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Abstract
Flow matching (FM) models extend ODE sampler
based diffusion models into a general framework,
significantly reducing sampling steps through
learned vector fields. However, the theoretical
understanding of FM models, particularly how
their sample trajectories interact with underlying
data geometry, remains underexplored. A rigor-
ous theoretical analysis of FM ODE is essential
for sample quality, stability, and broader applica-
bility. In this paper, we advance the theory of FM
models through a comprehensive analysis of sam-
ple trajectories. Central to our theory is the dis-
covery that the denoiser, a key component of FM
models, guides ODE dynamics through attracting
and absorbing behaviors that adapt to the data ge-
ometry. We identify and analyze the three stages
of ODE evolution: in the initial and intermediate
stages, trajectories move toward the mean and lo-
cal clusters of the data. At the terminal stage, we
rigorously establish the convergence of FM ODE
under weak assumptions, addressing scenarios
where the data lie on a low-dimensional submani-
fold—cases that previous results could not handle.
Our terminal stage analysis offers insights into
the memorization phenomenon and establishes
equivariance properties of FM ODEs. These find-
ings bridge critical gaps in understanding flow
matching models, with practical implications for
optimizing sampling strategies and architectures
guided by the intrinsic geometry of data.

1. Introduction
Diffusion-based generative models have become the de facto
method for the task of image generation (Sohl-Dickstein

*Equal contribution 1Department of Mathematics, University
of Missouri, Columbia, Missouri, USA 2Halıcıoǧlu Data Science
Institute, University of California San Diego, La Jolla, California,
USA. Correspondence to: Gal Mishne <gmishne@ucsd.edu>,
Yusu Wang <yusuwang@ucsd.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

et al., 2015; Ho et al., 2020; Song & Ermon, 2019). Com-
pared to previous generative models (e.g., GANs (Good-
fellow et al., 2014)), diffusion models are easier to train
but suffer from long sampling times due to the sequential
nature of the sampling process. ODE-based samplers were
introduced to address this limitation, where the sampling
process is done by integrating an ODE. With its efficiency,
ODE-based samplers have become the dominant approach
in diffusion models (Song et al., 2021; Lu et al., 2022; Kar-
ras et al., 2022). Recently, the ODE-based viewpoint of
diffusion models has been extended to a general framework
known as flow matching (FM) (Lipman et al., 2022; Al-
bergo & Vanden-Eijnden, 2023; Liu et al., 2023), which
uses an ODE to interpolate between a prior and a target data
distribution. FM models learn a vector field ut, similar to
the score function in diffusion models. During sampling, a
data sample x1 is generated by integrating the ODE starting
from some x0 ∈ Rd sampled from a prior distribution:

dxt

dt
= ut(xt), t ∈ [0, 1).

Data (Circle)
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Figure 1. Comparing two ODE trajectory behaviors.

Various versions of the FM model have gained popularity,
such as the rectified flow model (Liu et al., 2023), which
is utilized in commercial image generation software (Esser
et al., 2024). Furthermore, the succinct and deterministic
formulation of the FM model also makes theoretical analysis
potentially easier. Despite the empirical success, critical
theoretical questions remain insufficiently addressed: How
does the data geometry (e.g., clusters, manifold structure)
influence and guide individual sampling trajectories? Are
these trajectories guaranteed to converge toward the data
distribution as t → 1, especially when the data lies on a
low-dimensional subspace or manifold? This convergence is
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critical for the generative model’s performance, as suggested
by Loaiza-Ganem et al. (2024).

These questions regarding per-sample trajectories have both
theoretical and practical significance for the sampling pro-
cess because (1) robust sampling requires trajectory con-
vergence in terminal time (Figure 1a), avoiding undesirable
behaviors like winding around the data manifold (Figure 1b).
Such convergence provides the theoretical foundation for
distilling the trajectory into a one-step generative model like
the consistency model (Song et al., 2023); (2) understanding
the relationship between data geometry and ODE trajecto-
ries can motivate geometry-based steering of the sampling
process or modification of the latent space for improved
generation quality.

Our approach. We conduct a thorough investigation of
per-sample FM ODE trajectories by focusing our analysis
on the denoiser—the conditional mean of the data given
noise (Karras et al., 2022). The denoiser emerges as the
only data-dependent component of the flow vector field ut,
fundamentally determining FM ODE dynamics. Interest-
ingly, by examining how the denoiser interacts with the
data geometry, we demonstrate that the FM ODE exhibits
two key properties: (1) Attracting—trajectories are drawn
toward a specific set, and (2) Absorbing—once within a
certain set, trajectories remain confined near it. With these
properties, we quantitatively elucidate FM ODE trajectories
across three stages (Figure 2): initial, intermediate, and
terminal. The initial stage is characterized by trajectories
moving toward the mean of the data distribution, while the
intermediate stage is shaped by coarse-scale data geometry,
with trajectories attracted to and absorbed into local clusters.
The terminal stage is marked by the trajectory converging
to the data support, where the attracting and absorbing dy-
namics ensure the convergence (see Section 5.1 for more
details). While there are prior works on sampling evolution
of diffusion models (Biroli et al., 2024; Li & Chen, 2024),
they have mainly focused on distribution-level analysis of
stochastic samplers using simplified settings like Gaussian
mixtures. In contrast, our work reveals how data geometry—
both coarse-scale clustering and fine-scale structure (dis-
crete vs. manifold)—manifests in and guides individual
ODE trajectories.

Contributions. In Section 3, we introduce the fundamen-
tals of the denoiser and present our meta attracting and
absorbing theorems (Theorems 3.1 and 3.2), which demon-
strate how the properties of the denoiser can be leveraged
to analyze FM ODE trajectories. These theorems provide a
unifying framework to qualitatively study the behavior of
trajectories during the initial and intermediate stages (Sec-
tion 4) as well as the terminal stage (Section 5). Specifically,
in Section 4, we first establish the well-posedness of the
FM ODE trajectory on [0, 1) for general data distributions

Convex Hull
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Cluster 2
Cluster 3
End
Data mean
Data points in Cluster 3

Figure 2. Three stages of an FM ODE trajectory with synthetic
data. The curve with blue progression shows an FM ODE tra-
jectory, with an arrow indicating direction. The shaded region
indicates the convex hull of data. Three stages are visible: initially,
the trajectory aligns with the data mean (brown point); next, it is
attracted to a local cluster (yellow cluster); finally, it converges to
a data point (green star). See Appendix J.1 for more details.

(Theorem 4.1) and establish rigorously how an FM ODE
trajectory will initially move toward the data mean (Propo-
sition 4.2) and later toward local clusters (Proposition 4.4).
In Section 5, we establish the convergence for FM ODE as
t → 1 under mild assumptions (Theorem 5.3). To the best
of our knowledge, this is the first result that accommodates
data distributions supported on submanifolds. This conver-
gence result allows us to study the properties of flow maps,
leading to our establishment of equivariance of flow maps
with respect to geometric transformations (Proposition 5.7).
We also delve into the case of discrete measures, showing
that terminal time training plays a critical role in address-
ing memorization phenomena (Propositions 5.9 and 5.10).
See Figure 4 in Appendix A for a roadmap of our main
theoretical results.

Due to space constraints, all proofs are deferred to the ap-
pendix. A significant number of additional results and
observations, which could be of independent interest, are
also presented in the appendix. For instance, we identify
that the FM ODE vector field exhibits singularities and
blows up when the data distribution lacks full support (cf.
Appendix C.2), and we derive precise rates of convergence
of posterior distributions/denoisers as t → 1 depending on
the data geometry, as detailed in Appendix D.

2. Background and Related Work
Notations. For any subset Ω ⊂ Rd, we let dΩ(x) :=
infy∈Ω ∥x − y∥ denote the distance to Ω. Let Br(Ω) :=
{x ∈ Rd|dΩ(x) < r}. Let Ω and ∂Ω denote the closure
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and boundary of Ω, respectively. The medial axis of Ω is
denoted

ΣΩ :=
{
x ∈ Rd : #{argminy∈Ω∥x− y∥ > 1}

}
,

where #A denotes the cardinality of a set A. For any x /∈
ΣΩ, its projection onto Ω

projΩ(x) := argmin
y∈Ω

∥x− y∥

is unique and hence well defined when Ω is closed. The
reach of Ω is defined as τΩ := infx∈Ω dΣΩ

(x) which in
a sense quantifies the smoothness of the set Ω—a larger
reach rules out tight bottlenecks and sharp bends (see, e.g.,
(Federer, 1959) for more details).

We use δx to denote the Dirac delta measure at x. We let
N (µ,Σ) denote the Gaussian distribution with mean µ and
covariance Σ. Let s ∈ [1,∞], and we use dW,s(ν1, ν2) to
denote s-Wasserstein distance for two probability measures
ν1 and ν2.

See Appendix A for a table of symbols used in this paper.

2.1. Background on Flow Matching

Flow matching (FM) models (Lipman et al., 2022; Albergo
& Vanden-Eijnden, 2023; Liu et al., 2023) are a class of gen-
erative models whose training process consists of learning
a vector field ut that generates a probability path (pt)t∈[0,1]

interpolating a prior p0 = pprior and a target data distribution
p1 = p and whose sampling process consists of integrating
an ODE from an initial point Z ∼ pprior to obtain a termi-
nal point X ∼ p. More precisely, the interpolating path
(pt)t∈[0,1] in FM model is constructed as follows:

pt(dxt) :=

∫
pt(dxt|X = x)p(dx), (1)

where the conditional distribution pt(·|X = x) satisfies
that p0(·|X = x) = pprior and p1(·|X = x) = δx. We
assume that the prior pprior is the standard Gaussian N (0, I)
throughout this paper. Then, pt(·|X = x) are specified as

pt(·|X = x) := N (αtx, β
2
t I),

where αt and βt are scheduling functions satisfying α0 =
β1 = 0 and α1 = β0 = 1 and are often monotonic. Com-
mon choices include linear scheduling αt = t and βt = 1−t
used in the rectified flow model (Liu et al., 2023; Esser et al.,
2024) and those arising from noise scheduling in diffusion
models. In this paper, we assume that αt, βt are smooth
functions of t on the closed interval [0, 1]. It is worth noting
that pt is the law of the random variable Xt := αtX+βtZ,
assuming X and Z are independent.

The FM model then designs a vector field ut such that the
ODE trajectory below generates (pt)t∈[0,1], i.e., the result-

ing flow map Ψt satisfies pt = (Ψt)#p0:

dxt

dt
= ut(xt). (2)

To construct ut, the FM model marginalizes over the condi-
tional vector field ut(x|x1):

ut(x) =

∫
ut(x|x1)p(dx1|Xt = x), (3)

where p(dx1|Xt = x) represents the posterior distribution:

p(dx1|Xt = x) =
exp

(
−∥x−αtx1∥2

2β2
t

)
∫
exp

(
−∥x−αtx′

1∥2

2β2
t

)
p(dx′

1)
p(dx1).

Importantly, if ut(x|x1) takes the following simple form:

ut(x|x1) =
β̇t

βt
x+

α̇tβt − αtβ̇t

βt
x1, (4)

where the dot denotes differentiation with respect to t, then
Liu et al. (2023, Theorem 3.3) and Lipman et al. (2022, The-
orem 1) demonstrated that ut generates the probability path
(pt)t∈[0,1], assuming the ODE trajectory of Equation (2) ex-
ists on [0, 1]. This existence was rigorously established in
Gao et al. (2024) under restrictive assumptions, excluding
cases where p is supported on a low-dim submanifold. For
more general cases, see our results in Sections 4.1 and 5.1.

It turns out that the closed form of the conditional vector
field ut(x|x1) allows one to train a neural network to learn
the vector field ut by minimizing the following loss function
whose unique minimizer is ut(x) (Lipman et al., 2022):

E t∈[0,1),
Z∼pprior,X∼p

∥∥uθ
t

(
αtX + βtZ

)
− α̇tX − β̇tZ

∥∥2. (5)

Noise-to-signal ratio. FM model with different schedul-
ing functions can be unified through the noise-to-signal
ratio (Shaul et al., 2024; Chen et al., 2024). We find it
useful in our analysis as it simplifies the ODE dynamics
and allows us to present our results more cleanly. Proofs of
results in this section can be found in Appendix F.

Let αt, βt be strictly monotonic scheduling functions. The
noise-to-signal ratio σt := βt/αt is defined for t ∈ (0, 1].
By monotonicity, σt is invertible with inverse t(σ). As
t increases from 0 to 1, σt decreases from ∞ to 0. For
σ ∈ [0,∞), we define qσ as the convolution of p with the
Gaussian distribution N (0, σ2I):

qσ := p ∗ N (0, σ2I) =

∫
N (·|y, σ2I)p(dy). (6)

Then, we have the following result.
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Proposition 2.1. For any t ∈ (0, 1], define At : Rd → Rd

by sending x to x/αt. Then, qσt = (At)#pt.

The probability path qσt satisfies the following ODE in σ.
Proposition 2.2. For any [a, b) ⊂ (0, 1], let (xt)t∈[a,b)

denote an ODE trajectory of Equation (2). Then, (xσ :=
xt(σ)/αt(σ))σ∈(σb,σa] satisfies the following ODE:

dxσ

dσ
= −σ∇ log qσ(xσ), (7)

where qσ(x) denotes the probability density of qσ .

The ODE model in Equation (7) generates a probability path
qσ for σ ∈ (0,∞). During sampling, the ODE integrates
backwards over σ ∈ (0, σT ] with end condition xσT

= x.
By expressing our results in terms of the noise-to-signal
ratio σ rather than time t, we obtain a unified framework
independent of specific scheduling functions, allowing for a
more general and concise theoretical analysis.

2.2. Related Work

Chen et al. (2024) connects FM sampling to the mean shift
algorithm (Comaniciu & Meer, 2002) via the denoiser, fo-
cusing on algorithmic strategies to identify high-curvature
regions for better sampling. Pidstrigach (2022); Permenter
& Yuan (2024) show that the denoiser converges to the pro-
jection when near the data support. We establish a general
convergence result for almost every point and provide a char-
acterization of trajectory evolution across different stages,
going beyond prior interpretations of the sampling process
as an approximate projection to data in Permenter & Yuan
(2024). Gao & Li (2024) show that FM can only sample
from the data support for discrete measures and analyzes
local cluster absorption. However, their proof implicitly as-
sumes ODE convergence and their local absorption analysis
requires bounded prior support, which is not applicable to
the common FM setting. We provide a rigorous proof of
ODE convergence and analysis for full trajectory evolution.

The concurrent work by Baptista et al. (2025) analyzes the
dynamical mechanisms underlying memorization in diffu-
sion models with empirical measures. Their analysis of
the ODE dynamics shares some similarities with our ap-
proach to discrete data distributions, e.g., the use of Voronoi
diagrams. Their work also proposes some regularization
techniques to mitigate memorization.

3. Denoiser and ODE Dynamics
It turns out that the vector field ut is fully determined by the
so-called denoiser—the mean of the posterior distribution
p(·|Xt = x) (Karras et al., 2022). In this section, we first
describe some basic properties of the denoiser, then illustrate
a general attracting and absorbing dynamics of the ODE.
Proofs and missing details can be found in Appendix C.

3.1. Basics of the Denoiser

By plugging Equation (4) into Equation (3), we have that

ut(x) = β̇t/βt · x+ (α̇tβt − αtβ̇t)/βt · E[X|Xt = x], (8)

where X ∼ p, and E[X|Xt = x] is called the denoiser with
the following form (with existence proved in Appendix C.1):

E[X|Xt = x] =

∫ exp
(
− ∥x−αty∥2

2β2
t

)
y∫

exp
(
− ∥x−αty′∥2

2β2
t

)
p(dy′)

p(dy). (9)

For brevity, we write mt(x) := E[X|Xt = x]. Since mt

fully determines ut, instead of learning ut directly, one can
train a neural network mθ

t to learn the denoiser mt:

Et∈[0,1),Z∼pprior,X∼p

∥∥mθ
t (αtX + βtZ)−X

∥∥2 . (10)

Training with this loss can be more stable than with Equa-
tion (5) since for any x ∈ Rd, mt(x) remains bounded
while ut(x) can blow up to ∞ as t → 1 (cf. Appendix C.2).

By direct computation, the ODE in σ can also be expressed
through the denoiser mσ(x) := E[X|Xσ = x] as follows
where Xσ := X + σZ:

dxσ

dσ
= −σ∇ log qσ(xσ) = − 1

σ
(mσ(xσ)− xσ) . (11)

Notably, the ODE in σ can be interpreted as moving toward
the denoiser mσ(xσ). For any x, one can explicitly write
mσ(x) as follows.

mσ(x) =

∫ exp
(
−∥x−y∥2

2σ2

)
y∫

exp
(
−∥x−y′∥2

2σ2

)
p(dy′)

p(dy). (12)

3.2. Attracting and Absorbing

In Section 4.1, we will rigorously establish the existence
of FM model ODE trajectory in [0, 1) for any data distribu-
tion p with a finite 2-moment. This sets the foundation for
discussing the properties of the ODE trajectories.

Note that Equation (11) suggests that the trajectory moves
toward the denoiser mσ(xσ), which itself evolves along the
trajectory, complicating the ODE dynamics. We address this
by analyzing the geometric relationship between mσ(x) and
the projection projΩ(x) onto certain closed sets Ω. This
reveals that the ODE trajectory exhibits two key proper-
ties: an attracting property—drawing trajectories toward
Ω, and an absorbing property—keeping trajectories within
neighborhoods of Ω. We characterize how the sampling pro-
cess unfolds into distinct stages by identifying appropriate
closed sets Ω with these properties. Below, we formulate
these properties into two meta-theorems.
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Attracting toward sets. Let (xσ)σ∈(σ2,σ1] be an ODE tra-
jectory. The distance dΩ(xσ) to a closed set Ω will decrease
if the trajectory direction forms an acute angle with the
projection direction (see e.g. Corollary B.15):

⟨mσ(xσ)− xσ,projΩ(xσ)− xσ⟩ > 0. (13)

See Figure 3 below for an illustration.

x

proj (x )

m (x )

Figure 3. Illustration of the acute angle condition.

With some quantitative bound on the acute angle condition
above, the ODE trajectory will be attracted toward Ω.

Theorem 3.1 (Informal - Attracting toward sets). Let
(xσ)σ∈(σ2,σ1] be an ODE trajectory of Equation (11) start-
ing from some xσ1

. Assume that the trajectory avoids the
medial axis ΣΩ of some closed Ω and satisfies the acute
angle condition in a quantitative manner, then dΩ(xσ) will
decrease along the trajectory, and limσ→0 dΩ(xσ) = 0.

See the formal version Theorem C.7 in Appendix C.3.

The requirement of avoiding the medial axis of Ω is trivially
satisfied when Ω is convex (its medial axis is empty). More
generally, one can rely on the absorbing property (discussed
below) to ensure the trajectory stays off the medial axis.

Absorbing by sets. Given a set Ω in Rd, we say Ω is
absorbing for a FM ODE in (σ2, σ1] if for any x ∈ Ω,
the ODE trajectory (xσ)σ∈(σ2,σ1] starting at xσ1

= x will
remain in Ω for all σ ∈ (σ2, σ1]. It turns out that the acute
angel condition can essentially also guarantee that small
neighborhoods of Ω are absorbing.

Theorem 3.2 (Absorbing by sets). For any closed set Ω and
r > 0, we consider the open neighborhood Br(Ω).

1. Let Br(Ω) denote the closure of the set Br(Ω). If
Br(Ω) ∩ ΣΩ = ∅ and suppose for any x ∈ ∂Br(Ω)
and any σ ∈ (σ2, σ1), one has ⟨mσ(x)−x, projΩ(x)−
x⟩ > 0, then Br(Ω) is absorbing in (σ2, σ1].

2. If there exists some r0 > 0 such that Br(Ω) is absorb-
ing in (σ2, σ1] for all r ∈ (0, r0), then Ω is absorbing
in (σ2, σ1] as well.

Remark 3.3. Note that the absorbing property only depends
on the denoiser’s behavior in a fixed region rather than re-
quiring a priori knowledge of how the denoiser evolves
along an ODE trajectory. Once established, the absorbing
property can propagate the acute angle condition to trajecto-
ries within this region, thereby enabling attracting property.

Next, we apply the meta-theorems to provide a broad de-
scription of FM ODE dynamics.

Attracting and absorbing to the convex hull of data sup-
port. By definition, the denoiser mσ(x) always lies in
the convex hull of the support of the posterior distribution
p(·|Xσ = x) which is the same as conv(supp(p)). Due to
convexity, mσ(x) always satisfies the acute angle condition
with respect to conv(supp(p)). Consequently, the ODE
trajectory is attracted toward and ultimately absorbed by
conv(supp(p)).

Proposition 3.4. Assume p has a bounded support. For any
σ1 > 0, let (xσ)σ∈(0,σ1] be a flow matching ODE trajectory
follows Equation (11). Then we have the following results
for any σ ∈ (0, σ1]:

1. If xσ1
∈ conv(supp(p)), then xσ ∈ conv(supp(p));

2. If xσ1 /∈ conv(supp(p)), then xσ moves toward
conv(supp(p)) with the following decay guarantee:

dconv(supp(p))(xσ) ≤ dconv(supp(p))(xσ1
) · σ/σ1.

See Appendix C.3.1 for the proof and a slight generaliza-
tion to the case where p is a Gaussian-smoothed bounded
distribution. A more refined analysis of the trajectory for
the initial and intermediate stages (focusing on the data
mean and local clusters, respectively) is provided in Sec-
tion 4. The terminal stage analysis in Section 5 requires
more sophisticated techniques, as we need to develop ab-
sorbing properties that effectively avoid the medial axis of
the data support—a key technical challenge for establishing
convergence (cf. Appendix C.2).

4. Pre-Terminal Trajectory Analysis
As illustrated in Figure 2, the FM ODE trajectory overall
moves toward the convex hull of the data support (Propo-
sition 3.4). Furthermore, trajectory dynamics unfold in
distinct stages. In this section, we first establish the well-
posedness of the FM ODE to ensure the existence of tra-
jectories. Then, we apply attracting and absorbing prop-
erties—toward the mean and local clusters—to provide a
detailed analysis of the pre-terminal trajectory dynamics.

4.1. Well-posedness of FM ODEs for t ∈ [0, 1)

The following result establishes the existence and unique-
ness of solutions to the FM ODE in [0, 1) under very weak
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assumptions, significantly expanding on previous work (Lip-
man et al., 2022; Gao et al., 2024) to contain cases where p
is supported on subspaces or submanifolds.

Theorem 4.1. Assume p has a finite 2-moment, then for
every x0 ∈ Rd, there exists a unique solution (xt)t∈[0,1) to
Equation (2). Furthermore, the flow map Ψt is continuous
and satisfies that (Ψt)#pprior = pt for all t ∈ [0, 1).

The proof utilizes a careful analysis of the posterior covari-
ance Cov[X|Xt = x] to establish local Lipschitzness and
integrability of ut. In addition, we show that the denoiser
mt(x) grows at most linearly in x—a non-trivial bound ob-
tained under the mild assumption that the data distribution p
has only a finite 2-moment. With these properties, we then
apply the theory of continuity equations (see Ambrosio et al.
(2008, Section 8.1)) to conclude the proof.

This result trivially extends to the σ parameter and forms the
foundation for analyzing pre-terminal trajectory properties.

4.2. Initial Stage of the Sampling Process

When t = 0, we have m0(x) ≡ E[X], suggesting the tra-
jectory will initially approach the mean of data distribution.
In this subsection, we quantitatively validate this intuition
for a broad class of distributions.

Proposition 4.2. Let δ ≥ 0 and pb be a distribution on
Rd with a bounded support Ω := supp(pb). Let p :=
pb ∗ N (0, δ2I). For a point x0 with |x0 − E[X]| = R0

where X ∼ p, and for any parameter 0 < ζ < 1, define

σinit(Ω, ζ, R0) :=
√
2R0diam(Ω)/log(1 + ζR0/diam(Ω)).

Then for all σ1 >
√
σinit(Ω, ζ, R0)2 + δ2, a trajectory

(xσ)σ∈(
√

σinit(Ω,ζ,R0)2+δ2,σ1]
starting from xσ1 = x0 will

approach E[X] with the rate:

∥xσ − E[X]∥ < R0(σ
2 + δ2)

1−ζ
2 /(σ2

1 + δ2)
1−ζ
2 .

Note that as ζ approaches 1, σinit(Ω, ζ, R0) decreases, ex-
tending the range of σ that is applicable. However, the rate
weakens as ζ gets closer to 1.

4.3. Intermediate Stage of the Sampling Process

As σ decreases, trajectory behavior starts being influenced
by coarse-scale geometry of the data, particularly its local
clusters. When the trajectory lies close to a local cluster, it
is attracted toward (and eventually absorbed by) the convex
hull of that cluster—–indicating robust feature emergence in
the FM model. We formalize this notion via an assumption
that characterizes a well-separated local cluster.

Local Cluster Assumption. Let p be a probability measure
on Rd and we say a set S is a local cluster of Ω := supp(p)
if the following conditions hold:

1. S is closed, bounded, and diam(S) = D < ∞.

2. For all x ∈ Ω\S, dconv(S)(x) > 2D.

Then, the denoiser mσ(y) will be close to conv(S) for y
near conv(S) and when σ is not too large.

Proposition 4.3. Assume that S is a local cluster of a prob-
ability measure p satisfying the Local Cluster Assumption
and aS := p(S) > 0. Then, for any x ∈ Rd such that
dconv(S)(x) ≤ D/2− ϵ, we have that

dconv(S)(mσ(x)) ≤ diam(Ω)
√
(1− aS)/aS e−

3Dϵ
2σ2 .

Proposition 4.4. With the same assumptions as in Proposi-
tion 4.3, let CS

ϵ := D/2−ϵ

diam(Ω)
√

1−aS
aS

, and define

σ0(S, ϵ) :=


(

−3Dϵ
2 log(CS

ϵ )

) 1
2

, if CS
ϵ < 1,

∞, otherwise.

