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ABSTRACT

Event cameras provide a compelling alternative to traditional frame-based sen-
sors, capturing dynamic scenes with high temporal resolution and low latency.
Moving objects trigger events with precise timestamps along their trajectory, en-
abling smooth continuous-time estimation. However, few works have attempted
to optimize the information loss during event representation construction, impos-
ing a ceiling on this task. Fully exploiting event cameras requires representations
that simultaneously preserve fine-grained temporal information, stable and char-
acteristic 2D visual features, and temporally consistent information density—an
unmet challenge in existing representations. We introduce Labits: Layered Bidi-
rectional Time Surfaces, a simple yet elegant representation designed to retain all
these features. Additionally, we propose a dedicated module for extracting active
pixel local optical flow (APLOF), significantly boosting the performance. Our ap-
proach achieves an impressive 49% reduction in trajectory end-point error (TEPE)
compared to the previous state-of-the-art on the MultiFlow dataset. The code will
be released upon acceptance.

1 INTRODUCTION

As an emerging visual modality, event cameras offer unique and practical advantages. Compared to
conventional frame-based cameras, they provide higher temporal resolution, greater dynamic range,
higher efficiency, and lower latency (Gallego et al. (2020)). Furthermore, under stable lighting, event
cameras are primarily sensitive to the edges of moving objects, naturally filtering out stationary
objects while tracking moving ones. Their ultra-high temporal resolution also enables smoother and
more continuous target tracking. In recent years, numerous papers leveraging this feature of event
cameras have addressed topics such as feature tracking (Messikommer et al. (2023)), optical flow
generation (Wan et al. (2024)), and video interpolation (He et al. (2022)) based on events.

From an event camera’s perspective, each moving point generates a discrete trajectory in the xyt
space, with each triggered event representing a sampled point on this trajectory, along with its times-
tamp. The instantaneous velocity at any point on the trajectory can be calculated from the relative
positions and times of these events using straightforward mathematical formula v = ∆x/∆t, align-
ing with intuitive understanding. While real-world factors like rotations, depth movements, and
multiple moving objects complicate pixel-wise speed, the trajectory information persists embedded
within the event streams. Our target is to unearth these hidden treasures.

Currently, there are two main approaches to utilizing events. One is to directly construct events into a
graph in the xyt space and input it into a GNN (Graph Neural Network) (Li et al. (2021)) or treat each
event as a spike to be input into an SNN (Spiking Neural Network) (Kosta & Roy (2023)). The other
is to first convert events into a dense representation and then input them into an Artificial Neural
Network (ANN). Although GNNs appear efficient, constructing the graph is computationally and
memory-intensive with increasing events, and GNNs suffer from over-smoothing as network depth
increases (Chen et al. (2020)). Additionally, the graph conversion discards fine-grained spatial and
temporal information, making position-sensitive scenarios problematic. These limitations restrict
GNN applications in event-based vision, especially for low-level tasks. On the other hand, while
SNNs offer high energy efficiency, they are more difficult to train and are less robust (Lee et al.
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Figure 1: (a) Labits generation schematic: For a 1D event camera, at each pixel and probe time pti,
the algorithm searches for the most recent past event within δt. If none is found, it searches for the
next future event within δt. The Labits value is the normalized time difference between probe time
pti and the found event’s timestamp, or -1 if no event is found. Labits can be converted to APLOF
via a small model. (b)-(g): Single channel visualization of the following event representations (more
details can be found in related works): (b) Labits (c) Voxel Grid (d) TORE Volume (e) Time Surface
(f) Event Count (g) Event Frame (h) RGB frame of the moving target (i) Labits layers samples. Note
that the first layer of TORE is exactly the same as time surface.

(2016)). Compared to deep learning, the SNN ecosystem is still in its early stages, and the maturity
of neuromorphic hardware is insufficient to support large-scale, high-precision models in practical
applications (Nunes et al. (2022)). These factors limit the widespread use of SNNs.

The mainstream approach in event-based vision remains converting the event stream into a dense
representation before inputting it into an ANN for inference (Ye et al. (2023), wan2024event). How-
ever, existing representations have limitations that prevent event cameras from fully leveraging their
strengths for dense trajectory estimation. Common representations like event frames (Rebecq et al.
(2017)) and event counts (Maqueda et al. (2018); Zhu et al. (2018b)) entirely remove the temporal
dimension by projecting all events onto a 2D plane. Event frames sum the polarities at each pixel,
while event counts simply tally the events. Similarly, voxel grid (Zhu et al. (2019)) applies temporal
quantization discards fine-grained temporal information, projecting events onto the nearest temporal
grid using a bilinear sampling kernel. Although representations like time surfaces (Lagorce et al.
(2016)) and TORE volumes (Baldwin et al. (2020)) preserve some temporal information, each pixel
retains only the timestamps of the most recent events, ignoring earlier ones triggered by different
objects. This leads to temporal occlusion and limits the ability to extract continuous, dense, and
temporally consistent local motion information in the spatio-temporal (xyt) domain.

Dense trajectory estimation requires pixel-level movement sensitivity, stable and sharp 2D visual
features, and consistent information density throughout the tracking duration. The final requirement
is to ensure the representation does not excessively focus on events near the end of the time period
while neglecting earlier occurrences. To fully exploit the potential of events for dense trajectory
estimation, a representation that preserves all these characteristics is essential. In this paper, we
propose Labits: LAyered BIdirectional Time Surfaces, as a simple and elegant solution to these
challenges. The impact of an effective event representation is significant. By simply switching
to Labits, it can yield a 13% improvement on TEPE, while incorporating an additional APLOF
extractor can provide an extra 30% reduction in error for dense trajectory estimation.

Our main contributions can be summarized as follows: 1. We proposed Labits, a novel synchronous
event representation that is aware of event camera’s asynchronous characteristic and keeps rich local
movement trend information. 2. We trained a corresponding active pixel local optical flow estimator
based on Labits layers, which utlizes intermediate motion information. 3. We achieved the SOTA
performance on event-based dense trajectory estimation task, and the TEPE of our method decreased
49% compared to the previous SOTA.
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Table 1: A comparison of event representation methods used in deep learning, where H and
W denote the height and width of the representations, respectively. This table extends the one
presented in (Baldwin et al. (2022)) with newly included methods.

