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Abstract

In this work, we propose a novel generative method
to identify the causal impact and apply it to pre-
diction tasks. We conduct causal impact analy-
sis using interventional and counterfactual perspec-
tives. First, applying interventions, we identify fea-
tures that have a causal influence on the predicted
outcome, which we refer to as causally sensitive
features, and second, applying counterfactuals, we
evaluate how changes in the cause affect the ef-
fect. Our method exploits the Conditional Varia-
tional Autoencoder (CVAE) to identify the causal
impact and serve as a generative predictor. We
are able to reduce confounding bias by identify-
ing causally sensitive features. We demonstrate the
effectiveness of our method by recommending the
most likely locations a user will visit next in their
spatiotemporal trajectory influenced by the causal
relationships among various features. Experiments
on the large-scale GeoLife [Zheng et al., 2010]
dataset and the benchmark Asia Bayesian network
validate the ability of our method to identify causal
impact and improve predictive performance.

1 Introduction
Determining causal impact is an important need of causal rea-
soning to understand the causal path among different features.

In this work, we aim to identify the causal impact in a pre-
diction task through interventional and counterfactual analy-
sis without assuming any prior causal graph, which we name
causal sensitivity identification. We define the objectives of
causal sensitivity identification as follows:

1. Identifying features that have a causal influence on the
prediction outcome, and play a key role in preserv-
ing causal relationships [Bandyopadhyay and Sarkar,
2023], we refer to these features as causally sensitive
features.

2. Assessing the impact of changes in causes on their ef-
fects.
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3. Identifying causal paths (e.g., X → Y ) between input
features and the prediction target, without assuming any
prior knowledge of the causal graph.

We propose a generative method for causal impact analy-
sis using Conditional Variational Autoencoder (CVAE) [Do-
ersch, 2021] as generative predictor.

Causality operates on three main levels of the ladder of
causation [Pearl and Mackenzie, 2018]: association, inter-
vention, and counterfactuals. The lowest level captures sta-
tistical associations without causal interpretation. The mid-
dle level involves interventions, modeled through the do-
calculus, which assigns values randomly to a variable, estab-
lishes the direct causal relation between cause and effect, and
reduces confounding bias. The highest level represents the
counterfactual [Kment, 2020], revealing cause and effect re-
lationships and their dependence on counterfactuals [Pearl,
2019] or alternate situations. For example, could different
past location sequences result in the same next location?
Does a user’s location history influence their next movement?

• Intervention: Identifying causally sensitive feature
1. We determine the causally sensitive features (FCS)

that influence both the cause and the effect, poten-
tially acting as confounders. To detect FCS , we
compare prediction performance on identical test
data using two models, one trained on the original
(factual) train data and the other trained on inter-
vened data where candidate features are altered.

2. Identified causally sensitive features are used to
condition the generative prediction model to en-
sure the prediction is guided by a true causal re-
lations.

• Counterfactuals: Assessing impact of cause changes
1. We assess the change in effect when the cause has

changed using counterfactual analysis and identify
the causal path. In this scenario, we compare the
performance of prediction using counterfactual test
data obtaining the counterfactual latent representa-
tion, and original (factual) test data using the pre-
dictor trained in original (factual) train data.

2. We obtain the counterfactual predictions / genera-
tions to determine outcomes in alternate situations.

A summary of our contribution is as follows:



1. Causal sensitivity identification framework:
• We propose a new method to determine causally

sensitive features using interventional analysis for
prediction tasks, exploiting a CVAE based genera-
tive predictor.

• We identify causal sensitivity by assessing the im-
pact of changes in causes on their effects using
counterfactuals, and use this to identify the under-
lying causal path.

2. Causally sensitive recommendation/prediction:
• We evaluate our method on the Asia Bayesian net-

work from the BNLearn repository [Scutari, 2009],
demonstrating its ability to recover known causal
dependencies by identifying causally sensitive fea-
tures and associated causal paths through interven-
tions and counterfactual analysis.

• We apply the proposed framework to the real-world
GeoLife [Zheng et al., 2010] human trajectory
dataset, where the identified causally sensitive fea-
tures (e.g., start time) are used to condition next
location prediction. We further assess the impact of
counterfactual changes in past location sequences
on future trajectory predictions.

2 Related Work
We explore the related works on causality focusing on appli-
cations of intervention and counterfactuals using neural mod-
els and on the trajectory predictions.

Causal interventions and counterfactuals: The use of
interventions and counterfactuals to uncover cause-effect re-
lationships has emerged as a key area of research, particularly
under partially known or unknown causal structures.

• Yang et al. [Yang et al., 2018] propose I-MEC to charac-
terize interventional equivalence classes and reduce am-
biguity via soft interventions.

• Ke et al. [Ke et al., 2020] develop a neural approach
for causal path discovery under unknown interventions
without requiring explicit targets.