Then for any σ1 < σ0(S, ϵ), BD/2−ϵ(conv(S)) is ab-
sorbing in (0, σ1] and any ODE trajectory starting from
xσ1 ∈ BD/2−ϵ(conv(S)) converges to conv(S) as σ → 0.

Note that when the weight aS of the local cluster S is large,
we do not necessarily have that CS

ϵ < 1. In this case, the
cluster S, in fact, exhibits a stronger attracting force and the
above result holds for all σ1 > 0.

In Appendix J.1, we detail the synthetic data used in Figure 2
to validate the above Propositions 4.2 and 4.4. We also ob-
serve in Appendix J.2 that despite the theoretical constants
not being tight (as is common with worst-case bounds),
the qualitative behavior of an initial mean-attraction phase
consistently holds in practice. Although Proposition 4.4 is
developed under the local-cluster assumption, real-world
datasets seldom satisfy it exactly. Empirically, however,
we find that ODE trajectories still gravitate toward locally
dense regions—even when clusters overlap—indicating that
the dynamics are more robust than the assumption suggests
(see Appendix J.3). We provide a partial theoretical expla-
nation in Corollary H.1: for a distribution p obtained by
convolving a Gaussian with any measure that does satisfy
the local-cluster assumption, we prove that dense regions
remain attracting and absorbing for the flow. Together, the
analysis and experiments point to a broader validity of the
ODE dynamics beyond the confines of our assumptions.

While the above results are theoretical, they reveal how
data geometry fundamentally shapes FM ODE dynam-
ics—particularly, the cluster absorption results suggest a
“locking” property where trajectories are systematically ab-
sorbed into local clusters. This property provides a theoreti-
cal foundation for why FM models achieve effective feature
separation and mode coverage, as observed empirically in
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Georgiev et al. (2023). It further suggests that embedding
data into latent spaces with clear geometric structure (e.g.,
by object categories or visual attributes) could enhance ro-
bust feature learning.

Finally, as σ approaches 0, trajectories are drawn to their
nearest data points, with the nature of this attraction strongly
governed by the fine-scale geometry of the data support—–
whether discrete or manifold-structured. We analyze this
terminal convergence behavior in the next section.

5. Terminal Trajectory Analysis
The well-posedness of the FM ODE in [0, 1) ensures the
probability path under flow map Ψt approaches the data dis-
tribution. However, distributional convergence alone does
not guarantee trajectory convergence, as pathological cases
like winding paths around data points may exist (see Fig-
ure 1b). The convergence of ODE trajectories—equivalently,
the existence of flow map Ψ1 at t = 1—is crucial for gen-
erating samples stably and for models like the consistency
model (Song et al., 2023), which learns the flow map Ψ1.

In this section, we establish the convergence of ODE tra-
jectories at t = 1 for a broad class of data distributions.
With this result, we analyze the equivariance of Ψ1 un-
der geometric transformations and discuss implications for
memorization behavior.

5.1. Convergence of ODE Trajectories at t = 1

The convergence of ODE trajectory at t = 1, when ex-
pressed in terms of σ, requires the integration of dxσ

dσ =
− 1

σ (mσ(xσ)− xσ) to remain convergent as σ → 0. The di-
vergence of

∫ T

0
1
σdσ creates a potential singularity that must

be counteracted by a rapid diminishing of ∥mσ(xσ)− xσ∥.
We study the denoiser’s terminal behavior at a fixed point x
to understand when diminishing may occur.

Theorem 5.1 (Convergence of denoiser to projection). Let
p be a probability distribution with a finite 2-moment and
support Ω. Then for all x ∈ Rd\ΣΩ:

lim
σ→0

mσ(x) = projΩ(x),
1

where ΣΩ denotes the medial axis of Ω.

Since projΩ(x) = x precisely when x ∈ Ω, the term
mσ(xσ) − xσ diminishes if xσ is attracted to Ω. The con-
vergence only holds for x ∈ Rd\ΣΩ since projection is not
well-defined at the medial axis, which also causes the de-
noiser’s Lipschitz constant to blow up (see Appendix C.2),
preventing the use of standard ODE theory like the Picard-
Lindelöf theorem.

1We also establish the convergence of mt in Corollary D.3
which is a nontrivial consequence of the convergence of mσ .

We address these issues by a refined denoiser’s convergence
result with rate guarantee, which occurs at an O(σζ) rate
for any 0 < ζ < 1. See Appendix D for the proof and de-
tails—for example, the convergence rate is

√
mσ +O(σ2)

for distributions on an m-dimensional submanifold and ex-
ponential for discrete distributions. This convergence rate
yields a strengthened version of the absorbing result in Sec-
tion 3.2, ensuring that trajectories are: (1) absorbed near
Ω to avoid the medial axis, and (2) attracted to Ω rapidly
enough to ensure convergence. Our theoretical analysis
works for data distributions satisfying:

Assumption 5.2 (Regularity assumptions for data distribu-
tion). Let p be a probability measure on Rd with a finite
2-moment satisfying the following properties:

1. The reach τΩ of the support Ω := supp(p) is positive2;

2. There exist constants k ≥ 0 and c > 0 such that for any
radius R > 0, there is a constant CR > 0 satisfying
the following: for any small radius 0 ≤ r < c and any
x ∈ BR(0) ∩ Ω, we have p(Br(x)) ≥ CRr

k.

Any discrete distribution satisfies the assumptions with k =
0. Moreover, p satisfies the assumptions with k = m when
supported on an m-dimensional linear subspace or compact
submanifold with positive reach, provided p has a finite
2-moment and a non-vanishing density (cf. Lemma I.1). We
emphasize that the positive reach condition is not restrictive
and is a common assumption to ensure that the data manifold
has no “sharp turns” in Rd (Niyogi et al., 2008; Fefferman
et al., 2016). This condition holds for common smooth
compact submanifolds (Lieutier & Wintraecken, 2024) like
spheres and tori.

We now state our main result:

Theorem 5.3. For p satisfying Assumption 5.2, we have

1. Ψ1(x) := limt→1 Ψt(x) exists for x ∈ Rd a.e.

2. Ψ1 is a measurable map and (Ψ1)#pprior = p.

Furthermore, we have the following estimate of the conver-
gence rate of the flow map. Recall that σt := βt/αt, then,
we have that for any fixed 0 < ζ < 1,

∥Ψ1(x)−Ψt(x)∥ = O(σ
ζ/2
t ).

This theorem establishes the existence and convergence of
the flow map for general data distributions. The convergence
rate can be further refined for specific cases:

Theorem 5.4. When p is supported on a submanifold or a
discrete set, we have the following convergence results:

Manifold. Let M ⊂ Rd be an m-dim closed submanifold
with positive reach and bounded second fundamental form

2The support Ω can be Rd and in this case the reach τ = ∞.

7



Elucidating Flow Matching ODE Dynamics via Data Geometry and Denoisers

up to its first-order derivatives. Assume that p is supported
on M , has a finite 2-moment, and has a density given by
p(dx) = ρ(x)volM (dx), where ρ : M → R is smooth and
nonvanishing. Then, for a.e. x ∈ Rd, we have that

∥Ψ1(x)−Ψt(x)∥ = O(
√
σt);

Discrete. If p =
∑N

i=1 aixi denotes a discrete probability
measure, then for a.e. x ∈ Rd, we have that

∥Ψ1(x)−Ψt(x)∥ = O(σt).

We examine a tractable special case to assess our conver-
gence rate bounds: a standard Gaussian distribution on a
subspace, where closed-form solutions exist.
Example 5.5 (Data supported on subspaces). For any 0 <
m ≤ d, consider the subspace Rm ⊂ Rd. We express any
point x ∈ Rd as x = (x, y), where x ∈ Rm and y ∈ Rd−m.
Assume that the probability measure p is supported on Rm

and satisfies Assumption 5.2. One can show that FM ODE
trajectories allow a dimension reduction in the following
manner. For any initial point x0 = (x0, y0) ∈ Rd, the FM
ODE trajectory is given by

xt = (xt, βty0), for any t ∈ [0, 1], (14)

where (xt)t∈[0,1] is the trajectory of the FM ODE on Rm

with initial point x0, and with p regarded as a distribution
on Rm; see Proposition E.2 for a proof.

Let αt = t and βt = 1−t, and let p be the standard Gaussian
on Rm. By Lemma E.1 and Equation (14), we have that

xt =
(√

(1− t)2 + t2x0, (1− t)y0

)
.

Also, when m = 0, p = δ0 is supported on a single point.
Then, the denoiser is always 0 and the ODE trajectory is
given by (xt = (1−t)x0)t∈[0,1]. In both cases, ∥x1−xt∥ =
Θ(1− t) = Θ(σt).

This example demonstrates our rate’s optimality for discrete
distributions, while suggesting potential improvement for
manifolds: the current O(

√
σt) rate might be improved to

O(σt). This conjecture is supported by the linear conver-
gence rate O(σ) of the ODE’s distribution path qσ → p (see
proposition below), which suggests the trajectory should
converge at the same rate.

Proposition 5.6. For any probability measure p with a finite
2-moment, we have that dW,2(qσ, p) = O(σ).

An important practical implication of the convergence rates
in Theorems 5.3 and 5.4 is that, during the terminal stage,
the ODE trajectory exhibits minor movements suggesting
one can use fewer sampling steps to generate samples with-
out sacrificing quality.

Equivariance under geometric transformations. Having
established the existence of the flow map Ψ1 : Rd → Rd

under mild assumptions, we now investigate how ambient
space geometry affects the flow maps through their behavior
under geometric transformations. This analysis has practi-
cal implications for stability under data augmentation and
reveals important equivariance properties.

We examine how FM flow maps transform under similarity
transformations T : Rd → Rd of the form T (x) = γ(Ox+
b), where γ > 0 is a scaling factor, O is an orthogonal
matrix, and b is a translation vector. These transformations
include any combination of scaling, rotation and translation.

For a data distribution p satisfying Assumption 5.2, let p̄ :=
T#p denote the transformed distribution. To relate the flow
maps Ψ1 (for p̄) and Ψ1 (for p), we identify that the flow for
the transformed data p̄ can be obtained from the flow for the
original data p by choosing appropriate scheduling functions
ᾱt and β̄t with respect to the original functions αt and βt.
Specifically, taking ᾱt := stαt/γ and β̄t := stβt where st
is any positive smooth function with s0 = 1, s1 = γ (or
simply st ≡ 1 when γ = 1), we establish:
Proposition 5.7 (Equivariance under similarity transforma-
tions). For any x ∈ Rd and t ∈ [0, 1), we have that

Ψt(Ox) = st(OΨt(x) + αtb).

Whenever Ψ1(x) exists (this holds for a.e. x ∈ Rd by
Theorem 5.3), we have that Ψ1(Ox) exists and satisfies

Ψ1(Ox) = γ(OΨ1(x) + b).

Remark 5.8 (Data distribution on affine subspaces). By
Proposition 5.7, we can generalize Example 5.5 to cases
where p is supported on any affine subspace A ⊂ Rd (e.g.,
a point translated away from origin or a shifted linear sub-
space). The idea is simple: first apply a rigid transformation
to map A to Rdim(A) ⊂ Rd, then apply the FM model
there. This suggests that for data distribution supported
on an affine subspace, we can reduce computation by first
projecting onto that subspace, training an FM model there,
and extending it back to ambient space via this result.

5.2. Terminal Absorbing Behavior and Memorization

In this subsection, we focus on the case when p =∑n
i=1 ai δxi

is supported on a discrete set, as this repre-
sents an important scenario corresponding to empirical tar-
get distributions derived from training data. We provide a
detailed characterization of the terminal stage and show that
each point xi exhibits strong attracting behavior during this
stage, which is connected to the memorization in diffusion
models (Carlini et al., 2023; Wen et al., 2024).

We let Ω = {x1, . . . , xn} denote the support of p. For any
small ϵ > 0, we define the ϵ-shrunk Voronoi cells as

V ϵ
i :=

{
x : ∥x− xi∥2 ≤ ∥x− xj∥2 − ϵ2, ∀xj ̸= xi ∈ Ω

}
.
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Note that V ϵ
i is convex and as ϵ → 0, V ϵ

i expands to the
classical Voronoi cell Vi of xi with ∪n

i=1Vi = Rd.

We introduce σ0(V
ϵ
i ) such that V ϵ

i is absorbing for
(0, σ0(V

ϵ
i )). Specifically, let sep(xi) := dΩ\{xi}(xi) de-

note the separation of xi and we introduce a constant

CΩ
i,ϵ =

2 sep(xi)

sep2(xi)− ϵ2
·
√

1− ai
ai

· diam(Ω)

for any parameter ϵ ∈ (0, sep(xi)/2), where ai is the weight
of xi in p. Then the time σ0(V

ϵ
i ) is defined as

σ0(V
ϵ
i ) =

{
∞, if CΩ

i,ϵ ≤ 1,
ϵ
2

(
log(CΩ

i,ϵ)
)−1/2

, if CΩ
i,ϵ > 1.

The constant σ0(V
ϵ
i ) is the time when the ODE trajectory

is attracted to V ϵ
i and with larger weight ai or higher sep-

aration sep(xi), the time σ0(V
ϵ
i ) is larger, showing strong

attraction early on.

The following result shows that after approaching the mean
and then being attracted to a local cluster, the ODE trajectory
will eventually be attracted to the nearest data point.

Proposition 5.9. Fix an arbitrary 0 < σ1 < σ0(V
ϵ
i ). Then,

for any y ∈ V ϵ
i , the ODE trajectory (xσ)σ∈(0,σ0] starting

from xσ0
= y will stay inside V ϵ

i , i.e., xσ ∈ V ϵ
i . Further-

more, (xσ)σ∈(0,σ0] will converge to xi as σ → 0.

Discussion on memorization. Memorization occurs when
a model perfectly fits training data and fails to generalize.
This is relevant to FM models since the unique solution
in Equation (5) or Equation (10) regarding empirical data
only reproduces training data. The constant σ0(V

ϵ
i ) indi-

cates attraction strength of each training sample—higher
values (from larger weights ai or more isolated points) sug-
gest increased memorization risk. This explains empirical
findings of increased memorization for duplicate samples
in Somepalli et al. (2023), as duplicates raise ai in the em-
pirical distribution. For CIFAR-10 with ϵ = 1.0, the mean
σ0(V

ϵ
i ) across training images is approximately 0.17, corre-

sponding to the final quarter of EDM’s sampling steps (Kar-
ras et al., 2022). This suggests training in this critical final
stage should not target optimality to avoid memorization.

We now provide a more formal connection between the
terminal behavior of the ODE trajectory and the memoriza-
tion phenomenon. For a neural network denoiser mθ

σ, the
corresponding ODE trajectory is:

dxθ
σ

dσ
= − 1

σ
(mθ

σ(xσ)− xθ
σ). (15)

The following result shows that an asymptotically optimally
trained denoiser mθ

σ merely reproduces the training data.

Proposition 5.10 (Memorization of asymptotically optimal
denoiser). Let p =

∑n
i=1 ai δxi , and let mθ

σ : Rd → Rd

be a smooth map. Assume there exists a function ϕ(σ) with
limσ→0 ϕ(σ) = 0 such that ∥mθ

σ(x) − mσ(x)∥ ≤ ϕ(σ)
for all x ∈ Rd. Then, for any i = 1, . . . , n, there exists
σ0(V

ϵ
i , ϕ) > 0 such that for all 0 < σ0 < σ0(V

ϵ
i , ϕ) and

any y ∈ V ϵ
i , the ODE trajectory (xθ

σ)σ∈(0,σ0] for Equa-
tion (15), starting from xσ0

= y, converges to xi as σ → 0.

If further, both limits limσ→0 x
θ
σ and limσ→0 m

θ
σ(x

θ
σ)

known to exist, then limσ→0 ∥mθ
σ(x

θ
σ)− xθ

σ∥ = 0.

This proposition shows that for an FM model to be capable
of generalization, the near-terminal denoiser itself must gen-
eralize—i.e., it must approximate projection onto the true
underlying data manifold rather than simply projecting onto
the training points. This insight motivates careful tuning of
denoiser training near the terminal time. We validate these
insights empirically in both synthetical (Appendix J.1) and
image dataset (Appendix J.2).

6. Discussion
Our study significantly enhances the theoretical foundation
for FM models by establishing a connection between data
geometry and FM ODE dynamics. This leads to interest-
ing practical implications; for example: (1) The FM ODE
trajectory direction’s initial alignment with the mean and
its terminal time convergence suggest one can use more
sparse sampling resources in these stages and reallocate
more resources to the intermediate stage where the denoiser
evolves more significantly which aligns with empirical find-
ings in Esser et al. (2024). (2) The interaction between
flow trajectories and data geometry through attracting and
absorbing behavior reveals how the same dataset can exhibit
distinct sampling trajectories when embedded in different
spaces. This could be utilized to optimize latent space for
improved generation and facilitate stable fine-tuning through
careful adaptation when integrating new data. (3) Identi-
fying the importance of terminal stages in memorization
suggests targeted regularization in training such as regular-
izing the Jacobian of denoiser to avoid collapsing to locally
constant maps; see more discussion in Remark C.3. Look-
ing ahead, we aim to explore these directions to develop
more understanding of memorization versus generalization,
as well as more efficient diffusion models with steerable
generation.

Theoretically, our analysis assumes that X ∼ p and
Z ∼ pprior are independent when constructing the prob-
ability path (pt)t∈[0,1]. It will be intriguing in future work
to investigate whether this analysis can be extended to set-
tings where X and Z are dependent. Such cases naturally
arise, for example, when applying rectification techniques
as in (Liu et al., 2023) or when employing known coupling
methods to enhance flow matching, as explored in (Poola-
dian et al., 2023; Tong et al., 2024).
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A. Table of Symbols and Roadmap of Theoretical Results
In this section, we provide a table of symbols used in the paper and a roadmap of the theoretical results in Figure 4.

Symbol Meaning / Description

Rd d-dimensional Euclidean space.

∥ · ∥ Euclidean norm in Rd.

supp(p) Support of the probability measure p.

X ∼ p Random variable X with distribution p.

M2(p) Second moment of p, i.e.,
∫
∥x∥2p(dx).

diam(Ω) Diameter of a set Ω ⊂ Rd.

Ω Closure of a set Ω.

dΩ(x) Point-to-set distance from x to Ω, i.e., dΩ := infy∈Ω ∥x− y∥.

projΩ(x) Projection of x onto a closed set Ω ⊂ Rd.

conv(Ω) Convex hull of a set Ω.

ΣΩ Medial axis of a closed set Ω ⊂ Rd.

lfsΩ(x) Local feature size of x regarding set Ω, i.e. distance to medial axis ΣΩ.

τΩ Reach of a set Ω ⊂ Rd.

Inj(M) Injectivity radius of a manifold M .

sep(xi) Separation scale w.r.t. a discrete point xi.

δx Dirac delta measure at x.

N (µ,Σ) Gaussian distribution with mean µ and covariance Σ.

p ∗ q Convolution of probability measures p and q.

qσ = p ∗ N (0, σ2I) The blurred (or noisy) distribution at noise level σ.

NNΩ(x), p̂NN(x) Nearest-neighbor set of x in a discrete set Ω, and the measure restricted to that set.

xt A state (trajectory point) indexed by time t ∈ [0, 1] in the FM ODE.

xσ A state (trajectory point) indexed by noise level σ ∈ (0,∞) in the FM ODE.

Xt The random variable αtX + βt Z, where Z ∼ N (0, I).

Xσ The random variable X + σZ, where Z ∼ N (0, I).

p(·|Xt = x), p(·|Xσ = x) Posterior distributions of X given Xt = x and given Xσ = x, respectively.

mσ(x) The denoiser in σ parameter, i.e. E[X |Xσ = x].

mt(x) The denoiser in t parameter (implicitly dependent on αt, βt); i.e. E[X | Xt = x].

∇ log qσ Score function of qσ .

dW,s s-Wasserstein distance.

ut(x) Vector field in the FM ODE for t ∈ [0, 1).

Ψt The flow map of the FM ODE.

pt = (Ψt)#p0 The pushforward distribution of an initial distribution p0 under Ψt.
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Well-posedness in [0, 1)
Thm. 4.1

Absorbing & Attracting
via Denoiser

Thm. C.7, 3.2, C.11, Prop. C.9

Concentration of
Posterior

Thm. D.1, D.5,Prop. D.7

Theoretical Foundations

Initial Stage
(Mean Attraction)

Prop. 4.2

Intermediate Stage
(Cluster Absorption)

Prop. 4.4

Terminal Stage
(Convergence & Memorization)

Thm. 5.3, 5.4 Prop. 5.9, 5.10

ODE Trajectory Stages

Equivariance of Flow Maps
Thm. 5.7

Figure 4. Roadmap of theoretical results. Our analysis builds upon three foundational components: (1) well-posedness of FM ODEs in
[0, 1), establishing existence and uniqueness of trajectories—setting the foundation for subsequent analysis, (2) attracting and absorbing
properties derived from denoiser behavior, and (3) concentration results for posterior distributions. These foundations enable us to
characterize the full evolution of FM ODE trajectories through three distinct stages: initial mean attraction, intermediate cluster absorption,
and terminal convergence with memorization implications. The convergence at terminal time further allows us to establish equivariance
properties of flow maps. Together, these results provide a complete geometric understanding of FM ODE dynamics.

B. Geometric Notions and Results
In this section, we review basic concepts from convex geometry and metric geometry, and establish several results which
will be used in our later proofs. These geometric results are also of independent interest and may be applicable in other
contexts.

B.1. Convex Geometry Notions and Results

In this subsection, we collect some basic notions and results in convex geometry that are used in the proofs. Our main
reference is the book (Hug & Weil, 2020).

We first introduce the definition of a convex set and convex function.
Definition B.1 (Convex set). A set K ⊂ Rd is called a convex set if for any x1, . . . , xn ∈ K and 0 ≤ α1, . . . , αn ≤ 1 such
that

∑n
i=1 αi = 1, we have that

∑n
i=1 αixi ∈ K.

Definition B.2 (Convex function). A function f : Rd → R is called a convex function if for any x, y ∈ Rd and 0 ≤ α ≤ 1,
we have that f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y).

An intermediate result that the sublevel sets {f < c} or {f ≤ c} of a convex function f are convex sets; see Hug & Weil
(2020, Remark 2.6).

We now introduce the definition of the convex hull of a set.
Definition B.3 (Convex hull (Hug & Weil, 2020, Definition 1.3, Theorem 1.2)). The convex hull of a set Ω ⊂ Rd is the
smallest convex set that contains Ω and is denoted by conv(Ω). Additionally, we have that

conv(Ω) =

{
n∑

i=1

αixi : k ∈ N, xi ∈ Ω, αi ∈ [0, 1],

n∑
i=1

αi = 1

}
.
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Let Ω be a set, and x ∈ Ω. We say a hyperplane give by a linear function H is a supporting hyperplane of Ω at x if the
following conditions hold:

1. H(x) = 0.

2. H(y) ≥ 0 for all y ∈ Ω.

For a closed convex set Ω, every boundary point of Ω has a supporting hyperplane.
Proposition B.4 (Supporting hyperplane (Hug & Weil, 2020, Theorem 1.16)). Let K be a closed convex set in Rd and
x ∈ ∂K. Then, there exists a supporting hyperplane of K at x.

We collect some basic properties regarding a convex set K and its distance function dX(x) := infy∈K ∥x− y∥.
Proposition B.5. Let K be a convex set in Rd and Ω be a set in Rd. Then, we have that

1. For each x ∈ Rd, there exists a unique point projK(x) ∈ K such that ∥x− projK(x)∥ = dK(x).

2. The distance function dK(x) is a convex function.

3. For any r ≥ 0, the r-thickening of K, defined as Br(K) := {x ∈ Rd : dK(x) < r}, is a convex set.

4. The diameter of Ω is the same as the diameter of its convex hull, that is diam(Ω) = diam(conv(Ω)).

5. Let a > 0, then a set Ω is convex if and only if a · Ω is convex.

B.2. Metric Geometry Notions and Results

Let Ω ⊂ Rd be a closed subset. Recall that ΣΩ denotes the medial axis of Ω and dΩ : Rd → R is defined by dΩ(x) :=
infy∈Ω ∥x− y∥. We now consider certain properties of the projection function projΩ : Σc

Ω → Ω, where Σc
Ω := Rd\ΣΩ.

We first recall the definition of the local feature size in Amenta & Bern (1998) with a slight generalization that we consider
all points in Rd instead of only points in Ω.
Definition B.6 ((Amenta & Bern, 1998)). For any x ∈ Rd, we define the local feature size lfsΩ(x) of x as lfsΩ(x) := dΣΩ

(x).

For any x ∈ Σc
Ω, we let xΩ := projΩ(x). We consider the following set for any x ∈ Σc

Ω:

TΩ(x) :=

{
t ≥ 0 : projΩ

(
xΩ + t

x− xΩ

∥x− xΩ∥

)
= xΩ.

}
.

Lemma B.7. We have the following characterizations of TΩ(x).

• TΩ(x) is an interval.

• For any t ∈ TΩ(x), we have that xΩ + t x−xΩ

∥x−xΩ∥ /∈ ΣΩ.

• We let RΩ(x) := supTΩ(x). If 0 < RΩ(x) < ∞, we have that xΩ +RΩ(x)
x−xΩ

∥x−xΩ∥ ∈ ΣΩ.

• [0, dΩ(x) + lfsΩ(x)) ⊂ TΩ(x).

Proof of Lemma B.7. The first three items follow from the pioneering work Federer (1959, Theorem 4.8); see also Delfour
& Zolésio (2011, Theorem 6.2) for more details.