Event Representation Dimensions Description Characteristics
Event Frame H, W Image of event polarities Discards temporal & polarity information
Event Count 2, H, W Image of event counts (EC) Discards temporal information
Time Surface 2, H, W Image of most recent timestamp Discards all prior time stamps
Averaged Time Surfaces 2, H, W Image of average timestamp for window Discards temporal information
Inceptive Time Surfaces 3, H, W Image of filtered timestamps & EC Discards temporal information
Event Spike Tensor 2, B, H, W 4D grid of convolutions Temporally quantizes information into B bins
TORE Volumes 2, K, H, W 4D grid of last K timestamps Discards timestamps prior to last K events
Voxel Grid B, H, W Voxel grid summing event polarities Discards polarity information
Labits B, H, W Layered bidirectional time surfaces Provides multi-layer local speed hints

2 RELATED WORKS

Event Camera: Event cameras contain a bio-inspired dynamic vision sensor, where each pixel
unit works asynchronously and triggers an event instantly when it detects a log-intensity change
over a predefined threshold. Each event e = (t, x, y, p) records the spatial coordinate (x, y) of the
corresponding pixel position on the image sensor plane, the microsecond-level shooting timestamp
t, and a binary polarity value p that indicates the direction of brightness change (Zhang et al. (2024)).
Event cameras are widely used in various computer vision and robotics tasks. They excel in motion-
centric tasks like optical flow estimation and object or human pose tracking, as demonstrated in
numerous studies (Hu et al. (2022); Wu et al. (2024); Chamorro Hernández et al. (2020); Zhang
et al. (2023)). Their high temporal resolution and event-driven operation also enable innovative
video processing techniques, including frame interpolation (Tulyakov et al. (2022); Sun et al. (2023);
Liu et al. (2024)) and motion deblurring (Chen et al. (2024); Yang et al. (2024); Kim et al. (2024)).
These applications leverage the unique characteristics of event cameras for detailed, dynamic scene
analysis without the high data demands of traditional high-speed video recording.

Event Representations: In event-based vision, mainstream methods convert the event stream into
a dense representation, then pass it to ANNs for various tasks (Bardow et al. (2016)). However,
existing representations often fail to fully leverage the unique capabilities of event cameras.

Early representations attempt to convert event streams into intensity frames, highlighting moving
edges and mimicking 2D features of traditional cameras. The event count representation (Maqueda
et al. (2018); Zhu et al. (2018b)) sums the number of events per pixel within a time window, while
the event frame (Rebecq et al. (2017)) sums event polarities. Both discard temporal information, ob-
scuring events over time. The voxel grid representation (Zhu et al. (2019)) quantizes time and maps
events to temporal grids using bilinear sampling. While better than event count, time information
retention is still limited, and temporal obscuring persists.

Time surface-style representations form another key branch. The original time surface, or Surface of
Active Events (SAE, Benosman et al. (2013)), encodes only the most recent event’s timestamp per
polarity at each pixel, disregarding prior events, no matter the scene’s complexity. This leads to poor
2D pattern capture and temporal occlusion, where newer events overwrite earlier ones. Variants like
the averaged time surface (Sironi et al. (2018)) reduce noise and mitigate occlusion, but reintroduce
temporal obscuring and ambiguity. TORE volume (Baldwin et al. (2022)) preserves the most recent
K events per pixel, creating multi-layer time surfaces. However, redundancy arises when the same
object repeatedly triggers recent events at the same pixel, perpetuating temporal occlusion. This is
partly due to the complex textures of real-world objects, which introduce numerous small edges that
trigger events. All aforementioned representations, and others, are summarized in Table 2.

Trajectory Estimation: Continuous-time trajectory estimation was initially proposed for rolling
shutter compensation Kerl et al. (2015). More closely related to our work is the regression of pixel
trajectories, aligned with high-speed feature tracking in event cameras Gehrig et al. (2020); Alzu-
garay & Chli (2020). This work connects to methodologies described in Gehrig et al. (2024), where
features are continuously tracked via the integration of Bézier curves, correlation map sequences,
and image data. However, unlike our approach, their solution emphasizes visual pattern-based cor-
relation while neglecting the fine-grained temporal information inherent in raw events, often leading
to erroneous trajectory estimations.
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3 LABITS: LAYERED BIDIRECTIONAL TIME SURFACE

Event cameras have distinct advantages over traditional frame-based cameras due to their asyn-
chronous nature. This characteristic enables event cameras to provide highly precise timestamps at
the microsecond level, making them ideal for capturing instantaneous motion velocity. However, ex-
isting event representations fail to fully exploit these advantages. Most approaches convert the sparse
and discrete event streams into frame-like structures that highlight 2D visual features such as moving
edges and patterns, thus making the event modality compatible with conventional computer vision
models. The transformation essentially forces event cameras to conform, fitting themselves into the
framework dominated by frame-based cameras, rather than fully leveraging their own strengths and
showcasing the unique advantages that conventional cameras cannot replicate.

Building event representations inevitably involves information loss. It’s almost a trilemma to faith-
fully preserve the original fine-grained timestamp information, compile meaningful 2D visual pat-
terns, and maintain historical movement information at intermediate times simultaneously. How-
ever, all three aspects are essential for accurate, dense, continuous-time trajectory estimation. Fine-
grained event-level timestamp information is the unique strength of the event modality in movement
prediction. 2D visual patterns form the basis for correlation-based tracking mechanisms, while inter-
mediate movement information ensures stable estimation accuracy throughout the entire trajectory.

Therefore, we designed Labits: Layered Bidirectional Time Surfaces to meet these demands. The
logic behind this representation is straightforward: a time-surface-like structure is essential for re-
taining the microsecond-level timestamp features. The accumulation time range of events should
be strictly controlled to avoid issues with visual feature blurriness, so splitting the target time range
into a series of smaller time bins is essential. Stopping at this stage creates a layered time surface.

However, under this scheme, only the last events’ information is utilized within each time bin at
each pixel, which is unpreferable. Moreover, when estimating the local speed at each time bin inter-
section, only past movement information is considered, so the prediction here is based on backward
difference, where the error estimation is known to be O(δt). Further reducing this error estimation
is nothing difficult: simply consider future event if no event is observed in the past δt search range.
This change in representation is simple yet powerful: First, pixels ahead of the moving edges’ direc-
tion often don’t have triggered events in the near past, by incorporating future events, these originally
empty pixels are assigned a meaningful value, thereby increasing the information density of the re-
sulting representation. Second, the first and last event within each time bin at each pixel are both
fully utilized. Especially when the time range is small, this sampling strategy is highly representa-
tive. Third, considering near past and future events simultaneously changes the basic representation
unit from time bin to intermediate probe times. Local speed estimations at these probe times use
central difference, reducing the estimation error to O(δt2) (detailed in the Supplementary Material).

