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Abstract: General-purpose robots capable of performing diverse tasks require
synergistic reasoning and acting capabilities. However, recent dual-system ap-
proaches, which separate high-level reasoning from low-level acting, often suf-
fer from challenges such as limited mutual understanding of capabilities between
systems and latency issues. This paper introduces OneTwoVLA, a single uni-
fied vision-language-action model that can perform both acting (System One) and
reasoning (System Two). Crucially, OneTwoVLA adaptively switches between
two modes: explicitly reasoning at critical moments during task execution, and
generating actions based on the most recent reasoning at other times. To fur-
ther unlock OneTwoVLA’s reasoning and generalization capabilities, we design
a scalable pipeline for synthesizing embodied reasoning-centric vision-language
data, used for co-training with robot data. We validate OneTwoVLA’s effective-
ness through extensive experiments, highlighting its superior performance across
four key capabilities: long-horizon task planning, error detection and recovery,
natural human-robot interaction, and generalizable visual grounding, enabling the
model to perform long-horizon, highly dexterous manipulation tasks such as mak-
ing hotpot or mixing cocktails. Project page: https://one-two-vla.github.io/
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Plan: …

Historical Summary: 

I’ve done Nothing.

Now I need to: 

Add syrup.

Scene: …

Plan: …

Historical Summary: 

I’ve added syrup.

Now I need to: 

Add orange juice.

Scene: …

Plan: …

Historical Summary: 

Syrup & juice added.

Now I need to: 

Add vodka.

…

“Make me a cup of 
Vodka Sunrise.”

🗣 …

Figure 1: Overview. OneTwoVLA is a single unified vision-language-action model capable of both reasoning
and acting. Crucially, OneTwoVLA can adaptively reason at critical moments during execution (e.g., upon
completing subtasks, detecting errors, or requiring human inputs), while generating actions at other times.

1 Introduction

A distinctive characteristic of human physical intelligence is the ability to both reason and act [1, 2].
Crucially, these processes are not separate but flexibly interleaved, creating a powerful syn-
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ergy—reasoning guides our actions, while actions provide feedback that informs subsequent rea-
soning. Consider someone preparing a dish: reasoning enables them to develop a comprehensive
understanding of the scene and goal (e.g., interpreting the recipe, planning the sequence of steps),
while acting corresponds to the physical execution (e.g., chopping, mixing) that grounds abstract
reasoning in the real world. This paper aims to imbue robots with a similar synergistic relationship
between reasoning and acting.

Current approaches [3–7] often draw inspiration from Kahneman’s dual-system framework [8].
Typically, a System Two, such as internet-pretrained vision-language models (VLMs) [9, 10], is
dedicated to slow high-level reasoning, generating intermediate reasoning contents. Meanwhile, a
System One, such as vision-language-action models (VLAs) [11–13], translates these intermediate
contents into precise low-level robot actions. However, this explicit decoupling results in both sys-
tems lacking mutual awareness of each other’s capabilities; System Two may produce intermediate
contents that System One cannot execute [5]. Furthermore, in real-world deployment, issues such
as latency may cause System Two to respond belatedly, providing outdated or irrelevant guidance.

We argue that achieving stronger reasoning-acting synergy demands a unified model. Indeed, the
recent trend towards unifying capabilities within single models is proving crucial for advancing
AI [14–17], and we believe this approach holds particular promise for robot learning. In light of this,
we introduce OneTwoVLA, a single unified vision-language-action model capable of both acting
(System One) and reasoning (System Two). Importantly, it adaptively determines when to engage
each mode. As shown in Fig. 1, OneTwoVLA triggers natural language reasoning at key steps —
like completing a subtask, detecting an error, or requiring human input — producing outputs such as
scene descriptions, task plans, historical summaries, and next-step instructions. Otherwise, it gener-
ates actions informed by its most recent reasoning outputs. A key advantage of this unified model
is its natural support for co-training with vision-language data, significantly enhancing reasoning
and generalization. To facilitate this, we develop a scalable pipeline for synthesizing high-quality,
embodied reasoning-centric vision-language data.

