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Abstract

Accurate crop yield prediction is crucial for global food se-
curity and agricultural planning. This study benchmarks mod-
ern tabular foundation models and automated machine learn-
ing frameworks across three diverse agricultural datasets: (1)
soybean yields with 86,101 temporal sequences, (2) global
multi-crop data with 28,242 samples across 101 countries,
and (3) EU-27 regional crops with 8,656 samples and sig-
nificant missing data. We evaluate TabPFNv2 (an improved
implementation of the TabPFN architecture), AutoGluon, and
PyCaret to determine which approach works best under dif-
ferent data conditions. Our results show that model perfor-
mance is highly context-dependent. AutoGluon performs best
on large-scale complete data, PyCaret performs well on di-
verse multi-crop scenarios, while TabPFNv2 demonstrates
distinct advantages on datasets with missing values (about
a two percentage point gain in R? on EU-27). These find-
ings show that none of the tested methods are universally su-
perior. Furthermore, foundation models provide robust zero-
shot predictions, particularly while handling incomplete data,
which is essential for practical agricultural Al deployment.

Introduction

Predicting crop yields accurately is essential for food secu-
rity and agricultural planning, yet remains challenging due
to complex climate-yield interactions, temporal weather pat-
terns, and inconsistent data quality across regions.

Machine learning approaches for crop yield prediction
have evolved from simple regression models to sophisti-
cated deep learning architectures (Chlingaryan, Sukkarieh,
and Whelan 2018; van Klompenburg, Kassahun, and Catal
2023). Early work demonstrated that CNN—RNN models
could achieve R? =~ (.75 by capturing temporal patterns
in weather data (Khaki and Wang 2019). Other studies in-
tegrated satellite imagery with machine learning for wheat
and soybean forecasting, showing the value of multi-modal
data integration (Cai et al. 2019; Schwalbert et al. 2020; You
et al. 2017; Nevavuori, Narra, and Lipping 2019; Fan et al.
2022). Ensemble methods have been shown to consistently
outperform single models by 10-20% (Shahhosseini et al.
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2021), but most of these works still focus on a single crop or
region and require extensive labeled data.

Foundation models, which are large-scale models pre-
trained on broad distributions and adapted with little or no
fine-tuning, have recently emerged as a promising alterna-
tive. While they have revolutionized natural language pro-
cessing and computer vision, their extension to structured
tabular data is more challenging: features differ in type and
scale, and do not share the spatial or sequential structure ex-
ploited in images or text.

Within this emerging space, TabPFNv?2 is a representative
tabular foundation model, extending the original TabPFN ar-
chitecture. TabPFNV2 is the officially improved implemen-
tation of the TabPFN architecture, as stated by the origi-
nal authors in the v2 release notes (Hollmann et al. 2023).
TabPFNV2 inherits the in-context learning formulation while
improving robustness and efficiency when operating at its
full 10,000-row context window on heterogeneous tabular
datasets.

In this work, we provide the first comprehensive bench-
mark comparing tabular foundation models against AutoML
frameworks for agricultural yield prediction across three di-
verse datasets. Our main contributions are:

1. Systematic evaluation of tabular foundation models
for agriculture: We conduct a multi-dataset compari-
son of TabPFNv2 against state-of-the-art AutoML frame-
works (AutoGluon, PyCaret) across diverse agricultural
contexts, revealing when foundation models outperform
traditional approaches.

2. Comprehensive preprocessing pipelines tailored to
agricultural data: We develop and validate dataset-
specific preprocessing strategies that handle temporal ag-
gregation, missing values, and feature engineering, pro-
viding reproducible baselines for future research.

3. Empirical insights on model selection under data con-
straints: Through quantitative analysis across 86,101
soybean sequences, 28,242 global samples, and 8,656
EU regional records, we observe that TabPFNv2 per-
forms well with missing data (2.18% improvement),
while AutoML performs best on large-scale complete
datasets, providing practical guidelines for model selec-
tion.
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Figure 1: Overview of the benchmarking pipeline: Three diverse agricultural datasets are processed through tailored prepro-
cessing strategies and evaluated using tabular foundation models (TabPFNv2) and AutoML frameworks (AutoGluon, PyCaret)

to assess performance under varying data conditions.

