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ABSTRACT

Group Re-identification (G-ReID) focus on associating group images that contain
the same members across different camera views. The key challenge is that iden-
tity differentiation and position differentiation in group topology structure changes
are difficult to capture. According to the social psychology principles, we found
that the core members are more likely to remain in the group with smaller posi-
tion changes, and peripheral members are more likely to have significant position
changes or even fade out of the group. To this end, we propose a novel social in-
teraction modeling (SIM), which treats group as a social interaction field, explore
more authentic and robustness group features through the member differentiation.
The member differentiation contains identity and position differentiation. Our
method constructs the social interaction calculation module (SICM) to capture the
member differentiation in fields, and implements identity differentiation and po-
sition differentiation by the social prior attention mechanism (SPAM) and social
layout variation module (SLVM), respectively. A large number of experiments
have been conducted on three available datasets show that the proposed method
SIM is effective, and outperforms all previous state-of-the-art methods, surpass-
ing the baseline on Rank1/mAP by up to 8.6%/9.6% on DukeGroup, 3.7%/2.7%
on RoadGroup and 2.5%/2.9% on CSG. Code will be available on github.

1 INTRODUCTION

Group re-identification (G-ReID) aims to correctly associate group images containing the same
members captured by different cameras with non-overlapping views. It is increasingly important
in the security field. G-ReID typically deals with groups of 2-6 people, where images belonging to
the same group category should contain at least 60% of the same members. G-ReID is more crucial
and challenging than individual re-identification because people naturally exhibit group and social
attributes, indicating that people prefer to move in groups and always engage in social interaction.
Therefore, G-ReID needs to deel with member differentiation in group topology structure changes,
which contains identity differentiation and position differentiation. Specifically, the identity dif-
ferentiation means the importance(the chance of appearing in other images of same group id) of
intra-group members varies due to different interaction probabilities in social interaction field, and
position differentiation means the extent of position changes vary among intra-group members.

Although previous works (Zhang et al., 2024a; Yan et al., 2020; Zhang et al., 2022) based on deep
learning to address the challenge of group topological structure changes, the performances are not
satisfactory. The shortcomings are mainly due to the following two reasons: 1) Existing methods
address the challenge from the perspective of the entire group distribution. As shown in Fig 1, the
extracted group features are the undifferentiated features,which are shown as the pure pink triangles,
lead to large intra-class distance. 2) The previous attention mechanism conducts undifferentiated
learning for all group member features, lacking of specific focus. And previous layout modeling
employs undifferentiated random affine transformations for each intra-group member, leading to
many ineffective layout.

According to the social psychology principles (Latane et al., 1980; Lewin, 1943), complex social
interactions can be represented as physical fields, and (Zhou et al., 2019) translated social features
into a quantitative formula for interaction probability. Through focus these principles, we found that
the core members are more likely to remain in the group with smaller position changes across dif-
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Figure 1: Existing methods versus social interaction modeling. Pure
triangles and texture triangles represent the group feature mined
without and with member differentiation. The pentagon represents
the different member features that make up the group features. The
dotted circle lines represent the boundaries within the class. The
features extracted by our SIM have smaller intra-class distance due
to consider the member differentiation.

Figure 2: member differen-
tiation. Two images belong
to the same group, and the
numbers represent the aver-
age interaction probability.
B-boxes of same color repre-
sent the same member.

ferent group images, and peripheral members are more likely to have significant positional changes
or even fade out of the group images. The core members refer to the members with higher interac-
tion probabilities relatively (e.g. members that be surrounded), while peripheral members refer to
the members with lower interaction probabilities (e.g., unrelated pedestrians). As shown in Fig 2,
members in red and orange b-box are with higher interaction probability, remain their core position,
and have more chance appear in other same-group images, while members in green and blue b-box
is with lower probability, one left the group, another has significant position changes.

In this paper, we propose a novel social interaction modeling method, which is motivated by the fact
that based on the sociological fact that intra-group members have differentiation, which contains
identity differentiation and position differentiation. The member differentiation cannot be erased,
no matter how perfect the group entire distribution is. Therefore, member differentiation is a so-
cial attribute of the group that cannot disappear by perfecting the entire distribution of the group.
The proposed social interaction modeling treats each group image as a social interaction field with
member differentiation rather than an entire distribution, constructs the social interaction calculation
module (SICM) to capture the member differentiation in fields, and digs out more authentic group
features through the identity differentiation and position differentiation in member differentiation.
Two modoules, the social prior attention mechanism (SPAM) and social layout variation module
(SLVM), are designed to accomplish identity differentiation and position differentiation. As shown
in Fig.1, the group features learned with social interaction modeling has samller intra-class distance,
and consistent with the real-world distribution. Modeling and training this differentiation can obtain
smaller intra-class distance and more authentic and robust group feature representations.