We provide a proof for the last item. First of all, it is straightforward to see that [0, dΩ(x)] ⊂ TΩ(x). Now, we assume that
r := RΩ(x) ∈ [dΩ(x), dΩ(x) + lfsΩ(x)). This implies that

xΩ + r
x− xΩ

∥x− xΩ∥
= x+ (r − dΩ(x))

x− xΩ

∥x− xΩ∥
∈ ΣΩ

and hence
lfsΩ(x) = dΣΩ

(x) = dΣΩ
(x) ≤ r − dΩ(x) < lfsΩ(x).

This is a contradiction and hence RΩ(x) ≥ dΩ(x) + lfsΩ(x). This concludes the proof.
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Next, for any point b ∈ Ω, we analyze the angle ∠xxΩb for any b ∈ Ω. The following lemma is a slight variant of Federer
(1959, Theorem 4.8 (7)).

Lemma B.8. For any x ∈ Σc
Ω and any t > 0 such that t ∈ TΩ(x), the following holds for any b ∈ Ω:

⟨x− xΩ, xΩ − b⟩ ≥ −∥xΩ − b∥2∥x− xΩ∥
2t

.

Proof. By definition of TΩ(x), we have that projΩ
(
xΩ + t x−xΩ

∥x−xΩ∥

)
= xΩ. Therefore, we have that∥∥∥∥xΩ + t

x− xΩ

∥x− xΩ∥
− b

∥∥∥∥2 ≥ d2Ω

(
xΩ + t

x− xΩ

∥x− xΩ∥

)
= t2

∥xΩ − b∥2 + 2t

〈
xΩ − b,

x− xΩ

∥x− xΩ∥

〉
+ t2 ≥ t2

2t ⟨xΩ − b, x− xΩ⟩ ≥ −∥xΩ − b∥2∥x− xΩ∥

⟨x− xΩ, xΩ − b⟩ ≥ −∥xΩ − b∥2∥x− xΩ∥
2t

When Ω is convex, then TΩ(x) = [0,∞). In this way, we have the following corollary.

Corollary B.9. If Ω is convex, then for any b ∈ Ω and any x ∈ Rd we have that ⟨x− xΩ, xΩ − b⟩ ≥ 0.

This control of the angle ∠xxΩb allows us to derive the following result that bounds the distance between b ∈ Ω and the
projection xΩ = projΩ(x) in terms of the distance between b and x.

Lemma B.10. For any x ∈ Σc
Ω and any t > 0 such that t ∈ TΩ(x), we have that for any b ∈ Ω,

∥x− b∥2 ≥ dΩ(x)
2 + ∥b− xΩ∥2

(
1− dΩ(x)

t

)
.

Proof. The case when x ∈ Ω trivially holds. Below we consider the case when x ∈ Σc
Ω ∩ Ωc. In this case, dΩ(x) > 0 as Ω

is a closed set.

By the law of cosines, we have that

cos(∠xxΩb) =
dΩ(x)

2 + ∥b− xΩ∥2 − ∥x− b∥2

2dΩ(x)∥b− xΩ∥

Suppose ∥x− b∥2 < dΩ(x)
2 + ∥b− xΩ∥2(1− dΩ(x)

t ), then we have that

cos(∠xxΩb) =
dΩ(x)

2 + ∥b− xΩ∥2 − ∥x− b∥2

2dΩ(x)∥b− xΩ∥

>
∥dΩ(x)2 + ∥b− xΩ∥2 − dΩ(x)

2 − ∥b− xΩ∥2 + ∥b− xΩ∥2 dΩ(x)
t

2dΩ(x)∥b− xΩ∥

=
∥b− xΩ∥2

2t
.

By applying Lemma B.8 to b and x, we have that

⟨x− xΩ, xΩ − b⟩ ≥ −∥xΩ − b∥2∥x− xΩ∥
2t

.

This implies the following estimate for the cosine of the angle ∠xxΩb:

cos(∠xxΩb) =
⟨x− xΩ, b− xΩ⟩
∥x− xΩ∥∥b− xΩ∥

≤ ∥xΩ − b∥2

2t
.
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This contradicts the inequality above and hence we must have that

∥x− b∥2 ≥ dΩ(x)
2 + ∥b− xΩ∥2

(
1− dΩ(x)

t

)
.

We then have the following corollary which will be used in the proof of Theorem D.1.

Corollary B.11. Fix any x ∈ Σc
Ω, any t ∈ [dΩ(x), dΩ(x) + lfsΩ(x)) and any ϵ > 0. Then, we have that

B√
dΩ(x)2+ϵ2(1−dΩ(x)/t)

(x) ∩ Ω ⊆ Bϵ(xΩ) ∩ Ω.

Proof. For any b ∈ B√
dΩ(x)2+ϵ2(1−dΩ(x)/t)

(x) ∩ Ω, we have that

∥x− b∥2 < dΩ(x)
2 + ϵ2

(
1− dΩ(x)

t

)
.

By Lemma B.10, we have that

∥x− b∥2 ≥ dΩ(x)
2 + ∥b− xΩ∥2

(
1− dΩ(x)

t

)
.

Combining the two inequalities, we have that ∥b− xΩ∥2 < ϵ2 and hence b ∈ Bϵ(xΩ) ∩ Ω.

Finally, we derive the local Lipschitz continuity of the projection function.

Lemma B.12 (Local Lipschitz continuity of the projection). For any ϵ > 0 and for any x, y ∈ Rd such that lfsΩ(x) > ϵ
and lfsΩ(y) > ϵ, we have that

∥xΩ − yΩ∥ ≤
(
max{dΩ(x), dΩ(y)}

ϵ
+ 1

)
∥x− y∥.

Proof. Since lfs(x) > ϵ and lfsΩ(y) > ϵ, by Lemma B.7 we have that

projΩ

(
xΩ + (ϵ+ dΩ(x))

x− xΩ

∥x− xΩ∥

)
= xΩ

and

projΩ

(
yΩ + (ϵ+ dΩ(y))

y − yΩ
∥y − yΩ∥

)
= yΩ.

By applying Lemma B.8 to x, xΩ, yΩ and separately to y, yΩ, xΩ, we have that

⟨xΩ − yΩ, x− xΩ⟩ ≥ − ∥xΩ − yΩ∥2

2 (ϵ+ dΩ(x))
dΩ(x),

⟨yΩ − xΩ, y − yΩ⟩ ≥ − ∥xΩ − yΩ∥2

2 (ϵ+ dΩ(y))
dΩ(y).

By adding the two inequalities about the inner products, we have that

⟨xΩ − yΩ, x− xΩ − y + yΩ⟩ ≥ − ∥xΩ − yΩ∥2

2 (ϵ+ dΩ(x))
dΩ(x)−

∥xΩ − yΩ∥2

2 (ϵ+ dΩ(y))
dΩ(y),

⟨xΩ − yΩ, x− y⟩ − ∥xΩ − yΩ∥2 ≥ − ∥xΩ − yΩ∥2

2 (ϵ+ dΩ(x))
dΩ(x)−

∥xΩ − yΩ∥2

2 (ϵ+ dΩ(y))
dΩ(y),

⟨xΩ − yΩ, x− y⟩ ≥ ∥xΩ − yΩ∥2 −
∥xΩ − yΩ∥2

2 (ϵ+ dΩ(x))
dΩ(x)−

∥xΩ − yΩ∥2

2 (ϵ+ dΩ(y))
dΩ(y).
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Let m = max{dΩ(x), dΩ(y)}, then we have that

0 < 1− m

m+ ϵ
≤
(
1− dΩ(x)

2 (ϵ+ dΩ(x))
− dΩ(y)

2 (ϵ+ dΩ(y))

)
.

Therefore, by Cauchy-Schwarz inequality, we have that

∥xΩ − yΩ∥2
(
1− m

m+ ϵ

)
≤ ⟨xΩ − yΩ, x− y⟩ ≤ ∥xΩ − yΩ∥∥x− y∥.

This implies ∥xΩ − yΩ∥ ≤
(
m+ϵ
ϵ

)
∥x− y∥.

B.2.1. DIFFERENTIABILITY OF THE DISTANCE FUNCTION

Let Ω ⊂ Rd be any closed subset. For any x ∈ Rd, we let PΩ(x) := {y ∈ Ω : ∥x− y∥ = dΩ(x)} denote the set of points
in Ω that achieve the infimum. When x is not in the medial axis of Ω, the set PΩ(x) is the singleton set {projΩ(x)}.

Interestingly, there is the following result result showing the existence of one sided directional derivatives for dΩ by de Mises
(1937) (see also Białożyt (2023) for a more recent English treatment).
Lemma B.13 ((de Mises, 1937)). For any vector v ∈ Rd, the one-sided directional derivative of dΩ at x ∈ Rd\Ω in the
direction v exists and is given by

DvdΩ(x) = inf

{
−⟨v, y − x⟩

∥y − x∥
: y ∈ PΩ(x)

}
.

Motivated by the this result, we mimick the proof and establish the following result for the squared distance function d2Ω.
Notice that, we can remove the constraint for x /∈ Ω.
Lemma B.14. For any x ∈ Rd\ΣΩ, the directional derivative of d2Ω at x exists and is given by

Dvd
2
Ω(x) = −2⟨v,projΩ(x)− x⟩.

Proof. Without loss of generality, we assume that x = 0 is the origin and v = (c, 0, . . . , 0) for some c > 0 (one can achieve
these by applying rigid transformations).

We let xΩ = projΩ(x), xt = tv and x∗
t = projΩ(xt). Since ∥x∗

t − xt∥ ≤ ∥xΩ − xt∥, we have that

∥x∗
t ∥2 − ∥xΩ∥2 ≤ 2ct(x

∗,(1)
t − x

∗,(1)
0 ),

where x
∗,(1)
t denotes the first coordinate of x∗

t . Note that ∥x∗
t ∥ = ∥x∗

t − x∥ ≥ ∥xΩ − x∥ = ∥xΩ∥. So we have that

0 ≤ x
∗,(1)
t − x

∗,(1)
0 .

Now we have that by the cosine rule of the triangle formed by xt = tv, x = 0 and x∗
t , we have that

d2Ω(xt) = ∥x∗
t ∥2 + t2c2 − 2t⟨v, x∗

t − x⟩.

Therefore, we have that

d2Ω(xt)− d2Ω(x)

t
=

∥x∗
t ∥2 − ∥xΩ∥2

t
− 2⟨v, x∗

t − x⟩.

As discussed above, we have that

0 ≤ ∥x∗
t ∥2 − ∥xΩ∥2

t
≤ 2c(x

∗,(1)
t − x

∗,(1)
0 ).

By continuity of projΩ outside ΣΩ, we have that x∗
t → x∗ as t → 0. Therefore, we have that

lim
t→0

d2Ω(xt)− d2Ω(x)

t
= −2⟨v, x∗ − x⟩ = −2⟨v,projΩ(x)− x⟩.

Corollary B.15. Let (xt)t be a differentiable curve in x ∈ Rd\ΣΩ, then we have that d2Ω(xt) is differentiable with respect
to t and we have that

d

dt
d2Ω(xt) = Dẋt

d2Ω(xt) = −2⟨ẋt,projΩ(xt)− xt⟩.
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C. Denoiser and FM ODE: Singularity, Attracting and Absorbing
C.1. Basics About the Denoiser

Well-definedness of the denoiser. Although denoisers have been widely used in various works, their well-definedness
has not been rigorously established in the literature—specifically, whether the integral defining the conditional mean
E[X|Xt = x] exists. We address this gap in the following proposition.
Proposition C.1. If p has a finite 1-moment, then p(·|Xt = x) also has a finite 1-moment for any t ∈ [0, 1), making
mt(x) := E[X|Xt = x] well-defined. The same applies to mσ for σ ∈ (0,∞).

Proof of Proposition C.1. For the normalizing factor Z =
∫
exp

(
−∥x−αty

′∥2

2β2
t

)
p(dy′), we note that 0 <

exp
(
−∥x−αty

′∥2

2β2
t

)
≤ 1. Hence, the factor Z must be positive and bounded.

Now, we consider the following integral∫
exp

(
−∥x− αty∥2

2β2
t

)
∥y∥p(dy) ≤

∫
∥y∥p(dy) < ∞.

The last inequality follows from the fact that p has a finite 1-moment. Hence, the posterior distribution p(·|Xt = x) has a
finite 1-moment and the denoiser mt is well-defined.

An alternative parametrization for σ. The backward integration w.r.t. σ in Equation (7) might be cumbersome in analysis
and we alternatively use the parameter λ := − log(σ). We let σ(λ) denote the inverse function. Then, when σ changes
from ∞ to 0, λ changes from −∞ to ∞. For an ODE trajectory (xσ)σ∈(0,∞), we define (xλ := xσ(λ))λ∈(−∞,∞). For any
x ∈ Rd, we define mλ(x) := mσ(λ)(x). Then, the ODE in λ has a concise form:

dxλ

dλ
= mλ(xλ)− xλ. (16)

Proof of Equation (16). Since λ = − log σ, we have that

dλ

dσ
= − 1

σ

and thus the ODE equation Equation (11) becomes

dxλ

dλ
=

dxσ(λ)

dσ

dσ

dλ
= −σ∇ log qσ(xσ) · (−σ)

= −xσ +

∫
y exp

(
−∥xσ−y∥2

2σ2

)
p(dy)∫

exp
(
−∥xσ−y′∥2

2σ2

)
p(dy′)

= mλ(xλ)− xλ.

Jacobians of the denoiser and data covariance. We point out that the denoiser, under some mild condition on the
data distribution p, is differentiable and its Jacobian is inherently connected with the covariance matrix of the posterior
distribution p(·|Xt = x) (or p(·|Xσ = x)). Similar formulas for computing the Jacobian have been utilized before for
various purposes; see, for example, Zhang et al. (2024, Lemma B.2.1), Gao et al. (2024, Lemma 4.1), Ben-Hamu et al.
(2024, Proposition 4.1) and Rissanen et al. (2025, Equation (8)). Moreover, the covariance formula in Proposition C.2 is a
direct consequence of higher order generalization of Tweedie’s formula, which has been studied in previous works (see, e.g.,
Efron (2011), Meng et al. (2021)).
Proposition C.2. Assume that p has a finite 2-moment. For any t ∈ [0, 1), we have that mt is differentiable. In particular,
the Jacobian ∇xmt can be explicitly expressed as follows for any x ∈ Rd:

∇xmt(x) =
αt

2β2
t

∫∫
(z − z′)(z − z′)T p(dz|Xt = x)p(dz′|Xt = x)

=
αt

β2
t

Cov[X|Xt = x].
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Furthermore, if we let σ = σt, then for any σ ∈ (0,∞):

∇xmσ(x) =
1

2σ2

∫∫
(z − z′)(z − z′)T p(dz|Xσ = x)p(dz′|Xσ = x)

=
1

σ2
Cov[X|Xσ = x].

Proof of Proposition C.2. Recall that

mt(x) =

∫
exp

(
−∥x−αtz∥2

2β2
t

)
z p(dz)∫

exp
(
−∥x−αtz∥2

2β2
t

)
p(dz)

and p(dz|Xt = x) =
exp

(
−∥x−αtz∥2

2β2
t

)
p(dz)∫

exp
(
−∥x−αtz∥2

2β2
t

)
p(dz)

.

We let wt(x, z) := exp
(
−∥x−αtz∥2

2β2
t

)
. Then,

∇xmt(x) =

∫
z∇x

 exp
(
−∥x−αtz∥2

2β2
t

)
∫
exp

(
−∥x−αtz′∥2

2β2
t

)
p(dz′)

 p(dz)

=

(∫
wt(x, z

′)p(dz′)

)−2 ∫
z

(
wt(x, z)

(
−x− αtz

β2
t

)T ∫
wt(x, z

′)p(dz′)

)
p(dz)

−
(∫

wt(x, z
′)p(dz′)

)−2 ∫
z

(
wt(x, z)

∫
wt(x, z

′)

(
−x− αtz

′

β2
t

)T

p(dz′)

)
p(dz)

=

(∫
wt(x, z

′)p(dz′)

)−2 ∫∫
wt(x, z)wt(x, z

′)z

(
−x− αtz

β2
t

+
x− αtz

′

β2
t

)T

p(dz)p(dz′)

=
αt

β2
t

(∫
wt(x, z

′)p(dz′)

)−2 ∫∫
wt(x, z)wt(x, z

′)z (z − z′)
T
p(dz)p(dz′)

=
αt

2β2
t

(∫
wt(x, z

′)p(dz′)

)−2 ∫∫
wt(x, z)wt(x, z

′)(z − z′) (z − z′)
T
p(dz)p(dz′)

=
αt

2β2
t

∫∫
(z − z′)(z − z′)T p(dz|Xt = x)p(dz′|Xt = x).

The second equation follows from a similar calculation.

Remark C.3. We have established in Corollary D.3 that for any x /∈ ΣΩ (where ΣΩ denotes the medial axis of the support Ω
of p), the denoiser satisfies

mt(x) → projΩ(x) as t → 1.

We conjecture that a similar convergence holds for the Jacobian, that is,

∇xmt(x) → ∇xprojΩ(x) as t → 1.

Note that when Ω is a discrete set, the projection projΩ(x) is locally constant almost everywhere, so its Jacobian ∇xprojΩ(x)
is identically zero. This suggests a potential pitfall: if ∇xmt(x) also collapses to zero, the model may effectively “memorize”
training points. Regularizing ∇xmt(x) to prevent such collapse could thus help mitigate memorization.

C.2. Denoiser and ODE Dynamics: Terminal Time Singularity

The terminal time is referred to as the time t = 1 (or σ = 0, λ → ∞) in the FM model. The convergence of the ODE
trajectory at the terminal time relies on the terminal time regularity of the vector field. We now elucidate two types of
singularities of the vector field that arise at the terminal time in the FM model, one due to the ODE formulation and the
other due to the data geometry.
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Singularity due to the ODE formulation. Recall that the vector field ut is given by

ut(x) =
β̇t

βt
x+

α̇tβt − αtβ̇t

βt
E[X|Xt = x].

Since the denominator βt approaches 0 as t → 1, the vector field ut faces an issue of division by zero when approaching the
terminal time. Similarly, the vector field in σ formulation is given by − 1

σ (mσ(x)− x), which also faces the same issue
when σ → 0. This singularity is intrinsic to the flow matching ODE formulation. In the following proposition, we show that
when the data distribution p is not fully supported, the limit limt→1 ∥ut(x)∥ diverges to infinity for almost all x outside the
support of p, whereas it remains bounded when p is fully supported.

Proposition C.4. Assume that α, β : [0, 1] → R are smooth, and α̇1, β̇1 exist and are non zero. Let Ω := supp(p) and let
ΣΩ denote its medial axis. Then, we have the following properties:

• If p is fully supported, i.e., Ω = Rd, and has a Lipschitz density, then for any x ∈ Rd, the vector field ut(x) is uniformly
bounded for all t ∈ [0, 1).

• If p is not fully supported, i.e., Ω ̸= Rd, then for any x /∈ Ω ∪ ΣΩ, limt→1 ∥ut(x)∥ = ∞.

Proof of Proposition C.4. Let Ω := supp(p). Recall that

ut(x) = (log βt)
′x+ βt (αt/βt)

′
mt(x)

= β̇t
x− αtmt(x)

βt
+ α̇tmt(x).

Then, we have that

∥mt(x)− projΩ(x)∥ ≤ ∥mσt(x/αt)− projΩ(x/αt)∥+ ∥projΩ(x/αt)− projΩ(x)∥.

By Lemma B.12, there exists a positive constant Cx such that ∥projΩ(x)− projΩ(y)∥ ≤ Cx∥x− y∥ for any y close to x.
Therefore,

∥projΩ(x/αt)− projΩ(x)∥ ≤ Cx

∥∥∥∥ x

αt
− x

∥∥∥∥ = O(1− αt).

Now, when Ω = Rd, by Corollary D.6, we have that

∥mσt(x/αt)− projΩ(x/αt)∥ = O(σt) = O(βt).

In this case, projΩ(x) = x. This implies that for t close to 1, we have that

∥∥∥∥x− αtmt(x)

βt

∥∥∥∥ ≤ O

(
1− αt

βt

)
+O(1).

The right hand side is bounded since limt→1
1−αt

βt
= limt→1

−α̇t

β̇t
= −α̇1

β̇1
exists. Therefore, the vector field ut(x) is

uniformly bounded for all t ∈ [0, 1).

If Ω ̸= Rd and x /∈ Ω∪ΣΩ, then projΩ(x) ̸= x. By Corollary D.3, we have that mt(x) → projΩ(x) as t → 1. This implies
that ∥x− αtmt(x)∥ → ∥x− projΩ(x)∥ > 0. Then, as the denominator βt → 0, we have that limt→1 ∥ut(x)∥ = ∞.

Another way to interpret the singularity in the ODE formulation is through the transformation of the ODE in terms of σ in
Equation (16), where the singularity arises due to the presence of the 1/σ term.

A seemingly straightforward approach to addressing this blowup is to reformulate the ODE in terms of λ as given in
Equation (16):

dxλ

dλ
= mλ(xλ)− xλ, λ ∈ (−∞,∞),
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with the terminal time being λ → ∞. In this formulation, there is no denominator approaching zero, seemingly eliminating
the singularity. However, for the ODE trajectory to converge as λ → ∞, a necessary condition is that limλ→∞ ∥mλ(xλ)−
xλ∥ = 0. This is precisely what we establish in proving our convergence result in Theorem 5.3.

Singularity due to the data geometry. When p is not fully supported, the medial axis ΣΩ of the data support plays a crucial
role in the singularity of the denoiser mσ which results in discontinuity of the limit limσ→0 mσ(x). In this case, when the
ODE is transformed into the λ, the vector field uλ does not have a uniform Lipschitz bound for all λ ∈ (a,∞) and hence
the typical ODE theory such as Picard-Lindelöf theorem can not be directly applied to analyze the flow matching ODEs.
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x
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Figure 5. The denoiser mσ(x) for the two point example with various σ.

The discontinuity behavior can be illustrated by the following simple example of a two-point data distribution which can be
easily extended to higher dimensions.
Example C.5. Let p = 1

2δ−1 +
1
2δ1 be a probability measure on R1. Then, the support Ω := supp(p) = {−1, 1} is just a

two-point set. The medial axis is the singleton ΣΩ = {0} whose distance to either point is 1. Now, we can explicitly write
down the denoiser mσ as follows:

mσ(x) =
− exp

(
− (x+1)2

2σ2

)
+ exp

(
− (x−1)2

2σ2

)
exp

(
− (x+1)2

2σ2

)
+ exp

(
− (x−1)2

2σ2

) . (17)

Notice that when σ approaches 0,

• The denoiser mσ is converging to the function f : R1 → {−1, 0, 1} with f(x) =


1 x > 0

0 x = 0

−1 x < 0

.

• A singularity of mσ is emerging at ΣΩ = {0}: the derivative dmσ(0)
dx is blowing up when σ → 0.

A full characterization of the limit limσ→0 mσ(x) for discrete data distribution will be given in Appendix D where the
discontinuity often arises at the medial axis of the data support. All these singularities pose challenges in theoretical analysis
of the flow matching ODEs and particularly in the convergence of the ODE trajectory when approaching the terminal time.
The data geometry singularity is more challenging to handle, especially the discontinuity behavior of the limit of the denoiser
near the medial axis.

Our resolution of the convergence of FM ODE trajectory (Theorem 5.3) will be based on the attracting and absorbing
property of the ODE dynamics so that the trajectory will avoid the singularities and converge to the data support.

C.3. Denoiser and ODE Dynamics: Attracting and Absorbing

The following result on the convergence of ODE under asymptotically vanishing perturbation will be used often in the
proofs of this section.
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Lemma C.6. Let (yt ≥ 0)t∈[t1,∞) be a differentiable trajectory of non-negative real numbers satisfying the following
differential inequality

d yt
dt

≤ −k yt + ϕ(t),

where k > 0 and ϕ : R → R. Then, we have:

1. For any t2 > t1 we have that

yt2 ≤ e−k(t2−t1)yt1 +

∫ t2

t1

e−k(t2−t)ϕ(t)dt.

2. If limt→∞ ϕ(t) = 0, then limt→∞ yt = 0;

Proof of Lemma C.6. By multiplying the integrating factor ekt, we have that

d ektyt
dt

= ekt
d yt
dt

+ kektyt ≤ ϕ(t)ekt.

Then for all t2 > t1, we have

ekt2yt2 ≤ ekt1yt1 +

∫ t2

t1

ektϕ(t)dt,

yt2 ≤ e−k(t2−t1)yt1 +

∫ t2

t1

e−k(t2−t)ϕ(t)dt.

This proves Item 1.

For Item 2, we will first show that yt is bounded. As ϕ(t) decays to zero as t goes to infinity, so will be |ϕ(t)|, and hence
there exists some constant C > 0 such that |ϕ(t)| ≤ C for all t ≥ t1. Then, we have that

yt2 ≤ e−k(t2−t1)yt1 + C

∫ t2

t1

e−k(t2−t)dt,

≤ e−k(t2−t1)yt1 +
C

k
(1− e−k(t2−t1)),

≤ e−k(t2−t1)yt1 +
C

k
.

Hence, yt is bounded for all t ≥ t1, and we denote by Cy > 0 any bound for yt.

Next, we show that yt converges to zero as t goes to infinity. For any ϵ > 0, there is a sufficient large tϵ > t1 such that

1. e−ktϵCy < ϵ/2.

2. |ϕ(t)| < ϵ/2 for all t ≥ tϵ.

Then for all t2 > 2tϵ, by integrating the inequality from tϵ to t2, we have that

yt2 ≤ e−k(t2−tϵ)ytϵ +

∫ t2

tϵ

e−k(t2−t)ϕ(t)dt,

≤ e−k(tϵ)Cy + ϵ/2

∫ t2

tϵ

e−k(t2−t)dt,

≤ ϵ/2 + ϵ/2(1− e−k(t2−tϵ)),

≤ ϵ.

