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Abstract

Though prompting LLMs with various reason-001
ing structures produces intermediate reasoning002
steps along with answers, these steps are not003
ensured to be causal and reliable due to the004
inherent defects of LLMs. Tracking such de-005
ficiencies, we present a neuro-symbolic inte-006
gration framework, in which a neural LLM is007
used to represent the knowledge of the prob-008
lem while an LLM-free symbolic solver is009
adopted to do deliberate reasoning using the010
knowledge. Specifically, customized meta-011
interpreters are implemented to generate in-012
termediate reasoning proofs and to support013
various search strategies. These reasoning014
proofs are ensured to be causal and reliable015
because of the deterministic executing nature016
of the symbolic solvers. We conduct experi-017
ments on two logical reasoning and one arith-018
metic reasoning datasets. On ProofWriter,019
our method surpasses the CoT baseline by020
nearly double in reasoning accuracy and more021
than triple in reasoning proof similarity. On022
GSM8K, our method also shows accuracy im-023
provements and nearly doubled proof similarity.024
Our code is released at https://anonymous.025
4open.science/r/CaRing-477B.026

1 Introduction027

Large language models (LLMs), like LLaMA-028

2 (Touvron et al., 2023) and GPT-4 (OpenAI,029

2023), are shown to be effective on several reason-030

ing tasks but still struggle with structurally com-031

plex reasoning problems, such as logical reason-032

ing (Tafjord et al., 2021) and arithmetic reason-033

ing (Cobbe et al., 2021; Ribeiro et al., 2023). To034

tap into the potential of LLMs for better complex035

reasoning, existing works primarily focus on iter-036

atively prompting LLMs to search over reasoning037

structures such as chains (e.g., CoT) (Wei et al.,038

2022; Wang et al., 2023; Zhou et al., 2023), trees039

(e.g., Tree-of-Thoughts, RAP) (Yao et al., 2023;040

Long, 2023; Hao et al., 2023), and graphs (e.g.,041

Graph-of-Thoughts) (Besta et al., 2023; Zhang 042

et al., 2023; Sun et al., 2023). 043

Despite the effectiveness of such methods over 044

various complex reasoning problems, it is observed 045

that they often give correct results with erroneous 046

intermediate steps (Ye and Durrett, 2022; Saparov 047

and He, 2023; Ribeiro et al., 2023). For exam- 048

ple, Ribeiro et al. (2023) showed that even though 049

prompting GPT-3 given structured intermediate 050

steps as demonstrations yields an average accu- 051

racy of 33.84% on five complex reasoning datasets, 052

the average similarity between the predicted and 053

the gold reasoning proofs is merely 0.72%. This 054

discrepancy between reasoning accuracy and rea- 055

soning proof similarity raises pressing concerns 056

about the reliability and causality of the underlying 057

reasoning process in LLMs, as shown in Figure 1. 058

The discrepancies identified in the reasoning ca- 059

pabilities of LLMs underscore their limitations in 060

emulating human-like deliberate reasoning. One 061

natural solution could be adopting an LLM-free 062

deliberate reasoning engine. Inspired by the semi- 063

nal work of Kowalski (1979), which argued that a 064

problem-solving algorithm benefits from separat- 065

ing the Logic component (i.e., the knowledge which 066

can be used to solve the problem) and the Control 067

component (i.e., the problem-solving strategy with 068

which the knowledge can be used), we propose a 069

neuro-symbolic integration approach consisting of 070

two components: (1) LLM-based symbolic repre- 071

sentation generator (SYMGEN; §3.1), which trans- 072

lates natural languages into formal knowledge rep- 073

resentations that can be used for symbolic infer- 074

ence; (2) LLM-free symbolic inference engine 075

(SYMINFER; §3.2), which performs deliberate rea- 076

soning by executing the symbolic representations- 077

The execution strategy is implemented with our cus- 078

tomized meta-interpreters, allowing (i) tracing of 079

the reasoning process (§3.2.1); (ii) adoption of vari- 080

ous search strategies (§3.2.2). Most importantly, by 081

putting LLMs under quarantine during deliberate 082
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reasoning, our approach produces reasoning traces083