Specifically, the proposed SICM defines a normalized variable p̂ to reflect the member differentia-
tion. A standard form p̂ is constructed with the following properties. First, each group image has a
specific p̂ due to the different social interaction features among intra-group members. Second, the
accuracy of the p̂-value is mainly affected by distance. SICM extracts social interaction features
of intra-group members in the group images. The social interaction features contains distance d,
orientation θ, openness o, which are extracted by using data annotations and group images.

SPAM foucs on accomplish identity differentiation. Because the importance (the chance of ap-
pearing in other group images) of intra-group members varies from each other, SPAM adjusts the
weight of attention to different members during group feature learning. To this end, a new attention
weight allocation mechanism is designed to achieve core member mining and enhance group feature
learning, achieve identity-differentiated learning of features.

SLVM aims to adress position differentiation. Due to the extent of position variation varies from
intra-group members, SLVM models more realistic dynamic layout variations. Thus, a learnable
position variation matrix △D is employed. For a group with j members, the j-th column of △D
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is the differentiation position variation of the j-th member. While retaining a certain degree of
freedom through weighted fusion with random affine vectors. SLVM accomplish a new layout
modeling strategy to conduct more realistic layout modeling and explore potential layout changes,
achieve position-differentiated learning of features.

Our main contributions are summarized as follows:

• We firstly introduce the social psychology principles into G-ReID task, and accomplished
member differentiation.

• We propose the social interaction modeling (SIM) method, which treats each group im-
age as a social interaction field instead of an entire distribution, and constructs the social
interaction calculation module (SICM) to capture the member differentiation in fields. So-
cial interaction modeling aimes to explore more authentic group features through identity
differentiation and position differentiation, which is achieved by the proposed social prior
attention mechanism (SPAM) and social layout variation module (SLVM).

• Our SIM achieves 96.1%/95.5%, 92.6%/94.4%, and 83%/89% Rank-1/mAP on CSG,
RoadGroup and DukeGroup datasets, outperforming all of the state-of-the-art method.

2 RELATED WORK

Person Re-identification. Person re-identification (ReID) aims to associate individual pedestrians
across non-overlapping views in camera networks. In recent years, numerous deep learning-based
methods (Meng et al., 2019; 2021; Yan et al., 2020; Rao & Miao, 2023; Wang et al., 2024; Zhang
et al., 2024b; Peng et al., 2023; Guo et al., 2024) have made significant progress in this field, in-
cluding extracting more discriminative features and designing more suitable metrics. For instance,
FSAM (Hong et al., 2021) proposed a dual-stream framework to extract fine-grained body features,
while AGW (Ye et al., 2021) introduced a weighted regularized triplet metric learning method. How-
ever, person ReID methods primarily focus on individual pedestrians, overlooking the more intricate
group-level interactions and layout dynamics that are pivotal for GReID.

Group Re-identification. Compared to ReID, research on G-ReID remains relatively scarce, with
only a few pioneering works attempting to address this task. Early approaches (Zheng et al., 2011;
Cai et al., 2010; Ristani et al., 2016; Lisanti et al., 2017) treated entire images as model inputs and di-
rectly extracted group features. Since these methods relied on handcrafted features and considered
background information, their performance was unsatisfactory. Subsequently, CNN-based works
(Mei et al., 2019; 2020; 2021) became mainstream, where group members were first cropped before
extracting group features. For example, DotGNN (Huang et al., 2019) transferred styles from single-
person ReID datasets to group ReID datasets and employed graph neural networks to learn group
graph features. GCGNN (Zhu et al., 2020) constructed a graph neural network framework based on
spatial K-nearest neighbor graphs, achieving neighborhood aggregation through node in-degree and
spatial relationship attributes. MACG (Yan et al., 2020) proposed a multi-level attention contextual
graph model to leverage visual context information among group members. In recent years, Vi-
sion Transformer-based architectures have gained popularity. UMSOT (Zhang et al., 2022; 2024a)
introduced a second-order Transformer architecture to construct group features, incorporating un-
certainty modeling of group member number and position. PBSOT (Zhang et al., 2025) prosed a
parallel branches-based transformer with layout-guided occlusion mitigation, enhances robustness
by strengthening the sampling of overlapping parts and fusing global features with local features.
But the existing methods were from the perspective of the entire group distribution, not notice the
members differentiation of intra-group members.

