ACCIDENTBENCH: BENCHMARKING MULTIMODAL UNDERSTANDING AND REASONING IN VEHICLE ACCIDENTS AND BEYOND

Anonymous authors

000

001

002

004

006

008 009 010

011 012

013

014

015

016

017

018

019

021

023

025

026

027

028

029

031

033

035

037

038

040

041

042

043

044

046

047

048

051

052

Paper under double-blind review

ABSTRACT

Rapid advances in multimodal models demand benchmarks that rigorously evaluate understanding and reasoning in safety-critical, dynamic real-world settings. We present AccidentBench, a large-scale benchmark that combines vehicle accident scenarios with Beyond domains, safety-critical settings in air and water that emphasize spatial and temporal reasoning (e.g., navigation, orientation, multivehicle motion). The benchmark contains approximately 2,000 videos and over 19,000 human-annotated question—answer pairs spanning multiple video lengths (short/medium/long) and difficulty levels (easy/medium/hard). Tasks systematically probe core capabilities: temporal, spatial, and intent understanding and reasoning. By unifying accident-centric traffic scenes with broader safety-critical scenarios in air and water, AccidentBench offers a comprehensive, physically grounded testbed for evaluating models under real-world variability. Evaluations of state-of-the-art models (e.g., Gemini-2.5 Pro and GPT-5) show that even the strongest models achieve only about 18% accuracy on the hardest tasks and longest videos, revealing substantial gaps in real-world temporal, spatial, and intent reasoning. AccidentBench is designed to expose these critical gaps and drive the development of multimodal models that are safer, more robust, and better aligned with real-world safety-critical challenges. The code and dataset are available at: http://accident-bench.site

1 Introduction

As artificial intelligence (AI) continues to evolve, large multimodal models have shown impressive capabilities across vision, language, and video domains. However, significant challenges remain in deploying these models for real-world, safety-critical applications such as autonomous driving, robotics, and aerial or maritime operations. While multimodal models demonstrate remarkable performance in constrained or simulated environments, their robustness and depth of understanding in high-stakes, dynamic scenarios are still far from sufficient.

In particular, deployment in mission-critical domains requires rigorous evaluation of models' understanding and reasoning abilities under real-world conditions that involve uncertainty, physical interactions, and causal dependencies. While recent benchmarks have advanced evaluation in specific facets like temporal understanding (e.g., MVBench (Li et al., 2024c), REXTIME (Chen et al., 2024a)) or domain-specific knowledge (e.g., MMMU (Yue et al., 2024), DriveLM (Sima et al., 2024b)), there remains a paucity of unified platforms that assess understanding and reasoning across diverse vehicle accident and other open-space domains. To address this, we designed AccidentBench to rigorously measure multimodal models understanding and reasoning in safety-centric tasks, especially in traffic accident scenarios and other high-stakes open space domains.

Specifically, AccidentBench targets understanding and reasoning across diverse vehicle accident scenarios (83.0%), while also encompassing airspace (10.2%) and waterway (6.8%) domains, in which safety, perception, and decision-making are deeply interdependent. Unlike benchmarks that emphasize isolated skills or single domains, AccidentBench systematically challenges models across several critical understanding and reasoning capabilities: temporal understanding and reasoning (tracking event sequences and causality over extended periods); spatial understanding and reasoning

Figure 1: Examples of multimodal understanding and reasoning in vehicle accident and other safety-critical scenarios.

(understanding dynamic spatial relationships and multi-agent trajectories); and intent and goal reasoning (inferring agent intentions and planning goals), which further includes complex strategic and counterfactual reasoning (evaluating higher-order strategies, action implications, and "what-if" scenarios). Representative examples from AccidentBench are illustrated in Figure 1. By probing these abilities across diverse, safety-critical scenarios, AccidentBench offers a rigorous framework for assessing progress toward multimodal AI systems capable of reliable real-world operation.

Our key contributions are summarized as follows:

- Vehicle Accident Focus: We introduce AccidentBench, which emphasizes diverse vehicle accident scenarios while also extending to airspace and waterway domains. Evaluating vehicle accidents is especially critical for the safe deployment of LLMs in real-world applications and is a key step toward their widespread use in autonomous driving.
- Real-World Limitations and Safety Gaps: We highlight weaknesses in current AI systems'
 understanding and reasoning across open-space domains (e.g., autonomous driving, aviation, and
 marine) and provide a challenging testbed to advance safer and more reliable multimodal models.
- Unified Evaluation Suite: AccidentBench is a large-scale, video-based benchmark that integrates land traffic, airspace, and waterway scenarios, systematically evaluating temporal understanding, spatial understanding, and intent/goal reasoning within dynamic, safety-critical environments.

2 Related Work

2.1 GENERAL MULTIMODAL UNDERSTANDING BENCHMARKS

Recent years have witnessed growing interest in video understanding benchmarks. Foundational video question-answering (QA) efforts include MSR-VTT (Xu et al., 2016) and Next-QA (Xiao et al., 2021). More recently, MVBench (Li et al., 2024c), with its 20 diverse temporal tasks derived from static images, and MLVU (Zhou et al., 2024a) have expanded video QA capabilities across multiple domains. The challenge of long-form video understanding has seen contributions from benchmarks such as EgoSchema (Mangalam et al., 2023), Video-LLaVA (Fu et al., 2024), MovieChat (Song et al., 2024), and LongVideoBench (Wu et al., 2024). Parallelly, video captioning benchmarks such as AuroraCap (Chai et al., 2024), HiCM2 (Kim et al., 2025), and LongCaptioning (Wei et al., 2025) focus on generating detailed textual descriptions.

A significant trend is the push for more rigorous temporal and causal reasoning. REXTIME (Chen et al., 2024a), for instance, probes the linking of causally related events across separate video segments. For multi-domain understanding, MMWorld (He et al., 2025) evaluates models across diverse disciplines, requiring explanations and counterfactuals. Furthermore, LVBench (Wang et al., 2024) integrates video inputs for QA. Beyond video, reasoning from static images is explored by MME (Jiang et al., 2025) (including CoT extensions), MMMU (Yue et al., 2024) (evaluating expertlevel multi-discipline reasoning), and benchmarks for mathematical reasoning like Dynamath (Zou

et al., 2024) and MultiModal-MATH (Zhou et al., 2024b). For academic content, Video-MMLU (Song et al., 2025) offers a large-scale lecture video benchmark.

While these diverse benchmarks advance important aspects of multimodal understanding, such as general video comprehension, temporal analysis, long-form narrative understanding, captioning, and static image reasoning, they typically lack a unified framework for evaluation across land, air, and maritime open-space environments. Moreover, they do not capture the specific combination of complex reasoning skills, including strategic and intent-based inference, that AccidentBench is designed to assess in these contexts.

2.2 SAFETY-CRITICAL MULTIMODAL UNDERSTANDING BENCHMARKS

Evaluating models in safety-critical domains, where understanding and reasoning under uncertainty is vital, is an emerging focus. Initial efforts addressed static image safety (Liu et al., 2024a), model robustness against adversarial attacks (e.g., FigStep (Gong et al., 2023), JailBreakV (Luo et al., 2024)) (Shayegani et al., 2023; Qi et al., 2024), or indoor robotics (Yang et al., 2024).

Autonomous driving has been a major driver of safety-critical research. Foundational datasets such as nuScenes¹ and Waymo Open Dataset², along with language-integrated efforts such as DriveLM and DriveVLM (Sima et al., 2024b; Tian et al., 2025), are closely related to AccidentBench's goals due to their real-world video and safety considerations. However, a key motivation for AccidentBench was that these traditionally emphasized perception and planning, with less focus on deep safety-critical reasoning for tasks such as accident cause analysis or complex decision-making. Other specialized benchmarks tackle related issues such as video anomaly detection (e.g., VANE-Bench (Gani et al., 2025)).

While advancements continue in specialized video reasoning and domain-specific safety evaluations, existing benchmarks still largely focus on single operational domains. Critically, they often lack sufficient coverage of high-risk scenarios such as traffic collisions, ship navigation, and airplane takeoff/landing events across combined land, air, and water settings. A unified platform to consistently evaluate robust, generalizable reasoning (e.g., temporal-causal, spatial, intent, and strategic analysis) across these diverse, safety-critical open spaces also remains absent. To address this specific void, AccidentBench distinctively incorporates these challenging high-risk scenarios from all three domains. The reliability of its complex reasoning evaluation is ensured as all annotations were generated by highly educated annotators (at least Master's degree). AccidentBench thus provides a much-needed testbed for fostering robust, adaptable AI capable of open-world understanding.

3 BENCHMARK DESIGN AND ANALYSIS

3.1 Scenario Settings

In this benchmark, we include diverse real-world scenarios, with a primary focus on traffic accident understanding and reasoning. Vehicle accident scenarios account for 83% of the dataset. In addition, we incorporate high-stakes, safety-critical settings such as airplane navigation scenarios, which account for 10.8% and focus on takeoff and landing, and ship motion scenarios, which account for 6.2% and emphasize navigation understanding and reasoning.

Vehicle Accident Scenarios In the scenarios, we include a comprehensive range of traffic accident scenarios, encompassing diverse collision events under varying weather conditions such as snow, rain, and sunshine, as detailed in Table 1. Specific examples of these scenarios are illustrated in Figure 2, and more detailed examples are provided in Appendix D. To enhance contextual diversity, we incorporate multiple camera perspectives, including ego-centric and third-person views, particularly for accident scenes. The dataset features incidents involving a wide variety of vehicle types, including buses, motorcycles, sedans, and several categories of trucks, across different road environments such as highways, freeways, and rural roads. The associated questions are designed to evaluate models across multiple reasoning dimensions, including temporal-causal understanding, spatial reasoning,

https://www.nuscenes.org/

²https://waymo.com/open/

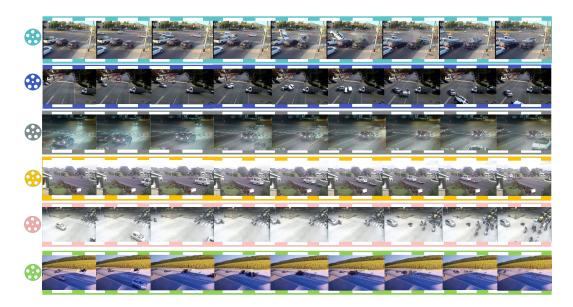


Figure 2: Land-space traffic accident scenarios for open-space video understanding and reasoning include intersection collisions, urban road accidents, nighttime incidents, rural road accidents, snow-covered road collisions, and freeway accidents.

