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ABSTRACT

Source-free Unsupervised Domain Adaptation (SFUDA) aims to adjust a source
model trained on a labeled source domain to a related but unlabeled target do-
main without accessing the source data. Many SFUDA methods are studied in
closed-set scenarios where the target domain and source domain categories are
perfectly aligned. However, a more practical scenario is a partial-set scenario
where the source label space subsumes the target one. In this paper, we prove
that reducing the differences between the source and target domains in the partial-
set scenario helps to achieve domain adaptation. And we propose a simple yet
effective SFUDA framework called the Machine Unlearning Framework to alle-
viate the negative transfer problem in the partial-set scenario, thereby allowing
the model to focus on the target domain category. Specifically, we first generate
noise samples for each category that only exists in the source domain and generate
pseudo-labeled samples from the target domain. Then, in the forgetting stage, we
use these samples to train the model, making it behave like the model has never
seen the class that only exists in the source domain before. Finally, in the adap-
tation stage, we use only the pseudo-labeled samples to conduct self-supervised
training on the model, making it more adaptable to the target domain. Our method
is easy to implement and pluggable, suitable for various pre-trained models. Ex-
perimental results show that our method can well alleviate the negative transfer
problem and improve model performance under various target domain category
settings.

1 INTRODUCTION

Although computer vision tasks have achieved significant success in various fields (Voulodimos
et al., 2018), current deep models often experience a decline in performance when tested in new
environments that have a considerable domain gap from the training environment (Patel et al., 2015).
Unsupervised Domain Adaptation (UDA) successfully addresses model performance degradation
by automatically learning transformations of the feature space, allowing knowledge from the source
domain to be transferred to the target domain (Wilson & Cook, 2020). However, traditional UDA
methods require datasets and labels from the source domain (Ganin et al., 2016). Firstly, the dataset
from the source domain is likely to be quite large (1∼100 GB) (Lin et al., 2014; Yu et al., 2020),
which presents significant challenges in terms of storage and transmission. Secondly, many datasets
are not publicly available due to privacy and security considerations (Sun et al., 2017; Tian et al.,
2023; Nagrani et al., 2018). In many cases, we can only access models trained in the source domain,
which has led to widespread interest in Source-Free Unsupervised Domain Adaptation (SFUDA).

SFUDA aims to transfer a pre-trained model from the source domain to the target domain without
source data (Fang et al., 2024). Due to the lack of images and labels from the source domain, SFUDA
cannot directly employ the methods used in UDA, such as adversarial learning (Goodfellow et al.,
2014; Ganin et al., 2016). In addition, most SFUDA methods focus on closed-set scenarios, where
the source and target domain samples come from the same category set (Fang et al., 2024; Liang
et al., 2024). But a more realistic scenario is the partial-set shown in Figure 1, where some source
domain categories do not exist in the target domain. The mismatch in class labels can lead to the
problem of negative transfer, making domain adaptation tasks more difficult. Unlike in the UDA
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setting, where specific source domain samples can be selected for re-training the model based on the
target domain class configurations (Guo et al., 2022). In the SFUDA setting, the negative transfer
problem is more challenging. However, very few SFUDA methods works in partial-set scenarios.
Although approaches like SHOT(Liang et al., 2020) and HCT(Huang et al., 2021) demonstrate good
generalization capabilities under partial-set, they do not specifically address the negative transfer
problem caused by the class mismatch between the source domain and the target domain.

Figure 1: Illustration of partial-set scenario. In the
source domain, we have three categories: Key-
board, Laptop and Bike. We obtain a pretrained
model and its classification results (denoted as A)
on the source domain. In the target domain, which
has a partial dataset scenario, only two categories
— Laptop and Bike — are present. We obtain the
classification results (denoted as B) on the source
domain. It can be observed that the negative trans-
fer problem caused by partial-set scenarios leads
to the occurrence of mismatches.

Most SFUDA methods are inspired by semi-
supervised learning, and a typical SFUDA
method is to train models using pseudo-labels
from the target domain (Chien et al., 2023;
Liang et al., 2024). However, due to do-
main shift (Moreno-Torres et al., 2012), these
pseudo-labels are often noisy, which can lead
to confirmation bias (Yang et al., 2022), signif-
icantly affecting the performance of the model.
Yang et al. (2022) introduces subdomain aug-
mentation in twin network teaching, effectively
solving the problem; Zhang et al. (2022) avoids
the influence of incorrect labels through a new
paradigm of separation by specialized learn-
ing. However, they all significantly increase
the complexity of the method. Another popu-
lar approach is to fill in the missing data of the
source domain, which helps turn challenging
SFUDA problems into well-studied UDA prob-
lems (Fang et al., 2024). For example, Kurmi
et al. (2021); Li et al. (2020) train a GAN-based
generator to simulate the source data; Ding
et al. (2023); Ye et al. (2021); Du et al. (2024)
adopt proxy source data construction, where
suitable samples are directly selected from the
target domain to replace the source data. How-
ever, these methods may not effectively represent the original source domain.