Social Interaction. (Bolotta & Dumas, 2022) identified social interaction as a key area for future
AI research in 2022, revealing that certain visual primitive features of social behavior discovered by
cognitive psychologists enhance computer vision systems’ ability to recognize interactions. VAGS
(Leach et al., 2014) proposed a visual attention-guided social group detection framework that im-
proved motion-based social group estimation by inferring pedestrian gaze directions. SIFM (Zhou
et al., 2019) uses the avatars generated by VR, a mathematical model is established to calculate the
interaction probability, and the results are psychologically explained. However, these work did not
apply social psychology principles into GReID task, Our SIM method made an attempt.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 METHOD

In this section, we firstly introduce the SICM, and then we describe the proposed SPAM and SLVM
of social interaction modeling. Fig 3 illustrates the method in detail. The purpose of GReID is to
match groups composed of the same members across different camera views. For the k-th group, xk
and ygk are the group image and id, respectively, and bk and ypk are the bounding box annotation and
member id for each member in xk, respectively.

3.1 SOCIAL INTERACTION CALCULATION MODULE (SICM)

In this paper, SICM aims to capture the member differentiation with normalized variable p̂i in so-
cial interaction fields. The key issue is extract social interaction features, and calculate interaction
probabilities of each group image. For the k-th group image, we treats it as a social interaction field
Sk =

{
Sk
ij

}
, member i and j have their subfield Sk

ij . Binary variable zij ∈ {0, 1},following a
Bernoulli distribution, determines whether pedestrians i and j in same social interaction field:

p
(
zij = 1 | Sk

ij

)
= δ

(
Sk
ij

)
. (1)

To calculate the interaction probability pij between member i and j, we now extract social interac-
tion features: distance, orientation and openness. Specifically, we utilize b-boxes bki, bkj to calculate
distance dij . The distance between the i-th and j-th members based on their bboxes:

dij =
1

γ

∥∥ψ(bmid
ki , bmid

kj )
∥∥ , (2)

where bmid
ki and bmid

kj enote the bottom midpoints of b-boxes, and γ is a scaling factor. ψ(x1, x2) =
ϕ(x1) − ϕ(x2) is constructed to compensate for field-of-view discrepancies, where ϕ denotes a
perspective transformation function (Zhang, 2021).

Then, we utilize multiple frameworks merging such as Mediapipe (Lugaresi et al., 2019), AlphaPose
(Fang et al., 2022), HigherHRNet (Cheng et al., 2020) to extract skeletal keypoints qi from image
of cropped member xki to compute relative orientations θij and define pose-openness oi, oj . We
compute the relative angle:

θij = arccos
v⊥
i · dij∥∥v⊥

i

∥∥ · ∥dij∥
, (3)

where qls
i and qrs

i are the left and right shoulder keypoints of the i-th pedestrian, respectively.
vi = qrs

i − qls
i is shoulder vector of the i-th member, v⊥

i represents the orientation vector.

The pose-openness degree oi is defined as:

oi =


1, if ζub > ζ1,

−1, if qws
i × qbd

i > 0,

0, otherwise.
(4)

where ζub =
〈
qup
i , qbd

i

〉
is the angle between the upper arm qup

i and body qbd
i , ζ1 is a threshold

defined 45 degree. qws
i is forearm, and × is the cross product denotes vector outer product. Indicates

that oi equal to 1 when upper arm is spread out, and oi equal to −1 when forearm tightens inward
towards the body. Now we have social interaction features.

Then we calculate the pij . The subfield intensity Sk
ij and interaction probability satisfy the formula:{

Sk
ij = f(dij , θij , oi, oj) · δ

(
Sk
ij

)
pij = 1− exp(−Sk

ij/λ)
b (5)

where function f is a symmetric function for i and j, parameters λ, b are givern in (Zhou et al.,
2019). P = {pij}Ni=1 is a symmetric matrix, because Sk

ij = Sk
ji. The average interaction probability

p̄i, and normalized average interaction probability p̂i can be describe as:{
p̄i =

1
N−1

∑N
j=1,j ̸=i pij

p̂i = p̄i/
∑N

i=1 p̄i =
1

N−1

∑N
j=1,j ̸=i pij/

1
N

∑N
i=1

∑N
j=1,j ̸=i pij

(6)

where N is the group size. For the i-th group p̂g
k = {p̂i}Nk

i=1 ∈ RNk .
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Figure 3: The pipline of the proposed SIM. The blue squares stands for the module proposed by
us, purple and green squares represent the existing group and member modules, MVM is from our
baseline. The grey arrows indicate data flow, and the yellow arrows indicate cross-module usage.
The small gray squares represent layout.