Our extensive experiments validate OneTwoVLA’s effectiveness, demonstrating its ability to inte-
grate diverse capabilities within a single model: 1) Long-horizon task planning: OneTwoVLA rea-
sons to formulate, track, and dynamically adjust task plans based on execution feedback, signifi-
cantly outperforming flat VLA (by 30%) and dual-system VLA (by 24%) baselines. Vision-language
co-training further enables generalization to novel task instructions (e.g., planning coffee prepara-
tion for “Help me stay awake”). 2) Error detection and recovery: OneTwoVLA detects execution
errors in real time, reasons about corrective strategies, and performs agile recovery actions. 3) Natu-
ral human-robot interaction: OneTwoVLA adjusts actions immediately upon human intervention
and proactively seeks clarification when faced with ambiguity. 4) Generalizable visual ground-
ing: OneTwoVLA exhibits superior understanding of spatial relationships, object attributes, and
semantic features, even generalizing to objects absent from its robot training data.

2 Related Work

Vision-Language-Action Models. Initialized from pre-trained vision-language models (VLMs) [9,
18–21], vision-language-action models (VLAs) [6, 11–13, 22–26] have emerged as a promising
approach for building general-purpose robots. These VLAs, trained on large robot datasets [27–37],
can handle a wide range of real-world manipulation tasks. However, these VLAs exhibit limited
reasoning capabilities [4, 5, 13], showing vulnerability when confronted with long-horizon tasks or
complex dynamic environments. Furthermore, their generalization capabilities remain constrained,
often requiring task-specific fine-tuning [11, 12]. In contrast, our work enhances reasoning and
generalization capabilities through a unified model architecture and a co-training framework.

Reasoning for Robot Control. Previous works [38–46] demonstrate that high-level reasoning can
enhance low-level policy performance in robot control. In particular, many studies [3–7, 13, 47]
explore dual-system frameworks, where a foundation model (e.g., a VLM) serves as System Two to
perform high-level reasoning, while a low-level policy operates as System One to generate actions
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based on reasoning outputs. While this dual-system framework proves effective for accomplishing
long-horizon manipulation tasks, it inherently suffers from limitations such as the two systems lack-
ing mutual awareness of each other’s capabilities [5] as well as latency issues with System Two.
Our concurrent work [48] employs a single model to predict a subtask before each action, but this
reasoning is simple and information-limited. If this inflexible paradigm generates extensive reason-
ing at every step, it significantly impacts inference efficiency [49]. To address these limitations, we
propose a unified model capable of adaptively deciding when to reason versus when to act, allowing
for both informative reasoning and efficient execution.

Co-training for Robot Learning. Co-training with data from diverse sources has been shown to
benefit robot learning [22, 50–58]. In particular, several prior works [23, 59–61]explore co-training
robot policies with action-free vision-language data alongside robot data, demonstrating improve-
ments in policy generalization. However, these methods [23, 59, 61] typically either rely on existing
vision-language datasets, which suffer from limited quality due to their significant domain gap from
robot application scenarios; or manually collect vision-language datasets [60], which are inherently
limited in size and difficult to scale up. To address these limitations, we propose a scalable pipeline
for synthesizing vision-language data rich in embodied reasoning. Our pipeline ensures both high
quality and scalability, significantly enhancing policy’s reasoning and generalization capabilities.

3 Method

In this section, we first introduce the framework of OneTwoVLA in Sec. 3.1, including its formu-
lation, adaptive inference, and model instantiation. We then describe how we curate robot data to
enable synergistic reasoning and acting in Sec. 3.2. Finally, we present our scalable pipeline for
synthesizing vision-language data enriched with embodied reasoning in Sec. 3.3.

3.1 Framework of OneTwoVLA

Problem Formulation. The central problem investigated in this work is how to develop a robotic
control policy πθ capable of both reasoning and acting, with the critical ability to autonomously
decide at each timestep t whether to reason or act. Formally, the policy operates in two modes.
When in reasoning mode, the policy takes as input the current image observations from multiple
cameras I1

t , . . . , In
t (denoted as I1:n

t , where n is the number of cameras), the reference images from
the latest reasoning timestep I1

ref, . . . , In
ref (denoted as I1:n

ref , which introduces observation histories
to prevent ambiguous states), the language instruction ℓ, and the latest reasoning content R. The
policy performs reasoning in the form of textual output, generating updated reasoning content R̂ ∼
πθ(·|I1:n

t , I1:n
ref , ℓ, R). Sec. 3.2 provides further details on the specific content of this reasoning

process. In acting mode, the policy π additionally incorporates the robot’s proprioceptive state st and
generates an action chunk At based on the latest reasoning content: At ∼ πθ(·|I1:n

t , I1:n
ref , ℓ, R, st).