This implies that yt converges to zero as t goes to infinity.
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Attracting toward sets. Let Ω be a closed set in Rd. We want to examine the distance to Ω along the ODE trajectory
(xσ)σ∈(σ2,σ1] with some σ1 > σ2. Assume that the trajectory avoids the medial axis of Ω then the distance of xσ to Ω will
decrease as σ decreases if the trajectory direction 1

σ (mσ(xσ)− xσ) forms an acute angle with the direction pointing toward
Ω, that is

⟨mσ(xσ)− xσ,projΩ(xσ)− xσ⟩ > 0.

Notice that one has

⟨mσ(xσ)− xσ,projΩ(xσ)− xσ⟩ = ⟨mσ(xσ)− projΩ(xσ),projΩ(xσ)− xσ⟩+ ∥projΩ(xσ)− xσ∥2. (18)

Hence, whenever xσ /∈ Ω, ∥projΩ(xσ)− xσ∥ > 0 and the acute angle condition will be satisfied if the term ⟨mσ(xσ)−
projΩ(xσ),projΩ(xσ)− xσ⟩ is not too negative. This intuition is formalized in the following theorem, which is the formal
version of Theorem 3.1.

Theorem C.7 (Attracting toward sets). Let (xσ)σ∈(σ2,σ1] be an ODE trajectory of Equation (11) starting from some xσ1 .
Assume that the trajectory avoids the medial axis of a closed Ω then we have the following results.

1. If ⟨mσ(xσ) − projΩ(xσ),projΩ(xσ) − xσ⟩ ≤ ζ∥xσ − projΩ(xσ)∥2 for some 0 ≤ ζ < 1 along the trajectory, then
dΩ(xσ) decreases along the trajectory with rate:

dΩ(xσ) ≤
σ1−ζ

σ1−ζ
1

dΩ(xσ1),

In particular, if σ2 = 0, then dΩ(xσ) is guaranteed to converge to zero as σ → 0.

2. If σ2 = 0 and |⟨mσ(xσ) − projΩ(xσ),projΩ(xσ) − xσ⟩| ≤ ϕ(σ) for some function ϕ(σ) along the trajectory with
limσ→0 ϕ(σ) = 0, then

lim
σ→0

dΩ(xσ) = 0.

Remark C.8. In fact, when considering the parameter λ = − log(σ) and the trajectory zλ := xσ(λ), we obtain the following
convergence rate for Item 2 in the above theorem:

dΩ(zλ) ≤ e−(λ−λ1)dΩ(zλ1) + e−λ

√∫ λ

λ1

2e2tϕ(e−t)dt.

Proof of Theorem C.7 and Remark C.8. We consider the change of variable λ = − log(σ). We let zλ := xσ(λ) for all
λ ∈ [λ1 := λ(σ1), λ2 := λ(σ2)]. Then, (zλ)λ∈[λ1,λ2] satisfies the nice ODE as in Equation (16). By assumption we have
that zλ1

is outside the convex set Ω. For any λ ∈ [λ1, λ2], by Corollary B.15 we have that

d

dλ
d2Ω(zλ) = −2⟨zλ − projΩ(zλ), zλ −mλ(zλ)⟩

= −2 (⟨zλ − projΩ(zλ), zλ − projΩ(zλ)⟩+ ⟨zλ − projΩ(zλ),projΩ(zλ)−mλ(zλ)⟩) .

For the first item, we have that d
dλd

2
Ω(zλ) ≤ −2d2Ω(zλ). Multiplying with the exponential integrator e2(1−ζ)λ, we have that

d

dλ
(e2(1−ζ)λd2Ω(zλ)) ≤ 0.

Then for any λ ∈ [λ1, λ2], we have that

d2Ω(zλ) ≤ e−2(1−ζ)(λ−λ1)d2Ω(zλ1
).

Using the change of variable, we have that

dΩ(zλ) ≤
σ1−ζ

σ1−ζ
1

dΩ(zλ1).
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For the second item, we have that

d

dλ
d2Ω(zλ) ≤ −2d2Ω(zλ) + 2ϕ(e−λ).

Then we can apply Item 2 of Lemma C.6 to obtain limλ→∞ d2Ω(zλ) = 0. This implies that limσ→0 d
2
Ω(xσ) = 0.

We then apply Item 1 of Lemma C.6 to obtain that for any λ ≥ λ1:

d2Ω(zλ) ≤ e−2(λ−λ1)d2Ω(zλ1
) + 2

∫ λ

λ1

e−2(λ−t)ϕ(e−t)dt.

Using the fact that
√
a+ b ≤

√
a+

√
b for any a, b ≥ 0, we have that

dΩ(zλ) ≤ e−(λ−λ1)dΩ(zλ1) + e−λ

√∫ λ

λ1

2e2tϕ(e−t)dt.

This proves Remark C.8

Absorbing by sets. Now, we prove the absorbing Theorem 3.2 below.

Proof of Theorem 3.2. We will utilize the parameter λ for this proof with which we consider the ODE trajectory (zλ :=
xσ(λ))λ∈[λ1,λ2) of Equation (16) with λ1 = − log(σ1) and λ2 = − log(σ2).

For Item 1, we will show that the trajectory zλ must stay inside Br(Ω) for all λ ∈ [λ1, λ2) whenever zλ1
∈ Br(Ω). Suppose

otherwise then there exists some first time λo > λ1 such that zλo
∈ ∂Br(Ω). By the assumption that Br(Ω) ∩ ΣΩ = ∅, we

can apply Lemma B.14 to obtain the derivative of the squared distance function along the trajectory for any λ ∈ [λ1, λo]:

d

dλ
d2Br(Ω)(zλ) = −2⟨mλ(zλ)− zλ,projΩ(zλ)− zλ⟩.

This implies that d
dλd

2
Br(Ω)(zλo) < 0. By the continuity of the derivative above, we have that d

dλd
2
Br(Ω)(zλ) < 0 for all

λ ∈ [λo − ϵ, λo] for some ϵ > 0. Note that d2Ω(zλo
) = r2 and d2Ω(zλo−ϵ) < r2. Then by the mean value theorem, there

exists some λi ∈ (λo − ϵ, λo) such that d
dλd

2
Br(Ω)(zλi

) > 0. This leads to a contradiction and hence the trajectory zλ must
stay inside Br(Ω) for all λ ∈ [λ1, λ2), which concludes the proof.

The second part of the theorem follows straightforwardly from the fact that Ω is a closed set. If a trajectory starts from Ω
but leaves Ω at some point, it must also leave a neighborhood of Ω, which would contradict the given assumption. This
completes the proof.

We now describe how we will use the above absorbing property for convex sets which will be used often in results
in Sections 4 and 5.2, and how its generalization will be used to analyze the convergence of the flow matching ODEs
in Section 5.1.

For a convex set K, its the medial axis ΣK is empty (see e.g. Item 1 of Proposition B.5) and if we assume that the denoiser
mσ lies in K for any x ∈ ∂Br(K) then any neighborhood of K will be absorbing for the ODE trajectory. We also obtain an
stronger result regarding when the set K itself is absorbing.

Proposition C.9 (Absorbing of convex sets). Let K be a closed convex set in Rd. Let (xσ)σ∈(σ2,σ1] be an ODE trajectory
of Equation (11). Then, we have the following results.

1. For any r > 0, if mσ(x) ∈ K for any x ∈ ∂Br(K) and any σ ∈ (σ2, σ1], then Br(K) is absorbing for (xσ)σ∈(σ2,σ1].

2. If the interior K◦ of K is not empty and mσ(x) ∈ K◦ for any x ∈ ∂K and any σ ∈ (σ2, σ1], then K is absorbing for
(xσ)σ∈(σ2,σ1].
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Proof of Proposition C.9. For the first item, for any x ∈ ∂Br(K), since mσ(x) lies in the convex set K, we can apply Item
2 of Corollary B.9 to conclude

⟨mσ(x)− projK(x),projK(x)− x⟩ ≥ 0.

Then there is

⟨mσ(x)− x,projK(x)− x⟩ = ⟨mσ(x)− projK(x),projK(x)− x⟩+ ∥projK(x)− x∥2 ≥ r2 > 0.

We then apply Theorem 3.2 to conclude that Br(K) is absorbing for (xσ)σ∈(σ2,σ1].

For the second item, the distance function d2K(x) does not distinguish between the interior and the boundary of K and
we utilize the supporting hyperplane function instead. Assume the trajectory (xσ)t∈(σ2,σ1] leaves K at some first time
σo ∈ (σ2, σ1]. Then, in particular, xσ ∈ K for all σ ∈ [σo, σ1] and xσo ∈ ∂K. In terms of the parameter λ = − log(σ),
we have zλ ∈ [λ1 := − log(σ1), λo := − log(σo)] and zλo

∈ ∂K. Since K is a closed convex set, there exist a supporting
hyperplane H at zλo

such that H(zλo
) = 0 and H(y) ≥ 0 for all y ∈ K (see Proposition B.4). In particular, we can

write H(y) = ⟨y − zλo
, n⟩, where n is the unit normal vector of the hyperplane. Since zλ ∈ K for all λ ∈ [λo, λ1] and

H(zλo
) ≤ H(zλ) for all λ ∈ [λo, λ1], we must have that dH(zλ)

dλ |λ=λ−
o
≤ 0. Therefore, we have that

dH(zλ)

dλ
|λ=λ−

o
=

〈
dzλ
dλ

|λ=λo
, n

〉
= ⟨mλo

(zλo
)− zλo

, n⟩ ≤ 0.

Since mλo
(zλo

) lies in the interior of K, we must have that ⟨mλo
(zλo

) − zλo
, n⟩ > 0. This leads to a contradiction and

hence the trajectory zλ must stay inside K for all λ ∈ [λ1, λ2).

Remark C.10. When Ω is not convex, a typical way to show the acute angle condition is by requiring ∥mσ(x)− projΩ(x)∥
to be small enough on ∂Br(Ω) for all σ ∈ (σ2, σ1]. This can be seen by the following computation:

⟨mσ(xσ)− xσ,projΩ(xσ)− xσ⟩ = ⟨mσ(xσ)− projΩ(xσ),projΩ(xσ)− xσ⟩+ ∥projΩ(xσ)− xσ∥2 (19)

≥ −∥mσ(xσ)− projΩ(xσ)∥∥projΩ(xσ)− xσ∥+ ∥projΩ(xσ)− xσ∥2. (20)

Furthermore, once the absorbing property is established, it guarantees that dΩ(xσ) = ∥projΩ(xσ)− xσ∥ to be bounded for
a trajectory in consideration. In this case, the condition in Item 2 of the attracting theorem Theorem C.7 can be derived from
the decay of ∥mσ(xσ)− projΩ(xσ)∥ as

|⟨mσ(xσ)− projΩ(xσ),projΩ(xσ)− xσ⟩| ≤ ∥mσ(xσ)− projΩ(xσ)∥∥projΩ(xσ)− xσ∥.

These type of arguments will be utilize in Section 4.3 and Section 5.2 when discussing the ODE dynamics of the flow
matching ODEs.

When Ω is unbounded, e.g the support of a general distribution, it would require much more assumptions for us to control the
term ∥mσ(xσ)− projΩ(xσ)∥ uniformly on the boundary. As one way to circumvent this issue, we consider the intersection
of Br(Ω) with a bounded set and establish the absorbing property of the bounded subset. This is formalized in the following
result.

Theorem C.11 (Absorbing of data support). Fix any small 0 < δ < τΩ/4 and any 0 < ζ < 1. Assume that there exists a
constant σΩ > 0 such that for any R > 1

2τΩ and for any z ∈ BR(0) ∩BτΩ/2(Ω), one has that

∥mσ(z)− projΩ(z)∥ ≤ Cζ,τ,R · σζ , for all 0 < σ < σΩ.

where Cζ,τ,R is a constant depending only on ζ and τ and R.

Then, there exists σδ ≤ σΩ dependent on δ, ζ and Cζ,τ,R satisfying the following property for any R > 2δ: The trajectory
(xσ)σ∈(0,σδ] starting at any initial point xσδ

∈ BR(0) ∩Bδ(Ω) of the ODE in Equation (11) will be absorbed in a slightly
larger space: for any σ ≤ σδ: xσ ∈ B2R(0) ∩B2δ(Ω).

Note that this absorbing result is slightly different from Theorem 3.2, where the neighborhood of the data support Ω must be
enlarged from δ to 2δ (and R to 2R) to guarantee the absorbing property. This subtle difference arises from the additional
treatment in the proof to account for the bounded ball BR(0) in the above theorem.
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Proof of Theorem C.11. Similarly as in the proofs of other theorems in this section, we consider the change of variable
λ = − log(σ) and zλ := xσ(λ).

We let C := Cζ,τ,2R and define (one can see how the definition is motivated from the following proof)

λδ := max

{
−1

ζ
·min

{
log

(
δζ

2C

)
, 2 log

(
ζ

8

√
(2− ζ)δ

C

)
, log

(
δ(2− ζ)

4C

)}
,Λ

}
.

Then, σδ := e−λδ .

By continuity of the ODE path, there exists a maximal interval I = [λδ,Λδ] so that for any λ ∈ I , zλ ∈ B2R(0) ∩B2δ(Ω)
where the overline indicates the closure of the underlying set. Now, we show that Λδ must be infinity by showing that
otherwise zΛδ

lies in the interior, i.e., zΛδ
∈ B2R(0) ∩ B2δ(Ω) and hence the trajectory will be able to extend within

B2R(0)∩B2δ(Ω) to Λδ + ϵ for some small ϵ > 0. In this way, we can extend the interval I to [λδ,Λδ + ϵ] which contradicts
the maximality of I .

Now, assume that Λδ < ∞. Then, by Corollary B.15, we have that for any λ ∈ I ,

d(d2Ω(zλ))

dλ
= −2⟨zλ − projΩ(zλ), zλ −mλ(zλ)⟩

= −2 (⟨zλ − projΩ(zλ), zλ − projΩ(zλ)⟩+ ⟨zλ − projΩ(zλ),projΩ(zλ)−mλ(zλ)⟩)
≤ −2d2Ω(zλ) + 2dΩ(zλ)∥mλ(zλ)− projΩ(zλ)∥.

By our assumption on zλ, we have that dΩ(zλ) < 2δ and for any λ > Λ, ∥mλ(zλ) − projΩ(zλ)∥ ≤ C · e−ζλ. Then, by
Remark C.8, we have that

dΩ(zλ) ≤ e−(λ−λδ)dΩ(zλδ
) + e−λ

√∫ λ

λδ

4Cδe2te−ζtdt

≤ e−(λ−λδ)dΩ(zλδ
) +

√
4δC

2− ζ

(
e−ζλ − e(2−ζ)λδ−2λ

)
︸ ︷︷ ︸

≤
√

4δC
2−ζ e

−ζλ≤δ

< 2δ,

where the inequality under the brace bracket follows from the definition of λδ . Hence, zΛδ
∈ B2δ(Ω).

Now we examine ∥zλ∥ along the integral path. We have that

∥zs − zλδ
∥ ≤

∫ s

λδ

∥mλ(zλ)− zλ∥dλ

≤
∫ s

λδ

∥mλ(zλ)− projΩ(zλ)∥+ ∥projΩ(zλ)− zλ∥dλ

≤
∫ s

λδ

Ce−ζλ + dΩ(zλ)dλ.

Now, for the integral of dΩ(zλ), we have that∫ s

λδ

dΩ(zλ)dλ ≤
∫ s

λδ

e−(λ−λδ)dΩ(zλδ
) +

√
4δC

2− ζ

(
e−ζλ − e(2−ζ)λδ−2λ

)
dλ

≤
∫ s

λδ

e−(λ−λδ)δ +

√
4δC

2− ζ
e−ζλdλ

= δ(1− e−s+λδ) +

√
4δC

2− ζ
· 2
ζ

(
e−ζλδ/2 − e−ζs/2

)
.
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Therefore,

∥zs − zλδ
∥ ≤ C

ζ
(−e−ζs + e−ζλδ)︸ ︷︷ ︸
≤C

ζ e−ζλδ≤δ/2

+δ(1− e−s+λδ) +

√
4δC

2− ζ
· 2
ζ

(
e−ζλδ/2 − e−ζs/2

)
︸ ︷︷ ︸

≤
√

4δC
2−ζ ·

2
ζ e

−ζλδ/2≤δ/2

≤ 2δ (21)

where we used the definition of λδ again to control all the exponential terms. This implies that ∥zs∥ ≤ R+ 2δ < 2R for all
s ∈ [λδ,Λδ] (recall that we assumed that R > 2δ) and hence zΛδ

∈ B2R(0). This concludes the proof.

C.3.1. ABSORBING AND ATTRACTING TO THE CONVEX HULL OF THE DATA SUPPORT

We prove Proposition 3.4 below.

Proof of Proposition 3.4. The key observation comes from that, the posterior distribution p(·|Xσ = x) is also supported on
supp(p) and hence its expectation, the denoiser mσ(x) must lie in the convex hull conv(supp(p)).

For the first part, the first Item in Proposition C.9 applies to conv(supp(p)) and hence any neighborhood of conv(supp(p))
is absorbing (xσ)σ∈(

√
σinit(Ω,ζ,R0)2,σ1]

. We then obtain the desired result by Item 2 in Theorem 3.2.

For the second part, we use Item 2 of Corollary B.9 to obtain〈
mσ(x)− projconv(supp(p))(x),projconv(supp(p))(x)− x

〉
≤ 0

for all x ∈ Rd and all σ. Then we can apply Item 1 of the meta attracting result Theorem C.7 with ζ = 0 to conclude the
proof.

The above propositions requires the data distribution to have a bounded support. We now extend the above results to a more
general setting where the data distribution is p = pb ∗ N (0, δ2I), i.e., the convolution of a bounded support distribution pb
and a Gaussian distribution. This is done by noting that the ODE trajectory with data distribution p can be derived from the
ODE trajectory with data distribution pb by early stopping the trajectory. We formalize this in the following lemma.

Lemma C.12. Let pb be a distribution with bounded support and let p := pb ∗ N (0, δ2I) for any δ ≥ 0. Let (yσb
)σb∈(0,∞)

be an ODE trajectory of Equation (7) with data distribution pb. We define (xσ := yσb=
√
σ2+δ2)σ∈(0,∞). Then, (xσ) is an

ODE trajectory of Equation (7) with data distribution p.

Proof of Lemma C.12. Let qσb
:= pb ∗ N (0, σ2

b I) be the probability path with data distribution pb. Then, we have that yσb

satisfies

d yσb

dσb
= −σb∇ log qσb

(yσb
),

With the change of variable σb =
√
σ2 + δ2, we have that

d yσb

dσ
= −d σb

d σ
σb∇ log qσb

(yσb
),

= − σ

σb
σb∇ log qσb

(yσb
),

= −σ∇ log qσb
(yσb

),

One has that

qσb
(yσb

) =
1

(2πσ2
b )

d/2

∫
exp

(
−∥yσb

− x∥2

2σ2
b

)
pb(dx)

=
1

(2π(σ2 + δ2))d/2

∫
exp

(
−∥xσ − x∥2

2(δ2 + σ2)

)
pb(dx)

= qσ(xσ),
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where qσ(x) denotes the density of qσ := p ∗ N (0, σ2I). Therefore, the trajectory xσ := yσb
satisfies

d xσ

dσ
= −σ∇ log qσ(xσ).

Corollary C.13. Given the data distribution p defined as in Lemma C.12, for any σ1 > 0, let xσ be an ODE trajectory of
Equation (11) from σ = σ1 to σ = 0. Then, we have that

1. If xσ1
∈ conv(supp(pb)), then xσ ∈ conv(supp(pb)) for any σ ∈ (0, σ1];

2. If xσ1 /∈ conv(supp(pb)), then xσ moves toward conv(supp(pb)) with the following decay guarantee:

dconv(supp(pb))(xσ) ≤
√
σ2 + δ2√
σ2
1 + δ2

dconv(supp(pb))(xσ1
),

for any σ ∈ (0, σ1].

Proof of Corollary C.13. This is a direct consequence of Proposition 3.4 and Lemma C.12

D. Denoiser Analysis: Concentration and Convergence of the Posterior Distribution
In this section, we analyze the denoiser through the concentration and convergence of the posterior distribution, i.e.,
Theorem D.1, and its variants under different assumptions. Our proof strategy is similar to that used in Stanczuk et al. (2024,
Theorem 4.1), where the integral under consideration is split into two parts to analyze the concentration. However, our
results are more general as we do not require the data distribution to lie on a manifold or have points be sufficiently near
the data support. We additionally provide rate control of the convergence result which is crucial for the terminal behavior
analysis in Section 5.1.

Theorem D.1. Let Ω := supp(p). Assume that p has a finite 2-moment. For all x ∈ Rd\ΣΩ, we have that

lim
σ→0

dW,2

(
p(·|Xσ = x), δprojΩ(x)

)
= 0.

Proof of Theorem D.1. We let Φx := dΣΩ
(x)/2 > 0 and ∆x := dΩ(x) ≥ 0. We let xΩ := projΩ(x). According to

Lemma B.10, for any ϵ > 0, if we define the radius

rx,ϵ :=

√
∆2

x + ϵ2
(
1− ∆x

∆x +Φx

)
,

then we have the following inclusion
Brx,ϵ(x) ∩ Ω ⊆ Bϵ(xΩ) ∩ Ω.

For the other direction, we have that

Br∗x,ϵ
(xΩ) ∩ Ω ⊆ Brx,ϵ

(x) ∩ Ω

where

r∗x,ϵ := rx,ϵ −∆x =
Φx

(Φx +∆x) (rx,ϵ +∆x)
ϵ2.

Here r∗x,ϵ satisfies that as dΩ(x) → 0, r∗x,ϵ → ϵ. So Br∗x,ϵ
(xΩ) can be thought of as an approximation of Bϵ(xΩ).
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Then, we estimate the two terms below separately:

dW,2(p(·|Xσ = x), δxΩ)
2 =

∫
Ω

∥x0 − xΩ∥2
exp

(
−∥x−x0∥2

2σ2

)
∫
Ω
exp

(
−∥x−x′

0∥2

2σ2

)
p(dx′

0)
p(dx0)

=

∫
Brx,ϵ (x)∩Ω

∥x0 − xΩ∥2
exp

(
−∥x−x0∥2

2σ2

)
∫
Ω
exp

(
−∥x−x′

0∥2

2σ2

)
p(dx′

0)
p(dx0)

︸ ︷︷ ︸
I1

+

∫
Brx,ϵ (x)

c(y)∩Ω

∥x0 − xΩ∥2
exp

(
−∥x−x0∥2

2σ2

)
∫
Ω
exp

(
−∥x−x′

0∥2

2σ2

)
p(dx′

0)
p(dx0)

︸ ︷︷ ︸
I2

For I1, we have the following estimate:

I1 ≤
∫
Bϵ(xΩ)∩Ω

∥x0 − xΩ∥2
exp

(
−∥x−x0∥2

2σ2

)
∫
Ω
exp

(
−∥x−x′

0∥2

2σ2

)
p(dx′

0)
p(dx0) ≤ ϵ2

For the second term I2, we have the following estimate:

I2 ≤
∫
Bc

rx,ϵ
(y)∩Ω

(2∥x0∥2 + 2∥xΩ∥2)
exp

(
−∥x−x0∥2

2σ2

)
∫
Ω
exp

(
−∥x−x′

0∥2

2σ2

)
p(dx′

0)
p(dx0)

=

∫
Bc

rx,ϵ
(y)∩Ω

2∥x0∥2 + 2∥xΩ∥2∫
Ω
exp

(
∥x−x0∥2

2σ2 − ∥x−x′
0∥2

2σ2

)
p(dx′

0)
p(dx0)

≤
∫
Bc

rx,ϵ∩Ω(y)∩Ω

2∥x0∥2 + 2∥xΩ∥2∫
Br

x,ϵ/
√

2
(y)∩Ω

exp
(

∥x−x0∥2

2σ2 − ∥x−x′
0∥2

2σ2

)
p(dx′

0)
p(dx0)

≤
∫
Bc

rx,ϵ∩Ω(y)∩Ω

2∥x0∥2 + 2∥xΩ∥2∫
Br

x,ϵ/
√

2
(y)∩Ω

exp
(

ϵ2

4σ2

(
1− ∆x

∆x+Φx

))
p(dx′

0)
p(dx0)

= exp

(
− ϵ2

4σ2

(
1− ∆x

∆x +Φx

))
2∥xΩ∥2 + 2M2(p)

p
(
Brx,ϵ/

√
2
(y) ∩ Ω

)
≤ exp

(
− ϵ2

4σ2

(
1− ∆x

∆x +Φx

))
2∥xΩ∥2 + 2M2(p)

p
(
Br∗

x,ϵ/
√

2
(xΩ)

) .

Since Ω is the support of p, we have that p
(
Br∗

x,ϵ/
√

2
(xΩ)

)
> 0. Hence, for any ϵ > 0, we have

I1 + I2 ≤ ϵ2 +
2∥xΩ∥2 + 2M2(p)

p
(
Br∗

x,ϵ/
√

2
(xΩ)

) exp

(
− ϵ2

4σ2

(
1− ∆x

∆x +Φx

))
.

By letting σ → 0, we have that I1 + I2 ≤ ϵ. Therefore, we have that

lim
σ→0

dW,2(p(·|Xσ = x), δxΩ) = 0.
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As a direct consequence of the convergence of the posterior distribution, we have the convergence of the denoiser stated in
Theorem 5.1. Here we provide a simple proof.

Proof of Theorem 5.1. This is a direct consequence of the following property of the Wasserstein distance where the case
s = 1 was proved in Rubner et al. (1998) and the other cases follow from the fact that dW,s is increasing with respect to s
(Villani, 2009, Remark 6.6).

Lemma D.2. For any probability measures ν1, ν2 on Rd and any 1 ≤ s ≤ ∞, we have that

dW,s(ν1, ν2) ≥ ∥mean(ν1)−mean(ν2)∥.

