Under review as a conference paper at ICLR 2026

SIM: INTRA-GROUP MEMBER DIFFERENTIATION VIA
SOCIAL INTERACTION MODELING FOR GROUP RE-
IDENTIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Group Re-identification (G-RelD) focuses on associating group images that con-
tain the same members across different camera views. The key challenge is that
identity and position differentiation in group topology structure changes are diffi-
cult to capture. Drawing on principles from social psychology, we observe that the
core members are more likely to remain in the group under different camera views
with smaller position changes, while peripheral members are more likely to have
significant position changes or even fade out of the group. To this end, we pro-
pose a novel social interaction modeling (SIM) method, which treats each group
as a social interaction field to explore more authentic and robust group features
through dealing with the member differentiation: identity and position differen-
tiation. Our method constructs the social interaction calculation module (SICM)
to capture the member differentiation in the fields, and implements identity dif-
ferentiation and position differentiation by the social prior attention mechanism
(SPAM) and social layout variation module (SLVM), respectively. Extensive ex-
periments on three available datasets show that the proposed method SIM is effec-
tive, and outperforms all previous state-of-the-art methods, surpassing the baseline
on Rank1/mAP by up to 8.6%/9.6% on DukeGroup, 3.7%/2.7% on RoadGroup
and 2.5%/2.9% on CSG. The code will be available on Github.

1 INTRODUCTION

Group re-identification (G-RelD) aims to correctly associate group images that contain the same
members captured by different cameras with non-overlapping views. It is increasingly important
in the security field. G-RelD typically deals with groups of 2-6 members, and images belonging
to the same group class should contain at least 60% same members. G-RelD is a more crucial and
challenging task than person re-id because people usually have group and social attributes, indicating
that people prefer to move in groups. Therefore, G-RelD needs to deal with the group topological
structure changes: member and layout variation. Specifically, member variation means the members
could leave the group, and layout variation means the positions may change under different cameras.

Although previous works (Zhang et al., 2022} 2024a}, 2025)) relied on uncertainty modeling to ad-
dress the challenge of group topological structure changes, their performance was not satisfactory.
The shortcomings are mainly due to the following two reasons: 1) The previous attention mecha-
nism conducts undifferentiated learning for all intra-group member tokens, lacking specific focus.
2) The previous layout modeling method employs undifferentiated random affine transformations
for the entire group, resulting in many ineffective layouts. Both shortcomings arise because existing
methods ignore differentiation among intra-group members. As shown in Fig|[I] the learned group
features are undifferentiated for both member tokens and group layout, which are represented as
pure pink triangles, leading to large intra-class distance.

By introducing the social psychology principles, we found that the core members are more likely to
remain in the group with smaller position changes, and peripheral members are more likely to have
significant position changes or even fade out of the group, which we term member differentiation.
The identity differentiation and position differentiation mean the likelihood of appearing in other
group images and the extent of position changes varies among intra-group members, respectively.
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Figure 1: Existing methods versus social interaction modeling. Pure  Figure 2: Member differen-
triangles denote group features extracted without member differen- tiation. Two images belong
tiation, while texture triangles indicate those extracted with differ- to the same group, and P
entiation. The pentagon represents the different member tokens that represent the average inter-
make up the group features. The dotted circle lines represent the action probability. B-boxes
boundaries within the class. The features extracted by our SIM have of same color represent the
smaller intra-class distance due to consider the member differentia- same member.

tion.

quantifies the formula between the interaction probability and three features of
the social interaction field: distance, orientation, and pose-openness. The core members refer to the
members with higher interaction probabilities relatively (e.g. members that be surrounded), while
peripheral members refer to the members with lower interaction probabilities (e.g., unrelated pedes-
trians). As shown in Fig 2] members in red and orange b-box are with higher average interaction
probability, remain their core position in the next group images, and members in blue and green
b-box with lower probability, one has significant position changes, another left the group.

In this paper, we propose a novel social interaction modeling (SIM) method, which treats each
group image as a social interaction field to mine more authentic and robust group features. We
construct the social interaction calculation module (SICM) calculating interaction probabilities to
capture the member differentiation in the fields, which is inspired by [2019). We further
design the social prior attention mechanism (SPAM) and the social layout variation module (SLVM)
to accomplish identity differentiation and position differentiation by utilizing these probabilities,
respectively. As shown in [T} the group features learned by SIM are represented as texture pink
triangles, which has smaller intra-class distance. Modeling and training this differentiation can
obtain smaller intra-class distance and more authentic and robust group feature representations.

