkn(x) + κλϕ(x)

and implies

ϕ(x) = (Σn + κλId)
−1Φ⊤

nkn(x) + κλ(Σn + κλId)
−1ϕ(x)

(12)
= Φ⊤

n (Kn + κλIn)
−1kn(x) + κλ(Σn + κλId)

−1ϕ(x) (13)

We have

k(x,x) = ϕ(x)⊤ϕ(x)

(13)
=

(
Φ⊤

n (Kn + κλIn)
−1kn(x) + κλ(Σn + κλId)

−1ϕ(x)
)⊤

ϕ(x)

= kn(x)
⊤(Kn + κλIn)

−1kn(x) + κλϕ(x)⊤(Σn + κλId)
−1ϕ(x)

= kn(x)
⊤(Kn + κλIn)

−1kn(x) + κλϕ(x)⊤V −1
n ϕ(x).

Reordering this equation, we obtain

κλ ∥ϕ(x)∥2V −1
n

= κλϕ(x)⊤V −1
n ϕ(x) = k(x,x)− kn(x)

⊤(Kn + κλIn)
−1kn(x) = σ2

n(x),

concluding the proof.
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We now proceed to prove a version of Theorem 3.2 with W pre = 0.
Theorem K.8. Assume W ⋆ ∈ WB and W pre = 0. Let δ ∈ (0, 1) and βn(δ) as in Equation (3).
Then

P(∀n ≥ 1,x ∈ X : dTV(sn(x), s
⋆(x)) ≤ βn(δ) · σn(x)) ≥ 1− δ.

Proof. We have

dTV(sn(x), s
⋆(x)) ≤

√
K

2
∥sn(x)− s⋆(x)∥2 (Lemma K.6)

w.h.p.
≤ Lβ̃n(δ)

√
Kκ(1 + 2B) ∥ϕ(x)∥V −1

n
(Lemma K.5)

= Lβ̃n(δ)

√
K(1 + 2B)

λ
σn(x). (Lemma K.7)

It remains to note that

Lβ̃n(δ)

√
K(1 + 2B)

λ
= L

√
K(1 + 2B)

(
B +

1

2
√
K

)
+

2LK2d
√
1 + 2B

λ
log

(
2

δ

√
1 +

n

dλ

)
≤ 2

√
K(1 + 2B)

[
B +

LK3/2d

λ
log

(
2

δ

√
1 +

n

dλ

)]
= βn(δ).

With this we are ready to prove Theorem 3.2.

Proof of Theorem 3.2. We will proceed analogously to the proof of Theorem K.4. That is, our
objective will be to bound the deviation of our biased model, which we refer to as Wn =
argminW∈WB

Lλ(W ;Dn), to W ⋆. Let

L̃(W ′;D) =̇ −
∑

(x,y)∈D

log sy((W
′ +W pre)ϕ(x)) and L̃λ(W ′;D) =̇ L̃(W ′;D) +

λ

2

∥∥W ′∥∥2
F

with minimizer W ′
n =̇ argminW ′:∥W ′∥F≤B L̃λ(W ′;Dn). We further define the residual weights

W̃
⋆
=̇ W ⋆ −W pre.

Next, we make the following observation: In their proof of Lemma K.5, Amani & Thrampoulidis
(2020) bound

∥s(f(x;W ′
n))− s(f(x; W̃

⋆
))∥2 ≤ const · ∥vec(W̃ ⋆

)− vec(W ′
n)∥G̃(W̃

⋆
,W ′

n)
(14)

where const is independent of W ⋆,W pre,W ′
n and the matrix G̃(W̃

⋆
,W ′

n) is invariant to a change
of variables, i.e., G̃(W̃

⋆
,W ′

n) = G(W ⋆,W ′
n + W pre) with G̃ defined with respect to the

loss L̃λ and G defined with respect to the loss Lλ. Theorem K.8 applies to s(f(x;W ′
n)) and

s(f(x;W ⋆ −W pre)) since the regularization of L̃λ is unbiased and the residual weights satisfy
∥W̃ ⋆∥F = ∥W ⋆ −W pre∥F ≤ B by assumption.

Since W̃
⋆ −W ′

n = W ⋆ − (W ′
n +W pre), the bounds of Equation (14) as well as Theorem K.8

then also apply to s(f(x;W ′
n +W pre)), s(f(x;W ⋆)). Observing that Wn = W ′

n +W pre as a
direct consequence of the change of variables completes the proof.
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L QUALITATIVE EXAMPLES

L.1 BALANCING RELEVANCE AND DIVERSITY

The following details the data space and prompt used in the qualitative example of Figure 3. We
evaluate SIFT with λ′ = 1e−4 and normalized embeddings, using the same embedding model as in
our main experiments.

Prompt

What is the age of Michael Jordan and how many kids does he have?