Let E = {(tn, xn, yn, pn)}Nn=1 represent the event stream, where tn denotes the timestamp, (xn, yn)
are the spatial coordinates, and pn is the polarity of the n-th event. The variables τstart and τend refer
to the first and last event timestamps, respectively, and τtotal is the total time duration of the events.
The time interval between two adjacent probe times is denoted as τrange, and τi denotes the i-th probe
timestamp. The output tensor L ∈ RB×H×W is the Labits representation, where B is the number
of probe time points, H and W is the sensor height and width. The Labits generation algorithm is
elaborated in Algorithm 1.

As shown in Algorithm 1, the backward and forward temporal search range at each probe time point
is trange, which corresponds to the time interval of each time bin. Under this scheme, the timestamp
of the earliest and latest events within each time bin are recorded by the Labits layers at the two
adjacent probe points surrounding the bin, further minimizing information loss.

Moreover, the design of Labits ensures that it maintains stability and consistency. The values in the
each layer of Labits always lie within a fixed range, making Labits inherently robust against outliers,
such as hot pixel noise, which can otherwise distort the normalization scale in other representations.

With Labits, dense instantaneous optical flows at active pixels can be generated across evenly-spaced
probe times using straightforward neural networks, due to the clear correlation between Labits layer
values and their corresponding local speeds. The resulting layered instantaneous optical flows could
serve as a basis for future research into tasks requiring high temporal resolution and advanced motion
understanding, such as event-based object or human pose tracking.
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Algorithm 1: Labits Representation Generation

Input : E = {(tn, xn, yn, pn)}Nn=1, where tn is timestamp, (xn, yn) are spatial coordinates,
and pn is the polarity of the event. Events are ordered by tn in ascending order.

Output: L ∈ RB×H×W , a tensor representing Labits. B is the number of intermediate probe
time points, H and W are the sensor height and width.

1 Set τstart = t1 and τend = tN (first and last event timestamps);
2 Compute total duration: τtotal = τend − τstart;
3 Divide τtotal into B + 1 equal intervals:

τrange ← τtotal/(B + 1), τi ← τstart + i · τrange, i ∈ {1, . . . , B}

Initialize L ∈ RB×H×W with −1;
4 for i = 1 to B do
5 Eprev ← {en | τi − τrange ≤ tn ≤ τi}; Efuture ← {en | τi < tn ≤ τi + τrange};
6 Define Tprev ∈ RH×W and Tfuture ∈ RH×W , initialized with −∞ and∞, respectively;
7 for each en ∈ Eprev ∪ Efuture do
8 Compute normalized time: tnorm ← (tn − τi)/τrange;
9 if en ∈ Eprev then

10 Update Tprev(yn, xn)← tnorm;
11 else
12 Update Tfuture(yn, xn)← tnorm;

13 for each (x, y) ∈ {(x, y) | x ∈ [0,W − 1], y ∈ [0, H − 1]} do
14 Update L[i, y, x]:

L[i, y, x]←


Tprev(y, x), if Tprev(y, x) ̸= −∞
Tfuture(y, x), if Tprev(y, x) = −∞ and Tfuture(y, x) ̸=∞
−1, otherwise

15 return L;

Furthermore, the flexibility of Labits enables its use with varying numbers of probe time points and
time bin sizes, without the need to retrain the model used to predict instantaneous optical flows.
This adaptability stems from the fact that corresponding APLOF are generated separately for each
Labits layer, and variations in time bin duration just introduce a scaling factor to the perceived speed.
Subsequent deep learning models can readily adjust to any scaling effects introduced by variations
in the generated local optical flows. This combination of adaptability and precise flow prediction
enhances Labits’ utility as a versatile and powerful tool for event-based computer vision tasks.

In conclusion, Labits overcomes the limitations of existing event representations by providing a
highly accurate, temporally precise, and robust way to capture motion information from event
streams. Its ability to handle both near-past and near-future events, coupled with its stability against
time normalization, allows it to deliver superior performance in dense trajectory estimation. By fully
harnessing the hardware advantages of event cameras, Labits sets a new benchmark for event-based
continuous dense trajectory estimation.

4 METHOD

4.1 LABITS-TO-APLOF NET

Event cameras are highly sensitive to motion, particularly instantaneous or local motion. In this
context, “local” refers to both spatial and temporal locality, aspects not captured by conventional
optical flow techniques. For instance, in the MultiFlow dataset, the optical flow ground truth at each
intermediate probe time is relative to the initial reference time point, representing cumulative motion
rather than instantaneous speed. In contrast, events triggered by the same moving object within a
short time frame are closely tied to the object’s instantaneous speed, based on the variation in their
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timestamps, rather than cumulative displacement. Therefore, to fully leverage event cameras for
tracking, local speed must be taken into account.

Labits retains substantial local motion information at active pixels both before and after the probe
time points. Compared to voxel grids, the information encoded in Labits enables the main model
to predict trajectories with greater accuracy. However, due to the sparsity of events, noise, and
temporal occlusion, it can be challenging for a downstream task model to effectively decode this
implicit information without any dedicated guidance.

To fully leverage Labits, we propose a general-purpose model component named the Labits-to-
APLOF Net, where APLOF stands for “Active Pixel Local Optical Flow.” This model component
is specifically designed to utilize a single Labits layer as input for three main reasons: First, each
Labits layer, generated at an intermediate probe time point, already contains sufficient information
to infer the corresponding APLOF. Second, as we mainly focus on spatiotemporal locality, using a
single layer and a shallow network naturally preserves that while keeping the model efficient and
enhancing generality. Finally, since the number of time bins in Labits can be freely adjusted by
the user, maintaining a single-channel input increases flexibility. This design makes the Labits-to-
APLOF Net a versatile module compatible with Labits.

The Labits-to-APLOF Net is implemented based on U-Net (Ronneberger et al. (2015)). To improve
both stability and efficiency, we employ instance normalization within each block, rather than batch
normalization. This adaptation arises from shifting the channel dimension of Labits to the batch
dimension during inference, enabling the network to more effectively handle Labits while keeping
the single input channel. Since Labits contains rich information primarily around active pixels, local
speed estimation is most reliable in these areas. Thus, we apply an active pixel mask (APM) to
the generated APLOF features, considering only Labits pixels with absolute values below a certain
threshold β as active pixels. To ensure alignment between the low-resolution (LR) APLOF features
at the bottleneck and the pixel coordinates, we incorporate an auxiliary output head during training.
This head is trained to predict an LR version of the local speed flow based on the bottleneck features.