Specifically, the proposed SICM defines a normalized variable p to reflect the member differenti-
ation. Each group image has a specific p and the accuracy of the p-value is mainly affected by
distance. SICM extracts social interaction features of members in the group image, which contain
distance d, orientation #, openness o, which are extracted from annotations and group images.

SPAM aims to achieve identity differentiation by accounting for the varying likelihoods that indi-
vidual members appear across different group images. SPAM adjusts the weight of attention for
different members during group feature learning. To this end, a new attention weight allocation
mechanism is designed to achieve core member mining and enhance group feature learning.

SLVM aims to address position differentiation. Due to the extent of position variation varies from
intra-group members, SLVM models more realistic dynamic layout variations. Thus, a learnable
position variation matrix AD is employed. While retaining a certain degree of freedom through
weighted fusion with random affine vectors, SLVM accomplishes a new layout modeling strategy to
conduct more realistic layout modeling and explore potential layout changes.

Our main contributions are summarized as follows:

* We first introduce the social psychology principles into G-RelD task, and propose the SIM
method, which treats each group image as a social interaction field.
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* We construct SICM to capture the member differentiation in the fields, and achieve identity
and position differentiation by the proposed SPAM and SLVM to explore more authentic
and robust group features.

2 RELATED WORK

Person Re-identification. Person re-identification (RelD) aims to associate individual pedestrians
across non-overlapping views in camera networks. In recent years, numerous deep learning-based
methods (Meng et al., 2021} |Yan et al., 2020; Rao & Miao, 2023; |Wang et al., [2024} Zhang et al.,
2024bj; [Peng et al., 2023} \Guo et al., 2024) have made significant progress in this field, including
extracting more discriminative features and designing more suitable metrics. For instance, AGW
(Ye et al., 2021)) introduced a weighted regularized triplet metric learning method, while (Yang
et al., [2025) Cheb-GR leverages Chebyshev-guided adaptive neighbor selection to enable efficient,
training-free graph re-ranking for person Re-ID. However, person ReID methods primarily focus on
individual pedestrians, overlooking the more intricate group-level interactions and layout dynamics
that are pivotal for GRelD.

Group Re-identification. Compared to RelD, research on G-RelD remains relatively scarce, with
only a few pioneering works attempting to address this task. Early approaches (Zheng et al.| 2011}
Cai et al., 2010; Ristani et al., 2016} Lisanti et al.,2017) treated entire images as model inputs and di-
rectly extracted group features. Since these methods relied on handcrafted features and considered
background information, their performance was unsatisfactory. Subsequently, CNN-based works
MACG (Yan et al.,[2020) proposed a multi-level attention contextual graph model to leverage visual
context information among group members. In recent years, Vision Transformer-based architectures
have gained popularity. UMSOT (Zhang et al .} [2022;2024a) introduced a second-order Transformer
architecture to construct group features, incorporating uncertainty modeling of group member num-
ber and position. PBSOT (Zhang et al.| 2025) proposed a parallel branches-based transformer with
layout-guided occlusion mitigation, enhances robustness by strengthening the sampling of overlap-
ping parts and fusing global features with local features. But existing methods take the entire-group
perspective and overlook intra-group member differentiation.

Social Interaction. (Bolotta & Dumas|, 2022)) identified social interaction as a key area for future
Al research in 2022, revealing that certain visual primitive features of social behavior discovered by
cognitive psychologists enhance computer vision systems’ ability to recognize interactions. (Chen
et al.| [2025) augments transformer-based pedestrian trajectory prediction by concurrently extracting
and interacting subject-neighbor intentions across the entire observation period with a perception-
masked attention mechanism. But these works rely only on pairwise distance and ignore the effects
of orientation and pose openness. For example, two people standing close but back-to-back would
not be considered a social group. SIFM (Zhou et al.,2019) found that closer interpersonal distances,
more direct interpersonal angles and more open avatar postures led to a higher probability of a group
being judged as interactive, and quantifies the formula between the interaction probability and social
interaction features. However, they have not applied social-psychology principles to G-RelD, nor
are they directly suitable.