Table 1: Overview of traffic accident scenarios in our benchmark, covering diverse road environments, weather conditions, and involved traffic participants.

Index	Categories
Road Environments:	Intersection, Highway, Freeway, Rural Road, Tunnel, Urban Road, Bridge, Parking Lot
Weather Conditions:	Snow, Rain, Sunshine, Cloudy, Foggy, Windy
Involved Participants:	Sedan, SUV, Bus, Truck, Motorcycle, Bicycle, Van, Pickup, Trailer, Pedestrian

and intent and goal planning. The original video datasets are sourced from (Bao et al., 2020; Shah et al., 2018), which primarily collected videos from YouTube and other public internet platforms.

Other Safety-Critical Scenarios (1) Ship Motion Scenarios: These scenarios include both river and ocean settings, covering diverse boats and ships under varying navigation conditions. These environments are critical yet underexplored in multimodal research. We assess temporal, spatial, and intent/goal understanding and reasoning through video-based tasks of different lengths and difficulty levels, using both interval-based and accuracy-based formats. The water-space videos are sourced from publicly available datasets, including (Guo et al., 2023; Prasad et al., 2017). (2) Airplane Navigation Scenarios: These scenarios primarily involve takeoff and landing events, emphasizing airplane navigation and perceptual understanding and reasoning. Despite their real-world importance, airplanes also remain underexplored in multimodal research. Our benchmark captures variations in navigation patterns, aircraft sizes, and motion dynamics across different airplane types. These scenarios include videos of varying lengths and evaluate models on spatial, temporal, and intent/goal understanding and reasoning across multiple difficulty levels using both interval-based and accuracy-based multiple-choice formats. The airspace videos are sourced from publicly available footage³, ⁴, ⁵.

3.2 TASK SETTINGS

Within each scenario, we design tasks that evaluate models across three key dimensions of understanding and reasoning: *temporal*, *spatial*, and *intent and goal*. Representative examples for each type are shown in Figure 3.

³https://www.youtube.com/watch?v=i6CrbqeksJ8

⁴https://www.youtube.com/watch?v=k5yvzTw08K8

⁵https://www.youtube.com/watch?v=Bt9tpiAmTs8

227

228 229

233

238

239

240

241

242

246

247 248

249

250

254

256

Temporal Understanding and Reasoning

"There are multiple accidents, in the third accident, how many moving cars came from the opposite direction of the violated traffic rule car?" Options: A. 1, B. 2, C. 3, D. 4, E. 5, F. 6, G. 7, H. 8, I. 9, J. 10, K. 11, L. 12"

Intent Understanding and Reasoning

'question": "As the driver of the violated traffic rule car starting from its initial position, what sequence of actions would you take to avoid the collision? (Please fill in each step): {1. [] 2. []} Options: A. Stop, B. Turn left, C. Reduce speed, D. Go forward, E. Turn right"

Spatial Understanding and Reasoning

question": "There are multiple accidents in the video, in the third accident, if I stand facing the initial direction of the blue collision bus near the driver at the moment of impact, is the red vehicle located front-left, front-right, back-left, or back-right relative to me?"

Figure 3: Examples of question settings in AccidentBench across three key understanding and reasoning types: Temporal Understanding and Reasoning, which involves understanding event sequences and motion over time; Spatial Understanding and Reasoning, which focuses on relative positioning and orientation in space; and Intent Understanding and Reasoning, which evaluates understanding of goal-directed behaviors and decision-making in dynamic environments.

For each understanding and reasoning dimension, we construct tasks at three difficulty levels using two formats: interval-based choices (easy and medium) and accuracy-based choices (hard). Easy tasks (≈6,300 QA pairs) provide approximately three coarse-grained interval options; medium tasks $(\approx 6.300 \text{ QA pairs})$ include six intermediate-level intervals; and hard tasks ($\approx 6.300 \text{ QA pairs})$ present twelve fine-grained discrete options that require an exact match with the correct answer. The number of tasks is evenly distributed across difficulty levels, with each tier comprising one-third of the total. In all cases, the model must select a single best answer, allowing the benchmark to systematically assess performance under increasing levels of precision and ambiguity.

DATASET ANALYSIS

This benchmark includes approximately 2,000 videos and 19,000 human-annotated question-answer pairs, covering a wide range of understanding and reasoning tasks. The dataset features a variety of video lengths, categories, and frame counts, and spans real-world scenarios. An overview of the dataset's characteristics is provided in Appendix D, which illustrates the distributions of video duration, domain coverage, and task styles, along with details of the annotation procedure and difficulty levels.

COMPARISON WITH EXISTING BENCHMARKS

Table 2 provides a comparative analysis of AccidentBench alongside existing evaluation benchmarks for multimodal models. Most benchmarks primarily focus on assessing the multimodal reasoning capabilities of multimodal models (He et al., 2024; Song et al., 2023; Zhou et al., 2024a); however, a significant limitation is the prevalent oversight of safety considerations. While a few recent benchmarks have begun to evaluate safety aspects of multimodal models (Zhou et al., 2024b; Liu et al., 2024a), they typically do not incorporate video-based question answering and are mostly limited to single-frame inputs. However, single-frame capture often introduces uncertainties in reasoning and is insufficient for reliably assessing multimodal models' ability to handle safety-critical issues. In contrast, our AccidentBench introduces a large-scale curated collection of video question-answer pairs that specifically focus on traffic accident understanding and reasoning in real-world safetyrelated scenarios. Comprising 2,000 carefully selected videos and 19,000 reasoning question-answer pairs, the AccidentBench features a size competitive with existing benchmarks, thus highlighting the comprehensiveness of our evaluation set.

Table 2: **Benchmark comparison** for multimodal understanding and reasoning tasks.

Dataset	Safety	Traffic	Annotation	Real-World	Main Scenarios	# Video	Ave. Duration (s)	Questi Number	on-answering Type
MovieChat-1K (Song et al., 2023)	×	×	Human	✓	General	1,000	564	13,000	Open-ended
MMWorld (He et al., 2024)	×	×	Human	✓	General	1,910	107	6,627	Multiple-choice
MLVU (Zhou et al., 2024a)	×	×	Human	✓	General	1,730	930	3,102	Multiple-choice
MVBench (Abellán et al., 2023)	×	×	Human & LLM	✓	General	4,000	16	4,000	Multiple-choice
LongVideoBench (Wu et al., 2024)	×	×	Human	✓	General	3,763	473	6,678	Multiple-choice
TempCompass (Liu et al., 2024b)	×	×	Human & LLM	✓	General	410	< 30	7,540	Multiple-choice
VSI-Bench (Yang et al., 2024)	×	×	Human	✓	Embodied	288	50-100	5,000	Multiple-choice
Video-MMMU (Hu et al., 2025)	×	×	Human & LLM	×	Professional	300	506	900	Multiple-choice
Video-MMLU (Song et al., 2025)	×	×	Human & LLM	×	Professional	1,065	109	15,746	Open-ended
DriveBench (Xie et al., 2025)	✓	✓	Human & LLM	✓	General Driving	×	×	19,200	Multiple-choice
DriveLM (Sima et al., 2024a)	✓	✓	Human	✓	General Driving	×	×	15,480	Open-ended
nuScenes-QA (Qian et al., 2024)	×	✓	Human	✓	General Driving	×	×	83,337	Open-ended
MSSBench (Zhou et al., 2024b)	✓	×	Human & LLM	✓	General	×	×	1960	Open-ended
MMSBench (Liu et al., 2024a)	✓	×	LLM	✓	General	×	×	5040	Open-ended
AccidentBench (ours)	<	√	Human	✓	Accident	2000	56	19,000	Multiple-choice

Table 3: Understanding and reasoning evaluation for AccidentBench in Vehicle Accidents.

\mathcal{E}													
Models	Size		H	ard			Me	dium			E	asy	
		Avg.	Temp.	Spatial	Intent	Avg.	Temp.	Spatial	Intent	Avg.	Temp.	Spatial	Intent
GPT 5 (OpenAI, 2025)	-	37.33	35.85	42.80	33.35	48.34	46.22	55.07	43.74	54.86	52.35	55.50	56.72
GPT 40 (Hurst et al., 2024)	-	25.82	29.61	31.38	13.21	43.05	47.63	48.59	31.83	44.17	54.45	36.01	43.67
Gemini 2.5 pro (Google, 2025b)	-	31.06	38.75	37.54	23.46	40.57	39.13	47.22	30.33	57.90	58.24	56.23	55.52
Gemini 2.5 flash think (Google, 2025a)	-	29.90	34.52	36.57	23.00	39.50	45.18	45.61	29.76	48.93	58.35	51.21	37.78
Gemini 2.5 flash no-think (Google, 2025a)	-	23.80	24.43	33.04	17.55	36.67	41.21	43.86	25.44	46.89	50.92	50.24	35.19
Gemini 1.5 pro (DeepMind, 2024)	-	17.79	20.90	20.72	15.81	35.98	39.05	41.11	28.75	47.00	56.01	45.68	40.25
Claude 3.5 (Anthropic, 2024)	-	30.82	35.04	31.65	22.91	37.93	36.39	46.36	32.63	51.08	53.32	47.01	48.93
InternVL2.5 (Chen et al., 2024b)	26B	23.92	31.00	29.75	11.50	35.42	41.75	43.00	22.75	56.33	61.00	56.25	46.50
InternVL2.5 (Chen et al., 2024b)	8B	21.25	24.50	31.25	10.50	34.83	42.25	48.25	14.50	52.34	55.50	57.00	42.50
InternVL2.5 (Chen et al., 2024b)	4B	17.50	19.50	25.50	12.00	35.33	34.00	41.25	26.50	48.00	46.00	51.50	43.50
LLaVA Next (Li et al., 2024a)	32B	19.34	13.50	24.50	11.00	21.83	15.50	31.25	14.00	37.09	27.25	41.75	35.00
LLaVA Video (Zhang et al., 2024b)	7B	19.67	15.00	31.25	12.00	25.42	22.00	32.50	22.50	30.58	31.00	32.25	34.00
LLaVA OneVision (Li et al., 2024b)	7B	13.83	8.50	21.75	12.00	16.67	20.50	19.00	17.00	30.83	29.75	32.25	29.00
Owen2.5 VL (Bai et al., 2025)	32B	23.33	18.00	29.50	18.00	27.99	25.75	38.50	23.50	45.67	53.00	45.50	41.25
Owen2.5 VL (Bai et al., 2025)	7B	23.42	18.25	30.50	20.75	32.17	30.50	37.00	24.00	43.58	44.00	38.50	42.75

4 EXPERIMENTS

In our experiments, we build upon the <code>lmms-eval</code> framework (Zhang et al., 2024a) as the foundation for our benchmark and extend it to support the specific requirements of AccidentBench. We conduct comprehensive evaluations to assess the performance of state-of-the-art (SOTA) multimodal models across diverse safety-critical real-world scenarios.