3.2 SOCIAL PRIOR ATTENTION MECHANISM (SPAM)

SPAM aims accomplish identity differentiation. To this end, a new attention weight allocation mech-
anism is designed to achieve core member mining and enhance group feature learning. Specifically,
higher attention weights assigns to core members to enhance the learning of core members’ tokens.

The i-th member’s token tpi of k-th group are extracted by ViT, tpi = V iT (xki), group feature is con-
catenated from members token, tgk = [tp1, t

p
2, ..., t

p
Nk

]. The input of group vision transformer (GViT)
are X = [tgm, t

g
m+1, ..., t

g
m+B−1] ∈ RB×N×C , where B denotes the batch size, N is the number of

group members, C represents the feature dimension, p and g represents person and group, m due
to current batch. The query (Q), key (K), value (V ) are obtained through linear transformations:
Q = XWQ,K = XWK , V = XWV , where WQ,WK ,WV ∈ RC×d are learnable parameters, and
d is the attention head dimension. The original attention weights are calculated as:

Araw = (Q,K, V ) = softmax

(
QKT

√
d

)
V. (7)

The new attention is described as:

Asocial = Araw ⊙ P̂ g, (8)

where P̂ g = [P̂
g

1, P̂
g

2, ..., P̂
g

d] ∈ RB×C×d, and P̂ g
d = [p̂g

m, p̂
g
m+1, ..., p̂

g
m+Bd−1] ∈ RB×C , and

⊙ represents Hadamard product. The updated features Z are generated through linear projection:
Z = AsocialVWO, where WO ∈ Rd×C is a learnable projection matrix. By integrating P̂ g and
dimension alignment, SPAM optimizes attention weights, accomplish identity differentiation.

3.3 SOCIAL LAYOUT VARIATION MODULE (SLVM)

SLVM aims to dress position differentiation. This module accomplish a new layout modeling strat-
egy to conduct more realistic layout modeling and explore potential layout changes Dfinal. It con-
structs a learnable position variation matrix △D, which: restricts layout variation ranges for core
members and expands layout variation ranges for peripheral members. This mechanism simulates
realistic sociological layout variations that incorporate position differentiation.

5
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Original layout coordinates of group image Dori = [(x1, y1), (x2, y2), ..., (xN , yN )] ∈ RN×2 rep-
resents the center coordinates of each member in the image, (xi, yi) represents the position of i-th
member.

The existing methods treat the group layout as a entirety and apply random affine transformation,
which without considering the positional discrimination. The transformed layout after random affine
transformation is given by: Drandom = RDori+b, whereR ∈ R2×2 is random affine matrix, b ∈ R2

is translation vector.

For the position variation of i-th member of the group, our layout modeling can be described as:

△di = α

∑
j ̸=i

p̂j(dj − di)

+ (1− α)ri, (9)

where di and dj are the central position of i-th and j-th member’s bbox, and
∑
i̸=j

p̂i(di − dj) rep-

resents position differentiation. Hyperparameter α ∈ [0, 1] is a balancing coefficient that weights
prior differentiation knowledge against data augmentation. rj is a random perturbation vector, can
maintain a certain degree of positional freedom for members.

The offset △dj consists of two components: 1) Structure-aware offset driven by social weights to
preserve spatial proximity for strongly connected pedestrians. 2) Random perturbation to introduce
diversity.

Specifically, (di − dj) represents distance in real, p̂i is normalized average interaction probability,
which reflect member differentiation. Therefore, members with higher interaction probability with
the i-th member can better maintain the distance between them and are accompanied by smaller
positional variation. Meanwhile, members with lower interaction probability with the i-th member
cannot maintain the distance between them and will generate greater layout variation.

The final layout is computed as:
Dfinal = Dori +△D, (10)

where △D ∈ RN×2 is the offset matrix for all intra-group members. The updated features Z
are fused with the layout information Dfinal for Transformer encoder generates the group feature
representation.