Data space

1 Michael Jordan was born on February 17, 1963, in Brooklyn, New York.
2 The age of Michael Jordan is 61 years.
3 Michael Jordan has five children.
4 Michael Jordan has 5 kids.

Table 13: Query and information about Michael Jordan within data space

L.2 EXAMPLES FROM THE PILE

The following provides examples of the data selected by SIFT for some queries from the Pile dataset.

DeepMind Math
Query
Find the second derivative of -222966*l*s**2 + 152*l*s - 8111*l + s**2 + 2 wrt s.
-445932*l + 2
What is the third derivative of 175*s**5 - 5*s**4 - 6106*s**3 + 53*s**2 + 169*s - 1753?
10500*s**2 - 120*s - 36636
What is the third derivative of 23679631*b**5 - 2*b**3 + 8*b**2 + 2*b - 6771326 wrt b?
1420777860*b**2 - 12
Find the second derivative of 3263785*m**4 + 141*m + 11251.
39165420*m**2
What is the second derivative of -47089*k*z**3 - 30997*k*z + 59*z**2 + 295*z wrt z?
. . .

1st example
What is the second derivative of 333510825*p**3 - 292254*p + 96 wrt p?
2001064950*p
What is the third derivative of -2862429*f**5 - 5*f**2 + 439*f - 557?
-171745740*f**2
What is the derivative of 32081*i**4 + 10*i**3 - 2*i - 9371139?
128324*i**3 + 30*i**2 - 2
Find the third derivative of -439900344*z**5 - 675051939*z**2 wrt z.
-26394020640*z**2
. . .

2nd example
What is the third derivative of 2322809*k**3 + 38*k**2 + 105*k + 236 wrt k?
13936854
What is the third derivative of 1242810*p**4 - 5*p**3 + 8382*p**2 + 491*p wrt p?
29827440*p - 30
Differentiate -23915071*o**4 + 25970708.
-95660284*o**3
Find the first derivative of -73333026*k - 218757639 wrt k.
-73333026
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What is the second derivative of -9350*n**4 + 2047*n**2 - n - 42762066?
-112200*n**2 + 4094
. . .

Enron Emails
Query
Patti,

What do I do with this now? How do I get the $50? Can I wait and get a
series of months reimbursed later or do I have to go through this every month?

Fletch Sturm

1st example
Lucy,

Here is a rentroll for this week.

What is the outstanding balance on #1. It looks like 190 + 110(this week)=
300. I don’t think we should make him pay late fees if can’t communicate
clearly.

#2 still owe deposit?

#9 What day will she pay and is she going to pay monthly or biweekly.

Have a good weekend. I will talk to you next week.

In about two weeks we should know for sure if these buyers are going to buy
the property. I will keep you informed.

Phillip

2nd example
Kim,

I am getting parking deducted twice from my pay check. Who do I contact to
straighten that out?

Thanx

Chris

FreeLaw
Query
In the United States Court of Federal Claims
OFFICE OF SPECIAL MASTERS
No. 15-349V
Filed: August 20, 2015
Unpublished

***************************
ARIKA BROWNE, *
*
Petitioner, * Ruling on Entitlement; Concession;
* Influenza; Shoulder Injury (“SIRVA”)
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* Special Processing Unit (“SPU”)
SECRETARY OF HEALTH *
AND HUMAN SERVICES, *
*
Respondent. *
*
***************************
Andrew Downing, Van Cott & Talamante, PLLC, Phoenix, AZ, for petitioner.
Claudia Barnes Gangi, U.S. Department of Justice, Washington, DC, for respondent.

RULING ON ENTITLEMENT 1

Vowell, Chief Special Master:

On April 7, 2015, Arika Browne filed a petition for compensation under the
National Vaccine Injury Compensation Program, 42 U.S.C. §300aa-10, et seq., 2 [the
“Vaccine Act” or “Program”]. Petitioner alleges that she suffered a left shoulder injury as
a result of the administration of an influenza vaccine. Petition at 1. The case was
assigned to the Special Processing Unit of the Office of Special Masters.

On August 20, 2015, respondent filed her Rule 4(c) report in which she concedes
. . .

1st example
In the United States Court of Federal Claims
OFFICE OF SPECIAL MASTERS
No. 15-349V
Filed: October 5, 2015
Unpublished

***************************
ARIKA BROWNE, *
*
Petitioner, * Damages Decision Based on Proffer;
* Influenza; Shoulder Injury (“SIRVA”)
* Special Processing Unit (“SPU”)
SECRETARY OF HEALTH *
AND HUMAN SERVICES, *
*
Respondent. *
*
***************************
Andrew Downing, Van Cott & Talamante, PLLC, Phoenix, AZ, for petitioner.
Claudia Barnes Gangi, U.S. Department of Justice, Washington, DC for respondent.