that are strictly causal and immune from hallucina-084

tions.085

To demonstrate its effectiveness in producing086

better reasoning proofs, we evaluate our CAR-087

ING (Causal and Reliable Reasoning) framework088

on three reasoning datasets that contain reasoning089

proof annotations, including two logical reason-090

ing datasets, ProofWriter (Tafjord et al., 2021) and091

PrOntoQA (Saparov and He, 2023), and one arith-092

metic reasoning dataset, GSM8K (Ribeiro et al.,093

2023). CARING consistently outperforms the CoT094

baseline and existing methods in terms of answer095

accuracy, reasoning proof similarity, and reasoning096

proof accuracy. On the challenging ProofWriter097

dataset, CARING using Code-LLaMA-34B yields098

an answer accuracy of 96.5% and a reasoning proof099

similarity of 81.0%, while previous SoTA achieved100

an answer accuracy of 79.7%. Further analysis indi-101

cates CARING remains robust when the reasoning102

problem becomes more complex.103

Overall, our contributions in this paper include:104

• As far as we know, CARING is the first LLM-105

based neuro-symbolic integration approach106

that customizes symbolic interpreters to gen-107

erate reasoning proofs.108

• We present an implementation using Prolog109

representations and conduct experiments on110

three datasets. Empirically, our framework111

gains significant improvements over strong112

baselines and existing methods with both final113

answers and reasoning proofs.114

2 Related Work115

2.1 Explainable Complex Reasoning116

The Chain-of-Thought prompting method, which117

found out reasoning with LLMs benefits from gen-118

erating intermediate steps, has sparked a recent119

trend in how to better do reasoning while remain-120

ing explainable. Several works investigated using121

other reasoning structures, such as trees (Yao et al.,122

2023; Long, 2023) and graphs (Besta et al., 2023;123

Zhang et al., 2023). These approaches have shown124

improved performance, particularly in complex rea-125

soning tasks where the processes involved are often126

more intricate than simple linear chains. However,127

despite the alignment of their reasoning proof struc-128

tures with the gold-standard proofs, these methods129

still face challenges in ensuring causality and relia-130

bility. This limitation stems from their reliance on131

[fact-1]: Anne is kind

[fact-2]: Erin is green

[rule-1]: If something
is kind then it is gree

[int-1]: Anne is green

A Caual and Reliable Reasoning Step (✔) 

[fact-1]: Anne is kind

[fact-2]: Erin is green

[rule-1]: If something
is kind then it is gree

[int-1]: Anne is green

Not Causal: Redundant Premise (X)

[fact-1]: Anne is kind

[fact-2]: Erin is green

[rule-1]: If something
is kind then it is gree

[int-1]: Anne is green

Not Causal: Missing Premise (X)

[fact-1]: Anne is kind

[fact-2]: Erin is green

[rule-1]: If something
is kind then it is gree

[int-1]: Erin is kind

Not Reliable (X)

Figure 1: Illustrations of how causality and reliability
play important roles in reasoning. LLMs may be (i)
non-causal by selecting redundant premises or ignoring
relevant ones and (ii) non-reliable by hallucinating in-
correct contents during inference.

LLMs for deliberate reasoning, which are prone to 132

hallucinations and may compromise causality. 133

Some other recent works adopted a less struc- 134

tured manner (Tafjord et al., 2022; Creswell et al., 135

2023; Kazemi et al., 2023). For example, Selection- 136

Inference (Creswell et al., 2023) divides the rea- 137

soning process into two phases: (1) the Selection 138

phase for selecting the premises that might be rel- 139

evant for the next round of inference, and (2) the 140

Inference phase for conducting a single reasoning 141

step with the selected knowledge fragments. 142

2.2 Neuro-symbolic Reasoning 143

Neuro-symbolic systems attempt to leverage the 144

strengths of both neural networks and symbolic 145

reasoning (Andreas et al., 2016; Neelakantan et al., 146

2017; Hudson and Manning, 2019; Gupta et al., 147

2020; Nye et al., 2021). This includes the use of 148

neural networks for pattern recognition and learn- 149

ing from unstructured data, integrated with sym- 150
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ProofWriter

Context:
Triples: [triple-1]: Anne is kind. [triple-2]: Charlie is not big. [triple-3]:
Charlie is not green. [triple-4]: Charlie is white. [triple-5]: Erin is big. [triple-
6]: Erin is green. [triple-7]: Erin is white. [triple-8]: Fiona is green. [triple-9]:
Fiona is kind. [triple-10]: Fiona is quiet. [triple-11]: Fiona is red. [triple-12]:
Fiona is white.
Rules:
[rule-1]: If Erin is big and Erin is red then Erin is kind. [rule-2]: All rough
things are green. [rule-3]: If something is kind then it is green. [rule-4]: Quiet,
green things are big. [rule-5]: If something is rough and green then it is red.
[rule-6]: If something is green then it is rough. [rule-7]: If Erin is red then
Erin is green. [rule-8]: All red, rough things are quiet. [rule-9]: If something is
quiet and not red then it is not white.
 