3 METHOD

In this section, we first introduce how the SICM extracts social features and calculates interaction
probabilities to capture member differentiation, and then describe how the proposed SPAM and
SLVM implement identity differentiation and position differentiation. Fig [3]illustrates the method
pipeline. For the k-th group, z, and y{ are the group image and id, respectively, and by, and y}, are
the bounding box annotation and member id for each member in xj, respectively.

3.1 SOCIAL INTERACTION CALCULATION MODULE (SICM)

In this paper, SICM aims to capture the member differentiation by calculating normalized interaction
probabilities p; in social interaction fields. The key issue is to extract social interaction features and
calculate interaction probabilities of each group image.

For the k-th group image, we treat it as a social interaction field S, = { Sfj }, where member ¢ and j
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have their subfield Sfj A binary variable z;; € {0, 1},following a Bernoulli distribution, determines
whether pedestrians ¢ and j are in the same social interaction field:

p(zij=118) =06(S5). (1)

To calculate the interaction probability p;; between member 7 and j, we now extract social interac-
tion features: distance, orientation and openness. Specifically, we utilize b-boxes by;, by to calculate
distance d;;. The distance between the i-th and j-th members based on their bboxes:

1 mi mi
dij = = || v (b3 dvbkjd) ; 2
gl
where bﬁid and bz;-id denote the bottom midpoints of b-boxes, and + is a scaling factor. 1 (x1,x3) =

d(x1) — ¢(x2) is constructed to compensate for field-of-view discrepancies, where ¢ denotes a
perspective transformation function (Zhang} 2021).

Then, we utilize multiple frameworks merging such as AlphaPose (Fang et al.l |2022), Mediapipe
(Lugaresi et al., 2019), HigherHRNet (Cheng et al., [2020) to extract skeletal keypoints g; from
image of cropped member xy,; to compute relative orientations 6;; and define pose-openness 0, 0;.
We compute the relative angle:

vt -d,;
0;; = arccos—+—" 3)
Y o || - lldis |1

where qf»s and g;° are the left and right shoulder keypoints of the i-th pedestrian, respectively.
v; = q7° — g° is shoulder vector of the i-th member, v;" represents the orientation vector.

The pose-openness degree o; is defined as:

1; if Cub > Cla
0 =1 -1, ifg x g >0, )
0, otherwise.

where (,p = <q§”’ , q§d> is the angle between the upper arm ¢;” and body q?d, (7 1is a threshold set
to 45°. q;"* is forearm, and X is the cross product denotes vector outer product. Indicates that o;
equal to 1 when upper arm is spread out, and o; equal to —1 when forearm tightens inward towards
the body. Skeleton extraction accuracy on our three datasets is all above 97% (see Appendix [E] for
detailed numbers and quantitative analysis under extraction failures).

Now we have social interaction features. Then we calculate the p;;. The subfield intensity Sfj and
interaction probability satisfy the formula:

{SFJ = f(dij, 0,0, 05) - 6 (S5)

pij =1— exp(—SZ/A)b ®)

where function f is a symmetric function for ¢ and j. The parameters A, b and function f are all
given in (Zhou et al}|2019). P = {pij}ij\il is a symmetric matrix, because Sfj = Sﬁ The average
interaction probability p;, and normalized average interaction probability p; can be described as:

_ 1 N
Pi= =1 Zj\rj:l’j# Pig N N N (6)
Pi=Di/ 2221 Pi = ﬁ Zj:l,j;éi pij/% Dz Zj:l,j;éi Dij

where N is the group size. For the k-th group p% = {p; kal € RNx,

The control experiment for the independent effect of SICM and the feature ablation study in SICM
are presented in Appendix [Fjand Appendix [H] respectively.

3.2 SOCIAL PRIOR ATTENTION MECHANISM (SPAM)

SPAM aims to achieve core member mining and enhance group feature learning by adjusting at-
tention weights of group feature transformer, and accomplishes identity differentiation. The core
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Figure 3: The pipeline of the proposed SIM. SICM is used to capture member differentiation with

P, SLVM is employed to model discriminative layout variation among members, and SPAM fo-
cuses on the tokens of core members. Group features are formed by concatenating member tokens
and layout, serving as input to the Group Feature Transformer.

members are more likely to appear in other group images and their member IDs are more represen-
tative of the group ID. To this end, a new attention weight allocation mechanism SPAM is designed,
which assigns them greater attention to enhance the tokens learning in group feature transformer
while peripheral member receive less.