When we turn back to the parameter t, we have the following corollary. The proof turns out to be rather technical instead of
being a direct consequence of Theorem 5.1. The main difficulty lies in the scaling αt within the exponential term. This is
another example that the parameter σ is more convenient for theoretical analysis.
Corollary D.3. Let Ω := supp(p). Assume that p has a finite 2-moment. For all x ∈ Rd\ΣΩ, we let xΩ := projΩ(x). Then,
we have that

lim
t→1

mt(x) = projΩ(x).

Proof of Corollary D.3. In the proof of Theorem D.1, we end up with

dW,2(p(·|Xσ = x), δxΩ)
2 ≤ ϵ2 + exp

(
− ϵ2

4σ2

(
1− ∆x

∆x +Φx

))
2∥xΩ∥2 + 2M2(p)

p
(
Br∗

x,ϵ/
√

2
(xΩ)

)
for any arbitrarily chosen small ϵ.

By Lemma B.12, there exists a small ξ > 0 and a constant Cξ > 0 such that for any ∥z − x∥ < ξ, one has ∥zΩ − xΩ∥ <
Cξ∥z − x∥. As both ∆x and Φx are continuous in a local neighborhood of x, there exists a small ξ1 > 0 such that for any z
with ∥z − x∥ < ξ1, one has

• r∗
z,ϵ/

√
2
> 1

2r
∗
x,ϵ/

√
2
;

• 1− ∆x

∆x+Φx
> 1

2

(
1− ∆z

∆z+δz

)
;

• ∥zΩ∥ ≤ 2∥xΩ∥.

Now, take Ξ := min
{
ξ, ξ1,

1
2Cξ

r∗
z,ϵ/

√
2

}
. Then, it is easy to check that for any z such that ∥z − x∥ < Ξ, one has

B 1
4 r

∗
x,ϵ/

√
2
(xΩ) ⊂ Br∗

z,ϵ/
√

2
(zΩ).

This implies that for any z such that ∥z − x∥ < Ξ, one has

∥mσ(z)− zΩ∥2 ≤ dW,2(p(·|Xσ = z), δzΩ)
2 ≤ ϵ2 + exp

(
− ϵ2

8σ2

(
1− ∆x

∆x +Φx

))
4∥xΩ∥2 + 2M2(p)

p

(
Br∗

x, 1
4
ϵ/

√
2
(xΩ)

) .

Hence, when σ is small enough (dependent on ϵ), we have that ∥mσ(z)− zΩ∥ ≤ 2ϵ for any z such that ∥z − x∥ < Ξ.

Now, we have that

∥mt(x)− xΩ∥ ≤ ∥mσt(x/αt)− projΩ(x/αt)∥+ ∥projΩ(x/αt)− projΩ(x)∥.

As αt → 1, there exists t0 such that when t > t0, one has that z = x/αt ∈ BΞ(x) and ∥projΩ(x/αt) − projΩ(x)∥ ≤ ϵ.
By the analysis above, we can enlarge t so that σt is small enough so that ∥mσt(z)− zΩ∥ ≤ 2ϵ. Therefore, for any t > t0,
we have that ∥mt(x)− xΩ∥ ≤ 3ϵ. Since ϵ is arbitrary, we have that limt→1 mt(x) = xΩ.
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D.1. Convergence Rate

We establish the following convergence rate for the posterior distribution when more assumptions are made on p.
Theorem D.4. Assume that the reach τ = τΩ > 0 is positive. Consider any x ∈ Rd. We assume that dΩ(x) < 1

2τ
and that there exists g ≥ 0 such that there exist constants C, c > 0 so that for any small radius 0 < r < c, one has
p(Br(xΩ)) ≥ Crk. Then, for any 0 < ζ < 1 we have the following convergence rate for any 0 < σ < c1/ζ:

dW,2 (p(·|Xσ = x), δxΩ
) ≤

√
σ2ζ +

10k(2M2(p) + ∥xΩ∥2)max{τk, σkζ}
Cσ2kζ

exp

(
−1

8
σ2(ζ−1)

)
≤ Cζ,τσ

ζ ,

where Cζ,τ is a constant depending only on ζ and τΩ.

Proof of Theorem D.4. Recall from the proof of Theorem D.1 that for any ϵ > 0, we have that

I1 + I2 ≤ ϵ2 +
2∥xΩ∥2 + 2M2(p)

p
(
Br∗

x,ϵ/
√

2
(xΩ)

) exp

(
− ϵ2

4σ2

(
1− ∆x

∆x +Φx

))
.

Then, we have that 2Φx ≥ τΩ −∆x. So

r∗x,ϵ =
Φx

(Φx +∆x) (rx,ϵ +∆x)
ϵ2 (22)

≥ τΩ −∆x

2τΩ
· ϵ2

∆x +
√
∆2

y + ϵ2
(23)

≥ 1

4
·min

{
ϵ

(
√
2 + 1)∆x

,
1√
2 + 1

}
ϵ (24)

≥ ϵ

10
min

{
ϵ

τΩ
, 1

}
. (25)

On the other hand, we have that

r∗x,ϵ ≤
Φx

(Φx +∆x)ϵ
√

Φx

∆x+Φx

ϵ2

= ϵ

√
Φx

∆x +Φx
≤ ϵ.

Therefore, if one let ϵ = σζ , when σ < c1/ζ we have that r∗x,ϵ < c and then

p
(
Br∗

x,ϵ/
√

2
(xΩ)

)
≥ CΩ ·

(
ϵ

10
min

{
ϵ

τΩ
, 1

})k

=
CΩσ

kζ

10k
min

{
σkζ

τkΩ
, 1

}
.

Notice that 1− ∆x

∆x+Φx
≥ 1

2 , we have that eventually

I1 + I2 ≤ σ2ζ +
2M2(ρ) + 2∥xΩ∥2

CΩσkζ

10k
min

{
σkζ

τk
Ω

, 1
} exp

(
− 1

8σ2(1−ζ)

)

= σ2ζ +
10k(2M2(ρ) + 2∥xΩ∥2)max{τkΩ, σkζ}

CΩσ2kζ
exp

(
−1

8
σ2(ζ−1)

)
.

The rightmost inequality in the theorem follows from the fact that the right most summand in the above equation has an
exponential decay which is way faster than any polynomial decay.
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Now, we improve the convergence rate when p is either supported on a submanifold or a discrete set.

Convergence rates for the manifold case. We first consider the case when p is supported on a submanifold M ⊂ Rd. Note
that this does not exclude the case when M = Rd. Under some mild conditions, we have the following convergence rate for
the posterior distribution.

Theorem D.5. Let M ⊂ Rd be a m dimensional closed submanifold (without self-intersection) with a positive reach τM .
Assume that p(dx) = ρ(x)volM (dx) has a smooth non-vanishing density ρ : M → R. For any x ∈ Rd and σ ∈ (0,∞), we
let xM := projM (x). If x ∈ Rd satisfies that dM (x) < 1

2τM , then we have that

dW,2(p(·|Xσ = x), δxM
) =

√
mσ +O(σ2).

The proof is very lengthy and we postpone it to the end of this section.

Note that the leading-order term in the convergence rate,
√
mσ, depends solely on the intrinsic dimension m of the

submanifold M . The higher-order term O(σ2) depends on finer geometric properties of M , such as curvature and reach. A
detailed characterization of these higher-order contributions would be an interesting direction for future work.

As a direct consequence of the convergence of the posterior distribution, we have the following convergence of the denoiser.

Corollary D.6. Under the same assumptions as in Theorem D.5, for any x ∈ Rd satisfying dM (x) < 1
2τM , we have that

∥mσ(x)− xM∥ = O(σ).

Convergence rates for the discrete case. Let the data distribution p =
∑N

i=1 ai δxi
be a general discrete distribution with

x1, . . . , xN ∈ Rd and a1, . . . , aN > 0. We use Ω = {x1, . . . , xN} to denote the support of p. We study the concentration
and convergence of the posterior measure p(·|Xσ = x) for each x ∈ Rd, including those x on ΣΩ, the medial axis of Ω. To
this end, we introduce the following notations.

For each point x ∈ Rd, we denote the set of distance values from x to each point in Ω as follows:

DVΩ(x) := {∥x− xi∥ : xi ∈ Ω}. (26)

We use dΩ(x; i) to denote the i-th smallest distance value in DVΩ(x). A useful geometric notion will be the gap between
the squares of the two smallest distances which we denote by

∆Ω(x) := d2Ω(x; 2)− d2Ω(x; 1). (27)

We further let

NNΩ(x) :=

{
xi ∈ Ω : ∥x− xi∥ = dΩ(x; 1) = min

xj∈Ω
∥x− xj∥

}
.

We use the notation p̂NN(x) to denote the normalized measure restricted to the points in Ω that are closest to x:

p̂NN(x) :=
1∑

xi∈NNΩ(x) ai

∑
xi∈NNΩ(x)

ai δxi
. (28)

Whenever x is not on ΣΩ, we have NNΩ(x) = {projΩ(x)} and p̂NN(x) = δprojΩ(x). With the above notation, we have the
following convergence result for the posterior measure p(·|Xσ = x) as σ → 0.

Theorem D.7. Let p =
∑N

i=1 ai δxi be a discrete distribution. For any x ∈ Rd, we have the following convergence of the
posterior measure p(·|Xσ = x) toward p̂NN(x):

dW,2

(
p(·|Xσ = x), p̂NN(x)

)
≤ diam(Ω)

√
1− p(NNΩ(x))

p(NNΩ(x))
exp

(
−∆Ω(x)

4σ2

)
.

Proof of Theorem D.7. When ∆Ω(x) = 0, NNΩ(x) = Ω and p(·|Xσ = x) = p and then the Wasserstein distance becomes
0 which proves the statement.
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Now, we will focus on the case when ∆Ω(x) > 0. The posterior measure p(·|Xσ = x) is given by

p(·|Xσ = x) =

N∑
i=1

ai exp
(
− 1

2σ2 ∥xi − x∥2
)∑N

j=1 aj exp
(
− 1

2σ2 ∥xj − x∥2
) δxi .

For the ease of notation, we use Bσ :=
∑N

j=1 aj exp
(
− 1

2σ2 ∥xj − x∥2
)

to denote the normalization constant in p(·|Xσ =

x), Bσ,xi
:= ai exp

(
− 1

2σ2 ∥xi − x∥2
)

to denote the i-th term in Bσ . We use A = p(NNΩ(x)) to denote the normalization
constant in p̂NN(x).

Observe that for any xi, xj ∈ NNΩ(x), one has

p(xi|Xσ = x)/p(xj |Xσ = x) = p̂NN(x)(xi)/p̂NN(x)(xj).

This motivates the following construction of a coupling µ between p(·|Xσ = x) and pNN(y):

µ =
∑

xj∈NNΩ(x)

Bσ,xj

Bσ
·

∑
xi∈NNΩ(x)

ai
A
δ(xi,xi) +

∑
xi∈NNΩ(x),xj∈Ω\NNΩ(x)

Bλ,xj

Bσ

ai
A

δ(xi,xj).

Then, we bound the Wasserstein distance between p(·|Xσ = x) and p̂NN(x) as follows:

dW,2(p(·|Xσ = x), p̂NN(x))
2 ≤

∫
∥x− y∥2µ(dx, dy),

=
∑

xi∈NNΩ(x),xj∈Ω\NNΩ(x)

Bλ,xj

Bσ

ai
A
∥xi − xj∥2,

≤
∑

xi∈NNΩ(x),xj∈Ω\NNΩ(x)

Bλ,xj

Bσ

ai
A
diam(Ω)2,

= diam(Ω)2
∑

xi∈NNΩ(x),xj∈Ω\NNΩ(x)

aj exp
(
− 1

2σ2 ∥xj − x∥2
)∑N

j=1 aj exp
(
− 1

2σ2 ∥xj − x∥2
) ai
A
,

≤ diam(Ω)2
∑

xi∈NNΩ(x),xj∈Ω\NNΩ(x)

aj exp
(
− 1

2e
2λd2Ω(x, 2)

)
A exp

(
− 1

2e
2λd2Ω(x, 1)

) ai
A
,

= diam(Ω)2
1−A

A

exp
(
− 1

2e
2λd2Ω(x, 2)

)
exp

(
− 1

2e
2λd2Ω(x, 1)

) ,
= diam(Ω)2

1−A

A
exp

(
−1

2
e2λ(d2Ω(x, 2)− d2Ω(x, 1))

)
,

≤ diam(Ω)2
1−A

A
exp

(
−1

2
e2λ∆Ω(x)

)
.

By taking the square roots on both sides, we conclude the proof.

As a corollary of Theorem D.7, we have the following convergence of the denoiser.

Corollary D.8. Let p =
∑N

i=1 ai δxi
be a discrete distribution. For any x ∈ Rd, we have the following convergence of the

denoiser mσ(x) toward the mean of p̂NN(x):

∥mσ(x)−mean(p̂NN(x))∥ ≤ diam(Ω)

√
1− p(NNΩ(x))

p(NNΩ(x))
exp

(
−∆Ω(x)

4σ2

)
.

In particular, when x /∈ ΣΩ, assume that xi = projΩ(x) we have that

∥mσ(x)− xi∥ ≤ diam(Ω)

√
1− ai
ai

exp

(
−∆Ω(x)

4σ2

)
.
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Proof of Corollary D.8. The result follows from Theorem D.7 and the stability of the mean operation under the Wasserstein
distance Lemma D.2.

Later in Section 5.2, we will utilize the above results to analyze memorization behavior.

Proof of Theorem D.5 We still let ∆x := dM (x) < 1
2τM . Then, we let qxσ := p(·|Xσ = x) and hence,

qxσ(dx1) :=
exp

(
−∥x−x1∥2

2σ2

)
ρ(x1)volM (dx1)∫

M
exp

(
−∥x−x′

1∥2

2σ2

)
ρ(x′

1)volM (dx′
1)
, for x1 ∈ M.

As σ → 0, qxσ is concentrated around xM = projM (x). For any r0 > 0, we have that

dW,2(q
x
σ, δxM

)2 =

∫
M

∥x1 − xM∥2qxσ(dx1)

=

∫
Br0

(xM )

∥x1 − xM∥2qxσ(dx1)︸ ︷︷ ︸
I1

+

∫
M\Br0

(xM )

∥x1 − xM∥2qxσ(dx1)︸ ︷︷ ︸
I2

.

We first consider the term I2.

I2 ≤
∫
M\Br0

(xM )

(2∥x1∥2 + 2∥xM∥2)qxσ(dx1).

As we have shown already in the proof of Theorem D.1, we have that Brx,r0
(x) ∩M ⊂ Br0(xM ) ∩M . So, we have that

I2 ≤
∫
M\Brx,r0

(x)

(2∥x1∥2 + 2∥xM∥2)qxσ(dx1) (29)

≤ exp

(
− r20
4σ2

(
1− ∆x

∆x +Φx

))
2M2(p) + 2∥xM∥2

p
(
Br∗

x,r0/
√

2
(xM )

) = O

(
exp

(
− r20
8σ2

))
. (30)

Now, we consider the term I1. Since M is a submanifold of Rd, its tangent space TxM
M can be identified as a subspace of Rd.

We use ι : TxM
M → Rd to denote the inclusion map. In particular, for any u ∈ TxM

M , we have that ⟨x− xM , ι(u)⟩ = 0.
Let Inj(M) denote the injectivity radius of M . Note that, by Alexander & Bishop (2006, Corollary 1.4), Inj(M) ≥ τM/4.
So, the exponential map expxM

: TxM
M → M will be an diffeomorphism in a small ball B

TxM

τM/4(0) ⊂ TxM
M . Furthermore,

we have the following inclusion relation between geodesic balls and Euclidean balls.

Lemma D.9. For any 0 < h ≤ 3τM
25 , we have that

M ∩Bh(xM ) ⊂ expxM

(
B

TxM

5h/3(0)
)
⊂ M ∩B5h/3(xM ).

Proof of Lemma D.9. The proof of the left hand side follows from Lemma A.1 and Lemma A.2 (ii) of Aamari & Levrard
(2019). Although Lemma A.2 (ii) stated compactness for the manifold M , this assumption is not needed in the proof.
The right hand side follows from the fact that ∥x − y∥ ≤ dM (x, y) for any x, y ∈ M , where dM denotes the geodesic
distance.

Now, we fix some r0 ≤ 3τM/25. Then, there exists an open neighborhood Ur0 ⊂ B
TxM

5r0/3
(0) around 0 ∈ TxM

M so that we
have the following diffeomorphism (which gives rise to the normal coordinates):

expxM
: Ur0 ⊆ TxM

M → Br0(xM ) ∩M.
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In particular, xM = expxM
(0) and each x1 ∈ Br0(xM ) ∩M can be written as x1 = expxM

(u) for some u ∈ Ur.

Let II : TxM
M × TxM

M → (TxM
M)⊥ denote the second fundamental form of M at xM . Then, the exponential map

expxM
in Ur0 has the following Taylor expansion (Monera et al., 2014):

expxM
(u) = xM + ι(u) +

1

2
II(u, u) +O(∥u∥3), (31)

where O(∥u∥3) ≤ C(II,∇II)∥u∥3 for some constant C(II,∇II) > 0 only dependent on II and its derivatives ∇II .

For any u ∈ Ur0 , we let g(u) denote the metric tensor, then g(0) is the identity matrix. The volume form is given by√
det(g(u))du1 ∧ . . . ∧ duk and it admits the following Taylor expansion around 0 ∈ TxM

M :√
det(g(u)) = 1− 1

6
Riju

iuj +O(∥u∥3),

where Rij is the Ricci curvature tensor of M at xM , see e.g. Chow et al. (2023, Exercise 1.83).

We can write
ρ(u)

√
det(g(u)) = ρ(0) +R1(u), |R1(u)| ≤ C1∥u∥, (32)

where C1 depends on Ricci curvature tensor Rij and the gradient ∇ρ(xM ).

Now, we define

fσ(u) := exp

(
−
∥x− expxM

(u)∥2

2σ2

)
ρ(u)

√
det(g(u)).

Let MBr0 := Br0(xM ) ∩M . Then, we have that

qxσ(du) =
fσ(u)du∫

Ur0
fσ(u′)du′ +

∫
M\MBr0

exp
(
−∥x−x′

1∥2

2σ2

)
ρ(x′

1)volM (dx′
1)
.

Using the same argument as the one used for controlling I2 in the proof of Theorem D.1, we have∫
M\MBr0

exp
(
−∥x−x′

1∥
2

2σ2

)
ρ(x′

1)volM (dx′
1)∫

MBr0
exp

(
−∥x−x′

1∥2

2σ2

)
ρ(x′

1)volM (dx′
1)

= O

(
exp

(
− r20
8σ2

))
. (33)

So, ∫
MBr0

∥x1 − xM∥2qxσ(dx1) =

∫
Ur0

∥ expxM
(u)− xM∥2fσ(u)du∫

Ur0
fσ(u′)du′

(
1 +O

(
exp

(
− r20
8σ2

)))
. (34)

Next, we derive a Taylor expansion of the squared distance from x to expxM
(u) for u around 0:

Lemma D.10. Let v := x− xM . Then, we have that

∥x− expxM
u∥2 = ∥v∥2 + ∥u∥2 − ⟨v, II(u, u)⟩+R2(u) = ∥v∥2 + uT (I − IIv)u+R2(u)

where IIv := (⟨v, IIij⟩)i,j=1,...,k and |R2(u)| ≤ C2∥u∥3 for some positive constant C2 = C2(II,∇II) > 0, and I is the
identity matrix.

Proof of Lemma D.10. We first note that

∥x− expxM
u∥2 = ∥x− xM∥2 + ∥xM − expxM

(u)∥2 + 2⟨x− xM , xM − expxM
(u)⟩.

By equation (31), we have that

∥x− expxM
u∥2 = ∥v∥2 + ∥u∥2 + ⟨u, II(u, u)⟩ − 2⟨v, ι(u)⟩ − ⟨v, II(u, u)⟩+O(∥u∥3)

= ∥v∥2 + ∥u∥2 − ⟨v, II(u, u)⟩+O(∥u∥3)

where we used the fact that v belongs the normal space (TxM
M)⊥ of M at xM so that ⟨v, ι(u)⟩ = 0 and ⟨u, II(u, u)⟩ =

0.
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By Lemma D.10 and Equation (34), we have that∫
Ur0

∥ expxM
(u)− xM∥2fσ(u)du

= exp

(
−∥v∥2

2σ2

)∫
Ur0

(uT (I − IIv)u+R2(u)) exp

(
−uT (I − IIv)u+R2(u)

2σ2

)
(ρ(0) +R1(u))du.

and ∫
Ur0

fσ(u)du = exp

(
−∥v∥2

2σ2

)∫
Ur0

exp

(
−uT (I − IIv)u+R2(u)

2σ2

)
(ρ(0) +R1(u))du.

We will establish the following claims:
Claim 1. ∫

Ur0

(uT (I − IIv)u+R2(u)) exp

(
−uT (I − IIv)u+R2(u)

2σ2

)
(ρ(0) +R1(u))du

= σm+2ρ(0)

∫
Rm

zT (I − IIv)z exp

(
−zT (I − IIv)z

2

)
dz +O(σm+3).

(35)

Claim 2. ∫
Ur0

exp

(
−uT (I − IIv)u+R2(u)

2σ2

)
(ρ(0) +R1(u))du

= σmρ(0)

∫
Rm

exp

(
−zT (I − IIv)z

2

)
dz +O(σm+1).

(36)

With the above two claims, there is

∫
MBr0

∥x1 − xM∥2qxσ(dx1) =

∫
Ur0

∥ expxM
(u)− xM∥2fσ(u)du∫

Ur0
fσ(u′)du′

(
1 +O

(
exp

(
− r20
8σ2

)))

=
σ2
∫
Rm zT (I − IIv)z exp

(
− zT (I−IIv)z

2

)
dz +O(σ3)∫

Rm exp
(
− zT (I−IIv)z

2

)
dz +O(σ)

(
1 +O

(
exp

(
− r20
8σ2

)))

= σ2

∫Rm zT (I − IIv)z exp
(
− zT (I−IIv)z

2

)
dz∫

Rm exp
(
− zT (I−IIv)z

2

)
dz

+O(σ)

(1 +O

(
exp

(
− r20
8σ2

)))
= mσ2 +O(σ3)

where in the last equality we used the fact that E[XTAX] = tr(AΣ) for a Gaussian random variable X ∼ N (0,Σ).

Therefore, we have that

dW,2(q
x
σ, δxM

) =
√
mσ +O(σ2),

and concludes the proof.

Now we prove the two claims. For the first claim, note that by ∥v∥ = dM (x) < τM/2, we can use Berenfeld et al. (2022,
Theorem 2.1) to conclude

∥IIv∥ ≤ ∥v∥ ·max
i,j

∥IIij∥ <
1

2
τM · 1/τM =

1

2
.

So the matrix I − IIv is positive definite. We let λmin > 0 be the smallest eigenvalues of I − IIv. Note that λmin ≥
1 − ∥IIv∥ ≥ 1

2 . So, we can choose r0 small enough at the beginning so that there exists some constant C3 > 0 for all
u ∈ Ur0 , we have that

uT (I − IIv)u+R2(u) ≥ λmin∥u∥2 − C2∥u∥3 > C3∥u∥2.
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Consider the transformation u = σz. Then, we let σ′ := 2r0(C2σ)
1
3 which goes to 0 as σ → 0 and for sufficiently small σ,

we have that σ′ > σ hence there is
1

σ′Ur0 ⊂ 1

σ
Ur0 .

Then, we have that

∫
Ur0

uT (I − IIv)u exp

(
−uT (I − IIv)u+R2(u)

2σ2

)
(ρ(0) +R1(u))du

= σm+2

∫
1
σUr0

zT (I − IIv)z exp

(
−zT (I − IIv)z

2
− R2(σz)

2σ2

)
(ρ(0) +R1(σz))dz

= σm+2

∫
1
σ′ Ur0

zT (I − IIv)z exp

(
−zT (I − IIv)z

2
− R2(σz)

2σ2

)
(ρ(0) +R1(σz))dz︸ ︷︷ ︸

J1

+ σm+2

∫
1
σUr0

\ 1
σ′ Ur0

zT (I − IIv)z exp

(
−zT (I − IIv)z

2
− R2(σz)

2σ2

)
(ρ(0) +R1(σz))dz︸ ︷︷ ︸

J2

.

Now, for J1, recall that Ur0 ⊂ B
TxM

M

5r0/3
(0). Hence, for any z ∈ 1

σ′Ur0 , we have that ∥z∥ ≤ 1
σ′ 5r0/3 < 1

σ′ 2r0 and hence

|R2(σz)|
2σ2

≤ C2(σ∥z∥)3

2σ2
<

C2σ
3(2r0)

3

2σ2 · (2r0)3C2σ
=

1

2
.

This implies that there is expansion exp
(
−R2(σz)

2σ2

)
= 1 +O(σ∥z∥3). Therefore, we have that

J1 =

∫
1
σ′ Ur0

zT (I − IIv)z exp

(
−zT (I − IIv)z

2

)
(1 +O(σ∥z∥3))(ρ(0) +O(∥σz∥))dz

= ρ(0)

∫
1
σ′ Ur0

zT (I − IIv)z exp

(
−zT (I − IIv)z

2

)
dz +O(σ)

= ρ(0)

∫
Rm

zT (I − IIv)z exp

(
−zT (I − IIv)z

2

)
dz +O(σ).

where in the last part we used the fact that the the decay rate of such an integral as σ goes to 0 is exponential.

For J2, we similarly have that

|J2| ≤
∫

1
σUr0

\ 1
σ′ Ur0

zT (I − IIv)z exp
(
−C3∥z∥2

)
(ρ(0) +O(∥σz∥))dz

= O(σ).