4.1 EVALUATION IN VEHICLE ACCIDENT SCENARIOS

We evaluate model performance across all vehicle accident scenarios in AccidentBench, with results summarized in Table 3. The evaluation is organized by task difficulty (Easy, Medium, Hard) and reasoning type (Temporal, Spatial, Intent). Among the models, **GPT-5** achieves the strongest overall performance, leading in the Hard setting with an average score of 37.33 and maintaining high results in Medium (48.34). **Gemini 2.5 Pro** also performs consistently well, ranking best in the Easy setting (57.90) and remaining competitive in Medium (40.57) and Hard (31.06). **GPT-40** shows strong results in Medium (43.05) and Easy (44.17) tasks, particularly in temporal and spatial reasoning, but its performance drops sharply on Hard tasks (25.82). Across all models, performance declines substantially as task difficulty increases, with intent reasoning under the Hard setting posing the most difficult challenge. Overall, proprietary models (e.g., GPT-5, Gemini, GPT-40) outperform open-source counterparts, but none achieves robust performance across all difficulty levels and reasoning types.

4.2 VEHICLE ACCIDENT EVALUATION ANALYSIS

To investigate how video length and task format affect model performance in vehicle accident scenarios, we report results from accuracy-based (hard) experiments and interval-based (easy and medium) experiments across short, medium, and long video lengths.

Accuracy-Based Settings As shown in Table 4, we present a comprehensive evaluation of model performance in the **Vehicle Accident** scenarios of **AccidentBench**, categorized by task type, video length. In the hard (accuracy-based) setting, performance drops significantly across all models as

Table 4: Evaluation of AccidentBench on vehicle accident scenarios using short, medium, and long videos, categorized by reasoning types and based on a subset of the dataset. The choices are accuracy-based, corresponding to the hard setting.

Difficulty	Models	Size	e Over. Avg. Short Video Scenarios					Medium Video Scenarios				Long Video Scenarios			
Dillicuity	Wodels	Size	Ovel. Avg.	Avg.	Temporal	Spatial	Intent	Avg.	Temporal	Spatial	Intent	Avg.	Temporal	Spatial	Intent
	GPT 5 (OpenAI, 2025)	-	37.33	45.87	48.52	55.10	34.00	48.12	49.02	39.29	56.06	18.00	10.00	34.00	10.00
	GPT 40 (Hurst et al., 2024)	-	24.41	26.78	34.65	34.69	11.00	35.70	43.14	32.14	31.82	11.00	6.00	26.00	1.00
	Gemini 2.5 pro (Google, 2025b)	-	29.76	34.84	36.63	44.90	23.00	35.76	45.10	30.36	31.82	18.67	10.00	28.00	18.0
	Gemini 2.5 flash think (Google, 2025a)	-	28.67	32.13	35.64	37.75	23.00	35.20	37.25	41.07	27.27	18.67	6.00	36.00	14.00
	Gemini 2.5 flash no-think (Google, 2025a)	-	24.34	24.74	30.69	26.53	17.00	30.94	52.94	23.21	16.67	17.33	14.00	24.00	14.00
	Gemini 1.5 pro (DeepMind, 2024)	-	18.76	19.72	23.76	20.41	15.00	24.55	33.33	16.07	24.24	12.00	2.00	26.00	8.00
	Claude 3.5 (Anthropic, 2024)	-	28.71	33.76	35.64	31.63	34.00	28.87	37.26	35.71	13.63	16.00	12.00	26.00	10.0
Hard	InternVL2.5 (Chen et al., 2024b)	26B	23.78	21.33	26.00	31.00	7.00	32.00	46.00	32.00	18.00	18.00	16.00	24.00	14.00
	InternVL2.5 (Chen et al., 2024b)	8B	22.67	20.00	18.00	33.00	9.00	30.00	46.00	30.00	14.00	18.00	16.00	28.00	10.00
	InternVL2.5 (Chen et al., 2024b)	4B	19.56	18.67	18.00	28.00	8.00	28.00	34.00	24.00	26.00	12.00	8.00	22.00	6.00
	LLaVA Next (Li et al., 2024a)	32B	16.22	20.67	16.00	32.00	14.00	11.33	12.00	12.00	10.00	16.67	10.00	30.00	10.00
	LLaVA Video (Zhang et al., 2024b)	7B	19.78	19.33	12.00	35.00	11.00	24.67	26.00	30.00	18.00	15.33	10.00	28.00	8.00
	LLaVA OneVision (Li et al., 2024b)	7B	13.67	14.33	5.00	27.00	11.00	14.67	18.00	8.00	18.00	12.00	6.00	22.00	8.00
	Qwen2.5 VL (Bai et al., 2025)	32B	22.66	19.33	11.00	34.00	13.00	35.33	46.00	24.00	36.00	13.33	4.00	26.00	10.00
	Qwen2.5 VL (Bai et al., 2025)	7B	22.89	26.00	17.00	30.00	31.00	30.00	40.00	32.00	18.00	12.67	2.00	30.00	6.00

Table 5: Evaluation of AccidentBench on vehicle accident scenarios using short, medium, and long videos, categorized by reasoning types and based on a subset of the dataset. The tasks use interval-based choices, corresponding to the easy and medium settings depending on the number of options.

Difficulty	Models	Size	Over. Avg.		Short Video	Scenario	ıs	N	1edium Vide	o Scenar	ios		Long Video	Scenario	os
Dimenty	Models	Size	Over. Avg.	Avg.	Temporal	Spatial	Intent	Avg.	Temporal	Spatial	Intent	Avg.	Temporal	Spatial	Intent
	GPT 5 (OpenAI, 2025)	-	48.34	62.55	64.65	67.00	56.00	46.48	50.00	42.22	47.22	36.00	24.00	56.00	28.00
	GPT 40 (Hurst et al., 2024)	-	36.99	45.49	48.48	55.00	33.00	33.89	41.67	26.67	33.33	31.33	24.00	44.00	26.00
	Gemini 2.5 pro (Google, 2025b)	-	36.46	42.79	38.38	59.00	31.00	33.93	39.58	28.89	33.33	32.67	28.00	44.00	26.0
	Gemini 2.5 flash think (Google, 2025a)	-	37.52	47.82	46.47	56.00	41.00	36.99	43.75	42.22	25.00	28.00	12.00	44.00	28.00
	Gemini 2.5 flash no-think (Google, 2025a)	-	36.70	47.50	48.49	58.00	36.00	33.93	39.58	28.89	33.33	28.67	24.00	42.00	20.00
	Gemini 1.5 pro (DeepMind, 2024)	-	33.89	39.47	42.42	42.00	34.00	33.52	33.33	42.22	25	28.67	12.00	52.00	22.00
	Claude 3.5 (Anthropic, 2024)	-	35.35	41.78	35.35	50.00	40.00	35.60	39.58	42.22	25.00	28.67	16.00	44.00	26.0
Medium	InternVL2.5 (Chen et al., 2024b)	26B	35.11	36.00	39.00	50.00	19.00	36.67	50.00	36.00	24.00	32.67	30.00	40.00	28.00
	InternVL2.5 (Chen et al., 2024b)	8B	34.66	37.33	43.00	57.00	12.00	35.33	42.00	46.00	18.00	31.33	26.00	44.00	24.00
	InternVL2.5 (Chen et al., 2024b)	4B	33.89	39.67	38.00	53.00	28.00	32.67	44.00	28.00	26.00	29.33	16.00	46.00	26.00
	LLaVA Next (Li et al., 2024a)	32B	20.00	27.33	16.00	49.00	17.00	10.67	14.00	10.00	8.00	22.00	16.00	36.00	14.00
	LLaVA Video (Zhang et al., 2024b)	7B	25.67	25.00	20.00	34.00	26.00	28.67	36.00	28.00	22.00	23.33	14.00	40.00	16.00
	LLaVA OneVision (Li et al., 2024b)	7B	16.67	16.00	26.00	30.00	16.00	14.67	18.00	8.00	18.00	19.33	12.00	30.00	16.00
	Qwen2.5 VL (Bai et al., 2025)	32B	28.55	28.33	21.00	44.00	20.00	33.33	40.00	30.00	30.00	24.00	8.00	40.00	24.00
	Qwen2.5 VL (Bai et al., 2025)	7B	29.89	39.00	37.00	42.00	38.00	30.67	32.00	40.00	20.00	20.00	16.00	26.00	18.00
	GPT 5 (OpenAI, 2025)	-	54.86	71.20	76.00	69.61	68.00	48.71	47.06	44.90	54.17	44.67	34.00	52.00	48.00
	GPT 40 (Hurst et al., 2024)	-	42.17	52.35	59.00	47.06	51.00	47.16	54.9	44.9	41.67	27.00	44.00	5.00	32.00
	Gemini 2.5 pro (Google, 2025b)	-	54.56	62.96	70.00	55.88	63.00	54.73	52.94	59.18	52.08	46.00	40.00	54.00	44.00
	Gemini 2.5 flash think (Google, 2025a)	-	50.00	67.56	69.00	65.69	68.00	44.45	52.94	40.82	39.58	38.00	32.00	38.00	44.00
	Gemini 2.5 flash no-think (Google, 2025a)	-	51.40	58.97	70.00	54.90	52.00	46.56	52.94	36.74	50.00	48.67	38.00	56.00	52.00
	Gemini 1.5 pro (DeepMind, 2024)	-	46.00	51.33	60.00	50.00	44.00	36.92	49.02	36.73	25.00	50.00	58.00	44.00	48.00
	Claude 3.5 (Anthropic, 2024)	-	48.59	60.33	61.00	50.00	70.00	36.35	35.29	51.02	22.73	49.33	64.00	44.00	40.0
Easy	InternVL2.5 (Chen et al., 2024b)	26B	52.55	61.00	62.00	59.00	62.00	45.33	58.00	44.00	34.00	51.33	62.00	62.00	30.00
	InternVL2.5 (Chen et al., 2024b)	8B	50.11	55.67	55.00	60.00	52.00	44.67	58.00	42.00	34.00	50.00	54.00	64.00	32.00
	InternVL2.5 (Chen et al., 2024b)	4B	44.89	53.33	46.00	60.00	54.00	37.33	48.00	38.00	26.00	44.00	44.00	48.00	40.00
	LLaVA Next (Li et al., 2024a)	32B	31.25	38.00	35.00	45.00	34.00	21.33	12.00	14.00	38.00	34.67	20.00	50.00	34.00
	LLaVA Video (Zhang et al., 2024b)	7B	31.44	33.00	30.00	31.00	38.00	33.33	38.00	36.00	26.00	28.00	16.00	32.00	36.00
	LLaVA OneVision (Li et al., 2024b)	7B	29.78	32.00	31.00	33.00	32.00	24.00	26.00	30.00	16.00	33.33	28.00	36.00	36.00
	Qwen2.5 VL (Bai et al., 2025)	32B	43.22	51.00	58.00	50.00	45.00	41.33	46.00	38.00	40.00	37.33	32.00	44.00	36.00
	Qwen2.5 VL (Bai et al., 2025)	7B	40.67	51.33	55.00	42.00	57.00	36.00	32.00	42.00	34.00	34.67	34.00	28.00	42.00

video length increases. For example, in hard tasks involving long videos, even the best-performing models fall below 40% average accuracy and only achieve around 18% accuracy on the hardest tasks and longest video scenarios. These results highlight the limitations of current multimodal models in handling complex, long-horizon real-world understanding and reasoning—particularly for extended temporal sequences, fine-grained spatial relations, and intent understanding and reasoning.