The i-th member’s token ¢¥ of k-th group are extracted by ViT, ¢! = ViT'(xy;), group feature is con-
catenated from members token, ¢{, = [t7,5, ..., % ]. The input of group vision transformer (GViT)
are X = [t9,, tiwl, e tiz+B71] e RB*XNXC where B denotes the batch size, N is the number of
group members, C represents the feature dimension, p and g represents person and group, m due
to current batch. The query (Q), key (K), value (V') are obtained through linear transformations:
Q=XWqo,K=XWgk,V=XWy, where Wo, Wk, Wy € RE*4 are learnable parameters, and

d is the attention head dimension. The original attention weights are calculated as:

_ _ QK T)
Araw - (Qv Ka V) - softmax < \/E V. (7)

The new attention is described as:

Asocial = Araw ©) 1597 (8)

where P9 = [15‘1’,155,...,153} € RBxCxd gpd 155’ = [ﬁfmj)gﬁl,...,i)fwrm_l‘] IS RBfC, and
©® represents Hadamard product. The updated features Z are generated through linear projection:
Z = Agociat VWo, where Wp € R4%C is a learnable projection matrix. By integrating P9 and
dimension alignment, SPAM optimizes attention weights, accomplishes identity differentiation.

3.3 SOCIAL LAYOUT VARIATION MODULE (SLVM)

SLVM aims to address position differentiation, accomplishes a new layout modeling strategy to
conduct more realistic layout modeling and explore potential layout changes D f;,q;. It constructs
a learnable position variation matrix A D, which restricts layout variation ranges for core members
and expands it for peripheral members. This mechanism simulates realistic sociological layout
variations that incorporate position differentiation.
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Original layout coordinates of group image D,,.; = [(71,%1), (T2,%2), ..., (x5, yn)] € RY*2 rep-
resents the center coordinates of each member in the image, (x;,y;) represents the position of i-th
member.

The existing methods treat the group layout as an entirety and apply random affine transformation,
which fails to consider positional discrimination. The transformed layout after random affine trans-
formation is given by: D,q4ndom = RDor; + b, where R € R2*2 is random affine matrix, b € R? is
translation vector.

For the position variation of i-th member of the group, our layout modeling can be described as:

Adi=a | Y pildy—di) | + (1= a)r,, ©)
J#i

where d; and d; are the central position of i-th and j-th member’s bbox, and ) p; (d; —d;) represents
i#j

position differentiation. Hyperparameter a € [0, 1] is a balancing coefficient that weights prior

differentiation knowledge against data augmentation. r; is a random perturbation vector, and can

maintain a certain degree of positional freedom for members.

The offset Ad; comprises two components: (1) a structure-aware offset, driven by social interaction
weights, that preserves spatial proximity among core members; and (2) a random perturbation that
introduces layout diversity.

Specifically, (d; — d;) represents distance in real, p; is normalized average interaction probability,
which reflect member differentiation. Therefore, members with higher interaction probability with
the i-th member can better maintain the distance between them and are accompanied by smaller
positional variation. Meanwhile, members with lower interaction probability with the ¢-th member
cannot maintain the distance between them and will generate greater layout variation.

The final layout is computed as:
Dfinat = Dori + AD, (10)
where AD € RV*2 is the offset matrix for all intra-group members. The updated features Z

are fused with the layout information D ;y,4; and Transformer encoder generates the group feature
representation.

3.4 LOSS FUNCTION

Our feature is trained with person identity and triplet loss function.

P C
1 ~
Lip=-5 > yjilog(ii), 1D

j=11i=1

where P represents the total member number of the current batch, C' represents the total member
classes, the indicator function y;; = 1(j = 7) equals to 1 when the j-th member belongs to the i-th
class, and ¥j; is the prediction of network about the j-th member belongs to the i-th class.

P
Lrvi=3 ; maz(d(fi, £7) — d(fi, £7) + . 0), (12)

where d(-, -) represents the distance function between two features such as the Euclidean distance,
fi/f;7/f; represent the anchor/hard positive/hard negative feature in the current batch, and h is the
hyper-parameter of margin. £, is person loss L, = L;p + L.