• Dai et al. [Dai et al., 2025] address causal discovery un-
der selection bias and latent interventions.

• Kung et al. [Zuo et al., 2022] ensure counterfactual sta-
bility by assuming sensitive attributes lack ancestors, en-
forcing prediction consistency.

• Neural generative models:
– VAE [Kingma and Welling, 2013] based generative

models have been widely adopted for counterfac-
tual reasoning and disentangled causal representa-
tion learning.
* Louizos et al. [Louizos et al., 2017] propose CE-

VAE, which models noisy proxy variables for
unobserved confounders based on Pearl’s back-
door criterion [Pearl, 2009].

* Yang et al. [Yang et al., 2021b] propose Causal-
VAE, which integrates a linear structural causal
model (SCM) with a VAE for counterfactual
generation using known causal structures.

– Kuang et al. [Xia et al., 2023] apply generative
adversarial networks (GANs) [Goodfellow et al.,
2014] for counterfactual inference under known
causal graphs.

• Causal structure learning: Numerous methods
aim to recover causal structures from data, often by op-
timizing a score under acyclicity constraints. Among
these, NOTEARS [Zheng et al., 2018] is a widely used
method that formulates DAG discovery as a continu-
ous and differentiable optimization problem. It is com-
monly applied to identify pairwise causal relations and
can complement intervention-based approaches. Ke et
al. [Ke et al., 2020] focus on causal discovery under un-
known intervention targets, aiming to recover the DAG
without explicitly addressing prediction performance or
counterfactual inference.

Sequence modeling for trajectory prediction: Trajectory
prediction based on GPS data is widely studied as a sequence
modeling task, especially in mobility applications where past
behavior influences future outcomes.

• LSTM-based models, often combined with attention
mechanisms [Vaswani et al., 2017; Yang et al., 2021c],
effectively capture spatiotemporal dependencies in tra-
jectory prediction.

• Deep learning has been widely applied to trajectory
modeling [Wang et al., 2022], with surveys and bench-
marks in [Rudenko et al., 2020; Nezhadettehad et al.,
2024].

• Generative models such as VAEs [Salzmann et al.,
2020] support distributional forecasting in frameworks
like [Feng et al., 2020; Liu and others, 2021], enabling
uncertainty-aware predictions.

• Our emphasis: We emphasize the following related
works to compare our method against theirs on human
trajectory prediction using GPS trajectory data.

– LSTM: The authors [Krishna et al., 2018] show
that LSTM-based models outperform HMM and hi-
erarchical HMM baselines [MacDonald and Zuc-
chini, 1997] for activity recognition and duration
estimation.

– LSTM + Attention: The authors [Li et al., 2020]
introduce hierarchical attention mechanisms to im-
prove long-term mobility pattern prediction using
LSTM architectures.

– DeepMove: [Feng et al., 2018] jointly embeds
multimodal factors such as time, user ID, and lo-
cation, enhanced with a historical attention module
to improve location transition modeling.

– MHSA: [Hong et al., 2023] proposes a multi-head
self-attention (MHSA) model that leverages spa-
tiotemporal features (e.g., visit time, duration) for
location sequence modeling.

Despite their success in sequence learning, these models
largely ignore causal reasoning and do not consider how in-
terventions or counterfactual variations in inputs affect trajec-
tory predictions.



3 Methodology
We present the proposed causal sensitivity identification
method using a CVAE-based generative model as a genera-
tive predictor. Our framework incorporates interventional and
counterfactual analysis expanding upon the objectives stated
in the introduction.

As illustrated in Figure 1, the functional components of the
proposed method comprises the generative predictor, with the
factual path shown is blue solid line, the interventional path
shown in red dotted line, counterfactuals path shown in green
dotted line along with the counterfactual latent representation
ZCF , and the input data D(X,Y ).

The proposed framework integrates a generative predictor
based on CVAE to evaluate causal sensitivity through three
complementary paths: factual, interventional, and counter-
factual. The factual path assesses the model’s baseline pre-
dictive performance on unaltered data. The interventional
path enables the identification of causally sensitive features
by measuring performance changes when specific variables
are intervened upon (e.g., do(Xi = x′)). Finally, the coun-
terfactual path estimates the effect of hypothetical changes
in the input by generating counterfactual outcomes using the
factual latent representations and altered test instances. To-
gether, these components allow for a systematic analysis of
causal influence and sensitivity, providing insight into which
variables are most critical for accurate prediction and robust
decision-making.

The details of the proposed method are described below.
Notation: Xtrain and Xtest denote the factual (unaltered)

train and test data, respectively. All equations using Yt+1 ap-
ply analogously for Y in non-sequential settings.