Question:
Is the following statement True or False or Uncertain? 
[statement]: Anne is quiet.

[rule-5]: If something is rough
and green then it is red.

[triple-1]: Anne is kind.

[rule-3]: If something is kind
then it is green.

[rule-6]: If something is green
then it is rough.

[rule-8]: All red, rough things
are quiet

[int-1]: Anne is green.

[int-2]: Anne is rough.

[int-3]: Anne is red.

[int-4]: Anne is quiet.

GSM8K

Context:
[1] Natalia sold clips to 48 of her friends in April, and then [2] she sold half as
many clips in May
 
Question:
[3]: How many clips did Natalia sell altogether in April and May?

[1] Natalia sold clips to 48 of
her friends in April

[2] she sold half as many clips
in May

[3]: How many clips did Natalia
sell altogether in April and May.

[4]: Natalia sold 48 / 2 = 24 chips in May

[5]: Natalia sold 48 + 24 = 72 chips in April and May

Answer: 72

Context + Question Reasoning Proof

Figure 2: Two examples of complex/structured reasoning problems from ProofWriter and GSM8K, respectively.
The reasoning proofs in such problems formulate directed acyclic graphs (DAGs) in a multi-step and multi-premise
manner.

bolic systems for rule-based reasoning and knowl-151

edge representation. Despite significant progress,152

neuro-symbolic reasoning faces challenges, no-153

tably in scalability and the efficient integration of154

learning and reasoning components.155

Recent advancements in neuro-symbolic re-156

search, particularly in reasoning over text, have157

utilized LLMs to encapsulate knowledge from un-158

structured human languages, as noted in Lyu et al.159

(2023); Pan et al. (2023). These methods typically160

translate natural language into symbolic represen-161

tations for subsequent execution-based reasoning.162

However, they have not fully explored the capabili-163

ties of symbolic solvers in generating detailed rea-164

soning proofs. In contrast, our approach leverages165

customized meta-interpreters in conjunction with166

symbolic solvers to uncover and articulate the un-167

derlying reasoning proofs. This not only enhances168

the transparency of automatic reasoning systems169

but also simplifies the process for humans to verify170

their correctness and safety.171

3 CARING172

The problems we focus on are featured with struc-173

tured or complex reasoning. As depicted in Fig-174

ure 2, these problems typically necessitate multi-175

step and multi-premise reasoning over a directed176

acyclic graph (DAG), where individual nodes sig-177

nify distinct knowledge fragments and directed178

edges denote reasoning steps. Each reasoning179

step uses existing knowledge to infer new relevant 180

knowledge. Numerous knowledge fragments are 181

often aggregated to infer a new one, which we 182

denote as “multi-premise”. The solver usually per- 183

forms multiple such steps to reach an ultimate goal, 184

which we denote as “multi-step”. This entire rea- 185

soning process naturally composes a DAG. 186

We are interested in providing accurate answers 187

along with causal and reliable explanations for such 188

reasoning problems. This motivates our investi- 189

gation of LLM-free deliberate reasoning engines. 190

The seminal work of Kowalski (1979) proposed 191

that Algorithm = Logic + Control, where logic 192

refers to the knowledge which can be used to solve 193

the problem and control refers to the problem- 194

solving strategy in which the knowledge can be 195

used. They further proved that an algorithm ben- 196

efits from separating the logic component and the 197

control component. Inspired by this, we present 198

CARING (Causal and Reliable Reasoning), a mod- 199

ular approach consisting of two components: 200

• SYMGEN: LLM-based symbolic representa- 201

tion generator (§3.1), which translates natural 202

languages into formal symbolic knowledge 203

representations that can be used for symbolic 204

inference. A major difference between previ- 205

ous work and our method is that we only use 206

LLMs to represent knowledge but not to do 207

deliberate reasoning. 208
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Complex Reasoning 

Problem

Code-LLaMA Model

Prolog Code

Prolog Interpreter

Customized

Meta-Interpreters

Total = 990

Answer Reasoning Graph

Logic Component：
  (1) Prompt LLMs；
(2) Focus on natural language 

understanding but not on
composing new content with 
deliberative reasoning.

Control Component：
(1) Not Prompt LLMs;
(2) Call Prolog interpreter and 

our implemented meta-
interpreters;
(3) Do deliberative reasoning by 

interpreting symbolic 
representations.

Figure 3: Illustration of our CARING framework, con-
sisting of a Logic component and a Control component.