The loss function £, of a second-order token (Zhang et al., 2024a) is also composed of the group
identity and triplet loss, which is similar to the £;p and Lp,.;.Overall, the total loss function is
defined as:

L=L,+L, (13)
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Table 1: The proposed method is compared with state-of-the-art approaches on CSG, RoadGroup,
and DukeGroup datasets. The comparative methods are divided into two categories: hand-crafted
and deep learning-based methods. The best and second-best results are highlighted in bold and
underlined, respectively. Reported metrics include Rank-1, Rank-5, Rank-10 and mAP (%).

Method Publication CSG RoadGroup DukeGroup
Rankl Rank5 Rankl0 mAP Rankl Rank5 RankI0 mAP Rankl Rank5 RankI0 mAP
CRRRO-BRO BMVC2009 104 25.8 375 - 17.8 34.6 48.1 - 9.9 26.1 40.2 -

Covariance ~ ICPR2010 165 341 479 - 380 610 731 - 213 436 604
BSC-CM ICIP 2016 246 385 551 - 586 806 874 - 231 443 564

PREF ICCV2017 192 364 518 - 430 687 719 - 306 553 670

LIMI MM 2018 - B B 723 906 941 - T4 681 713

DotGNN MM 2019 - - - - 741 901 926 - 534 727 807

DotSNN TCSVT 2019 - - - - 840 951 963 - - - -

GCGNN TMM 2020 - - - - 817 943 965 - 536 770 914

SVIGR Neucom 2020 - - - - 878 927 - 89.2 - - -

MGR TCYB2021 578 716 765 - 802 938 963 - 484 752 899

MACG TPAMI 2023 632 754  79.7 - 845 950 969 - 574 790 903 -
SOT AAAI2022 917 965 976 90.7 864 963 988 913 727 886 932 78.9
UMSOT CV2024 936 973 983 92.6 889 951 9838 91.7 744 894 939 79.4

PBSOT ESWA 2025 94.5 97.1 97.9 93.9 91.3 96.3 98.7 93.3 82.7 92.6 95.1 88.1
Ours - 96.1 98.3 99.1 95.5 92.6 96.3 97.5 94.4 83.0 96.6 98.9 89.0

4 EXPERIMENTS

4.1 DATASETS

The proposed SIM is evaluated on three G-RelD datasets: DukeGroup, RoadGroup (Lin et al.,
2019), and CSG (Yan et al.l [2020). The DukeGroup dataset contains 354 images with 177 group
classes. The RoadGroup dataset contains 324 images with 162 group classes. Following the protocol
in (Yan et al.| 2020), the training and test sets of DukeGroup and RoadGroup are randomly divided
equally. The CSG dataset contains 3,839 images with 1,558 group classes, where 859/699 groups are
allocated for training/testing. According to (Yan et al.,|2020), test images are sequentially selected as
probes, while all remaining images serve as the gallery. Additionally, CSG includes 5K extra group
images in the gallery as distractors. For fair comparison, no additional datasets are used during
training on any G-RelD dataset. Evaluation metrics include Rank-1, Rank-5, Rank-10 cumulative
matching characteristics (CMC) and mean average precision (mAP). Experiments of distractors on
dataset CSG are given in Appendix [I}

4.2 DETAILS

Our baseline is UMSOT. Experiments were conducted on an NVIDIA RTX 4080 GPU using Py-
Torch. Our model uses GViT (Zhang et al., |2024a) as backbone, pretrained on ImageNet (Deng
et al., |2009). For input group images, we crop all member images using given bounding boxes and
resize them to 256x128. During training, the random seed is fixed to 42, with random horizontal
flipping (p=0.5) and random erasing applied. Each mini-batch samples 16 group identities, with 4
images selected per identity. We use SGD (Bottou, 2012) as optimizer. Training terminates after
400 epochs. A cosine annealing learning rate schedule is employed: initial rate 2e-3, minimum rate
1.6e-4. The learning rate for inter-member modules is multiplied by 0.1. Weight decay is set to 1e-4.
Online hard mining is used for triplet loss (Hermans et al.| 2017)). During testing, no data augmen-
tation or re-ranking is applied. Features are compared using Euclidean distance. Unless otherwise
specified, all experiments are conducted on the DukeGroup dataset.