3.1 Generative Model
We use Conditional Variational Autoencoder (CVAE) as a
generative predictor (GP) with an encoder and decoder com-
ponents. We use sparse-categorical cross-entropy loss (Lrec)
(depicted in Equation (1)) which represents the negative log
probability of the Y, as true label in the training data given the
input features (X), averaged over all samples (N) for sequence
prediction tasks.

yi represents the ith true level of the xi ∈ X sequence up
to time step t− 1: yi = f(X1:t−1) ; (for non-sequential data,
yi simply corresponds to the label for xi).

Lrec = −
1

N

N∑
i=1

log pθ(yi | xi); yiϵY ;xiϵX (1)

For prediction of binary-valued targets, we use binary cross-
entropy loss Lbce (depicted in Equation (2))

Lbce = − 1

N

N∑
i=1

[yi log pθ(yi | xi) + (1− yi) log(1− pθ(yi | xi))]

(2)

cmax = max(Ytrain) + 1 (3)

Encoder: The encoder learns the latent space representation
(Z). Z is obtained by computing the mean µ and log-variance
σ with the reparameterization trick to sample from the latent

space, first ϵ is sampled from N(0, 1) and then z is computed
as z = µ(Y |X) + σ1/2(Y |X) ∗ ϵ.

Decoder: The decoder takes Z as input and repeats across
the time step which is the maximum sequence length in the
training data and combines this with the conditional input X,
considering X as temporal data. Now this Z conditioned on
X is passed to the next neural layers as used in Encoder. The
final output of the decoder goes to a dense layer. This fi-
nal dense layer has cmax (defined in Equation (3)) number of
nodes with softmax activation to predict the next location.

Generator: The decoder model is employed to generate
new data samples of Y by passing the latent samples sampled
from a Gaussian distribution and using conditional inputs.
For sequence prediction tasks such as next-location mod-
eling, we use the following CVAE loss (Equation 4). The re-
construction loss uses sparse categorical cross-entropy (Equa-
tion 1. We apply KL annealing [Li et al., 2019], kl weight
(a gradually increasing weight) to multiply the KL divergence
term to counter KL-vanishing during the initial training.

L(θ, ϕ;Yt,Xt−1:t−n) =

−Eqϕ(z|Yt,Xt−1:t−n) [log pθ(Yt|z,Xt−1:t−n)]

+kl weight · KL (qϕ(z|Yt,Xt−1:t−n) ∥ pθ(z|Xt−1:t−n))
(4)

θ, ϕ are the parameters of the decoder, and encoder network
respectively. Yt is the target output Xt−1:t−n is the input
sequence comprising different features. qϕ(z|Yt,Xt−1:t−n)
is the approximate posterior distribution, pθ(Yt|z,Xt−1:t−n)
is the likelihood of the data given the latent variable and the
conditional input. pθ(z|Xt−1:t−n) is the prior distribution of
the latent variable given the conditional input. KL denotes the
Kullback-Leibler divergence [Hershey and Olsen, 2007]. For
non-sequential prediction tasks the same loss Eq. (4) is used,
where the reconstruction term follows binary cross-entropy
(Eq. (2)), with yi corresponding directly to the label for xi.

3.2 Causal Sensitivity Identification
The proposed method determines the causal sensitivity con-
sidering two perspectives.

1. Causally sensitive feature (ZCF ) and reduction of
confounding bias: We propose the following steps to
determine the causal sensitivity of a feature without con-
sidering any prior knowledge of causal graph. We aim
to reduce the confounding effect by blocking the back-
door path (depicted in Figure 2) which connects X and
Y with at least one common ancestor or common cause
X ← Z → Y , where X is not the cause of Z.
(a) Factual training: Train the generative predictor

(GP) model using the factual input Xtrain to create
GP-F (Baseline) as shown in Equation 5.

(b) Intervention: Apply the intervention, (do(X =
Xaltered)). Train the GP using Xtrain Altered to obtain
GP-I.

P (Yt+1 | (Xt)) =
∑
FCS

P (Yt+1 | Xt) (5)

P (Yt+1 | do(X = Xaltered)) =
∑

FCS
P (Yt+1 | Xaltered, FCS)P (FCS)

(6)



Figure 1: Functional components of the proposed causal sensitivity identification framework with the factual (blue), interventional (red), and
counterfactual (green) to evaluate causal influence in prediction tasks.

Figure 2: Causal graph depicting backdoor path

(c) Factual prediction: Test the GP-F using Xtest.

Y(t+1)factual = GP-F.decoder(ZFC , Xtest) (7)

(d) Interventional prediction: Test the GP-I using
Xtest.