Algorithm 1 Inference Pipeline of OneTwoVLA
Require: VLA model πθ , language instruction ℓ
1: t← 0, I1:n

ref ← initial image, R← none
2: while R ̸= “Task Finished” do
3: DT ∼ πθ.decide(·|I1:n

t , I1:n
ref , ℓ, R)

4: if DT = [BOR] then
5: R̂ ∼ πθ.reason(·|I1:n

t , I1:n
ref , ℓ, R)

6: R← R̂, I ref ← It

7: else if DT = [BOA] then
8: At ∼ πθ.act(·|I1:n

t , I1:n
ref , ℓ, R, st)

9: Execute At

10: end if
11: t← t + 1
12: end while

Adaptive Inference of OneTwoVLA. In Algo-
rithm 1, we present the detailed process of how
OneTwoVLA autonomously decides whether
to reason or act. We introduce two special
decision tokens (DT ): beginning of reason-
ing ([BOR]) and beginning of action ([BOA]).
Given the prefix (comprising image observa-
tions I1:n

t , reference images I1:n
ref , instruction ℓ,

and the latest reasoning content R), the model
first predicts either [BOR] or [BOA]. When
[BOR] is predicted, the model enters reasoning
mode and generates textual reasoning content
R until producing an end of sentence ([EOS])
token. Since the model only enters reasoning mode at a few critical steps, the additional inference
time incurred is minimal (see Appendix D.3). Conversely, when [BOA] is predicted, the model enters
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acting mode and directly generates the action chunk At, with inference efficiency unaffected in this
mode. This adaptive framework allows for both informative reasoning and efficient execution, while
previous methods suffer from either overly simple reasoning [48] or low inference efficiency [49].
Moreover, our framework inherently supports error recovery and human-robot interaction: when the
policy detects an error (e.g., failing to grasp an object), it autonomously enters reasoning mode to
determine a corrective strategy and execute agile recovery actions. When human interaction occurs,
any interaction text will be consistently added to the language instruction ℓ in subsequent steps.

Vision Language Model Action Expert

“Please make me a glass 
of Vodka Sunrise.”

Obs Ref. Img Instruction

“Give me the object used 
for digging in soil.”

Reasoning State

“Scene: trowel is at … 

I need to pick up trowel.”

“Scene: syrup is at … 

I need to add syrup.”

Noise

Action Chunk

[BOA]

[BOR]
“Scene: juice is at 
the right of the … 

I need to add juice.”

[0.00, -0.01,0.05, …]

￼
0.00
0.01

⋮
￼

−1.25 0.69 0.33 …
1.11 −1.22 0.18 …

⋮ ⋮ ⋮ ⋱

￼
1.66 0.60 −0.77 …
1.02 −1.00 0.22 …

⋮ ⋮ ⋮ ⋱

Reasoning Mode: 

Acting Mode: 

Figure 2: Inference flow of OneTwoVLA in two modes.

Model Instantiation. OneTwoVLA is
designed to be general, allowing most
existing VLAs to be integrated with
minimal modifications. For a specific in-
stance, we employ π0 [12] as the base
VLA, which demonstrates strong perfor-
mance across various tasks. The vision-
language model of π0 auto-regressively
generates textual reasoning during in-
ference and is supervised via a cross-
entropy loss during training. To model
complex continuous action distributions,
we inherit the action expert architecture from π0 and train it using a flow matching loss [62, 63].
OneTwoVLA’s inference flow is detailed in Fig. 2. See Appendix D.2 for more training details.

3.2 Curating Robot Data with Embodied Reasoning

Most existing robotic manipulation datasets consist primarily of observation-action pairs and lack
associated reasoning information. To address this gap, we introduce a novel robot data format. For
a given task, we first collect demonstration trajectories provided by human experts. Subsequently,
each trajectory is segmented into a sequence of intervals. There are two types of intervals: reason-
ing intervals, which capture key steps requiring model reasoning (e.g., upon completing subtasks,
detecting errors, or when human interaction is required), which we further annotate with textual
reasoning content; and acting intervals, in which the model primarily learns to predict actions based
on observations and the latest reasoning content. See Appendix D.1 for more details.