Methodology

Our methodology evaluates the effectiveness of tabular
foundation models versus automated machine learning
frameworks for agricultural yield prediction. The core hy-
pothesis is that foundation models, through their pre-trained
representations, can better generalize to agricultural data
with limited samples or missing values, whereas AutoML
frameworks excel when sufficient complete data enables
thorough algorithm exploration and ensemble construction.

To test this hypothesis, we design a comprehensive bench-
marking pipeline that: (1) processes three diverse agricul-
tural datasets representing different scales, crop types, and
data quality scenarios; (2) applies tailored preprocessing
strategies to handle domain-specific challenges such as tem-
poral aggregation and missing values; (3) evaluates both
foundation-model and AutoML approaches under consistent
conditions; and (4) analyzes performance patterns to identify
when each approach is most effective. Figure 1 provides an
overview of the full pipeline.

Concretely, we ask: (i) when do tabular foundation mod-
els match or surpass AutoML frameworks, and (ii) how do
dataset size, completeness, and feature composition influ-
ence this trade-off?

Tabular Foundation Models

Traditional machine learning on tabular data requires train-
ing a new model from scratch for each task, demanding sub-
stantial labeled data and computational resources. Founda-
tion models fundamentally change this paradigm by leverag-
ing pre-training on vast, diverse datasets to learn generaliz-
able representations that transfer to new tasks with minimal
adaptation.

For tabular data, this presents unique challenges
compared to text or images. Tabular features are
heterogeneous—mixing numerical, categorical, and or-
dinal types with different scales and distributions. Features
lack the spatial or sequential structure that convolutional
or recurrent networks naturally exploit. Moreover, the
semantic meaning of features varies dramatically across
domains; “temperature” in weather data has no relation to
“temperature” in industrial processes.

TabPFNvV2 (part of the TabPFN family (Hollmann et al.
2023)) addresses these challenges through an innovative ap-
proach: instead of pre-training on real tabular datasets, it
trains on millions of synthetically generated datasets drawn
from a carefully designed prior distribution. This synthetic
pre-training strategy offers several advantages:

Architectural Design TabPFNv2 employs a transformer
encoder that processes both features and labels jointly. For
a dataset with n samples and d features, the input is for-
matted as a sequence where each position contains a feature
vector and its corresponding label. The transformer learns
to predict labels for unlabeled samples based on the patterns
observed in labeled samples within the same context.

Synthetic Pre-training During pre-training, TabPFNv2 is
exposed to datasets generated from a prior that combines
Bayesian neural networks with varying architectures, di-
verse feature distributions (Gaussian, categorical, and mixed
types), a wide range of dataset sizes and feature dimen-
sions, different noise levels and missing-data patterns, and
both classification and regression targets. This diversity en-
sures that the model encounters a broad spectrum of tabular
patterns and learns meta-features that generalize across do-
mains.

In-Context Learning At inference, TabPFNv2 performs
in-context learning—it receives the entire training set (up to
10,000 samples per context window) along with test samples
in a single forward pass. The model implicitly performs the
equivalent of training and prediction simultaneously, with-
out any gradient updates. This is formalized as:

P(ytesl|Xlest7 Dtrain) = TabPFNVZ([Xlraim Ytrain, Xtest])

where Dyain = { Xirain, Ytrain | 1 the training data provided as
context. This process is illustrated in Figure 2 for the agri-
cultural yield prediction context.

These design choices yield several benefits in agricultural
settings. TabPFNv2 can be deployed in a nearly zero-shot
fashion, without task-specific fine-tuning, which is useful
for new crops or regions with limited historical data. Its
pre-training setup makes it sample-efficient and robust to
missing values, both of which are common in sensor-based
field experiments. In addition, the model exposes prediction
uncertainties, which are important for risk-aware decision
making in agricultural planning.

AutoML Frameworks

In contrast to foundation models, AutoML frameworks take
an exhaustive search approach, systematically exploring al-
gorithm spaces and hyperparameter configurations:
AutoGluon constructs a multi-layer stacked ensemble in
which Level-1 models (including Random Forest (Breiman
2001), Extra Trees, LightGBM (Ke et al. 2017), Cat-
Boost (Prokhorenkova et al. 2018), XGBoost (Chen and
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Figure 2: Schematic of TabPFNv2’s in-context learning procedure applied to agricultural yield prediction. The model receives
the full training set and test samples in a single context and outputs predictions without task-specific gradient updates.