Therefore, ∫
Ur0

uT (I − IIv)u exp

(
−uT (I − IIv)u+R2(u)

2σ2

)
(ρ(0) +R1(u))du

= σm+2ρ(0)

∫
Rm

zT (I − IIv)z exp

(
−zT (I − IIv)z

2

)
dz +O(σm+3).

(37)

Similarly, we have that
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∫
Ur0

exp

(
−uT (I − IIv)u+R2(u)

2σ2

)
(ρ(0) +R1(u))du

= σmρ(0)

∫
Rm

exp

(
−zT (I − IIv)z

2

)
dz +O(σm+1).

(38)

Additionally, by |R2(u)| ≤ C2∥u∥3, we have that∫
Ur0

R2(u) exp

(
−uT (I − IIv)u+R2(u)

2σ2

)
(ρ(0) +R1(u))du = O(σm+3). (39)

Then Claim 1 follows from Equation (37) and Equation (39) and Claim 2 follows from Equation (38).

E. Explicit Eamples of FM ODEs
The following lemma specifies the FM ODE solution when the data distribution is the standard Gaussian itself.
Lemma E.1. Let the data distribution p be a standard Gaussian distribution N (0, I) in Rd. Then the FM ODE can be
computed explicitly as

dxt

dt
=

α̇tαt + β̇tβt

α2
t + β2

t

xt.

This implies that the following explicit formula for the ODE trajectory

xt =
√
α2
t + β2

t x0

for any initial point x0 ∈ Rd. In particular, the flow map Ψt is a scaling and Ψ1 is the identity map.

Proof of Lemma E.1. The FM ODE is given by

dxt

dt
=

β̇t

βt
xt +

α̇tβt − αtβ̇t

βt

∫ exp
(
−∥xt−αtx1∥2

2β2
t

)
x1∫

exp
(
−∥xt−αtx′

1∥2

2β2
t

)
p(dx′

1)
p(dx1).

When plugging in the standard Gaussian density for p, we have the following observation:

exp

(
−∥xt − αtx1∥2

2β2
t

)
exp

(
−∥x1∥2

2

)
= exp

(
−∥xt − αtx1∥2

β2
t

− β2
t ∥x1∥2

2β2
t

)

= exp

− 1

2β2
t

∥∥∥∥∥ αt√
α2
t + β2

t

xt −
√
α2
t + β2

t x1

∥∥∥∥∥
2
 exp

(
− 1

2(α2
t + β2

t )
∥xt∥2

)
.

For brevity, we denote Bt :=
√
α2
t + β2

t and Ct :=
αt√

α2
t+β2

t

. Then the ODE can be simplified as

dxt

dt
=

β̇t

βt
xt +

α̇tβt − αtβ̇t

βt

∫ exp
(
−∥Ctxt−Btx1∥2

2β2
t

)
x1dx1∫

exp
(
−∥Ctxt−Btx′

1∥2

2β2
t

)
dx′

1

.

=
β̇t

βt
xt +

α̇tβt − αtβ̇t

βt

∫ exp
(
−∥Ct/Btxt−x1∥2

2β2
t /B

2
t

)
x1dx1∫

exp
(
−∥Ct/Btxt−x′

1∥2

2β2
t /B

2
t

)
dx′

1

.

=
β̇t

βt
xt +

α̇tβt − αtβ̇t

βt
Ct/Btxt

=
β̇t

βt
xt +

α̇tβt − αtβ̇t

βt

αt

α2
t + β2

t

xt

=
α̇tαt + β̇tβt

α2
t + β2

t

xt.
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The rest of the proof follows from directly verifying that xt =
√
α2
t + β2

t x0 satisfies the ODE.

The following proposition shows that for a distribution lies in a linear subspace Rm ⊂ Rd, the FM ODE can be decomposed.

Proposition E.2. For any 0 < m ≤ d, consider the subspace Rm ⊂ Rd. Let p be a probability measure on Rd supported on
Rm and assume the FM ODE is well defined. We express any point x ∈ Rd as x = (x, y), where x ∈ Rm and y ∈ Rd−m.
Then for any FM scheduling functions αt, βt, we have for any initial point x0 = (x0, y0) ∈ Rd, the FM ODE trajectory
is given by (xt = (xt, βty0))t∈[0,1], where (xt)t∈[0,1] is the trajectory of the FM ODE on Rm with initial point x0, data
distribution p regarded as a probability measure on Rm, and with scheduling functions αt, βt.

Proof of Proposition E.2. The FM ODE is given by

dxt

dt
=

β̇t

βt
xt +

α̇tβt − αtβ̇t

βt

∫ exp
(
−∥xt−αtx1∥2

2β2
t

)
x1∫

exp
(
−∥xt−αtx′

1∥2

2β2
t

)
p(dx′

1)
p(dx1).

We have the following two observations:

1. For each x1 ∈ Rm, there is ∥xt − αtx1∥2 = ∥xt − αtx1∥2 + ∥yt∥2 where xt = (xt, yt) and x1 = (x1, 0).

2. The denoiser mt always lies in the subspace Rm since the data distribution p is supported on Rm.

These two observations imply that the FM ODE can be decoupled into two ODEs:
dxt

dt
=

β̇t

βt
xt +

α̇tβt − αtβ̇t

βt

∫ exp
(
−∥xt−αtx1∥2

2β2
t

)
x1∫

exp
(
−∥xt−αtx′

1∥2

2β2
t

)
p(dx′

1)
p(dx1),

dyt
dt

=
β̇t

βt
yt.

The first equation is the FM ODE on Rm with initial point x0 and data distribution p in Rm. The second equation is the
ODE for yt which is a linear ODE with solution yt = βty0.

F. Proofs in Section 2
Proof of Proposition 2.1. For any x ∈ Rd and t ∈ (0, 1], since αt > 0, we have that the map At is well-defined.
Furthermore, we have that

(At)#pt = (At)#

(∫
N (·|αtx0, β

2
t I)p(dx0)

)
=

∫
N (·|x0, (βt/αt)

2I)p(dx0)

=

∫
N (·|x0, σ

2
t I)p(dx0) = qσt

.

Proof of Proposition 2.2. We first write down the density of qσ explicitly as follows:

qσ(x) =
1

(2πσ2)d/2

∫
exp

(
−∥x− x1∥2

2σ2

)
p(dx).

Then, we have that

∇ log qσ(x) = − 1

σ2

x−

∫
y exp

(
−∥x−y∥2

2σ2

)
p(dy)∫

exp
(
−∥x−y′∥2

2σ2

)
p(dy′)

 .
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Here, the existence of the gradient easily follows from the dominated convergence theorem.

Note that dt
dσ =

α2
t

β̇tαt−βtα̇t
. Therefore with the reparametrization xσ := xt/αt, we have that

dxσ

dσ
=

dxσ

dt

dt

dσ

=
1

α2
t

(
αt

dxt

dt
− α̇txt

)
dt

dσ

=
αt

βt

xt

αt
−
∫ exp

(
−∥xt−αty∥2

2β2
t

)
y∫

exp
(
−∥xt−αty′∥2

2β2
t

)
p(dy′)

p(dy)


= −σ∇ log qσ(xσ).

G. Proofs in Section 3
We provide in this section a convenient pointer to the proofs in Section 3. The formal version of Theorem 3.1 is Theorem C.7
in Appendix C.3. Similarly, the proofs of Theorem 3.2 and Proposition 3.4 are also provided in Appendix C.3.

H. Proofs in Section 4
In this section, we provide the deferred proofs in Section 4. Note that the proofs of Theorem 4.1 and Proposition 4.2 require
more preparation and are organized in a subsection at the end of this section; see Appendix H.1 and Appendix H.2.

Proof of Proposition 4.3. For simplicity, we use ησ := p(·|Xσ = x) to denote the posterior measure at x. We restrict ησ on
S to obtain the following probability measure

ηSσ :=
1

ησ(S)
ησ|S .

It is easy to see that E(ηSσ ) lies in the convex hull of S. We can then bound the distance from the denoiser mσ(x) to the
convex hull of S by the Wasserstein distance between ησ and ηSσ .

Similarly to the proof of Theorem D.7, we construct the following coupling µ between ησ and ηSσ :

µ = ∆#(ησ|S) + ηSσ ⊗ (ησ|(Ω\S)),

where ∆ : Rd → Rd × Rd is the diagonal map sending x to (x, x).

We then have the following estimate:

d2W,2

(
ησ, η

S
σ

)
≤
∫∫

∥y1 − y2∥2
ησ|S
ησ(S)

(dy1)ησ|(Ω\S)(dy2),

≤ ησ((Ω\S)) (diam(Ω))
2

= (diam(Ω))
2

∫
(Ω\S)

exp
(
− 1

2σ2 ∥x− x1∥2
)
p(dx1)∫

S∪(Ω\S)
exp

(
− 1

2σ2 ∥x− x′
1∥2
)
p(dx′

1)
,

≤ (diam(Ω))
2

∫
(Ω\S)

exp
(
− 1

2σ2 ∥x− x1∥2
)
p(dx1)∫

S
exp

(
− 1

2σ2 ∥x− x1∥2
)
p(dx1)

,

By the assumption that dconv(S)(x) ≤ D/2− ϵ, we have that for all x1 ∈ S

∥x− x1∥ ≤ D/2− ϵ+D = 3D/2− ϵ,
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and for all x1 ∈ Ω\S
∥x− x1∥ ≥ 2D − (D/2− ϵ) = 3D/2 + ϵ.

We then have that

dW,2

(
ησ, η

S
σ

)2 ≤ (diam(Ω))
2

∫
(Ω\S)

exp
(
− 1

2σ2 (3D/2 + ϵ)2
)
p(dx1)∫

S
exp

(
− 1

2σ2 (3D/2− ϵ)2
)
p(dx1)

,

= (diam(Ω))
2 1− aS

aS
exp

(
− 1

2σ2
((3D/2 + ϵ)2 − (3D/2− ϵ)2)

)
,

≤ (diam(Ω))
2 1− aS

aS
exp

(
−3Dϵ

σ2

)
.

Then by applying Lemma D.2 and the fact that E(ηSσ ) ∈ conv(S), we have that

dconv(S)(mσ(x)) ≤ diam(Ω)

√
1− aS
aS

exp

(
−3Dϵ

2σ2

)
.

Proof of Proposition 4.4. Note that, the set BD/2−ϵ(conv(S)) is convex itself. For the first part, according to Item 2 of
Proposition C.9, it suffices to show that for all x ∈ ∂BD/2−ϵ(conv(S)), the denoiser mσ(x) lies in BD/2−ϵ(conv(S)) for
all σ < σ0(S, ϵ).

By Proposition 4.3, we have that

dconv(S)(mσ(x)) ≤ diam(supp(p))

√
1− aS
aS

exp

(
−3Dϵ

2σ2

)
.

Then, it suffices to show that

diam(supp(p))

√
1− aS
aS

exp

(
−3Dϵ

2σ2

)
< D/2− ϵ.

This is equivalent to

exp

(
−3Dϵ

2σ2

)
< CS

ϵ ,

where CS
ϵ = D/2−ϵ

diam(supp(p))
√

1−aS
aS

. Then, when CS
ϵ ≥ 1, the above inequality holds for all σ < ∞ and when CS

ϵ < 1, it is

straightforward to verify the above inequality holds for all 0 < σ < σ0(S, ϵ) := ( −3Dϵ
2 log(CS

ϵ )
)

1
2 . This concludes the proof of

the first part.

For the second part, we use λ = − log σ as the reparametrization and the corresponding trajectory zλ := xσ(λ). We want to
show that the distance dconv(S)(zλ) goes to zero as λ goes to infinity. By taking the derivative of d2conv(S)(zλ), and use the
notation

v := E [X|Zλ = zλ and X ∈ S] where Zλ ∼ qσ(λ),

we have

d d2conv(S)(zλ)

dλ
= −2⟨zλ − projconv(S)(zλ), zλ −mλ(zλ)⟩,

= −2⟨zλ − projconv(S)(zλ), zλ − projconv(S)(zλ)⟩
− 2⟨zλ − projconv(S)(zλ),projconv(S)(zλ)− v⟩
− 2⟨zλ − projconv(S)(zλ), v −mλ(zλ)⟩,

≤ −2d2conv(S)(zλ) + 2∥zλ − v∥∥v −mλ(zλ)∥,

≤ −2d2conv(S)(zλ) + 2(D/2− ϵ)∥v −mλ(zλ)∥.
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where in the second to last inequality we use the fact that v ∈ conv(S) and hence

⟨zλ − projconv(S)(zλ),projconv(S)(zλ)− v⟩ ≥ 0.

Note that v is exactly the quantity used in the proof of Proposition 4.3 which by the absorbing property in the first part of the
proof, we can apply (in terms of λ) to zλ and obtain

∥v −mλ(zλ)∥ ≤ diam(supp(p))

√
1− aS
aS

exp

(
−3Dϵ

2
e2λ
)
.

Consequently, we have

d d2conv(S)(zλ)

dλ
≤ −2d2conv(S)(zλ) + 2(D/2− ϵ)diam(supp(p))

√
1− aS
aS

exp

(
−3Dϵ

2
e2λ
)
.

For notation simplicity, we denote ϕ(e−λ) = (D/2− ϵ)diam(supp(p))
√

1−aS

aS
exp

(
− 3Dϵ

2 e2λ
)
. Then we have

d d2conv(S)(zλ)

dλ
≤ −2d2conv(S) + 2ϕ(e−λ)

By Remark C.8, we have that

dconv(S)(zλ) ≤ e−(λ−λ1)dconv(S)(zλ1
) + e−λ

√∫ λ

λ1

2e2tϕ(e−t)dt.

Now we want to bound 2e2tϕ(e−t), by introducing the constants C1 := (D/2− ϵ)diam(supp(p))
√

1−aS

aS
and C2 = 3Dϵ

2 ,
we have

2e2tϕ(e−t) = 2C1e
2t exp

(
−C2 e

2t
)

≤ 2C1√
2C2e

et,

where we used the fact that et exp
(
−C2 e

2t
)

is maximized at t = 1
2 log

(
1

2C2

)
and the maximum value is 1√

2C2e
. Then we

have

dconv(S)(zλ) ≤ e−(λ−λ1)dconv(S)(zλ1
) + e−λ

√∫ λ

λ1

2C1√
2C2e

etdt,

≤ e−(λ−λ1)dconv(S)(zλ1
) +

√
2C1√
2C2e

√
e−λ − eλ1−2λ.

In terms of σ, we have that

dconv(S)(xσ) ≤
σ

σ1
dconv(S)(xσ1

) +

√√√√2(D/2− ϵ)diam(supp(p))
√

1−aS

aS√
3Dϵe

√
σ(1− σ/σ1). (40)

In particular, dconv(S)(xσ) → 0 as σ → 0.

We can extend Proposition 4.4 to the case where the data distribution p is of the form p = pb ∗ N (0, δ2I) for some pb that
has a well-separated local cluster S and δ > 0 is some constant. We have the following result.
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Corollary H.1. Assume that S is a local cluster of a probability measure pb satisfying the Local Cluster Assumption
and aS := pb(S) > 0. Let p = pb ∗ N (0, δ2I) for some δ > 0 is some constant. Then for any 0 < ϵ < D/2, let
CS

ϵ := D/2−ϵ

diam(supp(p))
√

1−aS
aS

, and define:

σ0(S, ϵ) =

∞ if CS
ϵ ≥ 1,(

− 3Dϵ
2 log(CS

ϵ )

)1/2
if CS

ϵ < 1.

Assume that δ2 < σ0(S, ϵ). Then, for any σ1 <
√
σ0(S, ϵ)− δ2 the set BD/2−ϵ

(
conv(S)

)
is absorbing on the interval

(0, σ1] with respect to the distribution p. Moreover, for any FM ODE trajectory (xσ)σ∈(0,σ1] with data distribution p starting

from a point xσ1
∈ ∂BD/2−ϵ

(
conv(S)

)
, the following estimate for the distance dconv(S)(xσ) holds:

dconv(S)(xσ) ≤
√
σ2 + δ2√
σ2
1 + δ2

dconv(S)(xσ1) +

√√√√2(D/2− ϵ)diam(supp(p))
√

1−aS

aS√
3Dϵe

√√√√(
√

σ2 + δ2)

(
1−

√
σ2 + δ2

σ2
1 + δ2

)
.

Proof of Corollary H.1. Let (xσ)σ∈(0,σ1] be the trajectory of the FM ODE with data distribution p starting at some xσ1
. By

Lemma C.12, we have that xσ = y√σ2+δ2 for all σ ∈ (0, σ1] where (yσb
)
σb∈(0,

√
σ2
1+δ2]

is the FM ODE trajectory with data
distribution pb starting from y√

σ2
1+δ2

= xσ1
.

Since σ1 <
√
σ0(S, ϵ)− δ2, we have that

√
σ2
1 + δ2 < σ0(S, ϵ). By Proposition 4.4 we have that BD/2−ϵ(conv(S)) is

absorbing in (0,
√

σ2
1 + δ2] for the distribution pb and hence absorbing in (0, σ1] for the distribution p.

For the second part, we apply Equation (40) to the trajectory xσ = y√σ2+δ2 and obtain the desired result.

H.1. Proof of Theorem 4.1

We are going to apply the theory of continuity equations to show that the flow ODE is well-posed. In particular, we need the
following result which is a direct consequence of (Ambrosio et al., 2008, Lemma 8.1.4, Proposition 8.1.8) and (Ambrosio &
Crippa, 2014, Remark 7).

Lemma H.2. Let (qt)t∈[0,1) be a narrowly continuous family of probability measures on Rd with densities solving the
continuity equation below w.r.t. a smooth vector field vt:

∂tqt +∇ · (vtqt) = 0, t ∈ [0, 1).

We further assume that

1.
∫ 1

0

∫
Rd ∥vt(x)∥qt(dx)dt < ∞;

2. for any t1 ∈ [0, 1) and any compact set K ⊂ Rd,∫ t1

0

(
sup
K

∥vt∥+ Lip(vt,K)

)
< ∞,

where Lip(vt,K) is the Lipschitz constant of vt on K;

3. for any 0 < t0 < t1 < 1, there exists a constant Ct0,t1 such that

∥vt(x)∥ ≤ Ct0,t1(1 + ∥x∥), for all t ∈ [t0, t1].

Then, the ODE
dx

dt
= ut(x), x(0) = x0

has a unique solution x(t) for all t ∈ [0, 1). Furthermore, the flow map Ψt : Rd → Rd is continuous and satisfies that
(Ψt)#q0 = qt for all t ∈ [0, 1).
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Proof of Lemma H.2. By (Ambrosio et al., 2008, Proposition 8.1.8), for any t1 ∈ [0, 1), we have that the flow map
(Ψt)t∈[0,t1] exists for q0-a.e. x ∈ Rd and satisfies that (Ψt)#q0 = qt. We can take a sequence of rational numbers t(n)1 → 1

to conclude that the flow map (Ψt)t∈[0,1) exists for q0-a.e. x ∈ Rd and satisfies that (Ψt)#q0 = qt.

Now, we need to upgrade the q0-a.e. conclusion to all points x. By (Ambrosio et al., 2008, Lemma 8.1.4), for each initial
point x0 ∈ Rd, the ODE admits a unique (right) maximal solution defined in a maximal interval I(x0) = [0, τ(x0)).
Pick any t0 ∈ (0, τ(x0)) and any t1 ∈ (τ(x0), 1). Then, the ODE starting at xt0 at time t0 has a unique (right) maximal
solution in the interval [t0, τ(x0)). Suppose on the contrary that τ(x0) < 1. By item 3 in the lemma, we have that the
solution (x(t))t∈[t0,τ(x0)) such that x(t0) = xt0 must be uniformly bounded in t because ∥vt∥ has a linear growth rate for
all t ∈ [t0, t1]. This can be seen easily by applying Grönwall’s inequality to the differential inequality below:

d∥xt∥2

dt
= 2⟨xt, vt(xt)⟩ ≤ 2Ct0,t1∥xt∥(1 + ∥xt∥) ≤

{
4Ct0,t1 , if ∥xt∥ ≥ 1

4Ct0,t1∥xt∥2, if ∥xt∥ > 1
.

By (Ambrosio et al., 2008, Lemma 8.1.4) again, τ(x0) ≥ t1, contradiction. Therefore, τ(x0) = 1 and this proves that the
flow map Ψt is well-defined for all t ∈ [0, 1) and all x0 ∈ Rd.

Finally, since the solution exists and is unique, and the vector field is locally Lipschitz, it follows that the flow map Ψt is
continuous; see, for example, (Khalil & Grizzle, 2002, Theorem 3.5).

Now, we verify that the assumptions in Lemma H.2 are satisfied by the vector field ut defined in Equation (8) and the
probability measure pt defined in Equation (1). First of all, for any p with a finite 2-moment, the path (pt)t∈[0,1] is obviously
narrowly continuous. Furthermore, each pt is absolutely continuous w.r.t. Lebesgue measure for any t ∈ [0, 1) with a
density function given by Equation (1).

Gao et al. (2024, Theorem 3.1) shows that as long as p has a finite 2-moment and absolutely continuous w.r.t. Lebesgue
measure, the density function of (pt)t∈[0,1] satisfies the continuity equation

∂tpt +∇ · (utpt) = 0, t ∈ [0, 1], (41)

where ut is defined in Equation (8).

Note that our assumption only requires p to have a finite 2-moment. In this case, although p may not have a density function,
for all t ∈ [0, 1), the probability measure pt is absolutely continuous w.r.t. Lebesgue measure. We point out that the same
proof of (Gao et al., 2024, Theorem 3.1) is valid under this more general assumption that p has a finite 2-moment, and hence
the continuity equation Equation (41) still holds when we restrict to t ∈ [0, 1) which is the case we are interested in this
theorem.

Now we verify the integrality of ut to show that item 1 in Lemma H.2 is satisfied.

∫ 1

0

∫
∥ut(x)∥ pt(dx)dt

≤
∫ 1

0

∫ ∫
∥ut(x|x1)∥pt(dx|X = x1) p(dx1)dt

=

∫ 1

0

∫ ∫ ∥∥∥∥∥ β̇t

βt
x+

α̇tβt − αtβ̇t

βt
x1

∥∥∥∥∥ 1

(2πβ2
t )

d/2
exp

(
−∥x− αtx1∥2

2β2
t

)
dx p(dx1)dt

≤
∫ 1

0

∫ ∫ (∥∥∥∥∥ β̇t

βt
x− αtβ̇t

βt
x1

∥∥∥∥∥+ ∥α̇tx1∥

)
1

(2πβ2
t )

d/2
exp

(
−∥x− αtx1∥2

2β2
t

)
dx p(dx1)dt.

We split the integral by the two terms according to the summation ∥ β̇t

βt
x− αtβ̇t

βt
x1∥+ ∥α̇tx1∥. For the first term, we use
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x̃ = x− αtx1 and the fact about the expected norm of a Gaussian random variable with variance σ2 is σ
√

π
2
Γ((n+1)/2)

Γ(n/2) .

∫ 1

0

∫ ∫ ∣∣∣∣∣ β̇t

βt

∣∣∣∣∣ ∥x− αtx1∥
1

(2πβ2
t )

d/2
exp

(
−∥x− αtx1∥2

2β2
t

)
dx p(dx1)dt

=

∫ 1

0

∫ ∣∣∣∣∣ β̇t

βt

∣∣∣∣∣βt

√
π

2

Γ((d+ 1)/2)

Γ(d/2)
p(dx1)dt

=

√
π

2

Γ((d+ 1)/2)

Γ(d/2)

∫ 1

0

−β̇tdt

=

√
π

2

Γ((d+ 1)/2)

Γ(d/2)
,

where we use the assumption that βt is a non-increasing function of t and hence β̇t ≤ 0.

For the second term, we have that∫ 1

0

∫ ∫
∥α̇tx1∥

1

(2πβ2
t )

d/2
exp

(
−∥x− αtx1∥2

2β2
t

)
dx p(dx1)dt

≤
∫ 1

0

∫
α̇t∥x1∥p(dx1)dt

≤
∫

∥x1∥p(dx1) < ∞.

The last step follows from the fact that p has a finite 2-moment and, hence, a finite first moment. We also use the assumption
that αt is a non-decreasing function of t and hence α̇t ≥ 0.

Now we verify that ut satisfies item 2 in Lemma H.2. Recall ut(x) = β̇t/βt · x+ (α̇tβt − αtβ̇t)/βt ·E[X|Xt = x] and by
Proposition C.2, we have that

∇xmt(x) =
αt

β2
t

Cov[X|Xt = x],

where Cov[X|Xt = x] denotes the covariance matrix of the posterior distribution p(·|Xt = x). For simplicity, we let
Σt(x) := Cov[X|Xt = x] below. Therefore,

∇xut(x) =
β̇t

βt
I +

αt(α̇tβt − αtβ̇t)

β3
t

Σt(x).

Recall that α0 = 0, β0 = 1 and αt, βt are positive continuous when t ∈ (0, 1). Also we have assumed that derivatives
exist and are bounded. Therefore, for any t1 ∈ [0, 1), the coefficients above consisting of αt, βt will be uniformly bounded
within [0, t1]. Hence, to prove the locally Lipschitz property, it suffices to show that the covariance matrix Σt(x) of the
posterior distribution p(·|Xt = x) is locally (w.r.t. x) uniformly bounded (w.r.t. t). We establish the following lemma for
this purpose.

Lemma H.3. Let p be a probability measure on Rd with a finite 2-moment M2(p). For any x ∈ Rd, consider the posterior
distribution:

p(dz|Xt = x) =
exp

(
−∥x−αtz∥2

2β2
t

)
p(dz)∫

Ω
exp

(
−∥x−αtz∥2

2β2
t

)
p(dz)

.