To this end, we propose a Machine Unlearning framework aimed at solving the negative transfer
problem caused by the mismatch of category information between the source and target domains,
thereby achieving better performance of the model in the target domain. The framework consists of
two main stages: in the forgetting stage, we use a pre-trained model to make predictions on the target
domain data, selecting reliable samples as a pseudo-label dataset based on the model’s confidence
in its predictions. Simultaneously, we generate noise samples for each category that only exists
in the source domain to create a noise sample dataset. We use them to train the model, allowing
it to forget the information of each redundant category in the source domain while minimizing
the impact on other categories. In the adaptation stage, we use the reliable pseudo-label dataset
for self-supervised learning of the model, allowing the model to adapt more effectively to the target
domain. The parameters in our framework are easy to adjust, and training the model does not require
high performance hardwares, which makes our approach easy to implement. The experiment prove
that our methods effectively solve the negative transfer problem and improve the performance of
the model in the target domain under multiple target domain category settings. Overall, the main
contributions of this work are described as follows:

• We study the partial-set scenario in SFUDA and prove that reducing the differences be-
tween the source and target domains in the partial-set scenario helps to achieve domain
adaptation.

• We innovatively introduce machine unlearning into SFUDA, and design an efficient and
easy-to-implement framework. Furthermore, our method is pluggable.

• The experimental results show that our work can effectively alleviate the negative transfer
problem in partial-set scenario and improve the accuracy of the model on target data under
various target domain category settings.
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2 RELATED WORK

Unsupervised Domain Adaptation. Due to the differences between domains, classifiers trained
on the source domain may experience performance degradation when tested on the target domain.
UDA specifically addresses the situation where target data are not labeled in domain adaptation
(Ganin et al., 2016; Yang et al., 2024), eliminating the reliance on potentially expensive target data
labels in domain adaptation. The main UDA methods focus on learning domain-invariant features,
with the aim of aligning the characteristics of the target domain data with those learned during model
training (Zhao et al., 2019). In addition, there are many studies that address the partial-set problem
in UDA, such as Guo et al. (2022) uses maximum cosine similarity (MoC) to select useful data in
the source domain for retraining, in order to reduce domain differences; Wang & Breckon (2021)
uses Locally Preserved Projection (SLPP) to better align two domains in the subspace, and detectes
the source domain category of non target domain categories, deletes them, and retrains the model.
However, UDA relies too heavily on source domain data, whereas SFDUA is more practical.

Source-free Unsupervised Domain Adaptation. SFUDA is a domain adaptation method that
uses only the source domain model without using the data of the source domain. Recently, an
increasing number of SFUDA methods have been applied in fields such as image classification,
object recognition, and face anti-spoofing (Liu et al., 2021; Chen et al., 2022; Liu et al., 2022). The
main SFUDA research includes methods for generating source domain data and fine-tuning models
(Fang et al., 2024), and even studies that use API services of source domain models for knowledge
distillation (Yang et al., 2022; Liang et al., 2022). While the aforementioned methods demonstrate
strong performance, most studies are constrained to closed-set scenarios. In practice, it is rare for the
source domain and the target domain to completely share the label space, and the labels in the target
domain usually only comes from a subset class of the source domain. In the partial-set scenario,
directly using traditional transfer methods cannot address the issue of negative transfer, which leads
to a decline in the model’s performance. Thus, we are committed to solving the negative transfer
problem caused by mismatched label spaces between source and target domains, and achieving more
effective knowledge transfer.

Machine Unlearning. The goal of Machine Unlearning is to replicate a model that consumes less
time and performs consistently with models trained without specific data (Nguyen et al., 2022; Wang
et al., 2023; Li et al., 2024). This is a special requirement arising from privacy, availability, and the
right to be forgotten (Dang, 2021). In fact, removing the influence of abnormal training samples
from the model can also lead to higher model performance and robustness (Chien et al., 2023; Wang
et al., 2023). The methods of Machine Unlearning can be roughly divided into data reassembly
methods and weight model manipulation methods. For example, SISA(Bourtoule et al., 2021) par-
titions and sorts data, retraining only the model for the partition containing the forgotten data; Task
Arithmetic(Ilharco et al., 2023) modifies pre-trained model behavior via task vectors, enabling sig-
nificant performance reduction in the targeted task through task vector subtraction while minimally
affecting other tasks. We use the mechanism of Machine Unlearning to eliminate categories that
only exist in the source domain, addressing the negative transfer problem in artial-set scenarios and
thereby enhancing the model’s performance in the target domain.

3 METHOD

In this section, we first describe the partial-set scenario task under source-free unsupervised domain
adaptation. We then prove that reducing the disparity between the source and target domains in the
partial-set scenario facilitates domain adaptation. Next, we elaborate on our proposed method, the
Machine Unlearning Framework, which consists of three steps: acquiring the sample set needed
for model updating, the forgetting stage and the adaptation stage. Specifically, the framework uti-
lizes a filtering mechanism to filter the pseudo-labels in the target domain. It then generates noise
samples for each category unique to the source domain to facilitate model forgetting. Finally, it
employs pseudolabels from the target domain for simple self-supervised learning. In particular, our
framework is capable of iterative updates, enabling the model to achieve stronger performance.