DECISION AWARDING DAMAGES 1

Dorsey, Chief Special Master:

On April 7, 2015, Arika Browne filed a petition for compensation under the
National Vaccine Injury Compensation Program, 42 U.S.C. §300aa-10, et seq., 2 [the
“Vaccine Act” or “Program”]. Petitioner alleges that she suffered a left shoulder injury as
a result of the administration of an influenza vaccine. Petition at 1. The case was
assigned to the Special Processing Unit of the Office of Special Masters.

On August 20, 2015, a ruling on entitlement was issued, finding petitioner entitled
. . .

2nd example
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In the United States Court of Federal Claims
OFFICE OF SPECIAL MASTERS
No. 15-936V
Filed: November 23, 2015
Unpublished

***************************
JENNIFER SIEKIERSKI, *
*
Petitioner, * Ruling on Entitlement; Concession;
* Influenza;
* Shoulder Injury (“SIRVA”);
SECRETARY OF HEALTH * Special Processing Unit (“SPU”)
AND HUMAN SERVICES, *
*
Respondent. *
*
***************************
Katheryn Lee Bruns, Faraci Lange, LLP, Rochester, NY, for petitioner.
Julia Wernett McInerny, U.S. Department of Justice, Washington, DC, for respondent.

RULING ON ENTITLEMENT 1

Dorsey, Chief Special Master:

On August 26, 2015, Petitioner filed a petition for compensation under the
National Vaccine Injury Compensation Program, 42 U.S.C. §300aa-10, et seq., 2 [the
“Vaccine Act” or “Program”]. Petitioner alleges that she experienced a shoulder injury
related to vaccine administration (“SIRVA”) as a result of her receipt of an influenza
vaccine on November 4, 2014. Petition at 1. The case was assigned to the Special
Processing Unit of the Office of Special Masters.

On November 23, 2015, respondent filed her Rule 4(c) report in which she
. . .

GitHub
Query
<?php

/*
* This file is part of PHPExifTool.
*
* (c) 2012 Romain Neutron ¡imprec@gmail.com¿
*
* For the full copyright and license information, please view the LICENSE
* file that was distributed with this source code.
*/

namespace PHPExiftool
Driver
Tag
QuickTime;

use JMS
Serializer
Annotation
ExclusionPolicy;
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use PHPExiftool
Driver
AbstractTag;

/**
* @ExclusionPolicy(”all”)
*/
class UserDataDji extends AbstractTag
{

protected $Id = ’xa9dji’;

protected $Name = ’UserData dji’;

protected $FullName = ’QuickTime::UserData’;

protected $GroupName = ’QuickTime’;

protected $g0 = ’QuickTime’;

protected $g1 = ’QuickTime’;

protected $g2 = ’Video’;

protected $Type = ’undef’;

protected $Writable = false;

protected $Description = ’User Data dji’;

protected $flag Binary = true;
}

1st example
<?php

/*
* This file is part of PHPExifTool.
*
* (c) 2012 Romain Neutron ¡imprec@gmail.com¿
*
* For the full copyright and license information, please view the LICENSE
* file that was distributed with this source code.
*/

namespace PHPExiftool
Driver
Tag
QuickTime;

use JMS
Serializer
Annotation
ExclusionPolicy;
use PHPExiftool
Driver
AbstractTag;
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/**
* @ExclusionPolicy(”all”)
*/
class UserDataUid extends AbstractTag
{

protected $Id = ’xa9uid’;

protected $Name = ’UserData uid’;

protected $FullName = ’QuickTime::UserData’;

protected $GroupName = ’QuickTime’;

protected $g0 = ’QuickTime’;

protected $g1 = ’QuickTime’;

protected $g2 = ’Video’;

protected $Type = ’undef’;

protected $Writable = false;

protected $Description = ’User Data uid’;

protected $flag Binary = true;
}

2nd example
<?php

/*
* This file is part of PHPExifTool.
*
* (c) 2012 Romain Neutron ¡imprec@gmail.com¿
*
* For the full copyright and license information, please view the LICENSE
* file that was distributed with this source code.
*/

namespace PHPExiftool
Driver
Tag
QuickTime;

use JMS
Serializer
Annotation
ExclusionPolicy;
use PHPExiftool
Driver
AbstractTag;

/**
* @ExclusionPolicy(”all”)
*/
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class MovieData extends AbstractTag
{

protected $Id = ’mdat’;

protected $Name = ’MovieData’;

protected $FullName = ’QuickTime::Main’;

protected $GroupName = ’QuickTime’;

protected $g0 = ’QuickTime’;

protected $g1 = ’QuickTime’;

protected $g2 = ’Video’;

protected $Type = ’?’;

protected $Writable = false;

protected $Description = ’Movie Data’;

protected $flag Binary = true;
}
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