Interval-Based Settings As shown in Table 5, in the easy and medium (interval-based) settings, **GPT-5** achieves the strongest overall performance, reaching 54.86% accuracy, followed closely by **Gemini 2.5 Pro** at 54.56%. Other proprietary models, such as Gemini 2.5 flash and GPT-40, also perform competitively, with GPT-40 attaining 52.39% overall accuracy. Among open-source systems, InternVL2.5 (26B) is the best performer, with an overall accuracy of 52.55%. While models like Gemini 2.5 flash (with think mode) and GPT-40 achieve relatively strong results on medium-difficulty tasks (37.53% and 36.99%, respectively), *performance consistently declines as video length increases, highlighting the persistent challenges in achieving robust understanding and reasoning across diverse real-world scenarios.*

4.3 OTHER OPEN-SPACE EVALUATION

Beyond vehicle accident evaluation, we also assess models in other high-stakes, safety-critical scenarios (17%), including **ship motion** (6.8%) and **airplane navigation** (10.2%). **Evaluation in Ship Motion Scenarios:** Table 6 shows results for multimodal models in the Water Space domain of

Table 6: Understanding and reasoning evaluation for AccidentBench in ship motion scenarios.

Models	Size		H	ard			Me	dium		Easy			
		Avg.	Temp.	Spatial	Intent	Avg.	Temp.	Spatial	Intent	Avg.	Temp.	Spatial	Intent
GPT 5 (OpenAI, 2025)	-	38.36	38.08	31.39	45.62	51.80	54.93	47.08	53.39	63.00	69.77	49.00	70.23
GPT40 (Hurst et al., 2024)	-	19.97	22.62	21.29	14.73	37.30	39.48	50.53	20.84	47.16	63.06	38.68	41.69
Gemini 2.5 pro (Google, 2025b)	-	28.11	33.38	22.06	26.80	40.92	44.30	56.28	29.45	60.92	68.47	52.68	58.04
Gemini 2.5 flash think (Google, 2025a)	-	27.17	31.39	29.15	23.42	46.72	52.02	56.24	35.00	62.01	65.20	74.48	52.74
Gemini 2.5 flash no-think (Google, 2025a)	-	24.76	25.61	38.20	18.02	42.27	42.37	50.28	32.30	59.15	57.84	68.01	51.06
Gemini 1.5 pro (DeepMind, 2024)	-	25.48	31.25	23.57	21.97	41.86	48.64	50.01	41.17	49.84	47.47	50.30	50.02
Claude 3.5 (Anthropic, 2024)	-	24.14	23.67	20.77	26.06	39.26	40.07	53.80	26.67	50.27	58.37	52.46	39.70
InternVL2.5 (Chen et al., 2024b)	26B	22.35	17.68	25.19	22.01	41.01	25.68	60.34	34.78	52.42	55.55	51.60	43.28
InternVL2.5 (Chen et al., 2024b)	8B	21.98	13.74	27.65	21.21	41.01	33.81	60.90	25.26	51.51	57.54	51.19	46.09
InternVL2.5 (Chen et al., 2024b)	4B	20.92	17.01	24.68	21.60	44.13	27.18	62.23	44.04	53.28	52.10	55.76	44.42
LLaVA Next (Li et al., 2024a)	32B	13.85	7.96	27.13	7.98	20.18	10.84	33.10	16.68	35.00	34.48	39.46	33.38
LLaVA Video (Zhang et al., 2024b)	7B	13.45	9.70	21.59	7.10	22.14	19.81	29.13	18.95	30.31	23.56	37.22	30.00
LLaVA OneVision (Li et al., 2024b)	7B	15.00	9.42	27.25	8.42	22.59	16.27	32.09	18.29	32.95	29.67	37.08	31.44
Qwen2.5 VL (Bai et al., 2025)	32B	12.99	7.97	23.63	7.37	33.25	19.69	50.00	29.72	52.04	45.12	56.49	43.05
Qwen2.5 VL (Bai et al., 2025)	7B	13.76	7.02	26.33	8.00	26.10	18.94	28.36	24.67	30.17	34.70	20.74	34.95

AccidentBench, categorized by task difficulty (Easy, Medium, Hard) and reasoning type (Temporal, Spatial, Intent). **GPT-5** achieves the highest overall performance, leading in Hard (38.36), Medium (51.80), and Easy (63.00) tasks. **Gemini 2.5 Pro** remains competitive, with strong results on Hard tasks (28.11) and particularly strong spatial and intent reasoning. **Gemini 2.5 flash with think** also performs well, achieving the best results among proprietary models in Medium (46.72) and Easy (62.01) settings before GPT-5. Among open-source models, InternVL2.5 (26B) and Qwen2.5 show competitive performance, especially in temporal reasoning, but still lag behind proprietary models. As with other domains, all models suffer a marked drop in performance on Hard tasks, most notably in intent reasoning. These findings emphasize the continued difficulty of multimodal reasoning in dynamic and ambiguous environments such as rivers and oceans, highlighting the need for more advanced AI systems. Due to space constraints, further analysis of ship motion across different video lengths and task modes, as well as the **Evaluation of Airplane Navigation Scenarios**, is provided in Appendix B.

These findings demonstrate AccidentBench's ability to reveal the limitations of existing multimodal models, particularly in safety-critical and physically grounded domains. *By highlighting domain-specific understanding and reasoning gaps, especially in underexplored high-stakes environments such as ship motion, and airplane navigation,* AccidentBench serves as a useful tool for guiding the development of more robust, spatially, temporally aware, and intent-aware multimodal systems.

4.4 MODEL ERROR ANALYSIS

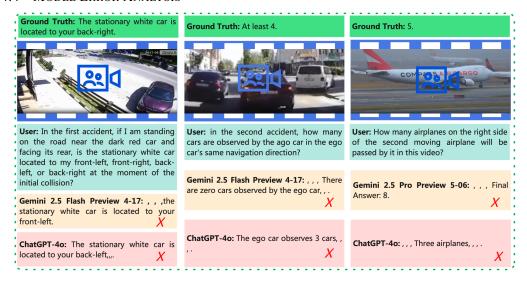


Figure 4: Qualitative error analysis of SOTA multimodal models (Gemini 2.5 and GPT-4o) on the AccidentBench benchmark. Each example illustrates a failure case in a different reasoning category: spatial reasoning (left), temporal reasoning (middle), and intent reasoning (right). Despite their capabilities, both models struggle with spatial localization, counting dynamic objects, and understanding goal-directed motion in real-world safety-critical scenarios.

To demonstrate the effectiveness of our benchmark and evaluate the performance of SOTA models, we conduct a qualitative analysis of model predictions on the AccidentBench benchmark. As shown in Figure 4, the analysis highlights persistent challenges in spatial, temporal, and intent understanding and reasoning across real-world environments. Despite the strong overall performance of leading multimodal models such as Gemini 2.5 and GPT-40, the results reveal consistent failure cases in real-world scenarios. For example, both models struggle with accurately identifying spatial relationships (e.g., relative positions of vehicles), counting dynamic objects over time (e.g., cars in motion), and understanding goal-directed interactions (e.g., airplane passing events). These failure cases highlight the limitations of current models in handling safety-critical, perception-intensive tasks. By providing richly annotated, video-based tasks that demand multi-step reasoning grounded in physics, causality, and spatial understanding, AccidentBench serves as a rigorous diagnostic benchmark. Our findings highlight the necessity of such benchmarks for advancing the robustness, safety, and real-world applicability of large multimodal systems.

4.5 ABLATION EXPERIMENTS

In our experiments, due to the high cost of evaluating all data points, we adopt a uniform sampling strategy to select a representative subset of tasks. Specifically, for each understanding and reasoning type, we sample 50 tasks when the total number of available tasks is fewer than 500, and 100 tasks when the number exceeds 500. The AccidentBench spans three real-world scenarios, vehicle accident, airplane navigation, and ship motion, each with three video lengths (short, medium, long), three difficulty levels (easy, medium, hard), and three understanding and reasoning types: temporal, spatial, and intent-based understanding and reasoning. Following this sampling strategy, we evaluate a total of 3,798 tasks, evenly distributed across the three types: 1,266 spatial understanding and reasoning, 1,266 temporal-causal understanding and reasoning, and 1,266 intent understanding and reasoning tasks. To assess the reliability of this sampling approach, we conduct an ablation study comparing model performance on sampled tasks versus the full set of data points in the vehicle accident (short, easy) settings. We use InternVL 2.5, one of the leading open-source multimodal models, which ranks highly on several leaderboards such as ⁶ and ⁷. As shown in Table 7, performance on the sampled subset is comparable to, and in some cases slightly better than, performance on the full dataset. These results validate the effectiveness of our sampling strategy in preserving benchmark consistency while reducing evaluation cost.

Table 7: Performance comparison on **vehicle accident short videos** (easy setting): full vs. sampled data points.