Let Âh and Âl represents the estimated high-resolution (HR) and LR APLOF, while E and Dh

denote the encoder and decoder of the U-Net, respectively. Dl means the auxiliary LR decoder, and
Mh,Ml stand for HR/LR active pixel masks. The following equation formalizes the process:

Mh = 1|L|<β (1)

Ml = 1AvgPool8×8(Mh)<γ (2)

Âh = Dh(E(L)) ·Mh (3)

Âl = Dl(E(L)) ·Ml (4)

In these equations, the term 1|L|<β is an active pixel mask that is generated based on the condition
|L| < β, where the mask Mh takes the value 1 when the condition is satisfied and 0 otherwise.
In this way, pixels where there are events happened most recently stand out. Similarly, the low-
resolution active pixel mask is generated based on a down-sampled version of high-resolution active
pixel mask, with a threshold of γ. After fine-tuning, the thresholds β and γ are set to 0.3 and 0.125.

During training, the ground truth APLOF at τ is generated using the ground truth optical flow at
τ−, τ , and τ+, where τ−, τ+ represents the timestamp of τ ± 10ms. Denoting a pixel’s coordinate
at τstart as xstart, and optical flow between τstart and τ as Oτ , the ground truth HR APLOF value is:

xτ = xstart +Oτ (x) (5)
Aτ (xτ ) = (Oτ+(xstart)−Oτ−(xstart)) ·Mh(x) (6)

The training loss combines the LR and HR APLOF losses as follows:

LA = ∥Âh −Ah∥1 + ∥Âl −Al∥1 (7)

4.2 PIPELINE

Accurately estimating pixel trajectories over time goes beyond simply determining their final dis-
placements. Our proposed solution aims to predict each pixel’s shifting at various intermediate
probe times within the defined time range.The RAFT-based structure (Teed & Deng (2020)) excels

6
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Figure 2: (a) Labits-RAFT architecture: Labits are used to generate correlation blocks, content fea-
tures, APLOF features for intermediate movement integration, and guide Active Pixel Mask (APM)
generation. APM layers are point-wise multiplied to their corresponding APLOF feature layers.
Features are used to calculate correlation matrix, eventually generate and refine a Bézier curve B
for each pixel at τstart via a ConvGRU. For brevity, we only show the pure event-based pipeline. (b)
Labits-to-APLOF Net: HR and LR APLOF are generated based on a customized U-Net and APM.

at extracting correlations between pixels across different spatiotemporal locations. Predicting the
trajectory as a Bézier curve, rather than as a series of discrete displacements, allows for a smoother
and more continuous representation. Building on top of (Gehrig et al. (2024)), our pipeline consists
of four main components: feature extraction, correlation computation, Bézier parameter refine-
ment, and upsampling. The task is mathematically defined by the following equations:

B : T × N0 × N0 → R2 (8)
(τ, x, y) 7→ B(τ, x, y) (9)

T = R∩[0, 1] describes the domain of the normalized time τ(t) = (t−tr)/(tt−tr), with τ = 0 and
τ = 1 corresponding to the reference time tr and target time tt, respectively, indicating the start and
end of the pixel trajectory. This formulation allows the trained model to predict pixel displacement
for any initial pixel at subsequent time points.

In part one, the generated event representation and RGB frames (if available) are encoded into
feature maps. The time period corresponding to the events is evenly divided into B segments, each
lasting milliseconds. Of these, the first M − 1 segments provide additional reference information,
while the remaining B−M +1 segments constitute the target time period, referred to as the context
Labits block. If available, the RGB frame at the reference time is concatenated to the context Labits
block to enrich the feature set. Using a sliding window approach, the total B Labits layers are
grouped into J correlation Labits blocks, each containing M layers. Each block is also referred to
as a “view,” as it represents a distinct timestamp.

In part two, correlation volumes are computed between the first view and subsequent views to
facilitate the spatial-temporal correspondence search for initial pixels. Additionally, if RGB frames
are provided, a correlation volume between the reference and target frames is also calculated. These
volumes are then utilized to iteratively refine the Bézier parameters.

In part three, the goal is to find a set of Bézier control points, P , for each initial pixel at the refer-
ence time, tr. Initially, all control points are set to zero, positioning each pixel’s default trajectory
as a straight line along the time axis. This part primarily involves a ConvGRU, which processes
the context and correlation information, along with the Bézier parameters, and outputs the resid-
uals of the Bézier parameters. The initial hidden states of the ConvGRU are generated from the
context volumes and APLOF features. During each subsequent iteration, the Bézier parameters are
progressively refined to achieve optimal estimation. The Bézier curve is defined as follows:

B(τ, x, y) =

n∑
i=0

(
n

i

)
(1− τ)n−iτ iPi(x, y) (10)

7
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(b) Labits (g) Dense OF GT(f) Dense OF Pred (h) Bézier GT & Pred(c) LR APLOF Pred(a) First Frame (d) HR APLOF Pred (e) HR APLOF GT

Figure 3: Visualization of detailed inputs and outcomes from our model. It predicts instantaneous
APLOF at intermediate reference times, end-point optical flow (the end-point optical flow is com-
puted as the displacement of each pixel along its entire trajectory), and pixel-level Bézier trajectories,
all closely aligning with the corresponding ground truth data. *OF: Optical Flow.

Here, P represents the set of Bézier control point parameters, with P = P1, . . . ,Pn when the
Bézier curve has n degrees. After the iterative refinement of the low-resolution Bézier parameters,
convex upsampling is applied to upscale the Bézier parameters to the original resolution (part four).

The model is supervised with Nk ground truth optical flows along the trajectory. Let Bi denote the
Bézier curve at iteration i, τk ∈ [0, 1] represent the evaluation timestamps, and γ = 0.8. The loss
function is defined as follows, with more details provided in (Gehrig et al. (2024)).

L =
1

Nk

Ni∑
i=1

γNi−i
Nk∑
k=1

∥fgt(Tk)−Bi(Tk)∥1 (11)

APLOF features introduced earlier are utilized in parts one and three. In part one, APLOF features
are generated using the selected Labits layers that correspond to the intermediate trajectory ground
truth time points. These features are then merged with the associated correlation block features based
on the time range of each view. In part three, the initial hidden states of the ConvGRU, generated
from the context block, are enhanced by merging with APLOF features. This integration provides
additional local motion information, significantly improving trajectory estimation accuracy. The
results section demonstrates the exceptional effectiveness of the APLOF features.