3.4 LOSS FUNCTION

Our feature is learning supervised by the person identity and triplet loss function.

LID = − 1

P

P∑
j=1

C∑
i=1

yjilog(ŷji), (11)

where P represents the total member number of the current batch, C represents the total member
classes, the indicator function yji = 1(j = i) equals to 1 when the j-th member belongs to the i-th
class, and ŷji is the prediction of network about the j-th member belongs to the i-th class.

LTri =
1

P

P∑
i=1

max(d(fi, f
+
i )− d(fi, f

−
i ) +m, 0), (12)

where d(·, ·) represents the distance function between two features such as the Euclidean distance,
fi/f

+
i /f

−
i represent the anchor/hard positive/hard negative feature in the current batch, and m is

the hyper-parameter of margin. Lp is person loss Lp = LID + LTri.

The loss function Lg of a second-order token (Zhang et al., 2024a) is also composed of the group
identity and triplet loss, which is similar to the LID and LTri.Overall, the whole loss function is
described as:

L = Lp + Lg. (13)
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Table 1: The proposed method is compared with state-of-the-art approaches on CSG, RoadGroup,
and DukeGroup datasets. The comparative methods are divided into two categories: hand-crafted
and deep learning-based methods. The best and second-best results are highlighted in bold and
underlined, respectively. Reported metrics include Rank-1, Rank-5, Rank-10 and mAP (%).

Method Publication CSG RoadGroup DukeGroup
Rank1 Rank5 Rank10 mAP Rank1 Rank5 Rank10 mAP Rank1 Rank5 Rank10 mAP

CRRRO-BRO BMVC 2009 10.4 25.8 37.5 - 17.8 34.6 48.1 - 9.9 26.1 40.2 -
Covariance ICPR 2010 16.5 34.1 47.9 - 38.0 61.0 73.1 - 21.3 43.6 60.4 -
BSC-CM ICIP 2016 24.6 38.5 55.1 - 58.6 80.6 87.4 - 23.1 44.3 56.4 -
PREF ICCV 2017 19.2 36.4 51.8 - 43.0 68.7 77.9 - 30.6 55.3 67.0 -
LIMI MM 2018 - - - - 72.3 90.6 94.1 - 47.4 68.1 77.3 -
DotGNN MM 2019 - - - - 74.1 90.1 92.6 - 53.4 72.7 80.7 -
DotSNN TCSVT 2019 - - - - 84.0 95.1 96.3 - - - - -
GCGNN TMM 2020 - - - - 81.7 94.3 96.5 - 53.6 77.0 91.4 -
SVIGR Neucom 2020 - - - - 87.8 92.7 - 89.2 - - - -
MGR TCYB 2021 57.8 71.6 76.5 - 80.2 93.8 96.3 - 48.4 75.2 89.9 -
MACG TPAMI 2023 63.2 75.4 79.7 - 84.5 95.0 96.9 - 57.4 79.0 90.3 -
SOT AAAI 2022 91.7 96.5 97.6 90.7 86.4 96.3 98.8 91.3 72.7 88.6 93.2 78.9
UMSOT IJCV 2024 93.6 97.3 98.3 92.6 88.9 95.1 98.8 91.7 74.4 89.4 93.9 79.4
PBSOT ESWA 2025 94.5 97.1 97.9 93.9 91.3 96.3 98.7 93.3 82.7 92.6 95.1 88.1
Ours - 96.1 98.3 99.1 95.5 92.6 96.3 97.5 94.4 83.0 96.6 98.9 89.0

4 EXPERIMENTS

4.1 DATASETS

The proposed SIM is evaluated on three G-ReID datasets: DukeGroup, RoadGroup (Lin et al.,
2019)), and CSG (Yan et al., 2020). The DukeGroup dataset contains 354 images with 177 group
classes. The RoadGroup dataset contains 324 images with 162 group classes. Following the protocol
in (Yan et al., 2020), the training and test sets of DukeGroup and RoadGroup are randomly divided
equally. The CSG dataset contains 3,839 images with 1,558 group classes, where 859/699 groups are
allocated for training/testing. According to (Yan et al., 2020), test images are sequentially selected as
probes, while all remaining images serve as the gallery. Additionally, CSG includes 5K extra group
images in the gallery as distractors. For fair comparison, no additional datasets are used during
training on any G-ReID dataset. Evaluation metrics include Rank-1, Rank-5, Rank-10 cumulative
matching characteristics (CMC) and mean average precision (mAP).