Guestrin 2016), and simple neural networks) are trained in-
dependently, and their predictions are then combined by
Level-2 meta-learners. The framework automatically per-
forms feature preprocessing, handles missing values, and se-
lects the final ensemble based on validation performance.
PyCaret exposes a unified interface for tabular regres-
sion, wrapping a collection of standard models under a
common preprocessing and evaluation pipeline. In our ex-
periments, it evaluates candidate regressors using cross-
validation under a fixed preprocessing recipe (normaliza-
tion, encoding, and basic feature engineering) and selects the
best-performing model according to the specified metric.

Experimental Protocol

All experiments follow a consistent evaluation protocol to
ensure fair comparison across models and datasets. For the
soybean dataset, which contains temporal sequences span-
ning multiple growing seasons, we adopt a chronological
split with 80% of samples for training, 10% for validation,
and 10% for testing, ordered by time to prevent data leakage.
For the global and EU-27 datasets, which lack inherent tem-
poral ordering, we employ stratified 5-fold cross-validation
to ensure representative distribution of crops and regions
across splits, and report mean performance metrics across
all folds.

Numerical features are standardized using z-score nor-
malization with mean zero and unit variance, where scaling
parameters are computed solely on the training partition to
avoid information leakage. Missing values are handled in a
model-aware fashion: for TabPFNv2 and gradient-boosting
methods with native missing value support (XGBoost, Cat-

Boost, HistGradientBoosting), missing entries are passed di-
rectly to the model, allowing the algorithm to learn from
missingness patterns. For models requiring complete data
(Random Forest, Linear Regression), we apply mean im-
putation using statistics computed on the training set only.
We do not apply any transformation to the target variable to
maintain direct interpretability of yield predictions in their
original units.

TabPFNV2 operates in zero-shot mode without any fine-
tuning or hyperparameter search. For datasets exceeding
the 10,000-sample context window (soybean and global),
we apply stratified sampling that preserves the marginal
distribution of the target variable, ensuring that the sub-
sampled training set remains representative. The model
uses its pre-trained 32-ensemble configuration throughout.
For the discretized variant, continuous yield values are
binned into five equal-frequency bins using scikit-learn’s
KBinsDiscretizer with quantile strategy, converting
the regression task into multi-class classification compatible
with TabPFNv2’s original formulation.

All experiments were conducted on an Alienware Au-
rora R16 workstation equipped with an Intel Core i9-
14900KF processor (24 cores, 32 threads, 3.20 GHz), 64 GB
RAM, and an NVIDIA GeForce RTX 4070 SUPER GPU.
TabPFNvV2 inference completed in under one second per
dataset across all experiments. AutoGluon training time var-
ied from approximately 5 minutes on EU-27 with medium-
quality preset to 60 minutes on the soybean dataset with
best-quality preset. PyCaret typically completed within 20-
30 seconds due to its simpler model comparison pipeline.



Table 1: Summary of dataset characteristics and associated preprocessing requirements.

Dataset
Block Characteristic Soybean Global EU-27
Volume Total samples 86,101 28,242 8,656
Features (after preprocessing) 61 6 8
Temporal aggregation applied Yes No No
Data properties Missing values (%) 8.3 0.0 5-13
Crops covered 1 10 20

Geographical scope

Coverage & target Target unit

US Midwest 101 countries 27 EU countries

bu/acre hg/ha tonnes/ha

Datasets and Preprocessing

We evaluate our methods on three publicly available datasets
that capture complementary agricultural scenarios: large-
scale single-crop prediction in the US, multi-crop global
production, and regional EU production with incomplete
records. Table 1 summarizes the key characteristics of each
dataset and their preprocessing requirements.

The first dataset, US Soybean Yield, contains 86,101 sam-
ples with daily weather sequences (60-180 days) linked to
end-of-season soybean yields. Each record combines tem-
poral weather observations with geographic and varietal in-
formation, so that daily temperature and precipitation must
be aggregated into fixed-length tabular features.

The second dataset, Global Multi-Crop (FAO), includes
28,242 samples spanning ten major crops across 101 coun-
tries from 1990 to 2013. The features consist of aggregate
climatic variables (rainfall, temperature), management indi-
cators such as pesticide usage, and categorical encodings for
crop and country. This dataset is fully observed and does not
contain missing values.