To provide a visual overview of our methodology, we present Figure 2 to illustrate the entire frame-
work.
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Figure 2: Illustration of Machine Unlearning Framework. In partial-set scenario, directly transfer-
ring the pre-trained model hs to predict the target domain data xt carries a high risk. To reduce the
transfer risk, we obtain model ht through our Machine Unlearning framework. Specifically, we first
generate a noise sample dataset Dnoise for each category in the unique category set Cf , and use
a pre-trained model hs to obtain a pseudo labeled dataset DtK . Then in the forgetting stage, we
minimize Lf on hs to obtain the forgetting model hf . Finally, we minimize La on hf to obtain the
target model ht in the adaptation stage.

3.1 PROBLEM SETUP

In SFUDA settings, we have a labeled source domain dataset Ds = {(xi
s, y

i
s)}

ns
i=1 and an unlabeled

target dataset Dt = {(xi
s)}

nt
i=1 , where ns and nt represent the number of samples in the source

and target domains, respectively. The source domain model trained in Ds is defined as hs. SFUDA
aims to predict the labels of the target domain using the target model trained from the source domain
model. Similarly, we define the target domain model as ht. We define the sets of source domain
and target domain categories as Cs and Ct, respectively. The current deep models are trained on
large-scale datasets such as ImageNet-1K (Deng et al., 2009). We consider partial set scenarios that
are more realistic than closed set scenarios, and we have Ct ⊆ Cs.

In classification tasks, the model not only outputs the predicted class for the image but also provides
the score associated with the predicted class. We define the scoring function of the source domain
model hs in the hypothesis space F as fs:x → RCs where the output on each dimension represents
the predicted score for that category. We know that the classification model will output the category
with the highest score. We define the prediction category of hs for x as y = hs(x), with a little
abuse of notation, we consider fs(x, y) is the score corresponding to the prediction category of hs

for x. Similarly, we define the scoring function of the target domain model ht as ft:x → RCt , and
we consider ft(x, y) is the score corresponding to the prediction category of ht for x.

If we directly apply the traditional SFUDA method to obtain the model htr, the corresponding
scoring function is ftr:x → RCs . This model may output only the classes presented in the source
domain, which leads to the negative transfer issue. Therefore, we focus on reducing the discrepancy
between the source and target domains in partial-set scenarios through Machine Unlearning, thereby
alleviating the negative transfer issue associated with domain adaptation and ultimately improving
the model’s performance in the target domain. Next, in order to demonstrate that reducing the
discrepancy between the source and target domains in partial-set scenarios is helpful for domain
adaptation, we provide a theoretical analysis of model transfer errors.

3.2 THEORETICAL ANALYSIS OF MODEL TRANSFER ERRORS

The error rate of model h on dataset D is given by :

errD(h) ≜ E(x,y)∼D 1[h(x) ̸= y], (1)
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where 1 represents the indicator function.

In practice, the boundary between the data samples and classification plays an important role in
achieving strong generalization performance. Therefore, Koltchinskii & Panchenko (2002) proposes
a marginal theory for classification, in which the 0-1 loss is replaced by the Margin Loss.

Definition 1. Margin Loss. f is the scoring function of h. We define the margin of the sample

(x, y) for f as ϱf (x, y) = 1
2 (f(x, y)−maxy′ ̸=y f(x, y

′)). We set Gϱ(x) =


0, ϱ ≤ x

1− x
ϱ , 0 ≤ x ≤ ϱ

1, x ≤ 0

.

The Margin Loss is then defined as:

err
(ϱ)
D (f) ≜ Ex∼DGϱ(ϱf (x, y)). (2)

An important property is that err(ϱ)D (f) ≥ errD(h) for any ϱ > 0. This property is important
for multi-class classification task since it can better reflect the quality of the model. Based on the
margin loss, we introduce the margin disparity to compare the prediction differences between any
two models on the same dataset.

Definition 2. Margin disparity. Given two models h, h′ ∈ H , their scoring functions are f and f ′,
respectively. The Margin Disparity is defined as:

disp
(ϱ)
D (f ′, f) ≜ Ex∼D Gϱ(ϱf ′(x, h(x))), (3)

where the value of disp(ϱ)D (f ′, f) is a real number between 0 and 1.

In domain adaptation, the model transfer errors often depend on the distribution differences between
the source and target domains. Therefore, we introduce the following distribution difference metric.