We let Nt(x) :=
∫
exp

(
−∥x−αtz∥2

2β2
t

)
p(dz). Then, the covariance matrix Σt(x) of p(·|Xt = x) satisfies:

Σt(x) ⪯
(
2∥mt(x)∥2 +

2M2(p)

Nt(x)

)
I.
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Proof of Lemma H.3. Fix a unit vector v. Then, we have that

v⊤Σt(x)v =

∫
⟨z −mt(x), v⟩2

exp
(
−∥x−αtz∥2

2β2
t

)
p(dz)∫

exp
(
−∥x−αtz′∥2

2β2
t

)
p(dz′)

.

For z ∈ Rd, we have that

⟨z −mt(x), v⟩2 ≤ ∥z −mt(x)∥2 ≤ 2∥z∥2 + 2∥mt(x)∥2.

Therefore, one has that

v⊤Σt(x)v ≤ 2∥mt(x)∥2 + 2

∫
∥z∥2

exp
(
−∥x−αtz∥2

2β2
t

)
p(dz)∫

exp
(
−∥x−αtz′∥2

2β2
t

)
p(dz′)

= 2∥mt(x)∥2 +
2
∫
∥z∥2p(dz)∫

exp
(
−∥x−αtz′∥2

2β2
t

)
p(dz′)

= 2∥mt(x)∥2 +
2M2(p)

Nt(x)
.

Since v is arbitrary, this concludes the proof.

By dominated convergence theorem, it is straightforward to check that N : [0, 1) × Rd → R is continuous w.r.t. (t, x).
Hence, for any x ∈ Rd, t ∈ [0, 1) and any local compact neighborhood of x in Rd, N is bounded below by some positive
constant. Similarly, mt(x) is continuous w.r.t. x, we have that mt(x) is locally uniformly bounded as well in any local
compact neighborhood of x in Rd. These together with Proposition C.2 and Equation (8) imply that the vector field
u : [0, 1)×Rd → Rd is locally Lipschitz in x for any fixed t ∈ [0, 1). In fact, by continuity of Nt and mt in t, we have that
for any fixed t1 ∈ [0, 1) and any compact set K ⊂ Rd,

sup
t∈[0,t1]

sup
K

∥ut∥+ LipK(ut) < ∞.

This implies that ut satisfies item 2 in Lemma H.2.

Finally, we show that ut satisfies item 3 in Lemma H.2. This is done by establishing the following claim.
Claim 3. There exists a positive constant Ĉt continuously dependent on t ∈ (0, 1) so that for any x ∈ Rd

∥ut(x)∥ ≤ Ĉt(1 + ∥x∥).

Here the constant Ĉt may blow up as t → 0 or t → 1 but it is finite for any fixed t ∈ (0, 1).

Proof of Claim 3. We first show that for any σ ∈ (0,∞), then for any x ∈ Rd, we have that

∥mσ(x)∥ ≤ Cσ(1 + ∥x∥).

where Cσ continuously depends on σ.

By Markov’s inequality, we have that for any a > 0,

p(∥X − x∥ ≥ a) ≤ E∥X − x∥
a

≤ M1 + ∥x∥
a

,

where M1 denotes the first moment of the distribution p. We let Ax := ⌈2(M1 + ∥x∥)⌉ ∈ N. Then, we have the following
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estimates:

∥mσ(x)− x∥ =

∥∥∥∥∥∥
∫
exp

(
−∥x−y∥2

2σ2

)
(y − x)p(dy)∫

exp
(

−∥x−y′∥2

2σ2

)
p(dy′)

∥∥∥∥∥∥
≤

∞∑
n=Ax+1

∫
n≤∥y−x∥<n+1

exp
(

−∥x−y∥2

2σ2

)
∥y − x∥p(dy)∫

exp
(

−∥x−y′∥2

2σ2

)
p(dy′)︸ ︷︷ ︸

I1

+

∫
∥y−x∥<Ax+1

exp
(

−∥x−y∥2

2σ2

)
∥y − x∥p(dy)∫

exp
(

−∥x−y′∥2

2σ2

)
p(dy′)︸ ︷︷ ︸

I2

.

If we let X̄ := χ∥X−x∥<Ax+1 · ∥X − x∥, then we have that

I2 = E[X̄|Xσ = x] ≤ Ax + 1.

Then, we pick any small 0 < ϵ < 1. We have that

I1 ≤
∞∑

n=Ax+1

∫
n≤∥y−x∥<n+1

exp
(

−∥x−y∥2

2σ2

)
∥y − x∥p(dy)∫

∥y−x∥<n−ϵ
exp

(
−∥x−y′∥2

2σ2

)
p(dy′)

≤
∞∑

n=Ax+1

(n+ 1) exp
(

−n2

2σ2

)
p({y : n ≤ ∥y − x∥})

exp
(

−(n−ϵ)2

2σ2

)
p({y : ∥y − x∥ < n− ϵ})

≤
∞∑

n=Ax+1

(n+ 1) exp
(

−(2ϵn−ϵ2)
2σ2

)
p({y : n− ϵ ≤ ∥y − x∥})

p({y : ∥y − x∥ < n− ϵ})
.

We have that

p({y : n− ϵ ≤ ∥y − x∥}) = p(∥X − x∥ ≥ n− ϵ) ≤ p(∥X − x∥ ≥ Ax) ≤
M1 + ∥x∥

Ax
≤ 1

2
.

Then, we have that
p({y : n− ϵ ≤ ∥y − x∥})
p({y : ∥y − x∥ < n− ϵ})

=
p({y : n− ϵ ≤ ∥y − x∥})

1− p({y : n− ϵ ≤ ∥y − x∥})
≤ 1.

In this way, we can continue to bound I1 as follows:

I1 ≤
∞∑

n=Ax+1

(n+ 1) exp

(
−(2ϵn− ϵ2)

2σ2

)

= exp

(
ϵ2

2σ2

) ∞∑
n=1

(n+ 1) exp
(
− ϵ

σ2
n
)
=: Cϵ,δ < ∞.

The final inequality follows from the fact that
∑∞

n=1(n+ 1) exp
(
− ϵ

σ2n
)

is a convergent series (which can be seen easily
from ratio test).

Then, we have that

∥mσ(x)∥ ≤ ∥x∥+ I1 + I2 ≤ ∥x∥+ Cϵ,δ +Ax + 1 ≤ Cϵ,δ + 2 + 2M1 + 3∥x∥ = Cδ(1 + ∥x∥),

where Cδ is a constant that depends on δ and the first moment of the distribution p (we can simply take ϵ = 1/2 to remove
the dependency on ϵ).
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This implies that
∥mt(x)∥ = ∥mσt

(x/αt)∥ ≤ Cδt(1 + ∥x/αt∥) ≤ Ct(1 + ∥x∥)

where Ct := Cδt/αt is continuously dependent on t ∈ (0, 1) (note that t = 0 has to be excluded otherwise C0 = ∞).

Therefore, as ut is a linear combination of x and mt (cf. Equation (8)), we have that

∥ut(x)∥ ≤ Ĉt(1 + ∥x∥)

for some constant Ĉt that is continuously dependent on t for all t ∈ (0, 1).

Now, for any 0 < t0 < t1 < 1, by continuity of Ct, we have that Ct0,t1 := supt∈[t0,t1] Ct < ∞ and hence we have that ut

satisfies item 3 in Lemma H.2.

Then, by applying Lemma H.2, we conclude the proof.

H.2. Proof of Proposition 4.2

We now prove Proposition 4.2 which is a consequence of how close the posterior distribution is to the data distribution
when σ is large. We will first only consider the case where the data distribution has bounded support and then extend the
result to the case where the data distribution is a convolution of a bounded support distribution and a Gaussian distribution
using Lemma C.12.

Proposition H.4 (Initial stability of posterior measure). Let p be a probability measure on Rd with bounded support which
is denoted as Ω := supp(p). Let x be a point and consider the posterior measure p(·|Xσ = x). We then have the following
Wasserstein distance bound:

dW,1(p(·|Xσ = x), p) <

(
exp

(
2∥x− E[X]∥diam(Ω)

σ2

)
− 1

)
diam(Ω).

Proof of Proposition H.4. Let R1 = ∥x − E[X]∥. Consider the function gσ(y) = exp
(
−∥x−y∥2

2σ2

)
. By the fact that

∥y − E[X]∥ ≤ diam(Ω) for any y ∈ Ω, we have that:

exp

(
− (R1 + diam(Ω))2

2σ2

)
≤ gσ(y) ≤ exp

(
− (R1 − diam(Ω))2

2σ2

)
for all y ∈ Ω. Then for any Borel measurable set A ⊆ Ω, we can bound the ratio of the posterior and the data distribution as:

p(A|Xσ = x)

p(A)
=

∫
A
gσ(y)p(dy)

p(A)
∫
Ω
gσ(y)p(dy)

≤
exp

(
− (R1−diam(Ω))2

2σ2

) ∫
A
p(dy)

p(A) exp
(
− (R1+diam(Ω))2

2σ2

) ∫
Ω
p(dy)

= exp

(
(R1 + diam(Ω))2

2σ2
− (R1 − diam(Ω))2

2σ2

)
︸ ︷︷ ︸

a

.

Similarly, we can bound the ratio from below:

p(A|Xσ = x)

p(A)
≥

exp
(
− (R1+diam(Ω))2

2σ2

) ∫
A
p(dy)

p(A) exp
(
− (R1−diam(Ω))2

2σ2

) ∫
Ω
p(dy)

= exp

(
(R1 − diam(Ω))2

2σ2
− (R1 + diam(Ω))2

2σ2

)
= 1/a.
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Since a > 1, we have |1/a− 1| ≤ a− 1. Therefore, we have:∣∣∣∣p(A|Xσ = x)

p(A)
− 1

∣∣∣∣ ≤ a− 1.

In particularly, there is |p(A|Xσ = x) − p(A)| ≤ a − 1 for all A ⊆ Ω which by definition bounds the total variation
distance between p(·|Xσ = x) and p by a− 1. Then the Wasserstein distance dW,1(p(·|Xσ = x), p) can be bounded by
(a− 1)diam(Ω); see e.g. Villani (2003, Proposition 7.10).

Now we are ready to prove the following special case of Proposition 4.2.

Proposition H.5. Let p be a probability measure on Rd with bounded support which is denoted as Ω := supp(p). Let x0 be
a point and denote ∥x0 − E[X]∥ = R0, where X ∼ p. Let ζ be a parameter such that 0 < ζ < 1. Then the constant

σinit(Ω, ζ, R0) :=

√√√√ 2R0diam(Ω)

log
(
1 + ζR0

diam(Ω)

)
satisfies that for any σ1 > σinit(Ω, ζ, R0), the ODE trajectory (xσ)σ∈(σinit(Ω,ζ,R0),σ1] starting from xσ1

= x0 will move
toward the mean of the data distribution p as shown in the following estimate:

∥xσ − E[X]∥ <
σ1−ζ

σ1−ζ
1

∥xσ1
− E[X]∥,

where X ∼ p.

Proof of Proposition H.5. By the estimate in Proposition H.4 and the fact that f(s) = s
log(1+s) is increasing for s > 0, one

can check that for any σ > σinit(Ω, ζ, R0), and for all z with ∥z − E[X]∥ < R0 where Xb ∼ p there is

dW,1(p(·|Yσ = z), p) < ζ∥z − E[X]∥,

where Yσ ∼ qσ . Then by Lemma D.2, we have ∥mσ(z)− E[X]∥ < ζ∥z − E[X]∥.

This estimate shows that for all σ ∈ (σinit(Ω, ζ, R0), σ1] and for all z ∈ ∂BR0(E[X]), the denoiser mσ(z) lies in the ball
BζR0(E[X]) and hence the interior of BR0(E[X]). The closed ball BR0(E[X]) is clearly convex and we can then apply
Item 2 of Proposition C.9 to conclude that the set BR0(E[X]) is absorbing for the trajectory (xσ)σ∈(σinit(Ω,ζ,R0),σ1].

The absorbing result ensures the estimate the estimate

∥mσ(xσ)− E[X]∥ < ζ∥xσ − E[X]∥

holds for the entire trajectory (xσ)σ∈(σinit(Ω,ζ,R0),σ1]. We then obtain the result by Item 1 of the meta attracting result Theo-
rem C.7.

Proof of Proposition 4.2. We obtain the result by combining the results in Proposition H.5 and Lemma C.12.

I. Proofs in Section 5
In this section, we provide the missing proofs of the results in Section 5. Some proofs are already provided in the previous
sections:

• The proof of Theorem 5.1 is presented in Appendix D as an immediate consequence of the technical result about
posterior convergence (Theorem D.4).

• The proof for Example 5.5 is provided in Appendix E.

Also, the proofs of Theorem 5.3 and Theorem 5.4 require more preparation and are organized in Appendix I.1 and Ap-
pendix I.2, respectively, at the end of this section.

51



Elucidating Flow Matching ODE Dynamics via Data Geometry and Denoisers

Proof of Proposition 5.6. For any independent random variables X ∼ p and any Z ∼ N(0, σ2I), we have that X +Z ∼
qσ = p ∗N(0, σ2I). Hence,

dW,2(qσ, p)
2 ≤ E

[
∥X +Z −X∥2

]
= E

[
∥Z∥2

]
= O(σ2).

The result follows.

Proof of Proposition 5.7. For any t ∈ [0, 1), consider y = st(Ox + αtb). The transformed denoiser m̄t(y) w.r.t. ᾱt :=
stαt/γ and β̄t := stβt, as well as p̄ is given by

m̄t(y) =

∫ exp
(
−∥y−ᾱty1∥2

2β̄2
t

)
y1∫

exp
(
−∥y−ᾱty′

1∥2

2β̄2
t

)
p̄(dy′1)

p̄(dy1)

=

∫ exp
(
−∥st(Ox+αtb)−αtst(Ox1+b)∥2

2s2tβ
2
t

)
γ(Ox1 + b)∫

exp
(
−∥st(Ox+αtb)−αtst(Ox1+b)∥2

2s2tβ
2
t

)
p(dx′

1)
p(dx1)

=

∫ exp
(
−∥x−αtx1∥2

2β2
t

)
γ(Ox1 + b)∫

exp
(
−∥x−αtx′

1∥2

2β2
t

)
p(dx′

1)
p(dx1) = γ(Omt(x) + b).

(42)

Let xt denote an ODE path for dxt/dt = ut(xt). Then we consider the path yt = st(Oxt + αtb). We now check that
dyt/dt = ūt(yt) as follows:

dyt
dt

= s′t(Oxt + αtb) + st

(
O
dxt

dt
+ α′

tb

)
= s′tOxt + s′tαtb+ st((log βt)

′Oxt + βt(αt/βt)
′Omt(xt)) + stα

′
tb

= (s′t/st + (log βt)
′)st(Oxt + αtb) + βt(αt/βt)

′stOmt(xt) + stα
′
tb− (log βt)

′stαtb

= (log β̄t)
′yt + βt(αt/βt)

′st(Omt(xt) + b)

= (log β̄t)
′yt + stβt(

αt

γβt
)′γ(Omt(xt) + b)

= (log β̄t)
′yt + β̄t(

ᾱt

β̄t
)′m̄t(yt) = ūt(yt).

Note that y0 = Ox0, hence we conclude for t ∈ [0, 1) that

Ψt(Ox0) = st(OΨt(x0) + αtb).

When Ψ1(x0) = limt→1 Ψt(x0) exists, by continuity of st and αt, we have that Ψ1(Ox0) = limt→1 Ψt(Ox0) exists and
that

Ψ1(Ox0) = γ(OΨ1(x0) + b).

Proof of Proposition 5.9. Since each V ϵ
i is a convex set and in fact, a closure of an open convex set, by item 2 of Propo-

sition C.9, it suffices to prove that for all x ∈ ∂V ϵ
i and all σ < σ0(V

ϵ
i ), which is the boundary of V ϵ

i , one has that
mσ(x) ∈ intV ϵ

i which is the interior of V ϵ
i .

First of all, we define

ri,ϵ :=
sep2(xi)− ϵ2

2sep(xi)
.

It is straightforward to check that Bri,ϵ(xi) ⊆ V ϵ
i . In fact, ri,ϵ = argmax{r > 0 : Br(xi) ⊆ V ϵ

i }.

Hence, by Corollary D.8, for any x ∈ ∂V ϵ
i we have that
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∥mσ(x)− xi∥ ≤ diam(Ω)

√
1− ai
ai

exp

(
−∆Ω(x)

4σ2

)
≤ diam(Ω)

√
1− ai
ai

exp

(
− ϵ2

4σ2

)
.

Therefore, we need to identify when the above inequality is less than ri,ϵ, that is,

diam(Ω)

√
1− ai
ai

exp

(
− ϵ2

4σ2

)
< ri,ϵ,

exp

(
− ϵ2

4σ2

)
<

ri,ϵ

diam(Ω)
√

1−ai

ai

,

Recall that Ci,ϵ =
ri,ϵ

diam(Ω)

√
ai

1−ai
. Then, it is direct to check that when Ci,ϵ ≤ 1, the above inequality holds for all

0 ≤ σ < ∞ and when Ci,ϵ > 1, the above inequality holds for all σ < σ0(V
ϵ
i ) =

ϵ
2

(
log(CΩ

i,ϵ)
)−1/2

. In summary, this
implies that mσ(x) ∈ intBri,ϵ(xi) ⊂ intV ϵ

i when σ < σ0(V
ϵ
i ). Then as stated above, by item 2 of Proposition C.9, we

have that V ϵ
i is absorbing.

Next, we show that dΩ(zλ) → 0 as λ → ∞. Along the trajectory zλ, by Corollary B.15 we have

d d2Ω(zλ)

dλ
= −2⟨zλ − xi, zλ −mλ(zλ)⟩,

= −2⟨zλ − xi, zλ − xi⟩+ 2⟨zλ − xi, xi −mλ(zλ)⟩,
≤ −2d2Ω(zλ) + 2dΩ(zλ)∥xi −mλ(zλ)∥,

Applying Corollary D.8 to points in V ϵ
i , we have the following uniform bound for all y ∈ V ϵ

i ,

∥mλ(y)− xi∥ ≤ diam(Ω)

√
1− ai
ai

exp

(
−1

4
e2λϵ2

)
.

Since zλ ∈ V ϵ
i , we have that

d d2Ω(zλ)

dλ
≤ −2d2Ω(zλ) + sep(xi) diam(Ω)

√
1− ai
ai

exp

(
−1

4
e2λϵ2

)
.

Then by Lemma C.6, we have that dΩ(zλ) → 0 as λ → ∞. By the the fact that Ω is discrete and xi is the nearest point to
zλ for all large λ, we must have zλ → xi as λ → ∞.

Proof of Proposition 5.10. The proof idea follows the same line as the proofs of Proposition 5.9. Similarly as in the case
of denoisers, we can also consider the change of variable λ = − log(σ) for handling mθ

σ. We let zθλ := xθ
σ(λ) and let

mθ
λ(x) := mθ

σ(λ)(x) for any x ∈ Rd. Then, it is straightforward to check that

dzθλ
dλ

= mθ
λ(z

θ
λ)− zθλ (43)

and converting everything back to σ is straightforward.

We first identify the parameter λ0(V
ϵ
i , ϕ) such that the denoiser mθ

λ(x) is will always lie in the interior of V ϵ
i for all x ∈ ∂V ϵ

i

and all λ > λ0(V
ϵ
i , ϕ).

By the triangle inequality, we have that

∥mθ
λ(y)− xi∥ ≤ ∥mθ

λ(y)−mN
λ (y)∥+ ∥mN

λ (y)− xi∥,

≤ ϕ(λ) + diam(Ω)

√
1− ai
ai

exp

(
−1

4
e2λϵ2

)
.
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Since ϕ(λ) goes to zero as λ goes to infinity, there exists a parameter λ0(V
ϵ
i , ϕ) such that for all λ > λ0(V

ϵ
i , ϕ), ∥mθ

λ(y)−
xi∥ ≤ sep2(xi)−ϵ2

2 sep(xi)
. Then, with the same argument as in the proof of Proposition 5.9, we can prove that the trajectory zθλ will

never leave V ϵ
i for all λ > λ0(V

ϵ
i , ϕ).

Since the trajectory zθλ never leaves V ϵ
i for all λ > λ0(V

ϵ
i , ϕ), we can then apply the uniform decay of ∥mθ

λ(y)− xi∥ to the
differential inequality of d2Ω(z

θ
λ) as follows:

d d2Ω(z
θ
λ)

dλ
≤ −2d2Ω(z

θ
λ) + 2dΩ(z

θ
λ)
∥∥xi −mθ

λ(z
θ
λ)
∥∥ ,

≤ −2d2Ω(z
θ
λ) + 2dΩ(z

θ
λ)

(
ϕ(λ) + diam(Ω)

√
1− ai
ai

exp

(
−1

4
e2λϵ2

))
.

Now, we apply Lemma C.6 again as in the proof of Proposition 5.9, we have that dΩ(zθλ) goes to zero as λ goes to infinity
and hence zθλ converges to xi.

For the second part, the limits zθ∞ := limλ→∞ zθλ and limλ→∞ mθ
λ(z

θ
λ) are known to exist. In particular, the limit of the

derivative limλ→∞
dzθ

λ

dλ = limλ→∞ mθ
λ(z

θ
λ)− zθλ exists and we will show that it has to be zero.

Suppose limλ→∞
dzθ

λ

dλ ̸= 0, then there must exist a coordinate j with nonzero limit. Assume that the limit for the j-th

coordinate of dzθ
λ

dλ is vj ̸= 0. Then, there exist a T > 0 such that the j-th coordinate of dzθ
λ

dλ is bounded away from zero
by |vj |/2 for all λ > T . However, due to the convergence zθλ → z∞, we can find two numbers λ1, λ2 > T such that
|zθλ1,j

− zθλ2,j
| < 1

2 |vj |/2. This contradicts with the lower bound |vj |/2 for the j-th coordinate of the derivative by mean

value theorem. Therefore, the limit of the derivative dzθ
λ

dλ has to be zero which implies that

lim
λ→∞

∥mθ
λ(z

θ
λ)− zθλ∥ = 0.

I.1. Proof of Theorem 5.3

We utilize the change of variable λ(t) = log αt

βt
for t ∈ (0, 1). We also let t(λ) denote the inverse function of λ(t).

Next, we consider zλ :=
xt(λ)

αt(λ)
. Then, we have that zλ satisfies ODE Equation (16): dzλ/dλ = mλ(zλ)− zλ. Recall the

transformation At sending x to x/αt. Then, we define qλ := (At(λ))#pt(λ) = p ∗ N (0, e−2λ(t)I).

By Theorem D.4, we have the following convergence rate for mλ(zλ):
Claim 4. Fix 0 < ζ < 1. Then, there exists Λ > −∞ such that for any radius R > 1

2τΩ and all z ∈ BR(0)∩B 1
2 τΩ

(Ω), one
has

∥mλ(z)− projΩ(z)∥ ≤ Cζ,τ,R · e−ζλ for all λ > Λ

where Cζ,τ,R is a constant depending only on ζ and τ and R.

Proof of Claim 4. We let zΩ := projΩ(z). Note that ∥zΩ∥ ≤ ∥z∥ + dΩ(z) ≤ 2R. Since p satisfies Assumption 5.2, we
have that p(Br(zΩ)) ≥ C2Rr

k for small 0 < r < c. Now, we let Λ := − log(c)/ζ. By Theorem D.4, we conclude the
proof.

The following Claim establishes an absorbing property for points in zλδ
∈ BRδ

(0) ∩Bδ(Ω).
Claim 5. Consider δ > 0 small such that δ < τΩ

4 . Fix any Rδ > 0 such that Rδ > 2δ. Then, there exists λδ ≥ Λ satisfying
the following property: the trajectory (zλ)λ∈[λδ,∞) starting at any initial point zλδ

∈ BRδ
(0) ∩ Bδ(Ω) of the ODE in

Equation (16) satisfies that for any λ ≥ λδ: zλ ∈ B2Rδ
(0) ∩B2δ(Ω).

Proof of Claim 5. This follows from Claim 4 and Theorem C.11 (by letting σΩ := e−Λ).

Next we establish a concentration result for qλ when λ is large.
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Claim 6. For any small δ > 0, there are Rδ, λδ > 0 large enough such that for any λ ≥ λδ and R > Rδ , we have that

qλ (BR(0) ∩Bδ(Ω)) > 1− δ.

Proof of Claim 6. Consider the random variable X = Y + e−λZ where Y ∼ p and Z ∼ p0 = N (0, I) are independent
but from the same probability space (Ω,P). Then, X has qλ as its law. We have that dΩ(x) ≤ ∥Y +e−λZ−Y ∥ = e−λ∥Z∥.
For any R > δ, we have that

P(∥X + e−λZ∥ ≤ 2R, e−λ∥Z∥ ≤ δ) ≥ P(∥X∥ ≤ R, e−λ∥Z∥ ≤ δ)

= P(∥X∥ ≤ R)P(∥Z∥ ≤ eλδ).

Since Z follows the standard Gaussian, for any δ, there exists λδ > 0 such that for all λ ≥ λδ , we have that

P(∥Z∥ ≤ eλδ) ≥ P(∥Z∥ ≤ eλδδ) > 1− δ

2
.

Now, since p has a finite 2-moment and hence a finite 1-moment, there exists Rδ > 0 such that P(∥X∥ ≤ Rδ

2 ) > 1− δ
2 .

Therefore, for all λ ≥ λδ , we have that

qλ (BRδ
(0) ∩Bδ(Ω)) ≥ P(∥X + e−λZ∥ ≤ Rδ, e

−λ∥Z∥ ≤ δ)

≥
(
1− δ

2

)(
1− δ

2

)
> 1− δ.

Now, we establish the desired convergence results for the scale of λ.
Claim 7. For any small δ > 0, there exist large enough λδ , such that with probability at least 1− δ, we have that zλδ

∼ qλδ

satisfies the following properties:

1. zλ converges along the ODE trajectory starting from zλδ
as λ → ∞;

2. the convergence rate is given by ∥zλ − zλδ
∥ = O(e−

ζλ
2 ).