The third dataset, EU-27 Regional Crops, comprises
8,656 samples for twenty crops across 27 EU countries at
the NUTS regional level. In contrast to the global dataset,
it exhibits 5-13% missing values across features, reflecting
typical gaps in regional reporting and data collection.

For the soybean dataset, we convert daily weather time se-
ries into fixed-length tabular descriptors by computing sim-
ple statistical summaries (mean, standard deviation, and re-
lated moments) over the growing season for each weather
variable. This yields 61 engineered features that capture both
average conditions and intra-season variability while keep-
ing the representation compatible with tabular models.

Missing values are handled in a model-aware manner. For
TabPFNV2 and gradient-boosting methods with native sup-
port for missing entries, we pass missing values directly to
the model, allowing it to exploit missingness patterns as part
of the learning process. For algorithms that do not accept
missing values (e.g., Random Forest and Linear Regression),
we perform mean imputation using statistics computed on
the training split only, to avoid leakage into the validation
and test sets.

Finally, we account for TabPFNv2’s 10,000-sample con-
text window. For datasets exceeding this size (soybean and
global), we draw a stratified subsample of the training data
that preserves the marginal yield distribution, and use the

full held-out test set for evaluation. The EU-27 dataset is
small enough to be used in full without subsampling.

Model Configuration and Training

For TabPFNv2, we use the publicly released 32-ensemble
model with default hyperparameters and no task-specific
fine-tuning. On datasets with more than 10,000 training
samples, we apply the stratified sampling procedure de-
scribed above. Because models in the TabPFN family were
originally developed for classification, we also experiment
with a discretized version of the soybean task in which
the continuous yield is discretized into five bins using
KBinsDiscretizer with a quantile strategy, convert-
ing the regression problem into a classification task for
TabPFNv2.

For AutoGluon, we adopt different presets depend-
ing on dataset size. On the large soybean dataset,
we use preset="best_quality" to enable
deeper ensembling and more extensive hyperparame-
ter search. On the global and EU-27 datasets, we use
preset="medium_quality" to reduce training time
while retaining stacking across multiple base learners. Time
limits are chosen between 300 and 3600 seconds, scaled by
dataset size, with 5—-10 bagging folds for variance reduction.

For PyCaret, we use the standard regression workflow
with 5-fold cross-validation. All available regression models
are compared under the default preprocessing pipeline (nor-
malization, encoding, and basic feature engineering), and
the best-performing model is selected using RMSE as the
optimization metric (optimize="RMSE").

To contextualize the performance of TabPFNv2 and
the AutoML frameworks, we also report results for
a set of commonly used baselines: Random Forest,
Gradient Boosting, Histogram Gradient Boosting, XG-
Boost, and Linear Regression, each with standard
library defaults and minimal tuning. Gradient Boost-
ing refers to GradientBoostingRegressor,
while  Histogram  Gradient Boosting refers to
HistGradientBoostingRegressor, both from
scikit-learn. These baselines serve both as sanity checks and
as reference points for the observed gains from foundation
models and AutoML.



Results

We compare the performance of TabPFNv2 and the two Au-
toML frameworks on the three agricultural datasets. We re-
port R? and RMSE to interpret the patterns in the context of
each dataset’s scale, feature composition, and data quality.

US Soybean Dataset

The soybean dataset represents a large-scale setting with
complete temporal weather records and 86,101 samples.
Table 2 summarizes the model performance. AutoGluon
achieves the best overall accuracy with R? = 0.8462 and
RMSE of 5.84 bu/acre, outperforming all other models. The
gap of 8.8% in R? between AutoGluon and TabPFNV2 sug-
gests that with large, complete datasets, AutoML ensembles
may better exploit available training data.

The feature importance analysis from the AutoGluon en-
semble indicates that yield is driven more by variability than
by mean conditions. The standard deviation of temperature
over the growing season is assigned the highest importance
(0.31), followed by precipitation-related features (0.24), lat-
itude (0.18), and maturity group (0.15). This is consistent
with prior agronomic findings on the role of weather vari-
ability during critical growth stages.