Definition 3. Margin Disparity Discrepancy(MDD). Based on the margin disparity and referring
to Zhang et al. (2019), we further provide the margin disparity discrepancy to measure the difference
between the source domain and the target domain.

d
(ϱ)
f,F (Ds, Dt) ≜ sup

f ′∈F
(disp

(ϱ)
Dt

(f ′, f)− disp
(ϱ)
Ds

(f ′, f)). (4)

When Ds and Dt are equal, d(ϱ)f,F (Ds, Dt) = 0. Although MDD does not satisfy symmetry, it has
nonnegativity and subadditivity, so it can measure the distribution differences between the source
and target domains. Now we define D̃s = {(xi

s, y
i
s)|(xi

s, y
i
s) ∈ Ds, y

i
s ∈ Ct}ñs

i=1, where ñs is
the number of samples in Ct from Ds. The model trained on D̃s is represented as h̃s, and the
corresponding scoring function is f̃s. We can obtain a new MDD about D̃s and Dt, denoted as
d
(ϱ)
f,F (D̃s, Dt). However, considering that disp(ϱ)Ds

(f ′, f) and disp
(ϱ)

D̃s
(f ′, f) are difficult to obtain, it

is difficult to directly compare d
(ϱ)
f,F (Ds, Dt) and d

(ϱ)
f,F (D̃s, Dt).

Theorem 1. For the target domain model ht,

errDt(ht) ≤ err
(ϱ)
Ds

(ft) + sup
f ′∈F

(disp
(ϱ)
Dt

(f ′, fs))− inf
f ′∈F

(disp
(ϱ)
Ds

(f ′′, fs)) + λ, (5)

where λ = minf∗∈F{err(ϱ)Ds
(f∗)+ err

(ϱ)
Dt

(f∗)} is independent of ht. Both f ′ and f ′′ are trained by
ft using Dt and Ds.

Proof. Please refer to Appendix A.1.

In Theorem 1, we obtain an upper bound of errDt(ht). Specifically, we decompose MDD into
supremum and infimum components to resolve the difficulty in directly comparing the magnitudes
of d(ϱ)f,F (Ds, Dt) and d

(ϱ)
f,F (D̃s, Dt).

Theorem 2. In the same hypothesis space F , hs is trained on Ds, and h̃s is trained on D̃s,

sup
f̃ ′
s∈F

(disp
(ϱ)
Dt

(f̃ ′
s, f̃s))− inf

f̃ ′′
s ∈F

(disp
(ϱ)

D̃s
(f̃ ′′

s , f̃s)) ≤ sup
f ′
s∈F

(disp
(ϱ)
Dt

(f ′
s, fs))− inf

f ′′
s ∈F

(disp
(ϱ)
Ds

(f ′′
s , fs)),

(6)
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where both f̃ ′
s and f̃ ′′

s are trained by f̃s using Dt and D̃s. And both f ′ and f ′′ are trained fs using
Dt and Ds.

Proof. Please refer to Appendix A.2.

In Theorem 2, we compare the values of MDD (d(ϱ)f,F (Ds, Dt) and d
(ϱ)
f,F (D̃s, Dt)) after they are

both expanded to two terms. And we obtain that after converting Ds to D̃s, the latter will be
less than the former. In combination with Theorem 1, we conclude that in partial-set scenarios,
removing categories that only exist in the source domain can reduce the differences between the
source and target domains, thereby facilitating model transfer. However, it is not possible to directly
filter the samples from the source domain and retrain. Instead, we leverage the model’s forgetting
mechanism to let the source model forget classes unique to the source domain as much as possible
while retaining knowledge of the target domain classes. This effectively addresses the negative
transfer problem caused by the significant differences between the source and target domains in the
partial-set scenario.

3.3 TARGET DOMAIN PSEUDO-LABEL FILTERING

We employ a simple yet effective method to adapt the model to the target domain, specifically
through the use of pseudo-labels from the target domain for self-supervised learning, which helps to
demonstrate the effectiveness of our forgetting mechanism. The acquisition of pseudo-labels sample
set on Dt is as follows::

Dtw = {(xt, hs(xt))|hs(xt) ∈ Ct}, (7)

DtK = {(xt, hs(xt))|rank(fs(xt)) ≤ K}, (8)

where Dtw represents the set corresponding to Ct in the model’s prediction of the target domain data,
DtK is obtained by further filtering the scores predicted by the model based on Dtw, and fs(xt) is
the score of hs(xt). We rank the predicted samples of each category from highest to lowest score
and select only the top K samples with the highest scores for each category. In the subsequent
stages, we use DtK for self-supervised training of the model, which can reduce pseudo-label noise.