Next, we elaborate on the embodied reasoning content. As shown in Fig. 3 left, it consists of four
components: 1) a detailed scene description, primarily focusing on the locations of task-relevant
objects; 2) a high-level plan that outlines the sequential steps to accomplish the task; 3) a concise
historical summary to keep the model informed about the task’s progress; and 4) the immediate next
step that the robot needs to execute. This comprehensive reasoning content encourages the model
to understand the visual world, learn high-level planning, and track task progress. Furthermore,
to equip the policy with error detection and recovery capabilities, we specifically collect and label
robot data focused on recovery from failure states. To enable natural human-robot interaction, we
annotate certain intervals of the demonstrations with interaction context (e.g., the robot’s question
and the human’s answer shown in Fig. 3 left).

3.3 Scalable Synthesis of Vision-Language Data with Embodied Reasoning

The carefully curated robot data described in Sec. 3.2 allows the model to directly learn the de-
sired task, but its size scales linearly with the costly human effort, making large dataset creation
impractical. To endow our model with stronger generalization and the ability to cope with highly
varied scenarios, we leverage off-the-shelf foundation models and design a fully scalable pipeline
that synthesizes vision-language data enriched with embodied reasoning.

This pipeline consists of three steps: 1) We prompt Gemini 2.5 Pro [64] to generate diverse tex-
tual descriptions of tabletop layouts featuring common household items; 2) Based on these textual
descriptions, we employ the text-to-image generation model FLUX.1-dev [65] to synthesize high-
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Instructions: 
Spatial: Get the item 
between teacups.  

Semantic: Get the 
item for pouring tea.

Attribute: Hand me 
the object with spout.

Reasoning: Pick up 
teapot between cups.

Instructions: 
Spatial: Get the item 
in front of the scale.  

Semantic: Pass me 
the French food.

Attribute: I want that 
crusty baked good.

Reasoning: Pick up 
bread on round board.

Instruction:  
Clean up table.

Reasoning:

Plan: 1. Put compass 
in drawer. 2. Put black 
pencil in holder. 3. Put 
ruler in drawer. 4. Fold 
drawing. 5. Put folded 
drawing in drawer.

Instruction:  
Bake cookies.

Reasoning: 

Plan: 1. Roll out white 
dough.  2. Cut shapes 
from dough. 3. Bake 
cookies. 4. Take out 
baked cookies from 
oven.

Instruction: Make me a 
cup of cocktail.

Robot: What kind?

Human: Mojito. 
Reasoning: 

Scene description: Lime 
& mint added. Rum is 
placed at … Soda is at … 

Plan: 1. Add lime & mint. 
2. Add rum. 3. Add soda.

Historical Summary: I’ve 
added lime & mint.�
Now I need to: Add rum. 

Figure 3: Left. Example of robot data with reasoning content. The reasoning content comprises a scene de-
scription, a high-level plan, a historical summary, and the next-step instruction. Interaction texts (e.g., the robot
question and the human answer) are appended after the instruction. Right. Examples of synthetic embod-
ied reasoning-centric vision-language data. The top two examples illustrate visual grounding tasks, while the
bottom two demonstrate long-horizon tasks. More examples are provided in Appendix C.

quality images depicting the tabletop layouts. We further augment the synthetic images by randomly
applying fisheye distortion or compositing a robot gripper with adaptive brightness, making the visu-
als more closely resemble real robot observations; 3) Finally, we utilize Gemini 2.5 Pro again to gen-
erate task instructions and corresponding reasoning contents for each synthesized image. Through
this pipeline, we automatically generated 16,000 data samples, with examples shown in Fig. 3 right.

The generated task instructions fall into two categories: 1) Visual grounding tasks [66–68], where
the instruction implicitly refers to an object in the image through spatial relationships, attributes,
or semantic features. The accompanying reasoning must reveal the object’s explicit name and,
optionally, its location; 2) Long-horizon tasks, where the instruction describes an extended, multi-
step objective. The reasoning must supply a high-level, step-by-step plan for completing the task.

4 Experiments

In this section, we evaluate OneTwoVLA through extensive real-world experiments, demonstrat-
ing its superior performance in versatile capabilities: long-horizon task planning, error detection
and recovery, natural human-robot interaction, and visual grounding. Additionally, we show that
co-training with our synthetic vision-language data enables OneTwoVLA to exhibit generalizable
planning behaviors and open-world visual grounding capabilities on unseen scenarios and tasks.

4.1 Long-horizon Task Planning

Hardware. We utilize two robot platforms. The primary platform consists of a single 7-DoF Franka
arm equipped with a parallel jaw gripper. A wrist-mounted GoPro camera with fisheye lens provides
wide field-of-view observations. Most of our experiments are conducted using this setup. Addition-
ally, we employ a dual-arm platform featuring two 6-DoF ARX arms with three cameras (two wrist
and one base), primarily for generalizable planning experiments. See Appendix F for further details.