TabPFNvV2 shows reasonable performance, though the
10,000-sample context window limits its ability to use the
full dataset. Using stratified sampling, the model attains
strong performance in the regression setting, with marginal
improvement when the target is discretized into five yield
bins. The small improvement under quantization is consis-
tent with the TabPFN family being originally designed for
classification tasks. Nevertheless, the sampling constraint
prevents TabPFNv2 from fully exploiting the richness of the
86k-sample dataset.

Traditional baselines provide additional context. XG-
Boost and Random Forest show competitive performance,
while Gradient Boosting and Linear Regression trail further
behind. These results suggest that stacked ensembles can
leverage complementary base learners more effectively than
individual models on this dataset.

Global Multi-Crop Dataset

The global multi-crop dataset spans 10 crops and 101 coun-
tries, where categorical features (crop type, country) may
provide informative signals. Table 3 shows that all advanced

Table 2: Model performance on the soybean dataset (86,101
samples).

Model R2 RMSE (bu/acre)
AutoGluon 0.8462 5.84
TabPFNv2 (discretized) 0.7784 7.01
TabPFNv2 (baseline) 0.7759 7.05
Random Forest 0.7012 8.14
XGBoost 0.7234 7.83
Gradient Boosting 0.6893 8.31
Linear Regression 0.5876 9.56

Table 3: Model performance on the global multi-crop
dataset.

Model R? RMSE (hg/ha)
PyCaret (ExtraTrees)  0.9869 9,762.65
AutoGluon 0.9835 10,972.29
Random Forest 0.9794 12,240.56
TabPFNv2 (discretized) 0.9716 14,163.17
Gradient Boosting 0.9387 21,137.47
XGBoost 0.9521 18,693.25
Linear Regression 0.0856 81,597.44

Table 4: Model performance on the EU-27 regional crops
dataset.

Model R2 RMSE (tonnes/ha)
TabPFNv2 (discretized) 0.9107 12.44
PyCaret (CatBoost) 0.8914 13.72
Histogram Gradient Boosting  0.8913 13.73
AutoGluon 0.8893 13.85
XGBoost 0.8519 16.02
Random Forest 0.8360 16.86
Linear Regression 0.3124 34.52

methods achieve high accuracy, with R? exceeding 0.97 in
most cases.

PyCaret attains the best performance with R? = 0.9869
and RMSE of 9,762.65 hg/ha, slightly ahead of AutoGluon.

TabPFNv2 achieves comparable accuracy using only 35%
of the training data due to its context window limit. This sug-
gests potential sample efficiency, though the performance
gap indicates room for improvement.

From a computational efficiency perspective, PyCaret
completes its full pipeline in 21.76 s, while AutoGluon re-
quires 118.31 s for its more extensive ensemble construc-
tion. TabPFNv2 achieves inference in just 0.39 s, demon-
strating its advantage for rapid deployment scenarios.

Feature importance analysis for the tree-based models
shows that crop type is the dominant predictor (importance
around 0.42), followed by temperature (0.21), pesticide us-
age (0.18), and rainfall (0.13). This suggests that, at a glob-
ally aggregated level, intrinsic crop characteristics and man-
agement practices overshadow fine-grained environmental
variations.

EU-27 Regional Crops Dataset

The EU-27 dataset provides a contrasting scenario with
moderate size (8,656 samples), higher crop diversity (20
crops), and 5-13% missing values. This makes it a natural
test bed for TabPFNv2’s robustness to incomplete tabular
data. The results are summarized in Table 4.

On this dataset, TabPFNv2 achieves the highest accuracy
with B2 = 0.9107 and RMSE of 12.44 tonnes/ha, out-
performing both AutoGluon and PyCaret’s top model (Cat-
Boost). The 2.18% improvement in R? over the next best
method may reflect benefits from pre-training on datasets
with missing value patterns. Because the full dataset fits



within the 10k-sample context window, TabPFNv2 can use
all samples simultaneously at inference time without sub-
sampling.

The comparison with tree-based baselines sheds light
on the role of missing-value handling strategies. Mod-
els with native support for missing values—including
TabPFNvV2, HistGradient Boosting, XGBoost, and Cat-
Boost—demonstrate consistently strong performance, with
TabPFNvV2 leading. In contrast, Random Forest and Linear
Regression, which rely on mean imputation, show notably
degraded performance. This pattern suggests that native han-
dling of missing values may be beneficial in this setting.
TabPFNV2’s pre-training on synthetic datasets with diverse
missing-data patterns could contribute to its performance
here.