• SYMINFER: LLM-free symbolic inference209

engine (§3.2), which performs deliberate rea-210

soning by executing the symbolic representa-211

tions provided by SYMGEN. By implement-212

ing customized meta-interpreters, SYMINFER213

supports (i) causal and reliable tracing of214

the reasoning process (§3.2.1); (ii) various215

search strategies, such as Depth-First Search216

(DFS) and Iterative Deepening Search (IDS)217

(§3.2.2).218

The execution-based tracing approach of219

SYMINFER guarantees both causality and reliabil-220

ity. Under the principle of Causality, the inference221

of a new knowledge piece is strictly linked to those222

existing fragments that are relevant, ensuring pre-223

cise and limited attribution. This implies that a224

causal relationship is established only when the225

preceding event (at the base of the edge) directly226

influences the subsequent event (at the apex). Re-227

garding Reliability, the content within each newly228

inferred node is the result of a deterministic pro-229

cess, safeguarding it from the kinds of erroneous230

hallucinations often encountered in outputs from231

LLMs.232

3.1 SYMGEN: Symbolic Representation233

Generator234

To represent logic (i.e., the knowledge which can235

be used to solve the problem), we adopt a popular236

logic programming language, Prolog (Colmerauer237

and Roussel, 1996). Prolog is a declarative pro-238

Natural Language Prolog Code
Fiona is green. 1 green(fiona).

All red, rough things
are quiet.

1 quiet(X) :-
2 red(X), rough(X).

Tina makes $18.00
an hour. 1 wage (18.00).

( she is eligible for
overtime,) which is
paid by your hourly
wage + 1/2 your
hourly wage.

1 overtime_wage(W) :-
2 wage(W1),
3 W is 1.5 * W1.

Table 1: Examples of natural languages and their Pro-
log representations. It can be seen that the Prolog code
is highly declarative, so the LLM in SYMGEN is only
required to do straightforward natural language under-
standing and translation but not reasoning. In other
words, the LLM does not need to infer new knowledge,
thus avoiding hallucination as much as possible.

gramming language, in which logic is expressed 239

as relations (called Facts and Rules), with several 240

examples shown in Table 1. A computation is ini- 241

tiated by running a query over these relations. We 242

will delve into the computation of Prolog in §3.2. 243

Though LLMs are prone to hallucinate erro- 244

neous facts when composing new knowledge, they 245

are shown to be powerful at understanding natu- 246

ral languages and directly translating them into 247

other formats (Ye and Durrett, 2022; Saparov and 248

He, 2023). To utilize such a strong point while 249

avoiding the defect, we only use LLMs to translate 250

natural languages into Prolog representations but 251

not to do deliberate reasoning. Specifically, we few- 252

shot prompt LLMs with several human-written in- 253

context demonstrations, each containing a problem 254

and corresponding Prolog representations, which 255

are later used for symbolic inference. 256

3.2 SYMINFER: Symbolic Inference Engine 257

We use SYMINFER to produce answers and reason- 258

ing traces by executing the aforementioned sym- 259

bolic representations. Since we adopt Prolog to rep- 260

resent knowledge, our symbolic inference engine is 261

naturally instantiated with Prolog interpreters. By 262

default, the SWI-Prolog (Wielemaker et al., 2012) 263

interpreter adopts the Depth-First Search (DFS) 264

backtracking strategy and does not yield reasoning 265

proofs. We implement customized Prolog-based 266

meta-interpreters to achieve two goals: (i) To pro- 267

duce reasoning proofs; (ii) To adopt better search 268

algorithms other than DFS. 269

4



3.2.1 Reasoning Tracer270

We implement a Prolog meta-interpreter to show271

the reasoning proofs:272

1 % Define the operator for proofs273
2 :- op(750, xfy , =>).274
3275
4 % Proof tree generation276
5 mi_tree(true , true).277
6 mi_tree ((A,B), (TA,TB)) :-278
7 mi_tree(A, TA),279
8 mi_tree(B, TB).280
9 mi_tree(G, builtin(G)) :-281

10 predicate_property(G, built -in282
),283

11 !,284
12 call(G).285
13 mi_tree(g(G), TBody => G) :-286
14 mi_clause(G, Body),287
15 mi_tree(Body , TBody).288