4.3 PERFORMANCE

We compare SIM with existing methods on three available G-RelD datasets to demonstrate its su-
periority. We categorize existing methods into two groups: handcrafted G-ReID methods and deep
learning-based G-RelD methods, From the performance perspective, SIM is recognized as the state-
of-the-art method among existing approaches. Two conclusions can be drawn from Table [T}

First, our SIM achieves strong performance on the CSG, RoadGroup, and DukeGroup datasets, sur-
passing baseline in both Rank-1 and mAP metrics. On the CSG dataset, SIM achieves 96.1%/95.5%
(Rank-1/mAP), outperforming baseline by 2.5%/2.9 in Rank-1/mAP. On the RoadGroup dataset,
SIM achieves 92.6%/94.4% (Rank-1/mAP), outperforming baseline by 3.7%/2.7% in Rank-1/mAP.
On the DukeGroup dataset, SIM achieves 83.0%/89.0% (Rank-1/mAP), outperforming baseline by
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Table 2: Ablation Experiments on the Social Interaction Module (SIM) (%).
CSG RoadGroup DukeGroup
SPAM SLVM Rankl mAP Rankl mAP Rankl mAP
93.57  92.62 88.89 91.73 7442 79.40

v 96.11  95.28 91.36  93.75 80.68  87.48
v 95.59 9522 89.94  92.23 78.41  85.88
v v 96.06  95.49 92.59 94.35 82.95  89.02

8.6%/9.6% in Rank-1/mAP. These results demonstrate that SIM delivers consistent performance
gains across all datasets, confirming the effectiveness of member differentiation and yielding signif-
icant improvements over the baseline. Second, the performance of existing method remains unsat-
isfactory due to: Existing methods take the entire-group perspective and do not consider member
differentiation in group topology structure changes. Unlike these methods, SIM constructs SICM to
capture member differentiation in social interaction fields. The proposed SPAM achieves core mem-
ber mining and enhance group feature learning, while SLVM accomplishes a new layout modeling
strategy to conduct more realistic layout modeling and explore potential layout changes, making
SIM shortening the intra-class distance, enhancing the robustness of group features. Inference speed
& memory on DukeGroup: SIM 0.838 s / 6225 M and UMSOT 0.806 s / 6207 M (+4 % time, +0.3
% memory), while accuracy improves from 74.4 % to 83.0 % R-1 and 79.4 % to 89.0 % mAP.

4.4 ABLATION STUDY

Effect of SPAM and SLVM. The ablation experiments primarily demonstrate the impact of the
SPAM and SLVM modules on social interaction modeling. We mainly analyze the results on the
DukeGroup dataset, with similar conclusions observed on the other two datasets. As shown in Ta-
ble[2} two conclusions can be drawn: First, each module individually improves performance when
used separately. Compared to the baseline, SPAM increases Rank-1/mAP by +6.26%/+8.08%, while
SLVM increases Rank-1/mAP by +3.99%/+6.48%. This indicates that these two modules respec-
tively learn the identity and position differentiation, making SIM more discriminative. Second, when
both modules are used together, the performance gains reach +8.53%/+9.62% in Rank-1/mAP, ex-
ceeding the sum of individual improvements. This demonstrates that SPAM and SLVM are two
complementary aspects for mining group differentiated features. Using both SPAM and SLVM si-
multaneously enables the exploration of more authentic and robust group features.

4.5 PARAMETER ANALYSIS

Influence of o. The hyperparameter a controls how SLVM learns potential group layouts by deter-
mining the ratio between the social interaction layout matrix and the random affine matrix during
training in SIM. When « is set too large, SLVM over-emphasizes layout variations of peripheral
members, leading to overfitting and performance degradation. When « is set too small, SLVM fails
to adequately explore potential layout features of peripheral members, resulting in insufficient model
generalization and performance decline. As shown in Figure[d] we conducted separate hyperparam-
eter experiments on CSG, RoadGroup and DukeGroup datasets to determine optimal values, since
each dataset exhibits different social interaction fields distributions.

4.6 VISUALIZATION

Retrieval visualization. Figure [5] presents the top-3 retrieval visualizations comparing baseline
UMSOT and our proposed SIM. The advantages of SIM are primarily demonstrated in two aspects:
1) Achieve core member mining and enhance group feature learning, achieve identity differentiated
learning. UMSOT tends to retrieve gallery images with higher overall similarity to the query. When
processing groups with less distinctive members (Rows 1, 2, and 4), SIM effectively focuses on
core members of the group. 2) Conduct more realistic layout modeling and explore potential layout
changes, achieve position differentiated learning. UMSOT does not emphasize layout variations.
For groups in Rows 3 and 5, SIM better captures the topological changes of the group structure.