Long-horizon Tasks. We design three challenging long-horizon tasks (shown in Fig. 4, with more
details provided in Appendix A), each requiring the robot to understand the scene, plan accordingly,
accurately track task progress, and generate precise actions throughout execution. 1) Tomato-Egg:
The robot pours oil followed by tomato and egg liquid into a cooking machine. Once cooking
completes, it uses a spoon to scoop the scramble onto a plate—a contact-rich action demanding fine
precision. 2) Hotpot: Four plates containing various food items are presented with varying relative
positions. The robot must sequentially dip beef and one vegetable type, precisely place them into a
strainer, and finally lift the strainer. 3) Cocktail: The robot mixes one of three cocktails (Mojito,
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Error Detection & Recovery

Task: Hotpot

Reasoning:

Scene Description: Beef and 
mushrooms are in strainer. But 
I fail to grasp the strainer.

Plan: 1.✅ Dip beef. 2.✅ Dip 
mushrooms. 3. Cook, then lift 
strainer.

Now I need to: Retract, align 
with strainer, retry to grasp.

Execution:

Human-Robot Interaction

Task: Cocktail

Human: “Use lemon vodka 
instead of orange vodka.”
Reasoning:

Scene Description: …

Plan: 1.✅ Add syrup. 2.✅ Add 
juice. 3. Add lemon vodka.

Now I need to: Put orange 
vodka down, add lemon vodka.

Execution:

Task: Tomato-Egg

Instruction: “Prepare a plate 
of tomato-egg scramble.”

Reasoning:

Scene Description: Oil is 
located at … Cooking machine 
is at …  Tomatoes and eggs 
are at … Spoon is at …

Plan: 1. Add oil to cooking 
machine. 2. Add tomatoes and 
eggs. 3. Grab spoon and wait 
for cooking. 4. Scoop out dish.

Now I need to: Add oil to 
cooking machine.

Long-Horizon Planning

Task: Pass me an empty plate.

Task: Give me an icy cola.

Reasoning:

Plan: 1. Open fridge. 2. Get icy 
cola. 3. Close fridge.

Reasoning:

Plan: 1. Move grapes. 2. Move 
apple. 3. Pick up plate.

Generalizable Planning

Figure 4: Task illustrations and reasoning examples. In the three leftmost columns, we present three chal-
lenging, long-horizon manipulation tasks. Completing these tasks requires not only planning abilities, but also
error detection and recovery capabilities, as well as the the ability to interact naturally with humans. In the
rightmost column, we demonstrate two tasks drawn from our experiments on generalizable planning. For every
task, we include a sample of the model’s reasoning content. See Appendix B for additional reasoning examples.

Mountain Fuji, or Vodka Sunrise), each requiring 3-4 steps of ingredient pouring. The robot
must distinguish between nearly ten visually similar ingredients and pour accurately.

Baselines. We compare OneTwoVLA with two baselines: 1) a state-of-the-art VLA model π0 [12].
To ensure fair comparison, we fine-tune π0 on the same dataset used for training OneTwoVLA; and
2) a dual-system approach inspired by VILA [4], where we employ Gemini 2.5 Pro as the high-
level System Two to decompose complex instructions into sequences of atomic commands. We then
annotate our dataset with atomic commands and fine-tune π0 to act as the low-level System One.

Tomato-Egg Hotpot Cocktail Avg.

OneTwoVLA 85% 80% 95% 87%

π0 70% 50% 50% 57%

Dual-System 55% 70% 65% 63%

Table 1: Evaluation results on long-horizon tasks. Each
method is tested 20 trials for each task. OneTwoVLA excels
in long-horizon task planning compared to baselines.

Experimental Results. As shown in Ta-
ble 1, OneTwoVLA achieves an average
success rate of 87% across the three chal-
lenging tasks, outperforming π0 by 30%
and the dual-system approach by 24%.
OneTwoVLA consistently generates cor-
rect plans, accurately tracks task progress,
and outputs precise actions. In contrast,
lacking explicit reasoning and historical
context, π0 sometimes loses track of its current step — such as staying stuck at the initial posi-
tion when preparing Mojito or repeatedly picking up beef in the Hotpot task. We also observe
that explicit reasoning facilitates more fine-grained action learning; π0 sometimes struggles to grasp
ingredients precisely in Hotpot task or scoops too lightly in the Tomato-Egg task, whereas OneT-
woVLA performs these delicate actions accurately. Regarding the dual-system approach, we found
limitations arising from the lack of mutual awareness between the two systems’ capabilities. Sys-
tem Two occasionally outputs atomic commands that are infeasible for System One to execute (e.g.,
instructing to add green onion in the Tomato-Egg task when none is present). Additionally, the
significant inference latency of Gemini 2.5 Pro may prevent System Two from promptly updating
its reasoning content, causing System One to encounter out-of-distribution states during execution.