Y(t+1)Interventional = GP-I.decoder(ZIF , Xtest) (8)

(e) Features having causal influence: If the predic-
tion error is higher (i.e., accuracy is lower) in the
factual scenario (c) than in the interventional sce-
nario (d), this indicates, that the feature is causally
sensitive and acts as a common influencer, as block-
ing of backdoor path enables the direct causal path
between X and Y and reduces the confounding bias
in the causal effect of X on Y. We present this
in terms of the difference in prediction accuracy,

∆Acc. (Examples Acc: Acc@1,MRR ∈ Acc de-
fined in the section 4.2 Performance Measure).
The difference in accuracy is defined as:

∆Acc = Accinterventional − Accfactual; ∆Acc > 0
(9)

2. Counterfactuals to measure the change in effect
when the cause has changed
(a) Obtain factual latent representation, and GP-F:

Get zf : Train the GP using factual Xtrain, Ytrain.

zf ∼ qϕ(Yt,Xt−1:t−n) factual. (10)

The trained encoder of GP-F is used to obtain ZFC,
the factual latent representation from Xtest

ZFC = GP-F.encoder(Xtest)

(b) Obtain counterfactual latent representation
ZCF: ZCF follows counterfactual probability which
is computed based on the equation (11)

P (YX=x′ | X = x, Y = y) ≈
∫
P (Y | X = x′, z) qϕ(z | X = x, Y = y) dz

(11)
Obtain the counterfactual latent representation
from the Xtest altered.

ZCF = GP-F.encoder(Xtest altered) (12)

ZCF is the counterfactual latent representation.
(c) Generate factual and counterfactual predic-

tions: Use the decoder of GP-F to predict the out-
come Yt+1 for the factual scenario:

Y(t+1)factual = GP-F.decoder(ZFC , Xtest) (13)

Y(t+1)counterfactual = GP-F.decoder(ZCF , Xtest altered)
(14)



We use counterfactuals as described above on the test data
and also generate counterfactuals Y(t+1)counterfactual. The dif-
ference in accuracy between counterfactual and factual sce-
narios ∆Acc < 0(∆Acc = Acccounterfactual − Accfactual), sig-
nifies causal path X → Y . The proposed generative causal
sensitivity identification method is presented in Algorithm 1,
without using any prior knowledge of causal graph and ap-
plying any causality constraints during learning.

Algorithm 1 Causal Sensitivity Identification Method
Input: Xtrain, Ytrain, Xtrain altered, Xtest, Xtest altered
Output: ∆Acc , Causally sensitive features, Causal path,
Counterfactual prediction

1: Train GP-F on Xtrain, Ytrain to learn encoder qϕ and de-
coder pθ → Eq. (4)

2: Train GP-I on Xtrain altered → Eq. (6)
3: Compute factual latent:
4: ZFC = GP-F.encoder(Xtest)
5: Compute interventional latent:
6: ZIF = GP-I.encoder(Xtest)
7: Factual prediction:
8: Y(t+1)factual = GP-F.decoder(ZFC, Xtest)→ Eq. (13)
9: Interventional prediction:

10: Y(t+1)interventional = GP-I.decoder(ZIF, Xtest)→ Eq. (8)
11: ∆Acc = Accinterventional − Accfactual → Eq. (9)
12: if ∆Acc > 0 then
13: Feature is causally sensitive
14: end if
15: Counterfactual latent: ZCF = GP-F.encoder(Xtest altered)
→ Eq. (12)

16: Counterfactual prediction: Y(t+1)counterfactual =
GP-F.decoder(ZCF, Xtest altered)→ Eq. (14)

17: ∆Acc = Acccounterfactual − Accfactual → Eq. (11)
18: if ∆Acc < 0 then
19: Infer causal path: X → Y
20: end if

3.3 Causally sensitive recommendation/prediction:
The identified FCS (Algorithm 1) is applied to condition the
prediction task.We refer to this as generative causally sensi-
tive prediction (GCSP) presented in Algorithm 2.

Our method integrates causal sensitivity identification with
generative prediction and is applicable to both general and
sequential prediction tasks, such as next-location prediction.
In contrast to prior works, it addresses causal impact analysis
with the following key features:

• Identification of causally sensitive features through in-
terventional analysis and quantification of their influ-
ence using a generative predictor;

• Assessment of the impact of changes in causes on pre-
dicted outcome, enabling identification of causal path;

• A unified prediction framework that operates without
prior knowledge of the causal graph or structural con-
straints (such as acyclicity, as required in methods like
NOTEARS [Zheng et al., 2018]).

Algorithm 2 Generative Causally Sensitive Prediction
(GCSP)
Input: Factual training data (Xtrain, Ytrain), test data Xtest
Output: Prediction Y(t+1)factual using causally sensitive con-
ditioning

1: Train GP-F (Generative Predictor - Factual) using CVAE
on (Xtrain, Ytrain)

2: Identify causally sensitive features FCS via intervention
analysis (Algorithm 1)

3: Condition the model on FCS

4: Encode test data to obtain factual latent representation:

ZFC = GP-F.encoder(Xtest)

5: Generate predictions using decoder conditioned on FCS :

Y(t+1)factual = GP-F.decoder(ZFC, Xtest)followingEq. (13)

6: return Y(t+1)factual as the causally conditioned next pre-
diction

4 Evaluation of Proposed Method
In this section, we demonstrate causal sensitivity identifica-
tion using the proposed method on the Asia dataset [Lau-
ritzen and Spiegelhalter, 1988] and on the GeoLife [Zheng
et al., 2010] data.