Feature visualization. Figure [6]illustrates the group feature visualization of our best eight classes
in the training set when both UMSOT and our proposed SIM converge, and each group class con-
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Figure 6: The feature visualization of the whole =~ Figure 7: Heatmap visualization via Grad-
training set through t-SNE (Van der Maaten &  CAM is applied to dataset images. Pedestrians
2008). Each color represents a group  with higher social interaction probability exhibit
class. larger heatmap areas.

tains only two images. Due to UMSOT’s approach regards groups as entire distributions during the
feature learning process, the intra-class distance is large. In contrast, our social interaction modeling
utilizes the member differentiation in learning group features, demonstrating: excellent intra-class
consistency and strong inter-class differentiation.

Heatmap. We optimize group feature learning by adjusting the weights in the group feature Trans-
former attention mechanism—SPAM, and visualize individual member features combined with group
weight using Grad-CAM (Selvaraju et all, 2017) class activation heatmaps as shown in Figure [}
The results show that members with higher social interaction probability exhibit larger and more
concentrated heatmap regions, indicating that the learning of group features is optimized and back-
propagates to affect individual representations.

5 CONCLUSION

In this paper, we focus on the member differentiation in group topology structure changes in G-
RelD, which contains identity and position differentiation. To solve this, we propose a novel social
interaction modeling method, which treats group as a social interaction field. First, our method con-
structs SICM to capture the member differentiation in fields, and accomplish identity differentiation
and position differentiation by SPAM and SLVM, respectively, shorten the intra-class distance. Sec-
ond, SPAM design a new attention weight allocation mechanism, to mine core member and enhance
group feature learning. SLVM achieve a new layout modeling strategy to conduct more realistic
layout modeling and explore potential layout changes. Finally, our proposed social interaction mod-
eling achieves state-of-the-art performance across multiple benchmark datasets, outperforming all
existing methods. Limitations are detailed in Appendix [A]
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A LIMITATIONS.

Although the proposed SIM method has achieved promising results in methods and effects, it still
has some undeniable limitations. First, to reflect the members differentiation, the calculation of
interaction probability requires skeleton extraction for orientation, which is restricted by current
basic techniques. Although we employ multiple pose estimation models, the accuracy of skeleton
extraction remains imperfect. Interaction probability is mainly determined by the distance, although
the errors caused by the orientation and openness are very small, they still exist. Second, owing
to restrictions on public release and incomplete annotations of additional datasets, all experiments
were conducted on the three most widely used public benchmarks.

B CONTRIBUTION TO OPTIMIZING THE ATTENTION MATRIX.

B.1 THEOREM 1 (MEMBER-DIFFERENTIATION LOWER BOUND)
let C ={j|pi; >7}and E = {j | p;; < 7}; then
EjGC[Asocial]j - ]EjEE[Asocial}j > T(EjGC[Araw]j - EjGE[Araw]j) . (14)

Hence the Hadamard product amplifies the attention gap between core and periphery linearly with
T.

C THE HADAMARD PRODUCT ENHANCES PERFORMANCE.
C.1 THEOREM 2 (CONVERGENCE)

for cross-entropy loss £ = — log softmax(Apy © P),

oL
= — o — 0454 Araw .. 1
ap” (6” 61]) [ ]z] ( 5)

High-p;; pairs obtain larger gradients, speeding up learning of core-member features and suppress-
ing peripheral noise, which improves both accuracy and convergence speed.

D MEMBER INTERPRETATION

members with larger average p; change position less and stay longer in the group; SPAM therefore
assigns them higher attention, while low-p; members receive less focus.

D.1 LEMMA 1 (GRADIENT MONOTONICITY)

> 0.

Opij _ _2di; 55113 0pij
adi; ~ A exp(=5) <o ad2,

Distance influence decays convexly, guaranteeing that only nearby members significantly affect p;;.

E QUANTIFY THE IMPACT OF SKELETON KEYPOINT EXTRACTION FAILS ON
PERFORMANCE

The three datasets used in our experiments—CSG, RoadGroup, and DukeGroup—have relatively
high image quality. Therefore, we simulated the practical value on low-quality skeleton data by
using different skeleton extraction strategies with varying success rates.

The experimental results using AlphaPose and Mediapipe as skeleton-extraction strategies are pre-
sented in Table[3]and Table 4]

It can be seen that even on low-quality skeleton data, the performance remains significantly higher
than the baseline.
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Table 3: Experimental results using AlphaPose as skeleton-extraction strategy (%).