Model		Full Data	Points		Sample Data Points							
Model	Avg.	Temporal	Spatial	Intent	Avg.	Temporal	Spatial	Intent				
InternVL2_5-26B	55.62	57.61	50.37	58.88	61.00	62.00	59.00	62.00				
InternVL2_5-8B	49.26	51.89	48.57	47.31	55.67	55.00	60.00	52.00				
InternVL2_5-4B	50.65	50.17	50.70	51.10	55.33	52.00	55.00	59.00				

5 CONCLUSION

In this work, we introduce AccidentBench, a large-scale benchmark for evaluating multimodal understanding and reasoning in real-world safety-scitical environments. AccidentBench provides richly annotated, video-based tasks designed to assess model performance across three fundamental understanding and reasoning dimensions: temporal, spatial, and intent and goal reasoning. The benchmark encompasses a broad range of scenarios, video lengths, and difficulty levels, enabling comprehensive evaluation in safety-critical, perception-intensive settings. Through extensive qualitative and quantitative analyses, we demonstrate that even SOTA multimodal models, both proprietary systems such as Gemini 2.5 Pro and GPT-5, and leading open-source models like Qwen and InternVL, exhibit significant limitations when understanding and reasoning over complex, dynamic physical environments. We hope that AccidentBench will serve as a valuable resource for the research community and help advance the development of safer, more generalizable, and practically deployable multimodal AI systems.

⁶https://enxinsong.com/Video-MMLU-web/

⁷https://huggingface.co/spaces/opencompass/open_vlm_leaderboard

REFERENCES

- Guillermo Franco Abellán, Matteo Braglia, Mario Ballardini, Fabio Finelli, and Vivian Poulin. Probing early modification of gravity with planck, act and spt. *Journal of Cosmology and Astroparticle Physics*, 2023(12):017, 2023.
- Anthropic. Introducing claude 3.5 sonnet. https://www.anthropic.com/news/claude-3-5-sonnet, 2024.
- Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan, Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng, Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report. *arXiv* preprint arXiv:2502.13923, 2025.
- Wentao Bao, Qi Yu, and Yu Kong. Uncertainty-based traffic accident anticipation with spatio-temporal relational learning. In *Proceedings of the 28th ACM International Conference on Multimedia*, pp. 2682–2690, 2020.
- Wenhao Chai, Enxin Song, Yilun Du, Chenlin Meng, Vashisht Madhavan, Omer Bar-Tal, Jenq-Neng Hwang, Saining Xie, and Christopher D Manning. Auroracap: Efficient, performant video detailed captioning and a new benchmark. *arXiv* preprint arXiv:2410.03051, 2024.
- Jr-Jen Chen, Yu-Chien Liao, Hsi-Che Lin, Yu-Chu Yu, Yen-Chun Chen, and Frank Wang. Rextime: A benchmark suite for reasoning-across-time in videos. Advances in Neural Information Processing Systems, 37:28662–28673, 2024a.
- Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shenglong Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source multimodal models with model, data, and test-time scaling. *arXiv preprint arXiv:2412.05271*, 2024b.
- Google DeepMind. Gemini 1.5 technical report. https://deepmind.google/technologies/gemini/#gemini-15, 2024. Accessed: 2025-05-12.
- Chaoyou Fu, Yuhan Dai, Yongdong Luo, Lei Li, Shuhuai Ren, Renrui Zhang, Zihan Wang, Chenyu Zhou, Yunhang Shen, Mengdan Zhang, et al. Video-mme: The first-ever comprehensive evaluation benchmark of multi-modal llms in video analysis. *arXiv* preprint arXiv:2405.21075, 2024.
- Hanan Gani, Rohit Bharadwaj, Muzammal Naseer, Fahad Shahbaz Khan, and Salman Khan. Vanebench: Video anomaly evaluation benchmark for conversational lmms. In *Findings of the Association for Computational Linguistics: NAACL 2025*, pp. 3123–3140, 2025.
- Yichen Gong, Delong Ran, Jinyuan Liu, Conglei Wang, Tianshuo Cong, Anyu Wang, Sisi Duan, and Xiaoyun Wang. Figstep: Jailbreaking large vision-language models via typographic visual prompts. *arXiv preprint arXiv:2311.05608*, 2023.
- Google. Gemini 2.5 flash. https://storage.googleapis.com/model-cards/documents/gemini-2.5-flash.pdf, July 2025a. Accessed: 2025-06-26.
- Google. Gemini 2.5: Our most intelligent ai model. https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/gemini-2-5-thinking, 2025b.
- Yu Guo, Ryan Wen Liu, Jingxiang Qu, Yuxu Lu, Fenghua Zhu, and Yisheng Lv. Asynchronous trajectory matching-based multimodal maritime data fusion for vessel traffic surveillance in inland waterways. *IEEE Transactions on Intelligent Transportation Systems*, 24(11):12779–12792, 2023.
- Xuehai He, Weixi Feng, Kaizhi Zheng, Yujie Lu, Wanrong Zhu, Jiachen Li, Yue Fan, Jianfeng Wang, Linjie Li, Zhengyuan Yang, et al. Mmworld: Towards multi-discipline multi-faceted world model evaluation in videos. *arXiv preprint arXiv:2406.08407*, 2024.
- Xuehai He, Weixi Feng, Kaizhi Zheng, Yujie Lu, Wanrong Zhu, Jiachen Li, Yue Fan, Jianfeng Wang, Linjie Li, Zhengyuan Yang, et al. Mmworld: Towards multi-discipline multi-faceted world model evaluation in videos. In *The Thirteenth International Conference on Learning Representations*, 2025.

- Kairui Hu, Penghao Wu, Fanyi Pu, Wang Xiao, Yuanhan Zhang, Xiang Yue, Bo Li, and Ziwei Liu. Video-mmmu: Evaluating knowledge acquisition from multi-discipline professional videos. *arXiv* preprint arXiv:2501.13826, 2025.
 - Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint arXiv:2410.21276*, 2024.
 - Dongzhi Jiang, Renrui Zhang, Ziyu Guo, Yanwei Li, Yu Qi, Xinyan Chen, Liuhui Wang, Jianhan Jin, Claire Guo, Shen Yan, et al. Mme-cot: Benchmarking chain-of-thought in large multimodal models for reasoning quality, robustness, and efficiency. *arXiv* preprint arXiv:2502.09621, 2025.
 - Minkuk Kim, Hyeon Bae Kim, Jinyoung Moon, Jinwoo Choi, and Seong Tae Kim. Hicm²: Hierarchical compact memory modeling for dense video captioning. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pp. 4293–4301, 2025.
 - Bo Li, Hao Zhang, Kaichen Zhang, Dong Guo, Yuanhan Zhang, Renrui Zhang, Feng Li, Ziwei Liu, and Chunyuan Li. Llava-next: What else influences visual instruction tuning beyond data?, May 2024a. URL https://llava-vl.github.io/blog/2024-05-25-llava-next-ablations/.
 - Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan Zhang, Yanwei Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. *arXiv preprint arXiv:2408.03326*, 2024b.
 - Kunchang Li, Yali Wang, Yinan He, Yizhuo Li, Yi Wang, Yi Liu, Zun Wang, Jilan Xu, Guo Chen, Ping Luo, et al. Mvbench: A comprehensive multi-modal video understanding benchmark. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 22195–22206, 2024c.
 - Xin Liu, Yichen Zhu, Jindong Gu, Yunshi Lan, Chao Yang, and Yu Qiao. Mm-safetybench: A benchmark for safety evaluation of multimodal large language models. In *European Conference on Computer Vision*, pp. 386–403. Springer, 2024a.
 - Yuanxin Liu, Shicheng Li, Yi Liu, Yuxiang Wang, Shuhuai Ren, Lei Li, Sishuo Chen, Xu Sun, and Lu Hou. Tempcompass: Do video llms really understand videos? *arXiv preprint arXiv:2403.00476*, 2024b.
 - Weidi Luo, Siyuan Ma, Xiaogeng Liu, Xiaoyu Guo, and Chaowei Xiao. Jailbreakv: A benchmark for assessing the robustness of multimodal large language models against jailbreak attacks. *arXiv* preprint arXiv:2404.03027, 2024.
 - Karttikeya Mangalam, Raiymbek Akshulakov, and Jitendra Malik. Egoschema: A diagnostic benchmark for very long-form video language understanding. *Advances in Neural Information Processing Systems*, 36:46212–46244, 2023.
 - OpenAI. Introducing gpt-5. https://openai.com/index/introducing-gpt-5/, August 2025. Accessed: 2025-09-19.
 - Dilip K Prasad, Deepu Rajan, Lily Rachmawati, Eshan Rajabally, and Chai Quek. Video processing from electro-optical sensors for object detection and tracking in a maritime environment: A survey. *IEEE Transactions on Intelligent Transportation Systems*, 18(8):1993–2016, 2017.
 - Xiangyu Qi, Kaixuan Huang, Ashwinee Panda, Peter Henderson, Mengdi Wang, and Prateek Mittal. Visual adversarial examples jailbreak aligned large language models. In *Proceedings of the AAAI conference on artificial intelligence*, volume 38, pp. 21527–21536, 2024.
 - Tianwen Qian, Jingjing Chen, Linhai Zhuo, Yang Jiao, and Yu-Gang Jiang. Nuscenes-qa: A multi-modal visual question answering benchmark for autonomous driving scenario. In *AAAI Conference on Artificial Intelligence*, volume 38, pp. 4542–4550, 2024.
 - Ankit Parag Shah, Jean-Bapstite Lamare, Tuan Nguyen-Anh, and Alexander Hauptmann. Cadp: A novel dataset for cctv traffic camera based accident analysis. In 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–9. IEEE, 2018.