5 RESULTS

Datasets and Evaluation Metrics. Our model is trained and evaluated on the MultiFlow dataset
(Gehrig et al. (2024)), which comprises 10,100 training and 2,000 test sequences, each including
paired RGB images, events, and optical flows relative to a reference time. With optical flow ground
truths recorded every 10 ms, we can generate intermediate local optical flows for training the Labits-
to-APLOF net, and ensure accurate supervision of the intermediate Bézier parameters. MultiFlow
is currently the only available event dataset that supports dense trajectory prediction and active pixel
local optical flow estimation simultaneously. The ground truth for pixel trajectories is provided rela-
tive to a reference time of 0.4 seconds (tref ), with trajectories calculated at 10-millisecond intervals
between tref (0.4 seconds) and ttar (0.9 seconds). Events occurring outside this range provide ad-
ditional context. To evaluate the trajectory-level estimation accuracy, beyond the standard EPE and
AE metrics, we also adopt Trajectory End-Point Error (TEPE) and Trajectory Angular Error (TAE).

Labits-to-APLOF Net Results. The Labits-to-APLOF Net is supervised by high- and low-
resolution APLOF ground truth calculated via the Equation 6, with a single Labits layer as its basic
input unit. This lightweight network (0.524M parameters) efficiently captures local movement in-
formation from Labits layers, exhibiting high-quality APLOF estimation. In the main trajectory
estimation pipeline, only the encoder part is used, reducing the parameter count to 0.293M. The
Labits-to-APLOF net is trained using a StepLR scheduler for 60 epochs and 75k iterations. Training
on an NVIDIA RTX 3090 GPU took 35 hours, achieving a low error rate. The model converged
with a minimal total loss (Equation 7) of 0.084, consisting of LR APLOF L1 loss (0.056) and HR
APLOF L1 loss (0.028). Additional qualitative results are detailed in the Supplementary Material.
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Main Pipeline Results. Figure 3 presents the visualization of our method’s results on the Multi-
Flow dataset. As shown, both the HR and LR versions of the predicted APLOF closely align with
the corresponding ground truth in the early stages, benefiting the main model and offering additional
guidance. For applications that require only the optical flow of active pixels, early exiting here is
feasible. Furthermore, the final pixel trajectories and the resulting dense end-point optical flow accu-
rately align with the ground truth, effectively handling challenging scenarios involving small objects
and sharp details. More qualitative results are shown in the Supplementary Material.

Table 2: Results on MultiFlow dataset. TEPE and TAE represent trajectory-based EPE and AE.
Metrics in parentheses are from a linear motion model, indicating these methods aren’t optimized
for trajectory prediction. Methods using both events and images are highlighted in grey. Percentage
decreases are relative to DCT-RAFT, the top baseline. “w/o” means without.

Method Input Trajectory Metrics 2-View Metrics
TEPE TAE EPE AE

RAFT I (6.89) (19.31) 7.42 6.71
RAFT + GMA I (5.14) (16.35) 1.47 1.56
E-RAFT E (6.70) (18.44) 7.56 6.19
E-RAFT+Bézier E 2.62 5.92 4.54 6.06
DCT-RAFT E 1.85 4.61 3.37 4.80
DCT-RAFT E+I 1.29 3.35 2.27 3.19
Labits-RAFT (Ours) E 1.32 ↓ 29% 3.14 ↓ 32% 2.50 ↓ 26% 3.37 ↓ 30%
Labits-RAFT (Ours) E+I 0.66 ↓ 49% 1.72 ↓ 49% 1.08 ↓ 52% 1.45 ↓ 55%
Ours w/o APLOF Features E 1.53 ↓ 17% 3.69 ↓ 20% 2.83 ↓ 16% 3.89 ↓ 19%
Ours w/o APLOF Features E+I 1.01 ↓ 22% 2.63 ↓ 21% 1.64 ↓ 28% 2.25 ↓ 29%
Ours w/o APLOF & Labits E 1.83 4.57 3.29 4.74
Ours w/o APLOF & Labits E+I 1.16 3.01 1.99 2.78

To evaluate the effectiveness of our approach, we compare it with four previously published base-
lines: RAFT (Teed & Deng (2020)), RAFT-GMA (Jiang et al. (2021)), E-RAFT (Gehrig et al.
(2021b)), and DCT-RAFT (Gehrig et al. (2024)). Specifically, RAFT and RAFT-GMA are frame-
based approaches utilizing the RAFT architecture, whereas E-RAFT and DCT-RAFT are recent
event-based approaches. DCT-RAFT also has a version that takes both frames and events as input.
We select these baselines for comparison because they are all derived from the RAFT framework,
providing a consistent basis for evaluating our method’s performance.

As presented in Table 2, our method, Labits-RAFT, outperforms other methods across all metrics
by a remarkably large margin. Our proposed method reduces the TEPE by 49%, from 1.29 to
0.66, compared to the previous state-of-the-art. Similarly, the Trajectory Angular Error (TAE) is
reduced by 49%, from 3.35 to 1.72. These results indicate that approaches directly predicting pixel
displacements are not suitable for accurate pixel trajectory estimation (e.g., RAFT, RAFT + GMA,
E-RAFT). While incorporating Bézier estimation into E-RAFT improves trajectory and two-view
metrics, the estimated flow still has room for improvement. DCT-RAFT, which integrates image
frames and introduces correlation features, effectively reduces errors in both trajectory and two-
view metrics. However, DCT-RAFT’s reliance on voxel grids leads to a significant loss of fine-
grained temporal information, representing a critical limitation. Finally, our method also achieves
improvements on two-view metrics (52% on EPE and 55% on AE), additionally demonstrating its
superiority in accumulative optical flow estimation.

Ablation Studies. We conduct ablation studies to assess the contributions of our main innovations
in dense continuous-time trajectory estimation: the novel Labits event representation and the Labits-
to-APLOF net. We carry out two sets of experiments: one excluding the Labits-to-APLOF network
and another further replacing Labits with voxel grids. The results, shown in the last four rows of
Table 2, demonstrate significant performance declines without these modules in both pure event and
event+image scenarios, confirming the effectiveness of both Labits and APLOF features.