We showcase how a reasoning trace is induced289

using the example below. Given a knowledge base290

like:291

1 parent_of(X, Y) :- mother_of(X, Y).292
2 parent_of(X, Y) :- father_of(X, Y).293
3 grandparent_of(X, Y) :-294
4 parent_of(X, Z), parent_of(Z, Y).295
5 mother_of(morty , beth).296
6 father_of(beth , rick).297

and a query:298

1 ?- mi_tree(g(grandparent_of(morty , Who299
)), Proof).300

the output would be301

1 Who=rick ,302
2 Proof =((( true=>mother_of(morty , beth))303

=>parent_of(morty , beth), (true=>304
father_of(beth , rick))=>parent_of(305
beth , rick))=>grandparent_of(morty ,306
rick)).307

The output proof is ensured to be causal and reli-308

able since a symbolic approach generates it.309

3.2.2 Search Strategy310

The default search strategy of Prolog is DFS, which311

may lead to infinite loops. For example, given the312

knowledge base:313

1 parent_of(X, Y) :- offspring_of(Y, X).314
2 offspring_of(X, Y) :- parent_of(Y, X).315
3 parent_of(X, Y) :- mother_of(X, Y).316
4 parent_of(X, Y) :- father_of(X, Y).317
5 mother_of(jack , anna).318

and a query ?- parent_of(jack, Who). , the319

backtracking process would repeat over the first320

two lines without resorting to other lines due to321

DFS. To address this issue, we adopt Iterative Deep-322

ening Search (IDS), in which the backtracking pro-323

cess performs a series of depth-limited searches,324

each with an increasing depth limit. This leverages325

the strengths of both Breadth-First Search (BFS) 326

and DFS. Our Prolog meta-interpreter for IDS is 327

implemented as: 328

1 % Depth -limited meta -interpreter with 329
proof tree generation 330

2 mi_limit(true , true , N, N). 331
3 mi_limit ((A,B), (TA,TB), N0, N) :- 332
4 mi_limit(A, TA, N0, N1), 333
5 mi_limit(B, TB, N1, N). 334
6 mi_limit(g(G), TBody => G, N0, N) :- 335
7 N0 #> 0, 336
8 N1 #= N0 - 1, 337
9 mi_clause(G, Body), 338

10 mi_limit(Body , TBody , N1, N). 339
11 340
12 % Iterative deepening with proof tree 341

generation 342
13 mi_id(Goal , Proof) :- 343
14 length(_, N), 344
15 mi_limit(Goal , Proof , N, _). 345
16 346
17 % Iterative deepening with maximum 347

depth with proof tree generation 348
18 mi_id_limit(Goal , Proof , MaxDepth) :- 349
19 between(1, MaxDepth , N), 350
20 mi_limit(Goal , Proof , N, _). 351

In practice, other search strategies can also be 352

implemented according to the nature of the target 353

problems, such as Uniform-Cost Search (UCS) and 354

Beam Search. 355

4 Experiments 356

We briefly introduce our experimental settings in 357

§4.1 and show the experiment results in §4.2. 358

4.1 Experimental Settings 359

We present our experimental settings in this section, 360

including our implementation details of the two 361

components (§4.1.1), a brief introduction of the 362

adopted datasets (§4.1.2) and the baselines (§4.1.4). 363

4.1.1 Implementation 364

SymGen We adopt the Code-LLaMA (Rozière 365

et al., 2023) family as the base LLMs to trans- 366

late natural languages into Prolog representations. 367

Our prompting paradigm is in a pure few-shot in- 368

context-learning (ICL) prompting style, without 369

detailed human-written instructions. Each ICL 370

demonstration comprises a question and a piece 371

of Prolog code. 372

SymInfer We adopt SWI-Prolog (Wielemaker 373

et al., 2012) and PySwip1 packages to implement 374

the symbolic inference engine. We set the maxi- 375

mum depth to be 20 for Iterative Deepening Search 376

and the number of generated reasoning paths to 20. 377

1https://github.com/yuce/pyswip
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4.1.2 Datasets378