3.4 NOISE SAMPLE GENERATION

We can easily obtain the category set Cf that only exists in the source domain through Cf = Cs−Ct.
We know that the source domain model hs is obtained by minimizing the loss of all classes in Cs.
Hence, inspired by Li et al. (2024); Tarun et al. (2023), we learn the anti-samples of the class set
Cf and use these anti-samples to update the model, making the model to forget about Cf and thus
prompt the source domain model to get back to a state where it has never seen Cf . We consider ran-
domly initializing a batch of noise matrices N through a normal distribution N (0, 1), and optimizing
the noise matrix N as our anti-samples by solving the following optimization problem:

argmin
N

E(θ)[−L(hs, y) + λ||Wnoise||], (9)

where L(·, ·) is the cross-entropy loss function with L2 normalization, y ∈ Cf represents the cate-
gory that needs to be forgotten. Wnoise is the parameter of the noise matrix N , which can also be
interpreted as the pixel value of the image. λ is the balance parameter, and in the experiment we set
λ = 0.1. The former term is optimized to obtain the noise matrix N , while the latter term can pre-
vent the value of Wnoise from becoming too large. The noise matrix N obtained from training can
be regarded as the noise sample image xN corresponding to the category that needs to be forgotten.
We define the noise sample set Dnoise = {(xN , yN )|yN ∈ Cf}.

3.5 THE FORGETTING STAGE AND THE ADAPTATION STAGE

After obtaining the required sample set, we demonstrate how to train the model in this section. The
noise sample set Dnoise = {(xN , yN )|yN ∈ Cf} lead the model to forget Cf . However, forgetting
will inevitably lead to the forgetting of Ct, which is undesirable. Therefore, we hope to constrain
the model’s changes on Ct during the forgetting stage. The loss function we used in the forgetting
stage is:

Lf = Lce(yt, hs(xt)) + αLce(yN , hs(xN )), (10)

6
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where Lce represents cross entropy loss, xt ∈ DtK , xN ∈ Dnoise, α represents the balance param-
eter.

To minimize the impact of the model’s memory of Ct during the forgetting stage as much as possible,
we choose a smaller number of training iterations. By minimizing the loss Lf , we obtain the
forgetting model hf from the pre-trained model hs. Then, in the adaptation stage, we also need
to adapt the model to the target domain. Specifically, we train hf on the obtained DtK using the
following loss:

La = Lce(xt, hf (xt)), (11)

where xt ∈ DtK .

3.6 ITERATIVE TRAINING

In this section, we introduce the iterative training of the model. Due to the domain shift between the
source and target domains, we use multiple iterative steps to continuously update DtK and Dnoise,
and further reduce the negative transfer problem of partial-set, improving the accuracy of the target
domain model ht. Thus, we achieve better results than single-step training. At each iteration, we
update DtK and Dnoise through Eqs.8 and 9, and then update the target domain model ht through
Eqs.10 and 11. In Alg.1, we summarize the entire training process of our Machine Unlearning
Framework.

Algorithm 1 Algorithm of Machine Unlearning Framework.
Input: Target dataset Dt, Target domain category set Ct, Source domain category set Cs, Source
pre-training model hs and its scoring function fs(x).
Parameter:E, F, A, α, λ, K.
Output: Target model ht.

1: for ep = 1 to E do
2: Obtain DtK using Eqs.7 and 8.
3: Cf = Cs − Ct.
4: Obtain Dnoise using Eq.9.
5: for epochs = 1 to F do
6: Update the model from hs to hf using Eq.10.
7: end for
8: for epochs = 1 to A do
9: Update the model from hf to ht using Eq.11.

10: end for
11: hs=ht.
12: end for
13: return ht.

4 EXPERIMENTS

4.1 SETUP

Datasets. We evaluate our method on two widely used SFUDA datasets: Office-31(Saenko et al.,
2010) and Office-Home(Venkateswara et al., 2017). Office-31 is a standard DA benchmark which
contains three domains (Amazon (A), DSLR (D), and Webcam (W)) and each domain consists of
31 classes. Office-Home is a challenging medium-sized benchmark, which consists of four distinct
domains (Artistic (Ar), Clipart (Cl), Product (Pr), and Real-World (Rw)), and each domain consists
of 65 classes.

Baselines. As a pluggable framework, we compare the accuracy of ResNet-50(He et al., 2016),
TPDS(Tang et al., 2024), Sticker(Kundu et al., 2022), CAiDA(Dong et al., 2021) and SHOT(Liang
et al., 2020) with the addition of our framework. They are all well-known methods in the field of
SFUDA. Specifically, CAiDA is a method for knowledge adaptation from multiple source domains
to an unlabeled target domain.

7
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Implementation Details. We employ ResNet-50 as the backbone for Office-31 and Office-
Home. For Office-31, we train 50 epochs to obtain a pre-trained model. For Office-Home, we
train 100 epochs to obtain a pre-trained model. Most hyperparameters of our method do not require
heavy tuning. We set 5 epochs during the forgetting stage and 60 epochs during the adaptation
stage. We set K = 7 for each category of Ct and generate 32 noise samples for each category of
Cf . For Office-31, we set α = 5 and iteratively train our method 5 times. For Office-Home, we set
α = 1 and only fully implemente our method once. All experiments are conducted with PyTorch on
NVIDIA 3070 GPUs.