It is important to note that the underlying causal structure
for the Asia dataset is known, which allows for explicit val-
idation of the causal paths identified by our method. In con-
trast, the GeoLife dataset does not have a ground-truth causal
graph available for validation.

4.1 Causal Sensitivity Identification on The Asia
Dataset

To demonstrate the proposed causal sensitivity identification
method we first apply it to the Asia dataset.

Data: Asia real world data set of Bayesian Network Repos-
itory (BnLearn) [Scutari, 2009] contains 8 binary variables
(e.g., smoke, lung, bronc, dysp). The directed acyclic
graph (DAG) structure of the Asia data is predefined and
presents known causal relationships among the variables, and
is widely used in causal learning and inference tasks.

Causal sensitivity analysis: We focus our causal sensi-
tivity analysis on predicting the target variable dysp (short-
ness of breath) while evaluating how conditioning on subsets
of features and intervening on variables like either affects
predictive accuracy. Our method is used to identify minimal
sufficient sets, isolate confounders such as smoke, and study
performance shifts under interventions like do(either=1).
We implement a CVAE to model the distribution of the binary
target variable dysp conditioned on various subsets of input
variables. Generative predictor CVAE is trained using binary
cross-entropy loss combined Eq. (2) with a KL divergence
regularization term. The encoder takes as input the condi-
tioning features (e.g., either, smoke, bronc) and the target
dysp, and outputs the latent mean and log-variance. The de-
coder reconstructs dysp from samples drawn from the latent
space and the same conditioning input.



We use a multi-layer perceptron (MLP) based en-
coder with 16 hidden units to map the concatenated
input of the target variable and conditioning variables
([target, conditioningfeatures]) map to a latent space of
dimension 2. The model is trained for 400 epochs using the
Adam optimizer with a learning rate of 10−3, optimizing the
binary cross-entropy reconstruction loss along with a KL di-
vergence regularization term.

Figure 3: Causal graph - Asia [Ke et al., 2020]

Table 1: Asia: Identification of causally sensitive features for dysp
under factual and interventional (Intv) scenarios using the proposed
method.

Conditioning Set Scenario Accuracy
[either] Factual 0.660
[either] Intv 0.580
[either, bronc] Factual 0.815
[either, bronc] Intv 0.850
[either, bronc, lung] Factual 0.825
[either, bronc, lung] Intv 0.845
[either, bronc, lung, tub] Factual 0.835
[either, bronc, lung, tub] Intv 0.845
[either, smoke, bronc] Factual 0.850
[either, smoke, bronc] Intv 0.855
[either, smoke, bronc, tub] Factual 0.850
[either, smoke, bronc, tub] Intv 0.850
[either, smoke, bronc, lung] Factual 0.845
[either, smoke, bronc, lung] Intv 0.850
[either, smoke, bronc, lung, tub] Factual 0.850
[either, smoke, bronc, lung, tub] Intv 0.850

Table 2: Asia: Counterfactual (CF) sensitivity analysis for dysp
using the proposed method.

Counterfactual Factual Acc. CF Acc. Delta
either 0.83 0.59 –0.240
smoke 0.83 0.84 +0.010
bronc 0.83 0.365 –0.465
lung 0.83 0.85 +0.020
tub 0.83 0.855 +0.025

Based on the proposed method (Algorithm 1), we eval-
uate the causal sensitivity of the features on the prediction
of the target variable dysp using the Asia dataset presented

in Table 1. Our results indicate that bronc and smoke are
causally sensitive variables for dysp, as there is a signifi-
cant improvement in the accuracy of interventional scenar-
ios. Furthermore, conditioning smoke with bronc while in-
tervening do(either = 1) gives the highest performance indi-
cates the possibility of smoke being a confounder, contribut-
ing to backdoor paths like smoke → bronc → dysp and
smoke→ lung→ either→ dysp. The ground truth causal
graph is depicted in figure 3.

In Table 2 we present our findings highlighting the util-
ity of counterfactual inference in uncovering both direct
and indirect causal relationships without prior knowledge of
the underlying graph. Specifically, intervening on bronc
and either resulted in a decline in prediction accuracy
by −0.465 and −0.240, respectively, thereby validating
the existence of direct causal paths: bronc → dysp and
either → dysp. We compare our method with prior ap-
proaches such as Ke et al. [Ke et al., 2020], who apply a neu-
ral causal model to the Asia dataset and successfully identify
key paths. Their method achieves high structural accuracy
without requiring knowledge of intervention targets. How-
ever, their method focuses primarily on recovering the causal
graph structure and does not explicitly quantify the effect of
individual variables on prediction outcomes.