We evaluate CARING on three popular complex379

reasoning datasets, including two logical reason-380

ing datasets (ProofWriter (Tafjord et al., 2021) and381

PrOntoQA (Saparov and He, 2023)) and one arith-382

metic dataset (GSM8K (Cobbe et al., 2021; Ribeiro383

et al., 2023)).384

ProofWriter ProofWriter (Tafjord et al., 2021)385

is a commonly-used logical reasoning dataset. It386

contains many small rulebases of facts and rules,387

expressed in English. Each rulebase has a set of388

questions (English statements) that can either be389

proven true or false using proofs of various depths,390

or the answer is “Unknown” (in open-world setting,391

OWA). The proofs can naturally be represented as392

directed acyclic graphs (DAGs). The dataset is di-393

vided into several sub-sets according to maximum394

proof depth, namely {0, ≤ 1, ≤ 2, ≤ 3, ≤ 5}.395

We follow previous work (Pan et al., 2023) to use a396

600-instance subset sampled from the most difficult397

depth-5 test set. We also report additional results398

on the full depth-5 test set in Appendix §A.1.1.399

PrOntoQA PrOntoQA (Saparov and He, 2023)400

is a synthetic question answering dataset designed401

for diagnosing the logical reasoning ability of402

LLMs. Each example aims to validate the feasibil-403

ity of a statement given a context. We report results404

on two subsets so we can compare CARING with405

previous methods. As for the results reported in406

Table 4, we follow Pan et al. (2023) to adopt the407

most difficult depth-5 fictional characters sub-set,408

which contains 500 statement-context pairs. As for409

the results in Table 3, we use the subset adopted410

by Hao et al. (2023). Similar to ProofWriter, the411

proofs provided by the dataset can be naturally rep-412

resented as DAGs.413

GSM8K GSM8K (Cobbe et al., 2021) is a multi-414

step arithmetic reasoning dataset composed of high-415

quality grade school math word problems. The416

original GSM8K dataset contains reasoning expla-417

nations written in natural language, which raises418

difficulties in evaluating intermediate steps auto-419

matically. Recently, Ribeiro et al. (2023) released420

a subset that contains 270 questions annotated with421

structured reasoning proofs in the format of DAGs.422

We adopt this subset to enable the evaluation of423

reasoning proofs.424

Method Acc (%)
Proof Sim (%)
All Correct

G
PT-4*

CoT 67.41 – –
ToT 70.33 – –
CR 71.67 – –
DetermLR 79.17 – –
Logic-LM 79.66 – –

C
ode-L

L
aM

A
7B CoT 46.33 9.69 14.95

Ours 91.00 72.91 84.39

13B CoT 46.50 15.69 25.86
Ours 95.67 80.65 86.00

34B CoT 52.00 15.76 27.74
Ours 96.50 81.02 86.12

Table 2: Results on the subset of ProofWriter adopted
by Pan et al. (2023). The default setting is 2-shot. “All”:
on all instances. “Correct”: on correctly-predicted in-
stances. *All GPT-4 numbers are from Sun et al. (2023).

4.1.3 Evaluation Metrics 425

Ribeiro et al. (2023) proposed two novel metrics 426

to evaluate the quality of the generated reasoning 427

proofs in addition to the prevalent answer accuracy 428

metric. Similar to them, we adopt the following 429

metrics to evaluate both the answers and the gener- 430

ated reasoning proofs. 431

Answer Accuracy Answer accuracy measures 432

a model’s ability to predict the correct answer. A 433

prediction is deemed correct if it is (i) the same 434

as the gold option for multi-choice problems and 435

(ii) the same integer as the gold answer for arith- 436

metic reasoning problems. This metric is the upper 437

bound for other metrics since a reasoning graph 438

would be marked as incorrect without evaluation if 439

the answer is marked as incorrect. We report this 440

metric for all datasets. 441

Reasoning Proof Similarity As shown in Fig- 442

ure 2, the problems that we are interested in nat- 443

urally compose reasoning proofs in the format of 444

directed acyclic graphs (DAGs). Reasoning proof 445

similarity sim(Gg,Gp) measures the graph similar- 446

ity between the gold and the predicted reasoning 447

graphs. We follow Ribeiro et al. (2023) to adopt 448

the graph edit distance function δ(Gg,Gp). This 449

function quantifies the graph edit distance by de- 450

termining the minimum number of operations re- 451

quired over nodes and edges to transform one graph 452

into the other, thereby enabling a comparison of Gg 453

and Gp based on their structural similarities. The 454

reasoning graph similarity is normalized to [0, 1] 455
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Base LLM #Param #Shot Method Acc (%)
Proof Acc (%)
All Correct

LLaMA-1* 33B 8-shot
CoT 87.8 64.8 –
RAP 94.2 78.8 –

Code-LLaMA 13B 2-shot
CoT 80.2 52.4 53.4
Ours 99.0 98.2 99.2

Table 3: Results on the PrOntoQA subset that was adopted by RAP (Hao et al., 2023) for comparison with their
method. The results marked with * are from their paper.