To simulate complex partial-set scenarios in reality, we have set multiple different target domain
categories (Ct) to verify the effectiveness of our method. We observe that different methods con-
sistently underperform on the same set of categories. Besides, if it can be verified that our method
improves model accuracy for both the categories with the worst and the best performance, we can
conclude that our approach is effective. Therefore, on Office-31, we divide the target domain cate-
gories into two parts: the 6 worst accuracy classes (Ct6) and the 25 highest accuracy classes (Ct25).
On Office-Home, we divide the target domain categories into three parts: the 5 worst accuracy
classes (Ct5), the 15 worst accuracy classes (Ct15), and the 50 highest accuracy classes (Ct50). We
use one or several domains of the dataset as the source domain, and then one of the remaining do-
mains as the target domain. Specifically, we find that on Office-31, pre-trained models can achieve
excellent results when the target domain is Webcam or DSLR. Therefore, our target domain on
Office-31 is fixed to Amazon.

4.2 RESULTS OF OFFICE-31

We obtain different pre-trained models under single source domain adaptation (SSDA) and multi-
source domain adaptation (MSDA) settings. The columns named D → A and W → A in Table 1
presents the results of our method under SSDA settings. We observe that for different pre-trained
models and in two different target domain category settings, there is a significant improvements
after adding our method. The columns named → A in Table 1 shows the results of our method
under MSDA settings. Our method still demonstrates excellent performance, especially the initial
accuracy of the CAiDA model for Ct25 has reached a satisfactory 85.71%, and adding our method
can still achieve a significant improvement of 3.17%. In addition, we also test the effectiveness of
our method in solving negative transfer problems. Specifically, after inputting the target domain
images into the model, we count the number of negative transitions for all predicted images labeled
as category Cf . We also observe the negative transitions are more likely to occur in categories
where methods have poor performance. It can be observed that after implementing our method, the
number of negative transfer samples in these categories has decreased significantly. For example,
for Ct6, the negative transfer sample of Resnet50 decreases from 312 to 23, which greatly improves
the model’s accuracy.

Table 1: Classification accuracy (%) on Office-31 dataset. n/t represents the number of negative
transfer samples over the total samples under the MSDA settings.

Method Ct Add ours D→A W→A Avg. →A n/t

Resnet50
Ct6

× 30.26 30.30 30.28 31.45 312/585
✓ 62.22 68.03 65.13 72.99 23/585

Ct25
× 68.73 71.95 70.34 73.52 109/2232
✓ 86.78 86.51 86.65 86.33 0/2232

SHOT
Ct6

× 34.53 31.62 33.08 34.87 280/585
✓ 53.84 38.11 45.98 57.09 59/585

Ct25
× 75.62 72.40 74.01 85.71 39/2232
✓ 86.87 87.54 87.21 88.88 12/2232

Sticker
Ct6

× 36.58 34.19 35.39 33.84 289/585
✓ 44.44 44.44 44.44 59.66 65/585

Ct25
× 78.22 80.29 79.26 84.41 47/2232
✓ 84.13 87.90 86.02 87.23 25/2232
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4.3 RESULTS OF OFFICE-HOME

Table 2 shows the effectiveness of our method under MSDA settings. We find that for Ct5, the
accuracy of different pre-trained models is between 30% and 40%, while after incorporating our
method, the accuracy is greater than 40%. And for Ct50, although pre-trained models can achieve
high original average accuracy, our method can still effectively improve the performance of the
model. Table 3 shows the performance of our method under SSDA settings, where we train the
source domain model using Resnet50 through Art. It is obvious to see that after adding our method,
the number of negative transfer samples in different target domain settings of the model is greatly
reduced, and the accuracy of the model has been improved.

Table 2: Classification accuracy (%) on Office-Home dataset under MSDA settings.

Method Ct Add ours →Ar →Cl →Pr →Rw Avg.

Resnet50

Ct5
× 27.71 23.21 36.36 47.55 33.71
✓ 35.54 37.20 54.55 54.90 45.55

Ct15
× 37.91 28.63 50.91 58.26 43.93
✓ 48.61 41.84 61.68 63.74 53.97

Ct50
× 74.36 61.88 86.93 88.08 77.81
✓ 78.62 65.63 87.80 88.64 80.42

Sticker

Ct5
× 14.71 12.57 64.67 52.22 36.04
✓ 22.55 19.43 66.85 53.24 40.52

Ct15
× 38.06 40.07 81.34 62.10 55.39
✓ 44.44 43.73 84.70 65.31 59.55

Ct50
× 82.44 69.32 84.56 89.42 81.43
✓ 83.33 69.96 85.49 89.75 82.13

CAiDA

Ct5
× 25.16 15.17 52.52 39.47 33.08
✓ 41.72 19.31 64.64 47.37 43.26

Ct15
× 41.00 35.28 67.43 55.37 49.77
✓ 52.60 39.41 71.20 59.73 55.74

Ct50
× 76.36 62.13 86.65 86.95 78.02
✓ 79.10 63.47 87.60 87.87 79.51

Table 3: Classification accuracy (%) and number of negative transfer samples (n) on Office-Home
dataset under SSDA settings.