Proof of Claim 7. For any δ > 0, by Claim 5 and Claim 6, there exist large enough λδ and Rδ , such that

• with probability at least 1− δ, we have that zλδ
∼ qλδ

lies in BRδ
(0) ∩Bδ(Ω);

• the ODE trajectory (zλ)λ∈[λδ,∞) starting at zλδ
∈ BRδ

(0) ∩ Bδ(Ω) satisfies that for all λ ≥ λδ, zλ lies in B2Rδ
(0)

and dΩ(zλ) ≤ 2δ.

This implies that one can apply the convergence rate of denoiser in Claim 4 to the entire trajectory with C := Cζ,τ,R where
R := 2Rδ . Then, for any λ1 < λ2 in the interval [λδ,∞), we have that

∥zλ2 − zλ1∥ ≤
∫ λ2

λ1

∥mλ(zλ)− zλ∥dλ

≤
∫ λ2

λ1

∥mλ(zλ)− projΩ(zλ)∥+ ∥projΩ(zλ)− zλ∥dλ (44)

≤ C

ζ
(−e−ζλ2 + e−ζλ1) + δeλδ(e−λ1 − e−λ2) +

√
4δC

2− ζ
· 2
ζ

(
e−ζλ1/2 − e−ζλ2/2

)
,

where the bound is obtained in a way similar to how we obtain Equation (21).
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This implies that the solution zλ becomes a Cauchy sequence and hence converges to a limit z∞.

Now, we let λ2 approach ∞ in the above inequality and and replace λ1 with λ to obtain the following convergence rate:

∥z∞ − zλ∥ = O(e−
ζλ
2 ). (45)

Now, we change the coordinate back to t ∈ [0, 1) to obtain the following result. Since δ > 0 is arbitrary so one can let δ
approach 0 in the result below to conclude the proof of Theorem 5.3.
Claim 8. For any small δ > 0, one can sample x0 ∼ p0 with probability at least 1 − δ, such that the flow map Ψt(x0)
converges to a limit Ψ1(x0) as t → 1.

Proof of Claim 8. Let λδ be the one given in Claim 7. Then, we let tδ := t(λδ). Consider the map Atδ : Rd → Rd sending
x to x/αtδ . Then, we have that

(Atδ)#ptδ = qλδ
. (46)

Both maps Atδ and Ψtδ (whose existence follows from Theorem 4.1) are continuous bijections. It is then easy to see that if
an ODE trajectory of Equation (16) converges starting with some zλδ

∼ qλδ
and has convergence rate O(e−

ζλ
2 ), then the

corresponding trajectory of the ODE Equation (2) starting with x0 := (Atδ ◦Ψtδ)
−1(zλδ

) also converges to a limit as t → 1
with the same convergence rate up to the change of variable λ → t. Finally, by Equation (46) we also have that

p0(x0 with the desired properties) = qλδ
(zλδ

with the desired properties) > 1− δ,

which concludes the proof.

Item 2 in the theorem is a direct consequence of item 1. As Ψ1 is the pointwise limit of continuous maps Ψt (cf. Theorem 4.1),
it is a Borel measurable map. We know that pt weakly converges to p1 = p as t → 1. Now, we just verify that (Ψ1)#p0 is
also a weak limit of pt = (Ψt)#p0 to show that (Ψ1)#p0 = p1.

For any continuous and bounded function f , we have that

lim
t→1

∫
f(x)(Ψt)#p0(dx) = lim

t→1

∫
f(Ψt(x))p0(dx)

=

∫
f(Ψ1(x))p0(dx)

where we used the bounded convergence theorem in the last step. Therefore, we have that (Ψ1)#p0 = p1 and hence Ψ1 is
the flow map associated with the ODE dxt/dt = ut(xt).

I.2. Proof of Theorem 5.4

Part 1. We first establish the following volume growth condition for the manifold M satisfying assumptions in the theorem.

Lemma I.1. There exists 0 < r′M < Inj(M) sufficiently small, where Inj(M) denotes the injectivity radius, such that
the following holds. For any R > 0, there exists a constant CR > 0 so that for any radius 0 < r < r′M , and for any
x ∈ M ∩BR(0), one has p(Br(x)) ≥ CRr

m.

Proof. Notice that within the compact region MR+Inj(M) := BR+Inj(M)(0) ∩ M , the density ρ is lower bounded by a
positive constant ρR > 0. Additionally, the sectional curvature of M is upper bounded by some constant κ > 0 due to
the boundedness of the second fundamental form. Then by Gunther’s volume comparison theorem (Gallot et al., 1990,
3.101 Theorem) for 0 < r < Inj(M), there exists constant cκ > 0 such that

volM
(
BM

r (x)
)
≥ volMm

κ

(
B

Mm
κ

r (x)
)
,

where BM
r (x) := {y ∈ M : dM (x, y) < r}, dM denotes the geodesic distance, and Mm

κ denotes the m-dimensional
sphere with sectional curvature κ.
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We then choose r′M to be small enough such that

volMm
κ

(
B

Mm
κ

r (x)
)
≥ cκr

m

for some constant cκ > 0 and all r < r′M .

Since ∥x− y∥ ≤ dM (x, y) for any x, y ∈ M , we have that BM
r (x) ⊂ Br(x). Hence, we have that for all x ∈ BR(0) ∩M

and r < r′M ,

p(Br(x)) ≥ p(BM
r (x)) =

∫
BM

r (x)

ρ(y)volM (dy) ≥ ρRvolM (BM
r (x)) ≥ ρR cκ · rm.

By letting CR := ρR cκ, we conclude the proof.

Then, we can replicate the proof of Theorem 5.3 with only small changes of Claim 4 as follows using ζ = 1:
Claim 9. Under assumptions as in Theorem 5.4, there exsits Λ > −∞ such that for any radius R > τM/2, all z ∈
BR(0) ∩BτM/2(M), we have that

∥mλ(z)− projM (z)∥ ≤ Cτ,R · e−λ, for λ > Λ

where CM,R is a constant depending only on R and the geometry of M .

Proof of Claim 9. This can be proved by carefully examining all bounds involved in the proof of Theorem D.5.

• Equation (29): Since z ∈ BR(0) ∩ Bτ/2(M), we have that zM ∈ BR+τM/2(0) and hence ∥zM∥ in the numerator
can be bounded by R+ τM/2. The denominator is lower bounded by some polynomial of r0 by Equation (25) and
the volume growth condition of p established in Lemma I.1. We also notice that r0 can be chosen uniformly for all
z ∈ BR(0) ∩BτM/2(M) as it is completely dependent on the reach. Therefore, the big O function is bounded above
by some function of R.

• Equation (32): C1 can be bounded by R and the bounds on the local Lipschitz constant of the density and the second
fundamental form (which bounds the Ricci tensor).

• Equation (33): this one is bounded similarly as the one in Equation (29) by some function of R.

• Lemma D.10: the bound C2 is bounded by the bounds on the second fundamental form and its covariant derivatives.

In conclusion,
∥mλ(z)− projM (z)∥ ≤ dW,2(p(·|Xλ = z), δzM ) =

√
me−λ +G(z)

where |G(z)| ≤ C ′
M,Re

−2λ for all z ∈ BR(0)∩BτM/2(M) and C ′
M,R depends only on R and geometry bounds of M such

as reach and second fundamental form bounds. Then, by combining the two exponential terms, one concludes the proof.

Part 2. In the discrete case, we let Ω := {x1, . . . , xN}. We can improve the convergence rate in Theorem 5.3 to be
exponential by considering a direct consequence of Corollary D.8:
Claim 10. For all z ∈ Rd such that dΩ(z) < 1

4 sepΩ, we have that

∥mλ(z)− projΩ(z)∥ ≤ C2 · exp(−C1e
2λ),

where C1, C2 only depends on sepΩ := minxi ̸=xj∈Ω ∥xi − xj∥ is the minimal separation between the points in Ω.

Therefore, when λδ is large enough, we have that for any λ2 > λ1 ≥ λδ

d(e2λd2Ω(zλ))

dλ
≤ 2e2λdΩ(zλ)∥mλ(zλ)− projΩ(zλ)∥

≤ 2C2e
2λ−C1e

2λ

dΩ(zλ)

≤ C3e
−λdΩ(zλ),
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where C3 is a constant dependent on C1, C2 and the properties of the exponential function.

Then, in particular, there is

e2λd2Ω(zλ) ≤ e2λδd2Ω(zλδ
) + C3

∫ λ

λδ

e−λ′
dΩ(zλ′)dλ′,

≤ e2λδC5 + C4

∫ λ

λδ

e−λ′
dλ′

where the we use the fact that dΩ(zλ) is bounded by the absorbing result in Theorem C.11 and hence the integral is bounded
by a constant C4.

This implies that d2Ω(zλ) ≤ e−2(λ−λδ)C5 + C4e
−2λ ≤ C6e

−λ for some constant C6 depending on C4, C5. Now, following
the rest of the estimations in the proof of Theorem 5.3, we can replace the rate O(e−

ζλ
2 ) in Claim 7 with O(e−λ) after the

change above and conclude the proof.

J. Experiments
J.1. A Synthetic Dataset with Three Clusters
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X

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

Y

Convex Hull

Cluster 1

Cluster 2

Cluster 3

Data mean

Figure 6. The synthetic dataset showing three clusters with different scales and sample sizes. The brown point marks the data mean.

We generate a synthetic dataset in R2 consisting of three distinct clusters shown in Figure 6:

• Cluster 1 (pink): 80 points drawn from the uniform distribution in the disk centered at (1.0, 2.5) with radius 0.4.

• Cluster 2 (blue): 44 points drawn from the uniform distribution in the disk centered at (2.0, 1.5) with radius 0.3.

• Cluster 3 (yellow): 20 points drawn from the uniform distribution in the disk centered at (3.0, 3.0) with radius 0.2

The total dataset contains 144 points with a diameter of 2.623. As shown in Figure 6, the clusters exhibit different scales
and sample sizes. This is the same dataset used in Figure 2. We will continue to use this dataset to illustrate the various
stages of a trajectory in the FM ODE with respect to the parameter σ (cf. Equation (11)). We use the closed form optimal
denoiser Equation (9) with αt = t and βt = 1 − t (the Recitified flow scheduling) for the sampling process. This will
generate a trajectory in t parameter, and we transform it into σ parameter to align with the general results in Sections 4.2,
4.3 and 5.2. To this end, we use the transformation in Proposition 2.1 with a starting σ value σ1 = 100.
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Single trajectory visualization. We first examine a single trajectory in detail shown in Figure 7. The trajectory exhibits
clear “turning points” suggesting transitions between stages - first approaching the data mean (brown point), then being
attracted to a local cluster, and finally converging to a specific data point. We examine the quantitative results we developed
in Sections 4.2, 4.3 and 5.2 on these stages.

Start
init = 13

Data mean
End
Convex Hull
Cluster 1
Cluster 2
Cluster 3

(a) Initial stage: trajectory moves toward data mean (brown point).
Blue cross marks xσinit . Top: zoomed view near clusters. Bottom:
full view showing coarse movement.

Convex Hull
Cluster 1
Cluster 2
Cluster 3
End
Data mean
_init = 13
cluster = 0.65
terminal = 0.007

Data points in Cluster 3

(b) Later stages: attraction to yellow cluster (purple rhombus
marks xσcluster ) and convergence to training point (green square
marks xσterminal ).

Figure 7. Evolution of a single trajectory showing three distinct stages.

(2)

(3)

(4)

(5)
(6)

(7)
(1)

Global View
Trajectory 1

Trajectory 2

Trajectory 3

Trajectory 4

Trajectory 5

Trajectory 6

Trajectory 7

End points

Data mean

Start points

init

(2)

Zoomed View Close View

Figure 8. Multiple trajectories from different initial samples. Left: Global view showing roughly linear paths to mean. Middle:
Zoomed view. Right: Close view near data support. Blue crosses mark xσinit for each path.

Initial stage: Starting with σ1 = 100 and initial distance to mean 122, Proposition 4.2 predicts σinit = 13 with ζ = 0.5.
This suggests that the trajectory will approach the mean at least before σinit = 13. We mark the location xσinit (blue cross)
in Figure 7a and indeed observe that the trajectory moves toward the mean prior to σinit = 13.

We additionally examine multiple trajectories in Figure 8. Most initial trajectories form nearly straight lines toward the mean,
with xσinit (blue crosses) consistently making good predictions when the distance to the mean is monotonically decreasing.
Interestingly, Trajectory 2, which starts closer to the data distribution, overshoots the mean. From the top right, it initially
moves toward the mean, then continues past it, and is eventually absorbed into the pink cluster.

In Figure 9, we show the detailed view of Trajectory 1 in our running example (Figure 2) as well as Trajectory 7, which also
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converges to the yellow cluster. We will use them to illustrate the intermediate and terminal stages.

Convex Hull
Cluster 1
Cluster 2
Cluster 3
Data mean
_cluster

(a) Intermediate stage: Two trajectories attracted to yellow cluster.
Purple rhombuses mark xσcluster .

Data points
Trajectory 1
Trajectory 7
Start points
End points

terminal

(b) Terminal stage: Final convergence to training points. Green
squares mark xσterminal .

Figure 9. Detailed view of intermediate and terminal stages for two example trajectories.

Intermediate stage: Using Proposition 4.4 with the yellow cluster’s diameter of 0.364 and ϵ = 0.1, we compute σcluster
(σ0(S, ϵ) for yellow cluster) is 0.65. The locations xσcluster for both trajectories (purple rhombuses) align well with the points
where both trajectories exhibit a clear attraction to this local cluster.

Terminal stage: We then examine the terminal stage in Figure 9b. First, note that the two trajectories indeed converge to
two training data points, validating the terminal time convergence. We use Proposition 5.10 to compute σ0(V

ϵ
i ) for data

points xi which we denote in this section as σterminal ((green square) for two trajectories and see the Proposition predicts
trajectory after σterminal will converge to nearest data point. For Trajectory 1, the separation of the converged point is 0.06,
and we choose ϵ as one-third of the separation. The predicted σterminal for Trajectory 1 is 0.007 and marked on the trajectory.
For Trajectory 7, the separation is 0.04, and we choose ϵ as one-third of the separation. The predicted σterminal for Trajectory
7 is 0.004 and marked on the trajectory. In both cases, the predicted σterminal lies in the segment where the trajectory is
attracted to a specific training point, validating the prediction.

Memorization with asymptotically optimal denoiser: We also examine the memorization phenomenon with the asymptot-
ically optimal denoiser mσ described in Proposition 5.10. We start with the same initial points as those in Figure 8 and
evolve the trajectories using the asymptotically optimal denoiser given by:

m̃σ(x) = mσ(x) + σ ∗ ϵ

where ϵ is a random perturbation sampled from N (0, 32I). The trajectories are shown in Figure 10 with the perturbation
vector shown in the left panel of the subfigure on the left. Comparing with Figure 8, we observe that the perturbation
significantly drifts the trajectories; however, as the perturbation decays with σ, the trajectories still converge to a specific
training point. This validates the memorization phenomenon with the asymptotically optimal denoiser in Proposition 5.10.

J.2. The CIFAR-10 Dataset

The CIFAR-10 dataset (Krizhevsky, 2009) contains 50, 000 training images across 10 classes and is a popular benchmark
for evaluating generative models. In this subsection, we investigate the mean attraction property of flow models and the
memorization issue highlighted in our theoretical analysis utilizing the CIFAR-10 dataset. These data consist of 32× 32
RGB images, each with 3 channels. Following the practice in Karras et al. (2022), we normalize the pixel values to [−1, 1]
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(6)
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Zoomed View Close View

Figure 10. Memorization behavior with asymptotically optimal denoiser. Left: Global view showing trajectories under perturbation,
with perturbation vector displayed. Middle: Zoomed view of trajectories. Right: Close view near data support. While perturbations
initially steer trajectories (most notably in trajectory 5, which traverses across the data region), all trajectories eventually converge to data
points as the perturbation strength diminishes with σ, demonstrating the robustness predicted by our theoretical results.

by the transformation x 7→ x/127.5− 1. This preprocessing results in a dataset with diameter 106.8 and averaged norm
27.2.

To establish a reference, we define the empirical optimal denoiser mσ based on the empirical distribution p over the training
images of CIFAR-10. The corresponding FM ODE trajectory is denoted by (xσ)σ∈[σ2,σ1], as governed by Equation (11).
We refer to this trajectory as the empirical optimum. Additionally, we consider a pre-trained denoiser mEDM

σ from the
EDM model (Karras et al., 2022), with its corresponding FM ODE trajectory denoted as (xEDM

σ )σ∈[σ2,σ1] and governed
by Equation (15).

To generate ODE samples, we initialize from random Gaussian noise and evolve the trajectories using the 18-step polynomial
noise schedule (discretization) from EDM:

σn =
(
σ1/ρ

max +
n

N
(σ

1/ρ
min − σ1/ρ

max)
)ρ

, n = 0, 1, . . . , N,

with parameters σmax = 80, σmin = 0.002, ρ = 7, and N = 18.

J.2.1. INITIAL MEAN ATTRACTION

To investigate the convergence-to-mean behavior in the initial stages of sampling, we analyze trajectories generated by
both the empirical optimal denoiser mσ and the pre-trained EDM denoiser mEDM

σ . Let mean represent the mean of the
CIFAR-10 dataset.

For clarity, we use x∗
σ to denote either xσ or xEDM

σ , and m∗
σ to denote either mσ or mEDM

σ . At each sampling step, we
evaluate two key metrics:

1. The distance ∥m∗
σ(x

∗
σ)−mean∥ between the denoiser output and the dataset mean.

2. The ratio ∥m∗
σ(x

∗
σ) − mean∥/∥m∗

σ(x
∗
σ) − x∗

σ∥, which quantifies the distance between the denoiser output and the
data mean relative to the trajectory direction m∗

σ(x
∗
σ) − x∗

σ. This ratio can be interpreted as a relative error when
approximating the denoiser output with the dataset mean.

We compute these metrics for the empirical optimal denoiser and the pre-trained EDM denoiser over 10,000 random initial
seeds, with results shown in Figure 11. The figures plot mean with shaded regions indicating ±1 standard deviation. When
σ is large, both the empirical optimal and trained denoisers are close to the dataset mean, as evidenced by the small deviation
to the mean in Figure 11a and the small relative errors in trajectory direction in Figure 11b. Notably, the relative error is very
small for the first step and approximately below 1% for the first 4 steps, with a small variance across seeds. This suggests
that the trajectory is strongly and consistently attracted to the data mean in the initial steps when σ is large, validating the
theoretical prediction in Proposition 4.2.
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(a) Mean deviation from data mean over time, averaged across
10,000 random seeds. Shaded regions show ±1 standard deviation.
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(b) Log-scale relative error between trajectory direction and
denoiser-mean difference, averaged across 10,000 random seeds.
Shaded regions show ±1 standard deviation.

Figure 11. Initial mean attraction in CIFAR-10 trajectories. Results averaged over 10,000 random initializations with shaded regions
showing ±1 standard deviation. Both empirical optimal and trained denoisers exhibit strong initial attraction to the dataset mean when σ
is large, as evidenced by the small deviation to the mean (left) and small relative errors in trajectory direction (right, log scale), validating
theoretical predictions.

J.2.2. TERMINAL CONVERGENCE AND MEMORIZATION

First, we examine the behavior of the empirical optimal denoiser to validate Proposition 5.9 and serves as a reference for
the perturbed case in Proposition 5.10. Starting from a Gaussian noise, Figure 12 illustrates the trajectory xσ (top) and
the corresponding denoiser outputs mσ(xσ) (bottom). As predicted by Proposition 5.9 or the general convergence result
in Theorem 5.3, the unperturbed trajectory progressively refines the sample, with both the denoiser outputs showing clear
image structure throughout the sampling process and ultimately converging to a training image.

Figure 12. Reference case: Sample generation with unperturbed empirically optimal denoiser. Top: ODE trajectory xσ . Bottom:
Denoiser outputs mσ(xσ). Note the clear image structure throughout and smooth convergence to a training image.

To validate the memorization result for an asymptotically optimal denoiser presented in Proposition 5.10, we then introduce
a significant perturbation to the denoiser by adding noise that scales with σ. Specifically, we sample a fixed ϵ ∼ N (0, 102I)
and perturb the empirical optimal denoiser as follows:

m̃σ(x) := mσ(x) + σϵ, ∀x ∈ Rd.

The scaling ensures the perturbed denoiser is asymptotically optimal. This perturbation dramatically affects the denoiser
outputs, as shown in Figure 13. Compared to the clear outputs in the unperturbed case, the perturbed denoiser outputs
(bottom row) are almost unrecognizable for all but the last four steps due to the large-scale noise. However, despite this
substantial corruption of the denoiser outputs, the ODE trajectory (top row) still manages to get very close to a training
image visually and through nearest neighbor search.

We also provide in Figure 14a and Figure 14b the quantitative results of the convergence and memorization with 10,000
random seeds. In the reference case with the empirical optimal denoiser, the distances to CIFAR-10 training set for both
trajectories and denoiser outputs are shown in Figure 14a. The denoiser output initially is around 10 away from the
CIFAR-10 dataset and then quickly converges to 0—validating the quick convergence predicted by Proposition 5.9. The
distances from the trajectory to CIFAR-10 dataset smoothly converge to close to around 0.1—very small compared to the
mean norm 27.2 of the dataset. In the perturbed case with the heavily corrupted denoiser shown in Figure 14b, the denoiser
outputs are heavily corrupted by noise and far from the CIFAR-10 dataset until late stages. However, the trajectories still
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manage to get close to training images with the distances converging to around 1.0—still small compared to the mean norm
of the dataset. Also, note that we are only using a coarse sampling schedule with 18 steps, and the convergence can be
further improved with a finer schedule.

Figure 13. Perturbed case: Sample generation with heavily perturbed but asymptotically optimal denoiser. Despite the denoiser
outputs being severely corrupted by noise (bottom) compared to the reference case, the ODE trajectory (top) still remarkably converges to
a training image, validating the robustness predicted by Proposition 5.10.
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(a) Distance from trajectory points xσ and denoiser outputs
mσ(xσ) to nearest CIFAR-10 images for the unperturbed em-
pirical optimal denoiser mσ . While denoiser outputs stay close to
the CIFAR-10 dataset, trajectories initially deviate but eventually
converge.
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(b) Distance metrics for perturbed denoiser m̃σ . Despite highly
corrupted denoiser outputs (blue) that stay far from the CIFAR-10
dataset until the late stages, trajectories (orange) still manage to get
very close to training images, validating the theoretical robustness
prediction.

Figure 14. Quantitative result of convergence and memorization. Evolution of distances to the CIFAR-10 training set for both
trajectories and denoiser outputs using the empirical optimal denoiser and its perturbed version, averaged over 10,000 random seeds.
Left: Reference case with empirical optimal denoiser shows smooth convergence. Right: Despite severe perturbation corrupting
intermediate denoiser outputs, trajectories still converge toward training data, demonstrating the robustness of memorization predicted by
Proposition 5.10.

These experiments empirically validate our theoretical result in Proposition 5.10: even when the denoiser outputs are
severely corrupted during intermediate steps, as long as the trained denoiser asymptotically approximates the empirical
optimal denoiser, the FM ODE trajectory will still converge to the training data. This observation highlights the importance
of carefully regularizing terminal time behavior during training to prevent memorization.

J.3. Local Cluster Absorbing and Attracting Behavior

In this section, we provide additional experimental results to validate the local cluster absorbing and attracting behavior
of the FM ODE. We use the FFHQ dataset (Karras et al., 2019) which contains high-resolution human face images. We
randomly sample 10, 000 images from the FFHQ dataset and downsample them to 64 × 64 resolution. To visualize the
distribution of facial images in the feature space, we perform t-SNE dimensionality reduction on the downsampled FFHQ
dataset. As shown in Figure 15, we color code the points based on two related attributes: (1) the average RGB intensity (left)
and (2) the illumination value (right). The average RGB intensity is computed as the mean of the pixel values across all
three channels, while the illumination value is computed as the mean of the pixel values in the Y channel of the YCbCr
color space. While the dataset does not form distinct, separated clusters as in our synthetic example in Appendix J.1, it still
contains regions of varying density along the illumination spectrum. In particular, very dark faces and very bright faces
concentrate at opposite ends of the feature space, creating two high-density regions. This natural organization provides an
ideal setting to evaluate our theoretical results on absorption phenomena in a realistic dataset even when distinct clusters are
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not present. We will demonstrate that the flow model trajectories are attracted to these high-density illumination regions,
consistent with our local cluster attraction theory.

Figure 15. t-SNE Visualization of FFHQ (Human Face) Dataset. We downsample the original dataset from high-resolution (1024×1024)
human face images to 64×64 resolution—aligning the training procedure in EDM and subsample 10,000 data points to perform t-SNE.
The visualization shows feature embeddings colored by average RGB intensity (left) and illumination value (right). Although the data
does not form distinct clusters, samples with similar illumination naturally organize into local neighborhoods in the feature space. The
extremes of the illumination spectrum (very dark and very bright regions) exhibit higher local density.

In Figure 16, we show samples generated from a pretrained EDM model using three different initialization strategies: (1)
random noise, (2) noise initialized near dark illumination regions, and (3) noise initialized near bright illumination regions.
The results demonstrate that random initialization yields samples across the illumination spectrum, while dark and bright
initializations consistently generate samples with corresponding illumination characteristics. Thus, even without explicit
clusters, the flow gravitates toward locally dense regions defined by a continuous attribute—illumination which aligns with
our cluster-absorption theory.

Figure 16. Illumination-based Absorption Behavior. Samples generated using three initialization strategies: random noise (left), noise
near dark illumination regions (middle), and noise near bright illumination regions (right). Random initialization produces samples across
the illumination spectrum, while dark and bright initializations generate samples with corresponding illumination characteristics, aligning
with our cluster absorption result even for continuous attributes rather than discrete clusters.

64