In contrast our generative approach identifies causally sen-
sitive features and their effects on the prediction of dysp
through performance deviations under factual, interventional,
and counterfactual scenarios, and identifies the direct causal
path, validating its effectiveness in capturing structural and
functional causal dependencies.

We further compare our method against CausalVAE [Yang
et al., 2021a].

Table 3: Asia: counterfactual sensitivity analysis for dysp applying
CausalVAE.

Counterfactual Factual Acc. CF Acc. Delta
tub 0.62 0.62 0.000
smoke 0.62 0.62 0.000
lung 0.62 0.62 0.000
bronc 0.62 0.62 0.000
either 0.62 0.62 0.000

Table 3 presents the counterfactual evaluation of Causal-
VAE on the Asia dataset for predicting dysp. Notably, the
model shows no significant variation in accuracy across coun-
terfactual scenarios, indicating a lack of sensitivity to causal
structure. This contrasts with our method (Table 2), which
identifies bronc and either as causally sensitive features.
This supports the claim that our approach better captures
the underlying causal relationships necessary for meaningful
counterfactual reasoning.

4.2 Causal Sensitivity Identification on The
GeoLife Data

We apply the proposed method to predict the next location of
human trajectory using GeoLife [Zheng et al., 2010] data.

Data: GeoLife is a human trajectory dataset collected by
182 users in a period of over three years (from April 2007 to



August 2012) under the GeoLife project, Microsoft Research
Asia. This comprises the GPS trajectory a sequence of time-
stamped points, each of which contains the information of
latitude, longitude and altitude having diverse sampling rate.
This dataset has 17,621 trajectories covering a total distance
of 1.2 million kilometers and more than 48,000 hours of du-
ration. This trajectory dataset includes a wide range of users
with diverse outdoor movements, like shopping, sightseeing,
dining etc., along with their life routines like go home and go
to work.

Factual data: The unaltered GeoLife data is exploited for
factual analysis.

LS: The sequence of past location visits.
Altered data: We create altered versions of the data by

modifying the sequence of location visits to conduct inter-
vention and counterfactual analysis, as follows:

LS1: Replace the most frequently visited location ID with
the third most frequent.

LS1: Replace the most frequently visited location ID with
location ID 0.

We follow these steps to exploit the proposed method and
perform experimental analysis:

1. Preprocessing of data

2. High level feature extraction

3. Evaluate causal sensitivity identification using interven-
tions, counterfactuals

4. Next location prediction in GPS trajectory.

Preprocessing of Data
In this step trajectories are processed to extract staypoints
and locations. Staypoints are a subset of trajectories where
the user stays for a minimum duration of time. We follow
[Martin et al., 2022] for the preprocessing to form locations.
We use the preprocessed data to identify the causal-sensitivity
and there after predicting the next location in the trajectory.

High Level Feature Extraction
We use the open source Python library Trackintel [Martin et
al., 2022] to process and analyze the GeoLife movement data
as considered by authors in [Hong et al., 2023] and extract the
various high-level mobility features. The high-level features
considered are as follows:

Unique user identifier(UID), sequence of past location vis-
its(LS), activity duration(DS), start minute (Smin), day of the
week(W). The Smin feature adds a finer level of temporal
granularity by indicating the specific start times of activity
(location visit) within an hour or day. Feature W adds the
perspective of the user’s daily life visits and the other out-of-
routine location visits.

Performance Measure
The following performance metrics are used:

Accuracy (Acc@k): Measures how often the true location
is in the top-k predictions.

• P ∈ RN×C : Predicted probabilities matrix (N : sam-
ples, C: classes),

• y ∈ {1, . . . , C}N : is the vector of true labels.

Top-k Accuracy =
1

N

N∑
i=1

⊮ (yi ∈ Top-k(Pi))

where Top-k(Pi) is the set of k classes with the highest pre-
dicted probabilities for sample i, and ⊮(·) is 1 if true, 0 oth-
erwise. We report Top-k Accuracy× 100%.

Mean Reciprocal Rank (MRR): Computes the average
reciprocal rank of the true label:

Reciprocal Rank(i) =
1

ranki(yi)
,

MRR =
1

N

N∑
i=1

1

ranki(yi)

where ranki(yi) is the position of yi in the sorted predicted
probabilities (rank = 1 for the highest probability). We report
MRR× 100%.

Jensen-Shannon Divergence(JSD): Measures the simi-
larity between two probability distributions P and Q.

JSD(P∥Q) =
1

2
DKL(P∥M) +

1

2
DKL(Q∥M),

where M =
1

2
(P +Q)

The terms DKL(P∥M) and DKL(Q∥M) represent the KL di-
vergence of P and Q with respect to M , respectively. The
JSD is symmetric and bounded between 0 and 1, with lower
values indicating higher similarity between P and Q.