Method Acc (%)
Proof Acc (%)

All CorrectG
PT

4*

CoT 98.8 – –
Logic-LM 83.2 – –

C
ode-L

L
aM

A
7B CoT 52.0 24.8 28.5

Ours 98.8 98.4 99.6

13B CoT 61.0 32.2 35.9
Ours 99.4 98.8 99.4

34B CoT 82.8 41.0 41.0
Ours 100.0 100.0 100.0

Table 4: Results on the depth-5 subset of PrOntoQA.
The default setting is 2-shot. Results marked with * are
GPT-4 results reported by Logic-LM (Pan et al., 2023).

as:456

sim(Gp,Gg) = 1− δ(Gp,Gg)

max{|Np|+ |Ep|, |Ng|+ |Eg|}
(1)457

where |Np| and |Ep| denote the count of nodes and458

edges, respectively, within the predicted reasoning459

graph. A similar notation applies to |Ng| and |Eg|,460

which represent the number of nodes and edges461

in the gold graph. Note that the reasoning graph462

similarity is set to zero if the predicted answer is463

incorrect. We report this metric for ProofWriter464

and GSM8K.465

Reasoning Proof Accuracy This metric evalu-466

ates the exact match between the gold and the pre-467

dicted reasoning proofs in terms of both reason-468

ing graph structures and textual contents2. The469

reasoning proof accuracy is either 1 or 0 for a470

single instance, making it a discrete version of471

reasoning proof similarity. Since this metric re-472

quires the dataset to have structured content to en-473

able automatic evaluation, we can only apply it to474

PrOntoQA, which is specifically designed for easy475

parsing of the proofs.476

2Note that our implementation here is simpler than that
of Ribeiro et al. (2023) because we only apply this metric to
PrOntoQA, which is easy to get evaluated.

Method Acc
Proof Sim (%)
All Correct

7B CoT 13.70 4.99 36.39
Ours 12.22 6.57 53.72

13B CoT 15.56 5.76 37.03
Ours 21.48 11.66 54.26

34B CoT 35.19 13.04 37.07
Ours 42.22 22.91 54.25

Table 5: Results on GSM8K. The default setting is 5-
shot.