Furthermore, Figure 4 provides qualitative comparisons, showcasing two frames and the pixel-wise
movement trajectory between them. Our method is compared with the top baseline methods and key
ablated results. The superior curve proximity between our predicted trajectory and the ground truth
highlights the benefits of incorporating Labits’ implicit local speed cues and APLOF features.
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(c) DCT-RAFT (Voxel) (d) DCT-RAFT (Labits) (e) Ours(b) E-RAFT (Voxel)

Erroneous Prediction

(a) Images

Figure 4: Trajectory predictions on the MultiFlow dataset by our proposed model and baseline
methods. Ground truth Bézier trajectories are shown in red, while predictions are depicted in blue.
The background displays the ground truth optical flow to highlight moving objects. Our model’s
predicted trajectories significantly outperform those of all baseline methods.

Implementation Details. We implemented our models in PyTorch, training them on the MultiFlow
dataset from scratch with AdamW optimizer (Loshchilov & Hutter (2019)), gradient clipping in the
range of [-1, 1], and a OneCycle learning rate scheduler. We adopted trajectory loss and two-view
loss as detailed in (Gehrig et al. (2024)), supervising the training with 10 flow maps and employing
a Bézier curve of degree 10 for precise trajectory modeling. Our model configuration utilizes J = 6
correlation Labits blocks across time intervals from 0.4 to 0.9 seconds, quantizing time into N = 41
and M = 25 bins for context and correlation, respectively. To ensure consistency in evaluation, we
adopt the same setup as described in (Gehrig et al. (2024)). Training spanned 100 epochs and 250k
iterations, requiring approximately 40 hours on four NVIDIA GeForce RTX 3090 GPUs.

Efficiency Analysis. In our systematic performance evaluation, Labits emerged as an exceptionally
efficient representation, adept at capturing dense and detailed motion information with minimal
computational delay. We assessed the processing times for various representations, as shown in
Figure 1, utilizing randomly sampled 500 event packets from the MultiFlow validation set, with each
packet focusing on the initial 100 milliseconds of data. Labits achieved an average execution time
of 0.220s, demonstrating comparable efficiency to the Voxel Grid (0.225s) and surpassing the more
computationally intensive TORE Volume (7.624s) and Time Surface (0.358s). Notably, simplest
Event Frame recorded the fastest execution time at 0.062s, followed by Event Count at 0.102s. All
the testing is conducted on the same device under the same condition. Although Labits is not the
quickest, it offers a superior balance of speed and data richness compared to the others.

6 CONCLUSION

In this work, we introduced Labits, a novel event representation that simultaneously retains fine-
grained temporal information, meaningful 2D visual patterns, and local speed cues. Labits is the
first to achieve this combination. We also developed the Labits-to-APLOF net, which accurately
converts Labits into active pixel local optical flows. Together, these innovations significantly im-
prove performance on event-based continuous-time dense trajectory estimation, with a remarkable
49% reduction in trajectory end-point error compared to the top baseline models. The results high-
light that, beyond model architecture, event representations also have a transformative impact on
the final outcomes. While Labits’ strengths are most apparent in tasks that utilize intermediate mo-
tion information, its adaptability to other event-based vision tasks remains an open area for future
research. This versatility positions Labits as a valuable asset for advancing event-based vision, offer-
ing numerous possibilities for further exploration and development. Detailed analysis of limitations
and future research directions could be found in the Supplementary Material.
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REPRODUCIBILITY STATEMENT

The code for our proposed Labits representation and the main model pipeline is packaged in “Labits-
Core-Code.zip,” available in the supplementary material. This archive encompasses the primary
contributions detailed in the paper. Alongside the publication of our paper, we will release a com-
prehensive GitHub repository containing detailed documentations.
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A SUPPLEMENTARY MATERIAL

(b) DCT-RAFT (Voxel) (c) Ours w/o APLOF (d) Ours(a) E-RAFT (Voxel)

Figure 5: Comparison of trajectory predictions: between baseline methods and our approach.
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(a) DCT-RAFT(Voxel) (b) Ours w/o APLOF (c) Ours (d) GT

Figure 6: Comparison of Optical Flow Estimations: Each method includes a second column dis-
playing the error map generated by comparing the predictions to the ground truth.
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Figure 7: Visualization of APLOF and Labits in Trajectories: For each trajectory, Labits and APLOF
are aligned in corresponding pairs across two columns. We selected ten slices of both Labits and
APLOF for different trajectories. We employ the “viridis” color map to represent Labits and enhance
the visibility of APLOF against a gray background.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Ti
m

e 
El

ap
se

 D
ire

ct
io

n

(a) LR APLOF w/o APM (c) LR APLOF GT(b) LR APLOF (d) HR APLOF w/o APM (f) HR APLOF GT(e) HR APLOF 

Figure 8: Visualization of HR and LR APLOF with APM Ablation: For each trajectory, we display
the results of APLOF, APLOF without APM, and the GT across three columns, applicable to both
HR and LR contexts. We have visualized ten representative slices from both HR and LR APLOF,
juxtaposed with their counterparts lacking APM, to demonstrate the impact of APM ablation on
APLOF estimation.
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(a) Intermediate OF (b) Intermediate OF GT (c) HR APLOF (d) HR APLOF GT (e) LR APLOF (e) LR APLOF GT
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Figure 9: Visualization of Intermediate Prediction Results: We display dense, time-continuous pre-
diction outcomes for each trajectory within a sample window from the MultiFlow dataset Gehrig
et al. (2024). The visualization includes ten intermediate instances of optical flow (OF), HR APLOF,
LR APLOF, and the corresponding GT, presented in three paired columns. Timestamps for the pre-
dictions correspond to those of the GT. The trajectory spans a time range of 0.5 seconds (context).
We evenly sampled 10 intermediate timestamps, and show the predicted and groud truth OF between
them and the start time. Meanwhile, APLOFs show instantaneous optical flows.
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Figure 10: Visual Comparison of Labits in Various Scenarios: We generate Labits on three well-
known event camera datasets: DSEC Gehrig et al. (2021a), MVSEC Zhu et al. (2018a), and Multi-
Flow Gehrig et al. (2024). The time ranges and the number of bins are adjusted to accommodate the
data formats of each dataset and to achieve better visual clarity.
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Time Surface
(2×H×W)

Event Frame
(1×H×W)

TORE Volume
(K×H×W)

Voxel Grid
(B×H×W)

Labits
(B×H×W)

…

…

Event Count
(2×H×W)

Figure 11: Comparative Visualization of Event Representations: This figure presents event data
sampled between 100 ms and 900 ms from the MultiFlow dataset, showcasing diverse representa-
tions such as Time Surface, Event Frame, TORE Volume (K=3), Voxel Grid (B=65), and Labits
(B=65). These hyperparameters are selected following the corresponding paper’s settings. Each
method distinctively captures and structures event information. The first three plots of TORE Vol-
ume correspond to positive events’ representation layers, while negative for the last three. Voxel
Grid and Labits visualized the first three and last three bins, respectively. For time surface and event
count, the first and second frames represent the count of negative and positive events.