Results
We conduct extensive experimental analysis to validate our
method. Results are obtained considering the data for the
45 selected users in GeoLife as considered by the authors in
MHSA [Hong et al., 2023]. These users have observation pe-
riods of more than 50 days to provide a longer observational
time for getting a meaningful temporal pattern. Average ac-
curacy Acc@k where k = 1, 5, 10 and average MRR values
are computed across the users. JSD measures the similarity
between factual and counterfactual latent space distribution.

Generative model configuration: Our method exploits
CVAE with multilayer LSTM-based architecture and self-
attention modules.

Encoder: The encoder comprises two LSTM layers. First
one has 60 hidden units and outputs the full sequence, which
is regularized by dropout layer, (dropout = 0.3) to prevent
overfitting. The output from this layer is passed through a
self-attention layer with sigmoid activation, followed by the
second LSTM layer with 40 hidden units, the final output is
mapped to a latent space (Z) conditioned on X.

Decoder: The decoder takes Z as input and repeats it
across the maximum sequence length in the training data.
This Z, conditioned on X is passed to the LSTM layer with 40
hidden units, which outputs the full sequence. Dropout layer
(dropout = 0.3) is applied to the output. The output from the
dropout layer is passed to a self-attention layer with sigmoid
activation, followed by the next LSTM layer with 60 hidden
units, and finally, the output from this LSTM is passed to a
dense layer with cmax (defined in Equation (3)) units of nodes



(a) Causally sensitive features

.
(b) Performance: Factual (F), Intervention (I), Counterfac-
tual (C)

Figure 4: Causal Sensitivity Identification: a: Causally sensitive features, b: Performance across factual, intervention, and counterfactual
scenarios.

(a) t-SNE visualization of factual (ZFC ) and counterfactual
(ZCF ) latent spaces [van der Maaten and Hinton, 2008]

(b) Distribution comparison using JSD between
ZFC and ZCF (JSD = 0.4244)

Figure 5: Comparison of latent spaces ZFC and ZCF from the GP-F model: (a) shows the t-SNE projection; (b) shows the Jensen-Shannon
divergence between their distributions.

with softmax activation to predict the next location. The re-
construction loss uses sparse categorical cross-entropy.

We apply KL annealing, with kl weight (a gradually in-
creasing weight) as described in the methodology we con-
sider kl start epoch as 10, so up to 10 epochs the learning
focuses only on the reconstruction error, kl annealtime = 20.
We use Adam optimizer, batch size = 32, latent dimension 50,
and train our model with 500 epochs.

1. Causally sensitive variable and establishing cause-
effect relationship:

• We obtain GP-F, the factual baseline model follow-
ing equation (4) considering only LS, and measure
the performance using factual test data.

• We intervene LS in X train by replacing the high-
est occurring location in LS with LS1 and LS2, re-
sulting as Xtrain Altered, and then train the interven-

tional model, GP-I, using Xtrain Altered conditioning
on different candidate features (day of week W ,
start time Smin, and duration of stay DS) to be
identified as causally sensitive, denoted as FCS.

• We compute the performance of both GP-F and GP-
I on Xtest to assess changes in next-location pre-
diction performance under intervention.

• We evaluate W, Smin, and DS as FCS considering
equation (9).

In this scenario, as discussed in section 3.2, condition-
ing on Smin and W , we observe improvement in the
best average performance, across all users, i.e., ∆Acc >
0, (equation (9)), establishing them as causally sensitive
features representing the causal path as LS ← FCS →
Y , where FCS acts as a common cause for LS and Y .
For duration of stay (DS), we observe average ∆Acc <



0; and for the best average performance approximately
equal. This indicates DS does not have significant causal
influence to the LS and the Y next location. Figure 4a
depicts the obtained results.

2. Measure the change in effect when its cause has
changed:

• We use GP-F, the factual baseline model, to encode
the factual test data Xtest and obtain the latent rep-
resentation ZFC .

• To assess counterfactual effects, we alter the se-
quence of past location visits in Xtest to form
Xtest Altered (Equation (11)) and compute the coun-
terfactual latent ZCF (Equation (12)).

• Using these, we generate both factual (Equa-
tion (13)) and counterfactual (Equation (14))
predictions, representing alternate trajectory out-
comes.

• We compare performance metrics of factual and
counterfactual predictions to evaluate the impact of
changes in causes.

Figure 4b depicts the counterfactual(C), factual(F) and
interventional(I) scenarios where we find the average
performance of counterfactual scenario is less than the
Factual best one As discussed in section 3.2 i.e.,
∆Acc < 0 in this scenario. This evolution helps to mea-
sure the change in effects on the next location visit when
the sequence of previous location visits has changed, this
further helps to generate the possible alternate trajecto-
ries. Figure 5 depicts the divergence of factual and coun-
terfactual latent space distribution.