The EU-27 results suggest conditions under which
TabPFNvV2 may be effective: moderate dataset size that fits
within the context window, and missing values that chal-
lenge imputation-based approaches.

Cross-Dataset Trends

The cross-dataset trends in Tables 2, 3, and 4 reveal several
key patterns. On the large, fully observed soybean dataset,
AutoGluon performs best, consistent with advantages of
deep ensembling when sufficient samples are available. On
the global multi-crop dataset, both AutoML frameworks
and TabPFNv2 perform well, suggesting that multiple ap-
proaches can perform well when informative categorical fea-
tures are present.

The EU-27 dataset highlights a complementary regime
where TabPFNv2 is particularly effective. Here, the com-
bination of moderate dataset size and non-trivial missing-
ness favors a model that has meta-learned how to handle in-
complete and heterogeneous tabular inputs. Across all three
datasets, TabPFNV2 offers the fastest training and inference
times (on the order of seconds), while AutoGluon provides
the highest accuracy on the largest and cleanest dataset at
the cost of significantly higher computation, underscoring
that no single approach is universally best.

Discussion and Conclusions

Our results suggest that performance depends on dataset
size, completeness, and feature composition—addressing
the questions posed in the Methodology section.

On the large, fully observed soybean dataset, AutoGluon
achieves the best performance, improving R? by 8.8% over
TabPFNvV2. This is consistent with prior observations that
ensembles can be effective on large tabular datasets with
complete data. When many complete samples are available
and training time is not a bottleneck, high-quality AutoML
pipelines are a natural choice.

In contrast, on the EU-27 regional dataset with 5-13%
missing values and moderate sample size, TabPFNv2 out-
performs both AutoGluon and PyCaret, improving R? by
2.18%. This suggests conditions where tabular founda-
tion models may offer advantages: moderate size within
the context window and incomplete records. The global
multi-crop dataset lies between these extremes. Here, all

advanced models reach high performance, with PyCaret
slightly ahead, suggesting that informative categorical fea-
tures (crop, country) may make the task easier for a range of
methods.

From a practical standpoint, these patterns suggest ten-
tative guidelines. For large, complete datasets where train-
ing time is not a constraint, AutoML frameworks may be
preferable. When data are limited or contain missing values,
tabular foundation models may provide reasonable perfor-
mance with minimal tuning. In intermediate regimes, both
approaches are viable, and considerations such as deploy-
ment constraints, interpretability, and available compute be-
come more important. Hybrid strategies are also promising,
for example using TabPFNv2 for rapid screening of feature
sets or regions, followed by AutoML ensembles for final
model selection.

A practical advantage of TabPFNV2 is its computational
footprint. Across all three datasets, TabPFNv2 completes in-
ference in under one second, while AutoGluon requires 5
to 60 minutes of training depending on dataset size and en-
semble configuration. This speedup may be useful for rapid
prototyping or scenarios requiring frequent updates. How-
ever, the 10,000-sample context window necessitates strati-
fied subsampling on larger datasets and prevents TabPFNv2
from fully exploiting very large training sets.

This study has several limitations. We focus on a
single foundation model (TabPFNv2) and two AutoML
frameworks; other recent tabular architectures may ex-
hibit different behavior under the same protocol. The cur-
rent TabPFNv2 implementation also enforces a 10,000-
sample context limit, which prevents straightforward use
on very large datasets without subsampling. Finally, our
temporal aggregation deliberately simplifies daily weather
into summary statistics, which discards finer-grained sub-
seasonal patterns. Extending this work to domain-specific
pre-training, larger-context tabular foundation models, and
time-series foundation models such as Chronos (Ansari et al.
2024) and AutoGluon-TimeSeries (Shchur et al. 2023) is a
natural next step.

In summary, we provide a systematic comparison of
tabular foundation models and AutoML frameworks for
agricultural yield prediction across three representative
datasets. We observe that AutoGluon and PyCaret per-
form well on large, complete datasets, while TabPFNv2
shows advantages on moderate-sized datasets with miss-
ing values. Both approaches outperform standard base-
lines in our experiments. We release our preprocessing
pipelines, experimental scripts, and processed datasets at
https://github.com/itsMustafamr/Yield.git to support repro-
ducibility and to facilitate future work at the intersection of
foundation models and agricultural Al
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