Full Labits

Half Labits
(Past Time

Range)

Half Labits
(Future Time

Range)

Figure 12: Visual Comparison of Labits and One-way Labits: We visually compare Labits and
One-way Labits generated from the same icon sample, as presented in Figure 1. For the One-way
Labits, we create results using only the past or future time ranges, respectively, to illustrate the visual
difference.
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A.1 MODEL SPECIFICATIONS

Table 3: DCT-RAFT and Labits-RAFT Model Size and Performance Metrics

Metric DCT-RAFT Labits-RAFT* Labits-RAFT
APLOF Features N/A Yes Yes
Trainable Parameters 6.8 M 6.8 M 24.8 M
Non-trainable Parameters 0 0 524 K
Total Parameters 6.8 M 6.8 M 25.3 M
Estimated Model Size 27.203 MB 27.203 MB 101.288 MB
Average GFLOPS 4316.287 4432.353 5599.052
Average Inference Time 0.133 s 0.135 s 0.192 s
TEPE 1.29 1.01 0.66
TAE 3.35 2.63 1.72

Table 3 provides detailed performance metrics for the DCT-RAFT and Labits-RAFT models (*
means Labits-RAFT w/o APLOF features), based on 100 iterations on an NVIDIA-A10 GPU. The
DCT-RAFT model, with 6.8 million parameters, delivers fast inference times but higher error rates,
while the more complex Labits-RAFT, with 25.3 million parameters, exhibits a slight increase in
inference time but significantly reduces errors by 49%, illustrating the trade-offs between model
complexity and performance efficiency.

A.2 INSTANTANEOUS SPEED PREDICTION ERROR ESTIMATION ANALYSIS

The motivation behind the development of Labits stems from the necessity of accurately estimating
continuous dense optical flow—a process that requires precise understanding of instantaneous pixel-
level movements at numerous intermediate moments within a scene. These movements information,
which we refer to as local motion anchors, play a crucial role in tasks that demand detailed motion
understanding. Based on the formula of the backward (Eq.12) and central difference (Eq.13), com-
bined with Taylor expansion (Eq.14, Eq.15), we know the error estimation for backward difference
is O(δt), while the one for central difference is O(δt2), meaning central difference provides higher
accuracy.

f ′(xn) ≈ (f(xn)− f(xn−δt))/δt (12)

f ′(xn) ≈ (f(xn+δt)− f(xn−δt))/2δt (13)

f(xn+δt) = f(xn) + δtf ′(xn) + 0.5(δt)2f ′′(xn) +O((δt)3) (14)

f(xn−δt) = f(xn)− δtf ′(xn) + 0.5(δt)2f ′′(xn)−O((δt)3) (15)

In each Labits layer, the values represent relative time information, enabling the scaled instantaneous
local speed to be calculated as the inverse of the 2D Labits gradient on the image sensor plane.
To improve local speed estimation at active pixels, the central difference method, which requires
relative time values from both the past and future, is preferred. Therefore, the Labits implementation
incorporates both near-past and near-future events at each reference point. In contrast, existing time
surface-style representations, which compress information solely from the past, are less accurate for
local speed estimation and leave a significant portion of pixels in front of moving objects empty,
reducing information density, especially when the time range is short.

A.3 ANALYSIS OF THE BIDIRECTIONAL STRUCTURE IN LABITS

Since Bidirectional is a key feature of our event representation, this section can provide more con-
crete evidence to show the effectiveness of this design scheme. We conduct additional ablation
studies on whether the representation takes in bidirectional information during the representation
generation. For the so-called “One-way Labits”, only events triggered during the past time range is
considered, following the traditional time surface generation strategy. We retrain the entire pipeline
using the “One-way Labits”, including the Labits-to-APLOF net and the Labits-RAFT model. The
results of both model is significantly worse compared to our proposed bidirectional Labits. Details
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are shown in Table A.2 and Table 5. Additionally, visual comparison of Labits and One-way Labits
are detailed in Figure 12.

Table 4: Comparison of APLOF Losses
Model Total Loss LR APLOF L1 Loss HR APLOF L1 Loss
Labits-to-APLOF Net 0.084 0.056 0.028
Labits-to-APLOF Net (One-way) 0.357 0.199 0.158

Table 5: Performance Metrics of Model Pipelines

Method Input TEPE TAE EPE AE
DCT-RAFT E+I 1.29 3.35 2.27 3.19
Labits-RAFT (Ours) E+I 0.66 1.72 1.08 1.45
Labits-RAFT (One-way) E+I 0.72 1.87 1.22 1.68

A.4 ABLATION STUDY ON TIME BIN SIZE

Besides, we conduct ablation studies on the number of Probe Times to facilitate comprehensive
evaluations. Detailed ablation studies focus on different bin configurations for Labits and Voxel
Grid, specifically in the context of trajectory estimation. These studies utilize the same pretrained
Labits-to-APLOF network, which was originally trained with Labits featuring 65 bins and a bin size
of 0.0125 seconds. We design our study to cover a variety of scenarios by setting bin time spans
at 0.0125s, 0.0250s, 0.0500s, and 0.1000s, facilitating a direct comparison with DCT-RAFT Gehrig
et al. (2024). Table 6 provides robust results that thoroughly validate the efficacy of Labits, confirm-
ing that the pretrained Labits-to-APLOF net can adaptively handle different time bins.

Table 6: Performance comparison of DCF-RAFT and Labits-RAFT using different bin setups.