- Erfan Shayegani, Yue Dong, and Nael Abu-Ghazaleh. Jailbreak in pieces: Compositional adversarial attacks on multi-modal language models. *arXiv preprint arXiv:2307.14539*, 2023.
 - Chonghao Sima, Katrin Renz, Kashyap Chitta, Li Chen, Hanxue Zhang, Chengen Xie, Jens Beißwenger, Ping Luo, Andreas Geiger, and Hongyang Li. Drivelm: Driving with graph visual question answering. In *European Conference on Computer Vision*, pp. 256–274, 2024a.
 - Chonghao Sima, Katrin Renz, Kashyap Chitta, Li Chen, Hanxue Zhang, Chengen Xie, Jens Beißwenger, Ping Luo, Andreas Geiger, and Hongyang Li. Drivelm: Driving with graph visual question answering. In *European Conference on Computer Vision*, pp. 256–274. Springer, 2024b.
 - Enxin Song, Wenhao Chai, Guanhong Wang, Yucheng Zhang, Haoyang Zhou, Feiyang Wu, Xun Guo, Tian Ye, Yan Lu, Jenq-Neng Hwang, et al. Moviechat: From dense token to sparse memory for long video understanding. *arXiv preprint arXiv:2307.16449*, 2023.
 - Enxin Song, Wenhao Chai, Guanhong Wang, Yucheng Zhang, Haoyang Zhou, Feiyang Wu, Haozhe Chi, Xun Guo, Tian Ye, Yanting Zhang, et al. Moviechat: From dense token to sparse memory for long video understanding. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 18221–18232, 2024.
- Enxin Song, Wenhao Chai, Weili Xu, Jianwen Xie, Yuxuan Liu, and Gaoang Wang. Video-mmlu: A massive multi-discipline lecture understanding benchmark. *arXiv preprint arXiv:2504.14693*, 2025.
- Xiaoyu Tian, Junru Gu, Bailin Li, Yicheng Liu, Yang Wang, Zhiyong Zhao, Kun Zhan, Peng Jia, XianPeng Lang, and Hang Zhao. Drivevlm: The convergence of autonomous driving and large vision-language models. In 8th Annual Conference on Robot Learning, 2025.
- Weihan Wang, Zehai He, Wenyi Hong, Yean Cheng, Xiaohan Zhang, Ji Qi, Xiaotao Gu, Shiyu Huang, Bin Xu, Yuxiao Dong, et al. Lvbench: An extreme long video understanding benchmark. *arXiv* preprint arXiv:2406.08035, 2024.
- Hongchen Wei, Zhihong Tan, Yaosi Hu, Chang Wen Chen, and Zhenzhong Chen. Longcaptioning: Unlocking the power of long video caption generation in large multimodal models. *arXiv* preprint *arXiv*:2502.15393, 2025.
- Haoning Wu, Dongxu Li, Bei Chen, and Junnan Li. Longvideobench: A benchmark for long-context interleaved video-language understanding. Advances in Neural Information Processing Systems, 37:28828–28857, 2024.
- Junbin Xiao, Xindi Shang, Angela Yao, and Tat-Seng Chua. Next-qa: Next phase of question-answering to explaining temporal actions. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 9777–9786, 2021.
- Shaoyuan Xie, Lingdong Kong, Yuhao Dong, Chonghao Sima, Wenwei Zhang, Qi Alfred Chen, Ziwei Liu, and Liang Pan. Are vlms ready for autonomous driving? an empirical study from the reliability, data, and metric perspectives. *arXiv preprint arXiv:2501.04003*, 2025.
- Jun Xu, Tao Mei, Ting Yao, and Yong Rui. Msr-vtt: A large video description dataset for bridging video and language. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 5288–5296, 2016.
- Jihan Yang, Shusheng Yang, Anjali W Gupta, Rilyn Han, Li Fei-Fei, and Saining Xie. Thinking in space: How multimodal large language models see, remember, and recall spaces. *arXiv* preprint *arXiv*:2412.14171, 2024.
- Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens, Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multimodal understanding and reasoning benchmark for expert agi. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 9556–9567, 2024.

understanding. arXiv preprint arXiv:2406.04264, 2024a.

Kaichen Zhang, Bo Li, Peiyuan Zhang, Fanyi Pu, Joshua Adrian Cahyono, Kairui Hu, Shuai Liu, Yuanhan Zhang, Jingkang Yang, Chunyuan Li, and Ziwei Liu. Lmms-eval: Reality check on the evaluation of large multimodal models, 2024a. URL https://arxiv.org/abs/2407. 12772. Yuanhan Zhang, Jinming Wu, Wei Li, Bo Li, Zejun Ma, Ziwei Liu, and Chunyuan Li. Video instruction tuning with synthetic data. arXiv preprint arXiv:2410.02713, 2024b. Junjie Zhou, Yan Shu, Bo Zhao, Boya Wu, Shitao Xiao, Xi Yang, Yongping Xiong, Bo Zhang, Tiejun Huang, and Zheng Liu. Mlvu: A comprehensive benchmark for multi-task long video

Kaiwen Zhou, Chengzhi Liu, Xuandong Zhao, Anderson Compalas, Dawn Song, and Xin Eric Wang. Multimodal situational safety. *arXiv preprint arXiv:2410.06172*, 2024b.

Chengke Zou, Xingang Guo, Rui Yang, Junyu Zhang, Bin Hu, and Huan Zhang. Dynamath: A dynamic visual benchmark for evaluating mathematical reasoning robustness of vision language models. *arXiv preprint arXiv:2411.00836*, 2024.

Appendix

A LIMITATION AND IMPACT

Limitation Our benchmark provides a valuable tool for evaluating model performance in safety-critical environments. However, due to the large scale of the dataset, evaluating all data points is computationally expensive. As a result, we were unable to perform large-scale testing with many high-cost proprietary models such as ChatGPT and Gemini. In future work, we plan to explore more efficient evaluation strategies and extend our analysis to a broader set of models, including closed-source systems.

Impact This benchmark offers a new direction for advancing multimodal model development in open-space, safety-critical, and physically grounded real-world environments. By emphasizing temporal, spatial, and intent-based reasoning in diverse video scenarios, this benchmark can be useful to guide the design of more robust and reliable multimodal systems. While this research seeks to advance the capabilities of AI in complex settings, we do not identify any specific societal risks or consequences requiring special attention at this time.

B AIR SPACE EVALUATION:

Table 8 reports the evaluation results for multimodal models in the airplane navigation of Accident-Bench. The results are broken down by task difficulty (Easy, Medium, Hard) and reasoning types (Temporal, Spatial, Intent). Gemini 2.5 Pro stands out with the strongest overall performance, achieving the highest average scores across all difficulty levels, including 31.86 (Hard), 41.21 (Medium), and 55.74 (Easy). It particularly excels in intent reasoning, reaching up to 61.17 in the Easy setting. GPT-5 and GPT-40 also perform competitively, for example, GPT-40 achieve good results on Easy tasks (40.72) and intent reasoning (39.67), though it lags behind Gemini on harder examples. Opensource models such as InternVL2.5 and Qwen2.5 show moderate success in temporal reasoning but consistently underperform in intent reasoning. Overall, the trend mirrors that of the Land domain: performance declines significantly as difficulty increases, with the largest drop occurring in temporal and intent reasoning tasks. These results emphasize the challenges multimodal models face in reliably operating in dynamic, real-world Air Space scenarios. using a Short:Medium:Long video length weighting of 0.4167:0.4167:0.1667.

Table 8: Understanding and reasoning evaluation for AccidentBench in Airplane Navigation domain.

Models	Size		H	ard			Me	lium			E	asy	
Tradella (Control of the Control of	one	Avg.	Temp.	Spatial	Intent	Avg.	Temp.	Spatial	Intent	Avg.	Temp.	Spatial	Intent
GPT 5 (OpenAI, 2025)	-	28.11	26.67	28.00	29.67	44.00	43.00	44.33	44.67	52.00	51.00	41.00	64.00
GPT 40 (Hurst et al., 2024)	-	18.02	12.21	29.77	15.46	30.53	31.33	40.83	31.83	40.72	37.83	37.00	39.67
Gemini 2.5 pro (Google, 2025b)	-	31.86	34.26	21.56	34.25	41.21	44.08	38.25	53.50	55.74	59.72	47.17	61.17
Gemini 2.5 flash think (Google, 2025a)	-	25.78	26.00	18.00	34.00	39.78	39.33	32.00	48.00	50.67	49.33	40.00	62.00
Gemini 2.5 flash no-think (Google, 2025a)	-	25.44	25.33	22.00	28.00	49.67	43.33	30.00	52.00	50.78	49.33	36.00	60.00
Gemini 1.5 pro (DeepMind, 2024)	-	22.88	19.15	24.75	22.25	36.21	32.83	49.50	32.00	43.89	40.56	41.89	49.67
Claude 3.5 (Anthropic, 2024)	-	24.31	16.55	32.30	23.00	36.44	32.60	47.79	33.33	41.03	37.56	41.61	45.33
InternVL2.5 (Chen et al., 2024b)	26B	18.60	17.75	26.50	12.00	20.14	26.31	23.31	46.83	32.11	36.31	34.25	46.42
InternVL2.5 (Chen et al., 2024b)	8B	18.71	14.80	29.75	10.00	23.73	30.42	32.92	46.00	37.86	40.33	36.50	40.00
InternVL2.5 (Chen et al., 2024b)	4B	15.14	14.25	16.75	13.13	24.41	27.00	28.25	46.75	38.31	39.64	38.39	41.25
LLaVA Next (Li et al., 2024a)	32B	18.23	8.98	35.08	10.15	20.71	17.47	37.33	21.67	28.60	32.69	34.36	34.67
LLaVA Video (Zhang et al., 2024b)	7B	15.56	8.48	25.80	9.00	20.35	20.25	25.83	21.33	29.62	30.94	30.97	30.00
LLaVA OneVision (Li et al., 2024b)	7B	15.76	11.00	26.75	9.50	19.81	19.84	23.83	20.83	29.62	30.94	30.97	30.00
Qwen2.5 VL (Bai et al., 2025)	32B	16.35	3.43	31.08	13.75	35.85	29.00	27.17	43.67	51.73	52.33	40.61	54.44
Qwen2.5 VL (Bai et al., 2025)	7B	16.38	1.16	30.00	16.00	28.70	22.61	30.33	25.83	38.92	35.78	36.39	30.00

C AIR AND WATER SPACE ANALYSIS:

Table 9 presents model performance in the **Airplane Navigation** of **AccidentBench**, evaluated across short, medium, and long video scenarios, and categorized by temporal, spatial, and intent reasoning tasks. In the easy setting, **Gemini 2.5 Pro** achieves the highest overall accuracy (52.56%), outperforming all other models, including GPT-40 and GPT-5. In the medium setting, Gemini 2.5 flash without think mode leads with 49.67%, followed closely by GPT-5 (44.00%) and Gemini Pro(43.11%). For hard tasks, which are the most challenging, **Gemini 2.5 Pro** remains the top

performer with 31.39%. These results highlight the ability of the Gemini family of models to maintain performance in complex, dynamic airspace environments, but exhibit notable drops as the reasoning complexity increases, revealing current limitations in handling temporal, spatial, and intent-based challenges in aerial domains. Moreover, Table 10 presents model performance on the AccidentBench benchmark in the **Ship Motion**, covering both river and ocean scenarios across varying reasoning types and difficulty levels. GPT-5 model consistently outperforms other models across all settings.

Table 9: Evaluation of AccidentBench in the Airplane Navigation domain using Short, Medium, and Long Videos, categorized by reasoning types, based on a subset of the dataset.