4.2 DETAILS

Our baseline is UMSOT. The experiments are conducted on an 4080 GPU with Pytorch. Our model
uses GViT (Zhang et al., 2022; 2024a) as backbone, pretrained on ImageNet (Deng et al., 2009).
For input group images, we crop all member images using given bounding boxes and resize them to
256×128. During training, the random seed is fixed to 42, with random horizontal flipping (p=0.5)
and random erasing applied. Each mini-batch samples 16 group identities, with 4 images selected
per identity. We use SGD (Bottou, 2012) as optimizer. Training terminates after 400 epochs. A
cosine annealing learning rate schedule is employed: initial rate 2e-3, minimum rate 1.6e-4. The
learning rate for inter-member modules is multiplied by 0.1. Weight decay is set to 1e-4. Online
hard mining is used for triplet loss (Hermans et al., 2017). During testing, no data augmentation or
re-ranking is applied. Features are compared using Euclidean distance. Unless otherwise specified,
all ablation studies, parameter analyses, and visualizations are conducted on the DukeGroup dataset.

4.3 PERFORMANCE

We compare SIM with existing methods on three available G-ReID datasets to demonstrate its su-
periority. We categorize existing methods into two groups:handcrafted G-ReID methods. and deep
learning-based G-ReID methods, From the performance perspective, SIM is recognized as the state-
of-the-art method among existing approaches. Two conclusions can be drawn from Table 1:

First, our SIM achieves strong performance on the CSG, RoadGroup, and DukeGroup datasets, sur-
passing baseline in both Rank-1 and mAP metrics. On the CSG dataset, SIM achieves 96.1%/95.5%
(Rank-1/mAP), outperforming baseline by 2.5%/2.9 in Rank-1/mAP. On the RoadGroup dataset,
SIM achieves 92.6%/94.4% (Rank-1/mAP), outperforming baseline by 3.7%/2.7% in Rank-1/mAP.
On the DukeGroup dataset, SIM achieves 83.0%/89.0% (Rank-1/mAP), outperforming baseline by
8.6%/9.6% in Rank-1/mAP. These results demonstrate that SIM delivers performance gains across
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Table 2: Ablation Experiments on the Social Interaction Module (SIM) (%).
CSG RoadGroup DukeGroup

SPAM SLVM Rank1 mAP Rank1 mAP Rank1 mAP
93.57 92.62 88.89 91.73 74.42 79.40

✓ 96.11 95.28 91.36 93.75 80.68 87.48
✓ 95.59 95.22 89.94 92.23 78.41 85.88

✓ ✓ 96.06 95.49 92.59 94.35 82.95 89.02

all datasets, confirms that the member differentiation of SIM is effectively, leading to significant
improvements. Second, the performance of existing method remains unsatisfactory due to: Existing
methods from the perspective of the entire group distribution, not considered the member differenti-
ation in group topology structure changes. Unlike these methods, SIM construct a SICM to capture
the member differentiation in social interaction fields. And the proposed SPAM achieve core mem-
ber mining and enhance group feature learning, while SLVM accomplish a new layout modeling
strategy to conduct more realistic layout modeling and explore potential layout changes, making
SIM shorten the intra-class distance, enhanced the robustness of group features.

4.4 ABLATION STUDY

Effect of SPAM and SLVM. The ablation experiments primarily demonstrate the impact of the
SPAM and SLVM modules on social interaction modeling. We mainly analyze the results on the
DukeGroup dataset, with similar conclusions observed on the other two datasets. As shown in Ta-
ble 2, two conclusions can be drawn: First, each module individually improves performance when
used separately. Compared to the baseline, SPAM increases Rank-1/mAP by +6.26%/+8.08%, while
SLVM increases Rank-1/mAP by +3.99%/+6.48%. This indicates that these two modules respec-
tively learn the identity and position differentiation, making SIM more discriminative. Second, when
both modules are used together, the performance gains reach +8.53%/+9.62% in Rank-1/mAP, ex-
ceeding the sum of individual improvements. This demonstrates that social prior attention mecha-
nism (SPAM) and the social layout variation module (SLVM) are two complementary aspects for
mining group differentiated features. Using both SPAM and SLVM simultaneously enables the ex-
ploration of more authentic and robustness group features.