Model Bin Size TEPE TAE EPE AE
DCF-RAFT (voxel) 0.1000 1.81 4.53 2.87 3.97
Labits-RAFT (Labits) 0.1000 0.88 ↓ 51% 2.35 ↓ 48% 1.43 ↓ 50% 1.97 ↓ 50%
DCF-RAFT (voxel) 0.0500 1.51 3.82 2.61 3.63
Labits-RAFT (Labits) 0.0500 0.75 ↓ 50% 1.94 ↓ 49% 1.22 ↓ 53% 1.66 ↓ 54%
DCF-RAFT (voxel) 0.0250 1.40 3.56 2.45 3.41
Labits-RAFT (Labits) 0.0250 0.72 ↓ 49% 1.86 ↓ 48% 1.17 ↓ 52% 1.58 ↓ 54%
DCF-RAFT (voxel) 0.0125 1.29 3.35 2.27 3.19
Labits-RAFT (Labits) 0.0125 0.66 ↓ 49% 1.72 ↓ 49% 1.08 ↓ 52% 1.45 ↓ 55%

A.5 ADDITIONAL COMPARISON EXPERIMENTS

To further validate the performance of the Labits-RAFT model, we train a Voxel-to-APLOF net un-
der the same conditions as the Labits-to-APLOF net. For active pixels, we emply a zero mask. Addi-
tionally, we implemented a complete model pipeline using voxel and the APLOF feature generated
by the pretrained Voxel-to-APLOF net. Table 7 provides a comparative overview of the minimal
total loss (Equation 7) between the Labits-to-APLOF net and the Voxel-to-APLOF net. Further-
more, Table 8 details the performance metrics of the complete model pipeline that incorporates the
Voxel-to-APLOF features and voxel.

Furthermore, we deploy event representations that are computationally feasible and align well with
the layered representation requirements. In this context, we implement and test the Former-Latter
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Table 7: Comparison of APLOF Losses

Model Total Loss LR APLOF L1 Loss HR APLOF L1 Loss
Labits-to-APLOF Net 0.084 0.056 0.028
Voxel-to-APLOF Net 0.217 0.080 0.137

Table 8: Performance Metrics of Model Pipelines

Method Input TEPE TAE EPE AE
DCT-RAFT E+I 1.29 3.35 2.27 3.19
Labits-RAFT (Ours) E+I 0.66 1.72 1.08 1.45
DCT-RAFT + Voxel-to-APLOF features E+I 0.84 2.25 1.40 1.97

Event Groups (Lee et al. (2020)) and Gaussian Weighted Polarities (Ding et al. (2022)), as shown
in 9. These methods fit within our computational constraints and ensure fair comparisons across
different tasks. This comparison not only facilitates a thorough evaluation of each representation’s
efficacy under consistent conditions but also validates the effectiveness of Labits.

Table 9: Comparison of more recent layered event representations applied to the RAFT architec-
ture (Teed & Deng (2020)) for trajectory estimation.

Method Input TEPE TAE EPE AE
Former-Latter Event Groups E+I 3.15 7.36 3.81 5.07
Gaussian Weighted Polarities E+I 3.47 8.16 4.23 5.46
DCT-RAFT E+I 1.29 3.35 2.27 3.19
Labits-RAFT (w/o APLOF) E+I 1.01 2.63 1.64 2.25
Labits-RAFT (Ours) E+I 0.66 ↓ 34.7% 1.72 ↓ 34.6% 1.08 ↓ 34.2% 1.45 ↓ 35.6%

A.6 LIMITATIONS AND FUTURE DIRECTIONS

A.6.1 LIMITATIONS

The proposed solution has specific use cases. Labits demonstrates excellent performance in dense
continuous-time trajectory estimation tasks. However, this is not only due to our novel event repre-
sentation and a well-designed model pipeline, but also because the task definition and the selected
dataset inherently leverage Labits’ ability to preserve rich intermediate temporal information. In
this task, where continuous motion trajectories of each pixel over the target time span are evaluated,
and these intermediate states are included in the metrics, our solution significantly improves results.
Conversely, for tasks less sensitive to intermediate states and focused only on final outcomes, such
as object detection or optical flow estimation, Labits may not outperform some well-established rep-
resentations and solutions. In these cases, the additional fine-grained intermediate information may
even become irrelevant noise. Different tasks require different types of information, and while our
solution is not a one-size-fits-all approach, it can exhibit substantial advantages for suitable tasks.

Labits omits event density information. Labits is designed to maximize the extraction and reten-
tion of motion information at intermediate time points. However, this design sacrifices event density
information, which might be crucial for certain computer vision tasks. Future work could explore
combining multiple representations to create a more generalizable framework that balances these
trade-offs.

We did not conduct extensive adaptation experiments across various event camera-based vi-
sion tasks. This paper focuses on providing an exceptional solution for the specific task of dense
continuous-time trajectory estimation, rather than proposing a universal representation. Applying
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Labits is not as simple as directly replacing previously used representations in various tasks. Instead,
it requires tailored feature fusion designs for Labits, APLOF, and the tasks themselves. Redesign-
ing and conducting training, testing, and ablation studies for diverse tasks is beyond the scope of a
single conference paper and was not our intention. This work remains centered on the specific task
highlighted in the title.

A.6.2 FUTURE RESEARCH DIRECTIONS

This paper introduces Labits along with a series of models and structures that fully exploit its ca-
pabilities. We have demonstrated its unparalleled suitability for dense continuous-time trajectory
estimation and validated the effectiveness of Labits and its associated structures through compre-
hensive ablation studies. Potential future research directions include:

Expanding Labits Applications to Diverse Tasks Adapting Labits and its associated models to
other similar tasks, such as human keypoint tracking, object trajectory tracking, or event-based video
interpolation. These adaptations would undoubtedly require redesigned model structures tailored to
each task’s specific needs.

Targeted Tracking Focused on Active Pixels Leveraging the properties of active pixels proposed
in this work to generate representations for selective regions rather than globally. This approach
could enable more efficient tracking by focusing on active pixel clusters.

Refinement of Labits Combining Labits with traditional event representations like Voxel Grid to
achieve complementary strengths. Labits captures fine-grained temporal information for extracting
local motion states at intermediate moments but lacks event density information. Conversely, Voxel
Grid provides event density information but discards the fine-grained temporal precision that event
cameras excel at. Combining these representations may open new possibilities for many tasks.

Utlizing Polarity Information Labits, for efficiency and information density considerations, does
not differentiate between events of different polarities. Exploring more optimized handling of
polarity-specific events may further enhance its performance in relevant computer vision tasks.

In conclusion, the innovations proposed in this paper are versatile and can be extended or improved
upon. We hope more researchers will contribute to developing better event representations, unlock-
ing the full potential of event cameras.
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