Method Ct Add ours Ar→Cl n Ar→Pr n Ar→Rw n

Resnet50

Ct5
× 17.56 274 17.91 293 41.26 151
✓ 47.92 106 41.05 200 63.29 78

Ct15
× 23.42 652 31.97 476 52.58 329
✓ 56.06 208 60.66 154 58.39 129

Ct50
× 51.43 236 74.16 168 79.85 128
✓ 61.14 83 86.03 27 88.20 19

TPDS

Ct5
× 42.15 193 27.82 223 58.39 104
✓ 52.98 123 45.45 111 59.79 72

Ct15
× 43.34 504 50.23 302 62.09 241
✓ 52.55 296 59.41 156 69.84 144

Ct50
× 63.87 411 85.61 237 87.19 129
✓ 68.51 301 89.43 114 88.76 68

4.4 ABLATION STUDY

Component Analysis. To investigate the necessity of our module and test the time consump-
tion of our method, we conduct ablation experiments as shown in Table 4. And our experiments
on Office-Home are included in Appendix B. Resnet50+only forget represents only using our for-
getting stage, Resnet50+only adapt represents only using our adaptation stage, Resnet50+ours
represents using the entire Machine Unlearning framework and the iteration number is one,
Resnet50+ours * 3 represents using the entire Machine Unlearning framework and the iteration
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number is three, and so on. It is evident that our method takes very short time, since the generation
of DtK and Dnoise in each iteration is efficient. And the first iteration of our method resulted in
larger improvement than only using the forgetting stage and only using the adaptation stage, and
the subsequent iterative process also has a positive effect on the model, gradually reaching a stable
state. It can be observed that the number of negative transfer samples can gradually decrease through
iterative training.

Analysis of K. Figure 3 shows the parameter experiment on Office-31, with the purpose of
investigating the impact of different K values on the performance of our method. We hope to obtain
as many and high-quality DtK as possible, but usually there is a trade-off between quantity and
quality. Under the condition of Ct6 category setting and K = 4, the accuracy of Resnet50+ours
* 5 is only 63.25%, and there are 122 negative transfer samples. When K is set to 6, the accuracy
is improved by 8.89% and the number of negative transfer samples is reduced by 99. In addition,
we also observe that when K = 8, the number of negative transfers increases, which is due to the
introduction of pseudo label noise. Considering both model accuracy and the number of negative
transfer samples, we ultimately set K = 7.

Table 4: Ablation study on Office-31 dataset under MSDA settings.(Resnet50, Ct6)

Method time/s →A n/t
Resnet50 1420 31.45 312/585
Resnet50+only forget 1552 34.70 0/585
Resnet50+only adapt 1488 56.92 151/585
Resnet50+ours 1586 56.61 121/585
Resnet50+ours*3 1906 71.28 32/585
Resnet50+ours*5 2236 72.99 23/585
Resnet50+ours*7 2566 73.11 22/585

(a) Ct25 (b) Ct6

Figure 3: Performance sensitivity of parameter K on Office-31 dataset, where module1 represents
Resnet50+ours and module2 represents Resnet50+ours*5, n represents the number of negative
transfer samples.

5 CONCLUSION

In this paper, we aim to address the negative transfer problem in the partial-set scenario of SFUDA,
to achieve satisfactory performance of the model in the target domain. We have demonstrated that
reducing the differences between source and target domains in a partial-set scenario is beneficial.
Based on this, we propose a Machine Unlearning framework to solve the negative transfer problem,
and experiments show that our method significantly reduces the number of negative transfer samples,
effectively alleviating the issue of negative transfer in partial-set, thereby improving the accuracy of
the model. In addition, as a simple and effective pluggable method, our method is suitable for
various deep networks.
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A PROOFS

A.1 PROOF OF THEOREM 1

Theorem 1. For the target domain model ht,

errDt(ht) ≤ err
(ϱ)
Ds

(ft) + sup
f ′∈F

(disp
(ϱ)
Dt

(f ′, fs))− inf
f ′∈F

(disp
(ϱ)
Ds

(f ′′, fs)) + λ, (12)

where λ = minf∗∈F{err(ϱ)Ds
(f∗)+ err

(ϱ)
Dt

(f∗)} is independent of ht. Both f ′ and f ′′ are trained by
ft using Dt and Ds.

Lemma 1. For the target domain model Zhang et al. (2019),

errDt(ht) ≤ err
(ϱ)
Ds

(ft) + d
(ϱ)
f,F (Ds, Dt) + λ, (13)

where λ = minf∗∈F{err(ϱ)Ds
(f∗) + err

(ϱ)
Dt

(f∗)} is independent of ht.