T3100 1:	W 11	G.		1	Short Video	Scenario	os	N	ledium Vid	o Scenar	ios	1	Long Video	Scenario	s
Difficulty	Models	Size	Over. Avg.	Avg.	Temporal			Avg.	Temporal	Spatial	Intent	Avg.	Temporal		
	GPT 5 (OpenAI, 2025)	-	28.11	26.67	18.00	30.00	32.00	26.00	32.00	34.00	12.00	31.67	30.00	20.00	45.00
	GPT 40 (Hurst et al., 2024)	-	18.11	21.33	16.00	26.00	22.00	14.67	12.00	30.00	2.00	18.33	5.00	35.00	15.00
	Gemini 2.5 pro (Google, 2025b)	-	31.39	32.83	36.00	24.49	38.00	24.67	32.00	22.00	20.00	36.67	30.00	15.00	65.00
	Gemini 2.5 flash think (Google, 2025a)	-	25.78	26.00	26.00	18.00	34.00	21.33	28.00	18.00	18.00	30.00	30.00	10.00	50.00
	Gemini 2.5 flash no-think (Google, 2025a)	-	25.44	25.33	22.00	28.00	26.00	26.00	26.00	28.00	24.00	25.00	0.00	40.00	35.00
	Gemini 1.5 pro (DeepMind, 2024)	-	22.34	26.67	24.00	26.00	30.00	18.67	20.00	22.00	14.00	21.67	10.00	25.00	30.00
	Claude 3.5 (Anthropic, 2024)	-	24.22	26.00	18.00	32.00	28.00	23.33	20.00	28.00	22.00	23.33	10.00	40.00	20.0
Hard	InternVL2.5 (Chen et al., 2024b)	26B	17.33	19.33	24.00	26.00	10.00	19.33	16.00	32.00	10.00	13.33	10.00	10.00	20.00
	InternVL2.5 (Chen et al., 2024b)	8B	18.22	18.67	20.00	28.00	8.00	19.33	16.00	30.00	12.00	16.67	5.00	35.00	10.00
	InternVL2.5 (Chen et al., 2024b)	4B	15.33	15.33	14.00	10.00	22.00	14.00	16.00	18.00	8.00	16.67	15.00	30.00	5.00
	LLaVA Next (Li et al., 2024a)	32B	17.89	18.67	14.0	34.0	8.00	16.67	6.00	32.00	12.00	18.33	5.0	40.0	10.00
	LLaVA Video (Zhang et al., 2024b)	7B	14.78	16.67	14.00	28.00	8.00	12.67	6.00	22.00	10.00	15.00	5.00	30.00	10.00
	LLaVA OneVision (Li et al., 2024b)	7B	15.67	16.00	12.00	28.00	8.00	16.00	12.00	26.00	10.00	15.00	10.00	25.00	10.00
	Qwen2.5 VL (Bai et al., 2025)	32B	16.22	20.00	6.00	36.00	18.00	15.33	4.00	24.00	18.00	13.33	0.00	30.00	10.00
	Qwen2.5 VL (Bai et al., 2025)	7B	16.55	19.33	0.00	30.00	28.00	15.33	2.00	30.00	14.00	15.00	5.00	30.00	10.00
	GPT 5 (OpenAI, 2025)		44.00	39.33	28.00	44.00	46.00	39.33	36.00	54.00	28.00	53.33	65.00	35,00	60.00
	GPT 40 (Hurst et al., 2024)	-	38.45	38.67	38.00	56.00	22.00	30.00	38.00	34.00	18.00	46.67	65.00	30.00	45.00
	Gemini 2.5 pro (Google, 2025b)	-	43.11	44.67	42.00	40.00	52.00	31.33	34.00	34.00	26.00	53.33	60.00	35.00	65.0
	Gemini 2.5 flash think (Google, 2025a)	-	39.78	39.33	32.00	38.00	48.00	30.00	34.00	28.00	28.00	50.00	65.00	15.00	70.00
	Gemini 2.5 flash no-think (Google, 2025a)		49.67	43.33	30.00	48.00	52.00	40.67	38.00	50.00	34.00	65.00	60.00	65.00	70.00
	Gemini 1.5 pro (DeepMind, 2024)	-	38.78	38.00	32.00	48.00	34.00	36.67	34.00	52.00	24.00	41.67	30.00	55.00	40.00
	Claude 3.5 (Anthropic, 2024)	-	39.67	38.00	26.00	40.00	48.00	36.00	32.00	54.00	22.00	45.00	50.00	35.00	50.0
Medium	InternVL2.5 (Chen et al., 2024b)	26B	28.67	31.33	28.00	58.00	8.00	24.67	12.00	50.00	12.00	30.00	25.00	45.00	20.00
	InternVL2.5 (Chen et al., 2024b)	8B	34.33	30.00	20.00	58.00	12.00	34.67	32.00	50.00	22.00	38.33	40.00	45.00	30.00
	InternVL2.5 (Chen et al., 2024b)	4B	32.22	29.33	28.00	44.00	16.00	34.00	30.00	54.00	18.00	33.33	35.00	40.00	25.00
	LLaVA Next (Li et al., 2024a)	32B	26.11	24.67	18.0	40.0	16.00	25.33	18.0	40.0	18.00	28.33	25.0	40.0	20.00
	LLaVA Video (Zhang et al., 2024b)	7B	24.00	25.33	24.00	36.00	16.00	20.00	16.00	26.00	18.00	26.67	15.00	45.00	20.00
	LLaVA OneVision (Li et al., 2024b)	7B	23.67	23.33	20.00	34.00	16.00	22.67	20.00	32.00	16.00	25.00	20.00	35.00	20.00
	Owen2.5 VL (Bai et al., 2025)	32B	33.34	32.67	12.00	48.00	38.00	30.67	22.00	50.00	20.00	36.67	20.00	60.00	30.00
	Qwen2.5 VL (Bai et al., 2025)	7B	28.00	24.67	16.00	24.00	34.00	26.00	24.00	26.00	28.00	33.33	35.00	20.00	45.00
	GPT 5 (OpenAI, 2025)	-	52.00	47.33	42.00	42.00	58.00	48,67	46.00	46.00	54.00	60.00	65.00	35,00	80.00
	GPT 40 (Hurst et al., 2024)		40.67	35.33	30.00	28.00	48.00	36.67	24.00	38.00	48.00	50.00	45.00	50.00	55.00
	Gemini 2.5 pro (Google, 2025b)	-	52.56	56.00	60.00	48.00	60.00	40.00	40.00	36.00	44.00	61.67	75.00	35.00	75.0
	Gemini 2.5 flash think (Google, 2025a)	-	50.67	49.33	40.00	46.00	62.00	46.00	46.00	44.00	48.00	56.67	55.00	40.00	75.00
	Gemini 2.5 flash no-think (Google, 2025a)		50.78	49.33	36.00	52.00	60.00	48.00	40.00	50.00	54.00	55.00	60.00	50.00	55.00
	Gemini 1.5 pro (DeepMind, 2024)	-	43.00	45.33	36.00	44.00	56.00	42.00	48.00	32.00	46.00	41.67	35.00	50.00	40.00
	Claude 3.5 (Anthropic, 2024)	-	42.45	38.00	34.00	38.00	42.00	42.67	30.00	56.00	42.00	46.67	40.00	45.00	55.0
Easy	InternVL2.5 (Chen et al., 2024)	26B	36.11	35.33	36.00	44.00	26.00	34.67	28.00	46.00	30.00	38.33	30.00	40.00	45.00
asy	InternVL2.5 (Chen et al., 2024b) InternVL2.5 (Chen et al., 2024b)	20B 8B	38.44	36.67	28.00	46.00	36.00	35.33	32.00	42.00	32.00	43.33	60.00	40.00	30.00
	InternVL2.5 (Chen et al., 2024b)	4B	40.33	43.33	42.00	50.00	38.00	39.33	30.00	44.00	44.00	38.33	35.00	60.00	20.00
		4B 32B		36.67							26.00		35.00		30.00
	LLaVA Next (Li et al., 2024a)	32B 7B	33.22 33.22	33.33	36.00 34.00	42.00 38.00	32.00 28.00	31.33	36.00 34.00	32.00 38.00	32.00	31.67	35.00	30.00 30.00	30.00
	LLaVA Video (Zhang et al., 2024b)										32.00				
	LLaVA OneVision (Li et al., 2024b)	7B	33.22	33.33	34.00	38.00	28.00	34.67	34.00	38.00		31.67	35.00	30.00	30.00
	Qwen2.5 VL (Bai et al., 2025)	32B	52.45	50.00	34.00	56.00	60.00	50.67	40.00	54.00	58.00	56.67	55.00	60.00	55.00
	Qwen2.5 VL (Bai et al., 2025)	7B	39.89	33.33	28.00	18.00	54.00	38.00	48.00	16.00	50.00	48.33	55.00	30.00	60.0

D ANNOTATION AND DETAILED EXAMPLES

During data annotation, we first define the question types, then watch each video to design corresponding questions and annotate the answers. We first design the hard-level tasks and label each question with the ground-truth answer. Based on these, we then construct the medium and easy tasks. The primary differences between difficulty levels lie in the number and types of answer choices. Our dataset contains approximately 2,101 videos and 19,136 question–answer pairs, evenly distributed across three difficulty levels: easy ($\approx 6,300~\text{Q\&A}$ pairs), medium ($\approx 6,300~\text{Q\&A}$ pairs), and hard ($\approx 6,300~\text{Q\&A}$ pairs). The difficulty is determined by both the number and type of answer choices. Hard questions typically include 12 choices for temporal and intent reasoning, and 4 for spatial reasoning, requiring precise selection. Medium questions generally offer 6 choices for temporal and intent reasoning, and 3 for spatial reasoning, often involving interval-based options. Easy questions usually present 3 choices, or 2 for spatial reasoning, and also rely on interval-based distinctions.

Moreover, we provide several example scenarios illustrating understanding and reasoning in open space, as shown in Figure 5. Moreover, as illustrated in Figure 6, we present a detailed question-and-answer example. For each scenario's understanding and reasoning setting, we include three video lengths, short, medium, and long, each featuring tasks designed to evaluate temporal, spatial, and intent reasoning.