4.1.4 Baselines 477

All baselines prompt the LLMs with few-shot in- 478

context-learning (ICL) demonstrations. 479

Chain-of-Thought (CoT) CoT prompting (Wei 480

et al., 2022) prompts LLMs with ICL demonstra- 481

tions that contain both intermediate reasoning steps 482

and answers. It serves as a popular and strong 483

baseline for prompting LLMs to solve problems. 484

Logic-LM Logic-LM (Pan et al., 2023) is a 485

neuro-symblic method that adopts symbolic solvers 486

for logical reasoning problems. The main differ- 487

ence between Logic-LM and CARING is: Logic- 488

LM adopts various solvers for multiple datasets and 489

only focuses on answer accuracy, while CARING 490

universally uses one solver (i.e., SWI-Prolog); and 491

more importantly, CARING showcases how SWI- 492

Prolog interpreters can be customized to generate 493

intermediate reasoning proofs and to adopt various 494

search (i.e., problem-solving) strategies. 495

Search-based Methods We include several 496

search-based methods as baselines. We directly 497

adopt the released results in their papers, since it 498

is too time-consuming to implement these meth- 499

ods on our own. For ProofWriter, we compare 500

our method with GPT-4 based Tree-of-Thoughts 501

(ToT; (Yao et al., 2023)), Cumulative Reasoning 502

(CR; (Zhang et al., 2023)), and DetermLR (Sun 503

7



et al., 2023). We cannot make comparisons on rea-504

soning proofs because these methods only reported505

reasoning accuracy. For PrOntoQA, we compare506

our method with RAP (Hao et al., 2023), in terms507

of both reasoning accuracy and reasoning proof508

accuracy.509

4.2 Main Results510

Tables 2, 3, 4 and 5 show the experimental results511

on our adopted datasets.512

ProofWriter The results on ProofWriter are pre-513

sented in Table 2. CARING demonstrates notable514

improvements over existing baselines, particularly515

in terms of reasoning proof similarity. Utilizing516

Code-LLaMA-34B, CARING achieves a remark-517

able answer accuracy of 96.50% and a reasoning518

proof similarity of 81.02%, significantly surpass-519

ing the most powerful method using GPT-4 that520

obtains an accuracy of 79.66%.521

PrOntoQA The results on PrOntoQA are pre-522

sented in Tables 3 and 4. CARING achieves almost523

full accuracy with the 13B model. Comparing with524

RAP, CARING obtains better results in terms of525

both answer accuracy and proof accuracy even us-526

ing a smaller base LLM and fewer ICL demonstra-527

tions. CARING also outperforms CoT and Logic-528

LM that use GPT-4.529

GSM8K The results on GSM8K are presented in530

Table 5. This dataset is more challenging than the531

previous two logical reasoning datasets for CAR-532

ING, since it is generally believed that symbolic533

languages are restricted by their limited expressive-534

ness and cannot properly handle the ambiguity in535

real-world human languages. Surprisingly, with the536

34B model, CARING outperforms the strong CoT537

baseline by a large margin and almost doubles the538

reasoning proof similarity (22.91% vs. 13.04%).539

We attribute such improvements to increasingly540

powerful LLMs, which can correctly translate am-541

biguous human languages into formal symbolic542

representations.543

4.3 When Reasoning Becomes More Complex544

A key difficulty confronted by reasoning systems is545

the rapid expansion of possible states as the reason-546

ing process becomes more complex, such as when547

additional statements are considered or the depth of548

inference is greater. To investigate how our method549

handles more complex reasoning problems, we con-550

duct experiments under two controlled settings: (1)551

(a) Answer accuracy with different reasoning depths.

(b) Answer accuracy with different number of statements.

Figure 4: Answer accuracy when reasoning problems
become more complex.

#Depth ↑: How does the answer accuracy change 552

with #Depth being <= 0, <= 1, <= 2, <= 3 553

and <= 5, respectively; (2) #Statements ↑: How 554

does the answer accuracy change with #Statements 555

being <= 20 and > 20, respectively. 556

As shown in Figures 4a and 4b, with increasing 557

levels of reasoning intricacy, the answer accuracy 558

of CARING remains steady. In contrast, CoT sees 559

significant decreases in answer accuracy under both 560

settings. This verifies the robustness of CARING 561

against complex reasoning. 562

5 Conclusion 563

This paper presents a framework to address the erro- 564

neous reasoning proof problem of LLM-based rea- 565

soning systems. Specifically, we develop a neuro- 566

symbolic method called CARING, which produces 567

high-quality reasoning proofs for complex reason- 568

ing problems. By implementing customized meta- 569

interpreters for executing Prolog representations 570

and putting LLMs under quarantine during the 571

reasoning phase, CARING ensures the reasoning 572

proofs to be causal and reliable. We conduct ex- 573

periments on two logical reasoning datasets and 574

one arithmetic reasoning dataset. Experimental re- 575

sults demonstrate our method achieves significant 576

improvements with both final answers and interme- 577

diate reasoning proofs. Further analysis indicates 578

CARING remains robust when the reasoning prob- 579

lems become more complex. 580

8



Limitations581

We observe two limitations regarding our frame-582

work:583

• The generalization ability of CARING is re-584

stricted by the expressiveness of the concern-585

ing symbolic representations. In this paper,586

we showcase a Prolog-based implementation.587

Other symbolic representations could be ex-588

plored to generalize CARING to more reason-589

ing tasks.590

• CARING requires powerful LLMs as sym-591

bolic representation generators, which is sug-592

gested by the results on GSM8K. This depen-593

dence might prevent it from being applied to594

productions.595
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Acc
Proof Sim

All Correct

7B

Direct 41.78 – –
Direct (3-Shot) 43.32 – –
CoT 40.95 11.27 17.20
CoT (3-shot) 42.58 11.52 21.58
Ours 92.43 75.85 86.68

13B

Direct 43.44 – –
Direct (3-shot) 44.31 – –
CoT 45.88 16.16 27.32
CoT (3-shot) 54.70 23.18 32.48
Ours 96.16 80.74 86.34

34B

Direct 44.00 – –
Direct (3-shot) 45.93 – –
CoT 52.32 15.08 26.30
CoT (3-shot) 56.50 24.12 34.61
Ours 98.11 83.17 85.65

Table 6: Results on ProofWriter. “All” and “Correct”
refer to “on all instances” and “on correctly-predicted
instances”, respectively. “Proof Sim” refers to “Proof
Graph Similarity” while “Proof EM” means “Proof
Graph Exact Match”. The default setting is 2-shot. We
additionally conduct 3-shot experiments for baselines to
include all types of labels in the in-context demonstra-
tions because this dataset contains three labels: {true,
false, uncertain}. We do not conduct 3-shot experi-
ments for our method because it is not sensitive to the
number of labels due to its reasoning-by-execution na-
ture.

A Appendix769

A.1 Additional Results770

A.1.1 Results on ProofWriter771

Table 6 shows the results from our implementation772

on the depth-5 test set of ProofWriter.773
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