Proof. In a hypothetical space F , we have f̂ satisfies

d
(ϱ)
f,F (Ds, Dt) ≜ sup

f̂∈F

( disp
(ϱ)
Dt

(f̂ , f)− disp
(ϱ)
Ds

(f̂ , f)), (14)

Then we have
disp

(ϱ)
Dt

(f̂ , f) ≤ sup
f ′∈F

( disp
(ϱ)
Dt

(f ′, fs)), (15)

inf
f ′′∈F

(disp
(ϱ)
Ds

(f ′′, fs)) ≤ disp
(ϱ)
Ds

(f̂ , f). (16)

Therefore, we have

d
(ϱ)
f,F (Ds, Dt) ≤ sup

f ′∈F
(disp

(ϱ)
Dt

(f ′, fs))− inf
f ′′∈F

(disp
(ϱ)
Ds

(f ′′, fs)). (17)

Based on Lemma 1, we have

errDt
(ht) ≤ err

(ϱ)
Ds

(ft) + supf∗∈F( disp
(ϱ)
Dt

(f∗, fs))

− inff∗∈F( disp
(ϱ)
Ds

(f∗, fs)) + λ.
(18)

A.2 PROOF OF THEOREM 2

Theorem 2. In the same hypothesis space F , hs is trained on Ds, and h̃s is trained on D̃s,

sup
f̃ ′
s∈F

(disp
(ϱ)
Dt

(f̃ ′
s, f̃s))− inf

f̃ ′′
s ∈F

(disp
(ϱ)

D̃s
(f̃ ′′

s , f̃s)) ≤ sup
f ′
s∈F

(disp
(ϱ)
Dt

(f ′
s, fs))− inf

f ′′
s ∈F

(disp
(ϱ)
Ds

(f ′′
s , fs)),

(19)

where both f̃ ′
s and f̃ ′′

s are trained by f̃s using Dt and D̃s. And both f ′ and f ′′ are trained fs using
Dt and Ds.

Proof. For any x ∈ Ds, we have

f ′′
s (x, hs(x)) − max

y′ ̸=hs(x)
f ′′
s (x, y

′)

≤ fs(x, hs(x))− max
y′ ̸=hs(x)

fs(x, y
′). (20)

According to Definition 2, we have

disp
(ϱ)
Ds

(f ′′
s , fs) ≜ Ex∼DsΦϱ

(
ϱf ′′

s
(x, hs(x))

)
≥ Ex∼Ds

Φϱ (ϱfs(x, hs(x)))

≥ 0.

(21)
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When f ′′
s = fs and ϱ is a sufficiently small positive number, we have inff ′′

s ∈F (disp
(ϱ)
Ds

(f ′′
s , fs)) =

0. Similarly, when f̃ ′′
s = f̃s and ϱ is a sufficiently small positive number, we have

inf f̃ ′′
s ∈F (disp

(ϱ)

D̃s
(f̃ ′′

s , f̃s)) = 0.

Let Dt1 = {(xt, hs(xt))|hs(xt) ∈ Cf}. For any xt ∈ Dt1, we have

f ′
s(xt, hs(x)) < max

y′ ̸=hs(x)
f ′
s(xt, y

′). (22)

Then, for Dt1, we have
ϱf ′

s
(xt, hs(xt)) < 0. (23)

Then, we can obtain Gϱ( ϱf ′
s

(
xt, hs(xt)

)
) = 1. So we have

disp
(ϱ)
Dt1

(f̃ ′
s, f̃s) < disp

(ϱ)
Dt1

(f ′
s, fs) = 1. (24)

Let Dt2 = Dt −Dt1. For Dt2, we can reasonably assume that we have hs(xt) = h̃s(xt).

Then, we have
disp

(ϱ)
Dt2

(f ′
s, fs) = disp

(ϱ)
Dt2

(f̃ ′
s, f̃s). (25)

Therefore, we have
sup
f̃s′∈F

(disp
(ϱ)
Dt

(f̃ ′
s, f̃s)) ≤ sup

fs′∈F
(disp

(ϱ)
Dt

(f ′
s, fs)). (26)

Then we have
sup
f̃ ′
s∈F

(disp
(ϱ)
Dt

(f̃ ′
s, f̃s))− inf

f̃ ′′
s ∈F

(disp
(ϱ)

D̃s
(f̃ ′′

s , f̃s))

≤ sup
f ′
s∈F

(disp
(ϱ)
Dt

(f ′
s, fs))− inf

f ′′
s ∈F

(disp
(ϱ)
Ds

(f ′′
s , fs)).

(27)

B ADDITIONAL EXPERIMENTS

Table 5: Ablation study about training time on Office-Home dataset under SSDA settings.(Ar→Cl)

Method time/s
Ct5 Ct15 Ct50

Resnet50 1550
TPDS 3137
TPDS+only forget 3860 3765 3371
TPDS+only adapt 3183 3230 3364
TPDS+ours 3906 3858 3598

We also evaluate the training time of our method on Office-Home, and the results are shown in
Table 5. It can be observed that our adaptation stage takes a very short time, while the forgetting
stage takes time that is proportional to the number of categories to be forgotten. However, even in
the setting where the target domain is Ct5 (requiring forget 50 categories), the time taken by our
algorithm is shorter than TPDS, which takes 1587 seconds for training.
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