4.5 PARAMETER ANALYSIS

Influence of α. The hyperparameter α controls SLVM learns potential group layouts by determin-
ing the ratio between the social interaction layout matrix and random affine matrix during training
in SIM. When α is set too large, SLVM over-emphasizes layout variations of peripheral members,
leading to overfitting and performance degradation. When α is set too small, SLVM fails to ad-
equately explore potential layout features of peripheral members, resulting in insufficient model
generalization and performance decline. As shown in Figure 4, we conducted separate hyperparam-
eter experiments on CSG, RoadGroup and DukeGroup datasets to determine optimal values, since
each dataset exhibits different social interaction fields distributions.

4.6 VISUALIZATION

Retrieval visualization. Figure 5 presents the top-3 retrieval visualizations comparing baseline
UMSOT and our proposed SIM. The advantages of SIM are primarily demonstrated in two aspects:
1) Achieve core member mining and enhance group feature learning, achieve identity differentiated
learning. UMSOT tends to retrieve gallery images with higher overall similarity to the query. When
processing groups with less distinctive members (Rows 1, 2, and 4), SIM effectively focuses on
core members of the group. 2) Conduct more realistic layout modeling and explore potential layout
changes, achieve position differentiated learning. UMSOT does not emphasize layout variations.
For groups in Rows 3 and 5, SIM better captures the topological changes of the group structure.

Feature visualization. Figure 6 illustrates the group feature visualization of our best eight classes
in the training set when both UMSOT and our proposed SIM converge, and each group class con-
tains only two images. Due to UMSOT’s approach regards groups as entire distributions during the
feature learning process, the intra-class distance is large. In contrast, our social interaction modeling
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Figure 4: Parameter α
on CSG, RoadGroup and
DukeGroup.

Rank1→Rank3

Retrival by UMSOT Retrival by SIM

Rank1→Rank3Query Rank1→Rank3

Retrival by UMSOT Retrival by SIM

Rank1→Rank3Query

Figure 5: Top-3 Retrieval Visualization of UMSOT and SIM. Red/green
bounding boxes indicate correct/incorrect matches, respectively. In the
DukeGroup dataset, each query has only one correct match in the gallery.

(a) UMSOT (b) SIM

Figure 6: The feature visualization of the whole
training set through t-SNE (Van der Maaten &
Hinton, 2008). Each color represents a group
class.

Figure 7: Heatmap visualization via Grad-
CAM is applied to dataset images. Pedestrians
with higher social interaction probability exhibit
larger heatmap areas.

utilizes the member differentiation in learning group features, demonstrating: excellent intra-class
consistency and strong inter-class differentiation.

Hotmap. We optimize group feature learning by adjusting the weights in the group feature
Transformer attention mechanism–SPAM, and visualize individual member features combine group
weight using Grad-CAM (Selvaraju et al., 2017) class activation heatmaps as shown in Figure 7.
The results show that members with higher social interaction probability exhibit larger and more
concentrated heatmap regions, indicating that the learning of group features is optimized and back-
propagates to affect individual representations.

5 CONCLUSION

In this paper, we focus on the member differentiation in group topology structure changes in G-ReID,
which contains identity and position differentiation. To solve this, we propose a novel social inter-
action modeling (SIM) method, which treats group as a social interaction field. First, our method
constructs the social interaction calculation module (SICM) to capture the member differentiation
in fields, and accomplish identity differentiation and position differentiation by the social prior at-
tention mechanism (SPAM) and social layout variation module (SLVM), respectively, shorten the
intra-class distance. Second, SPAM design a new attention weight allocation mechanism, to mine
core member and enhance group feature learning. SLVM achieve a new layout modeling strategy to
conduct more realistic layout modeling and explore potential layout changes. Finally, our proposed
social interaction modeling (SIM) achieves state-of-the-art performance across multiple benchmark
datasets, outperforming all existing methods. Limitations are in Appendix A due to the paper length.
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A LIMITATIONS.

Althoug the proposed SIM method has achieved good results in methods and effects, it also exist
some indubitable shortcomings. First, to reflect the members differentiation, the calculation of in-
teraction probability requires skeleton extraction for orientation, which is restricted by the existing
basic technology. Although we have adopted multiple models, the accuracy rate cannot reach per-
fection. Interaction probability is mainly determined by the distance, although the error caused by
the orientation and openness is very small, the error still exist. Second, due to publicity and other
reasons, the experiments was only conducted on the three most commonly used datasets.
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