3. Causally sensitive prediction of next location of the
trajectory:
We evaluate the proposed causally sensitive generative
predictor using factual data and conditioning on the
causally sensitive feature, Smin. For each instance, we
generate n = 20 samples and report the best-performing
prediction. We summarize in Table 4 the obtained re-
sults using factual GeoLife data along with the results of
relevant state-of-the-art (SoA) as discussed in the related
work Our emphasis.
We compare the best-performing results from SoA
methods trained on combined user data with our
method’s results averaged across individual user-level
models. Our approach achieves competitive Acc@1 per-
formance, and notably, the GP-F model conditioned on
the causally sensitive feature Smin outperforms others in
terms of MRR.

4. Ablation Study:
We perform an ablation study by conditioning on the
causally sensitive feature and subsequently removing
it, as presented in Table 5. In the Baseline scenario,
the generative predictor is trained without conditioning
on any causally sensitive features. The results demon-
strate significant performance improvement when such
features are used for conditioning. Specifically, condi-
tioning on Smin increases Acc@1 by 10.34% and im-
proves the mean reciprocal rank (MRR) by 5.00%. For

Table 4: GeoLife: Average prediction performance of next location
across users.

Method Acc@1 Acc@5 Acc@10 MRR
LSTM 28.4 55.8 59.1 19.3
LSTM + Attention 29.8 54.6 58.2 21.3
DeepMove 26.1 54.2 58.7 38.2
MHSA 31.4 56.4 60.8 42.5
Proposed GCSP
FCS =Smin 31.9 59.2 64.2 43.9

W, Acc@1 increases by 3.77%, with MRR remaining
nearly unchanged. In contrast, no improvement is ob-
served for DS, confirming its minimal causal influence.
Additionally, the impact of altered location sequence
LS2 is moderately higher than that of LS1 on the origi-
nal location sequence LS.

Table 5: GeoLife: Ablation study on conditioning with causally sen-
sitive features.

Scenario Acc@1 Acc@5 Acc@10 MRR
Baseline (No Conditioning) 28.895 56.018 61.737 41.897
Conditioning on
Start Minute (Smin) 32.018 57.980 63.647 44.310
Conditioning on
Weekday (W) 29.092 58.002 62.798 41.636
Conditioning on
Duration of Stay (DS) 18.859 44.205 49.755 32.576

Although not detailed in this paper, we have validated the
proposed method on a cross-city mobility dataset, further
confirming its ability to identify causally sensitive features
across diverse spatiotemporal settings.

5 Discussion and Conclusion
We have presented a novel generative causal sensitivity iden-
tification method that combines intervention and counterfac-
tual analysis to identify causal influence in prediction tasks.

The proposed method comprises two causal perspectives.
The first is to identify causally sensitive features (FCS)
through interventional analysis, reducing confounding bias
by blocking backdoor paths and establishing direct causal
links between cause and effect when FCS acts as a con-
founder. The identified FCS are used as conditioning inputs
in the CVAE-based generative predictor to obtain causally
sensitive recommendation with improved factual prediction
performance.

The second perspective is to assess the change in effect
when the cause has changed using counterfactual analysis to
identify the causal path, and determine the counterfactual pre-
dictions in alternate situations.

We validate our approach using the Asia Bayesian network
benchmark. This dataset allows us to verify whether the pro-
posed method can uncover known causal relationships un-
der controlled conditions. We demonstrate that interventions
on variables like, either, bronc lead to significant changes
in prediction of downstream nodes such as dysp, confirming
the method’s ability to identify true causal paths. Counter-
factual evaluations further highlight the impact of modify-



ing key variables, showing divergence in prediction behavior
consistent with the known causal structure. Additionally, our
method outperforms CausalVAE in counterfactual sensitivity
analysis for the Asia dataset, more accurately identifying di-
rect and indirect causal influences on the target variable.

Applied to the GeoLife GPS trajectory dataset, our method
identifies day of the week and start time as causally sensi-
tive features influencing both past and next locations, while
duration of stay shows minimal impact. Counterfactual sen-
sitivity is assessed by altering past visits, which reveals shifts
in predictions and divergence in latent space. Conditioning
on causally sensitive features yields the best performance in
factual next location prediction, establishing their importance
for this task. Compared to prior works using the same input
structure, our method achieves competitive results.

While manual testing of individual features is possible,
such empirical approaches lack guarantees of causal rele-
vance and may reflect spurious correlations. Our method
offers a unified solution by quantifying causal significance
through interventions and counterfactuals.

In summary, our generative causal sensitivity identification
method provides a generalizable and interpretable framework
for analyzing causal relationships, particularly in prediction
tasks where the causal graph is unknown and no structural
constraints (such as acyclicity) are imposed during learning.
This approach is not limited to human mobility and is ex-
tendable to a wide range of applications involving time-series
prediction, classification, and personalized recommendation,
offering the potential for both performance gains and causal
interpretability.
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