Table 10: Evaluation of AccidentBench in the **Ship Motion** using **River** and **Ocean** Videos, categorized by reasoning types, based on a subset of the dataset.

	of reasoning types, sasea				River Sc				Ocean So	enarios	
Difficulty	Models	Size	Over. Avg.	Avg.	Temporal		Intent	Avg.	Temporal		Intent
	GPT 5 (OpenAI, 2025)	-	38.36	48.72	46.15	30.77	69.23	28.00	30.00	32.00	22.00
	GPT40 (Hurst et al., 2024)	-	22.10	28.20	38.46	26.92	19.23	16.00	18.00	18.00	12.00
	Gemini 2.5 pro (Google, 2025b)	-	29.64	34.62	23.08	34.62	46.15	24.67	38.00	16.00	20.00
	Gemini 2.5 flash think (Google, 2025a)	-	27.36	32.05	30.77	26.92	38.46	22.67	30.00	22.00	16.00
	Gemini 2.5 flash no-think (Google, 2025a)	-	27.44	28.21	42.31	19.23	23.08	26.67	36.00	20.00	24.00
	Gemini 1.5 pro (DeepMind, 2024)	-	26.02	26.92	23.08	30.77	26.92	25.11	34.00	20.93	20.41
	Claude 3.5 (Anthropic, 2024)	-	25.44	28.20	19.23	19.23	46.15	22.67	26.00	22.00	20.00
Hard	InternVL2.5 (Chen et al., 2024b)	26B	22.54	23.08	15.38	19.23	34.62	22.00	18.00	28.00	20.00
	InternVL2.5 (Chen et al., 2024b)	8B	21.90	21.79	7.69	26.92	30.77	22.00	16.00	28.00	22.00
	InternVL2.5 (Chen et al., 2024b)	4B	20.92	20.51	19.23	19.23	23.08	21.33	16.00	26.00	22.00
	LLaVA Next (Li et al., 2024a)	32B	14.39	11.54	7.69	19.23	7.69	15.33	8.00	30.00	8.00
	LLaVA Video (Zhang et al., 2024b)	7B	14.00	16.67	15.38	23.08	11.54	11.33	8.00	20.00	6.00
	LLaVA OneVision (Li et al., 2024b)	7B	15.67	16.67	11.54	26.92	11.54	14.67	8.00	28.00	8.00
	Qwen2.5 VL (Bai et al., 2025)	32B	13.39	14.10	7.69	23.08	11.54	12.67	8.0	24.0	6.00
	Qwen2.5 VL (Bai et al., 2025)	7B	14.67	16.67	7.69	30.77	11.54	12.67	6.00	24.00	8.00
	GPT 5 (OpenAI, 2025)	-	51.80	60.26	53.85	46.15	80.77	43.33	56.00	48.00	26.00
	GPT 40 (Hurst et al., 2024)	-	38.49	42.31	50.00	53.85	23.08	34.67	36.00	48.00	20.00
	Gemini 2.5 pro (Google, 2025b)	-	41.77	44.87	30.77	61.54	42.31	38.67	48.00	46.00	22.00
	Gemini 2.5 flash think (Google, 2025a)	-	48.26	53.85	61.54	57.70	42.31	42.67	52.00	42.00	34.00
	Gemini 2.5 flash no-think (Google, 2025a)	-	46.12	50.00	46.15	57.69	46.15	42.00	56.00	44.00	26.00
	Gemini 1.5 pro (DeepMind, 2024)	-	46.31	53.84	46.15	65.38	50.00	38.78	34.00	49.02	33.33
	Claude 3.5 (Anthropic, 2024)	-	38.62	35.90	34.62	50.00	23.08	41.33	42.00	54.00	28.00
Medium	InternVL2.5 (Chen et al., 2024b)	26B	41.77	44.87	30.77	57.69	46.15	38.67	24.00	62.00	30.00
	InternVL2.5 (Chen et al., 2024b)	8B	41.08	46.15	34.62	61.54	42.31	36.00	34.00	60.00	14.00
	InternVL2.5 (Chen et al., 2024b)	4B	44.36	48.72	23.08	65.38	57.69	40.00	28.00	60.00	32.00
	LLaVA Next (Li et al., 2024a)	32B	20.88	23.08	11.54	38.46	19.23	18.67	10.00	30.00	16.00
	LLaVA Video (Zhang et al., 2024b)	7B	21.92	20.51	19.23	26.92	15.38	23.33	20.00	30.00	20.00
	LLaVA OneVision (Li et al., 2024b)	7B	22.54	23.08	19.23	30.77	19.23	22.00	14.00	34.00	18.00
	Qwen2.5 VL (Bai et al., 2025)	32B	33.31	34.62	19.23	50.00	34.62	32.00	20.00	50.00	26.00
	Qwen2.5 VL (Bai et al., 2025)	7B	24.08	29.49	19.23	30.77	38.46	18.67	18.00	26.00	12.00
	GPT 5 (OpenAI, 2025)	-	63.00	66.67	61.54	50.00	88.46	59.33	78.00	48.00	52.00
	GPT 40 (Hurst et al., 2024)	-	50.51	57.69	57.69	50.00	65.38	43.33	66.00	34.00	30.00
	Gemini 2.5 pro (Google, 2025b)	-	61.05	64.10	57.69	57.69	76.92	58.00	72.00	50.00	52.00
	Gemini 2.5 flash think (Google, 2025a)	-	62.03	65.39	80.77	42.31	73.08	58.67	70.00	52.00	54.00
	Gemini 2.5 flash no-think (Google, 2025a)	-	58.18	57.69	57.69	38.46	76.92	58.67	80.00	42.00	54.00
	Gemini 1.5 pro (DeepMind, 2024)	-	50.69	52.56	42.31	61.54	53.85	48.81	50.00	46.43	50.00
	Claude 3.5 (Anthropic, 2024)	-	49.39	47.44	50.00	53.85	38.46	51.33	62.00	52.00	40.00
Easy	InternVL2.5 (Chen et al., 2024b)	26B	55.05	64.10	65.38	57.69	69.23	46.00	50.00	50.00	38.00
	InternVL2.5 (Chen et al., 2024b)	8B	53.47	60.26	69.23	46.15	65.38	46.67	46.00	54.00	40.00
	InternVL2.5 (Chen et al., 2024b)	4B	53.87	56.41	53.85	57.69	57.69	51.33	52.00	56.00	46.00
	LLaVA Next (Li et al., 2024a)	32B	35.59	37.18	26.92	53.85	30.77	34.00	30.00	38.00	34.00
	LLaVA Video (Zhang et al., 2024b)	7B	31.03	32.05	30.77	34.62	30.77	30.00	22.00	38.00	30.00
	LLaVA OneVision (Li et al., 2024b)	7B	33.00	33.33	34.62	34.62	30.77	32.67	28.00	38.00	32.00
	Qwen2.5 VL (Bai et al., 2025)	32B	52.77	61.54	53.85	61.54	69.23	44.00	40.00	54.00	38.00
	Qwen2.5 VL (Bai et al., 2025)	7B	31.31	34.62	38.46	19.23	46.15	28.00	36.00	22.00	26.00

Specifically, as shown in Figure 7, in (a) Video Length: A substantial portion of the videos (76.5%) are short, with durations under 10 seconds. The remaining videos are distributed across longer intervals: 10-30 seconds (3.7%), 30-60 seconds (4.6%), 60-120 seconds (4.8%), 120-300 seconds (4.4%), and over 300 seconds (6.0%). This distribution reflects a strong emphasis on short, dynamic scenarios that test rapid perception and reasoning. (b) Video Categories: The benchmark spans three safety-critical domains. Vehicle Accident, which primarily involves traffic and safety-related scenarios, comprises 83.0% of the videos. airplane navigation accounts for 10.2%, and ship motion makes up 6.8%. This distribution highlights both the practical importance of land-based reasoning and the inclusion of underrepresented domains such as maritime and aviation environments. (c) Understanding and Reasoning Styles: AccidentBench supports three major understanding and reasoning types, with a relatively balanced distribution: spatial reasoning (35.4%), temporal reasoning (34.0%), and intent reasoning (30.6%). This design ensures comprehensive evaluation across key dimensions essential for real-world multimodal understanding. Overall, the dataset provides a rich and diverse collection of real-world video scenarios across multiple modalities and time scales, offering a rigorous benchmark for evaluating multimodal understanding and reasoning in safety-critical environments.

E DETAILED EXPERIMENT SETTINGS

These datasets are used solely for academic research. They are employed only to evaluate model performance and are not used for model training. In our experiments, we build upon the <code>lmms-eval</code> framework (Zhang et al., 2024a) as the foundation for our benchmark and extend it to support

Understanding and Reasoning in Open Space Understanding and Reasoning in Land-Space Scenarios Understanding and Reasoning in Air-Space Scenarios Understanding and Reasoning in Water-Space Scenarios

Figure 5: Example Scenarios of Understanding and Reasoning in Open Space

Figure 6: A question and answer example: For each each scenario reasoning setting, we include three types of video lengths: short, medium, and long. Each video length includes tasks designed to evaluate temporal reasoning, spatial reasoning, and intent reasoning.

the specific requirements of AccidentBench. All experiments with open-source models were conducted on a Linux system equipped with 8 × NVIDIA A100 GPUs, and experiments with closed-source models were run on a single NVIDIA A100 GPU. Key hyperparameters used for model evaluation are summarized in Table 11. More detailed experimental settings are available in our code: https://open-space-reasoning.github.io.

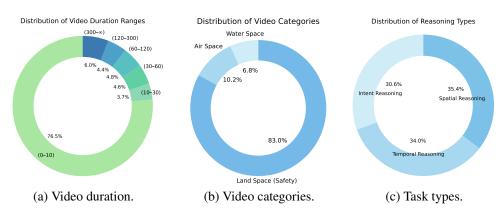


Figure 7: Distribution of video and task properties in the AccidentBench benchmark.

Table 11: Key parameters used in the experiments.

Parameters	value	Parameters	value
sample size	1	number of processes	8
max pixels (Qwen 2.5)	12845056	use-flash-attention-2 (Qwen 2.5)	False
interleave visuals (Qwen 2.5)	True	enable-chunked-prefill (InternVL 2.5)	True
gpu-memory-utilization (InternVL 2.5)	0.6	max-num-seqs (InternVL 2.5)	1
conv-template (LLava-Video)	qwen-1-5	video-decode-backend (LLava-Video)	record
max-frames-num (LLava-Video)	22	mm-spatial-pool-mode (LLava-Video)	average
mm-newline-position (LLava-Video)	grid	mm-resampler-location (LLava-Video)	after
conv-template (llava-onevision)	qwen-1-5	device-map (llava-onevision)	auto
model-name (llava-onevision)	llava-qwen		