Dataset AlphaPose

Extraction accuracy Rankl Rank5 Rankl0 mAP
CSG 99.04 96.06 9826  99.07 95.49
RoadGroup 100.00 92.59 97.53 98.77 94.30
DukeGroup 97.97 8295 96.59 98.86 89.02

Table 4: Experimental results using Mediapipe as skeleton-extraction strategy (%).

Dataset Mediapipe

Extraction accuracy Rankl Rank5 Rankl0 mAP
CSG 79.59 9548 97.68 98.61 95.05
RoadGroup 78.04 91.36 9630 97.53 93.75
DukeGroup 51.48 80.68 9432 97.73 86.71

F A CONTROL EXPERIMENT FOR THE INDEPENDENT EFFECT OF SICM

To determine the independent contribution of SICM, we replaced the full features with a distance-

only weighting scheme Table [5}

Performance drops only marginally, confirming that orientation and pose-openness provide a pos-

itive but small gain, and that distance is the dominant feature in SICM.

G THE UPDATE MECHANISM OF THE LEARNABLE POSITION VARIATION

MATRIX AD

Complete Group Feature. Due to space limits, Section 3.2 only states “group feature is concate-
nated from member tokens, t] = [t},...,t} |”. The full group feature explicitly concatenates

member tokens with the final layout matrix:
tz = [t{(, e ,tg)\,M Dﬁnal}, where Dﬁnal = Dori + AD

Forward Process. Final layout coordinates are updated as
Dgna = Dori + AD,  AD € RV*2,
Row-wise perturbation (for member i):
Ad; = aij(dj —-d;) + (1 -a)r, a € 0,1], r; ~ N(0,0°T),
J#i
with normalised interaction probabilities p;.

Back-Propagation Derivation. Let £ denote the final loss (triplet + ID). By the chain rule,

oc oL
OAD  ODgpa
Gradients of (18) are
0Ad;
9 ij(dj —d;) —ry,
JFi
0Ad; ..
8dj :Oéij (]7&2)7
0Ad;
o, = —« ijI.
J#i

(16)

a7

(18)

19)

(20)

21

(22)

Equations (21)-(22) show that neighbours with high p; contribute more gradient to Ad;; thus the

displacement of core members is suppressed while that of peripheral members is amplified.
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Table 5: Independent effect of SICM (%). The weights calculated by distance-only and SICM
(distance, orientation and openness)

Dataset Distance-only SICM

Rankl Rank5 Rankl0 mAP Rankl Rank5 Rankl0 mAP
CSG 95.2 98.1 98.8 94.8 96.1 98.3 99.1 95.5
RoadGroup 90.1 96.3 97.5 92.9 92.6 96.3 97.5 94 4
DukeGroup  79.6 96.6 98.9 87.1 83.0 96.6 98.9 89.0

Table 6: Feature ablation study in SICM on RoadGroup (%).
Distance Orientation Openness Rankl Rank5 Rankl0 mAP

v v v 9259  97.53 98.77  94.30
v v - 9136 9630 9630  93.68
v - v 90.12 9753 97.53 93.14
v - - 90.12 9630  97.53 92.86

H THE FEATURE ABLATION STUDY IN SICM

We ablated the features of SICM on the RoadGroup dataset while keeping the original formula f
unchanged: Table|6]

The results show that removing either cue causes only a minor drop, confirming that distance is
the dominant factor while orientation and pose-openness provide small but positive contributions.

I EXPERIMENTS OF DISTRACTORS ON DATASET CSG

This is the experiments on the relationship between the number of distractors samples, model infer-
ence time, and Rank-1 accuracy. As mentioned in our paper, “CSG includes 5K extra group images
in the gallery as distractors.” Therefore, we conduct experiments with 1K, 3K, and 5K distractors to
analyze how SIM’s retrieval efficiency changes as the number of distractor samples increases. Table

Table 7: Experiments on the relationship between the number of distractor samples, model inference
time (s/batch), and Rank-1 accuracy (%).
Distractors Rankl Rank5 Rankl0 mAP Inference time (s/batch)

5K 96.06  98.26 99.07  95.49 0.046
3K 96.52  98.43 98.96  95.90 0.042
1K 97.45 99.01 99.30 9691 0.030
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