Generalizable Planning. We investigate how co-training with large-scale vision–language (VL)
data can improve OneTwoVLA’s ability to generalize in task planning. Specifically, we collect ad-
ditional demonstration data for various atomic skills (e.g., pick, place, open, etc.) across two robot
platforms. We then co-train OneTwoVLA on these robot data together with the VL data synthesized
by the pipeline described in Sec. 3.3. During testing, OneTwoVLA receives instructions that never
appear in the robot data (such as the task shown in Fig. 4, last column) and still exhibits strong gener-
alization, transferring knowledge from VL data to robot control. For instance, the robot proactively
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searches for objects not visible (e.g., opening the refrigerator to find icy cola), and handles complex
spatial relationships such as occlusion (e.g., first removing fruit from a plate when instructed with
“Pass me an empty plate”). Furthermore, OneTwoVLA exhibits scene-aware human intent under-
standing, handling abstract requests such as planning to prepare coffee for “Help me stay awake”,
kale juice for “I want something healthy”, and blue mood cocktail for “I’m feeling down”.

4.2 Error Detection and Recovery

Recovering from mistakes is a critical capability for general-purpose robots [69–73]. OneT-
woVLA can detect errors in real-time, rapidly reason about recovery strategies, and subsequently
generate corrective actions learned from collected robot recovery data. For example, in the Hotpot
task, the robot occasionally fails to grasp the strainer due to misalignment. In that case, OneT-
woVLA reasons to retract, reposition to align with the strainer and try grasping again, subsequently
succeeding in lifting it up. In contrast, π0 frequently ignores errors and continues to lift the gripper
despite not having grasped the strainer. In the Tomato-Egg task, sometimes the oil bottle slips from
the gripper while pouring. OneTwoVLA recognizes the error, reasons to adjust its grasp for in-
creased firmness and retry the action. However, the dual-system approach fails to respond promptly
due to latency issues. System Two only alerts that the oil bottle is not grasped after the robot has
already reached the pouring pose, by which time recovery is hard because the robot has entered an
out-of-distribution state.

4.3 Natural Human-Robot Interaction

To deploy robots in human-centric scenarios, the ability to interact naturally with humans is indis-
pensable [74–77]. Due to its adaptive nature and explicit reasoning process, OneTwoVLA is able to
engage with humans in a natural way — seamlessly handling human interventions and proactively
seek clarification when faced with ambiguities. For example, in the Hotpot task, when a human
interrupts by requesting, “Could you also dip another vegetable for me?” OneTwoVLA immediately
responds by clarifying, “Sure! Would you like green bok choy, enoki mushrooms, or cabbage?” In
the Cocktail task, when the robot is preparing a Vodka Sunrise and the human interrupts with,
“I don’t want orange vodka, I want lemon-flavored one,” OneTwoVLA immediately reasons that it
needs to put down the orange vodka, retrieve the lemon vodka, and generate action sequences that
align with the human’s intent. In contrast, the dual-system approach frequently loses context during
interaction and struggles to maintain a coherent reasoning process, merely picking up the lemon
vodka without continuing to prepare the cocktail in the example above. π0 is unable to engage in
such language-based human interaction because it cannot output textual reasoning content.

4.4 Enhanced Visual Grounding

Grounding objects in language instructions to the visual world is a prerequisite for robots to ac-
complish more complex tasks. We categorize visual grounding into three key aspects [66–68, 78]:
spatial relationships, object attributes, and semantic features. To validate OneTwoVLA’s effective-
ness in these aspects, we design experiments where instruction following requires non-trivial object
grounding capabilities. Furthermore, to demonstrate the impact of our synthetic vision-language
data, we conduct experiments in open-world settings where diverse items and environments pose
additional challenges. The specific experimental settings are described below (shown in Fig. 5):

1) Single-Env: Four objects are randomly arranged on a tabletop in a single environment. We col-
lect 50 picking-up demonstrations for each object using the UMI [79] device, totaling 200 demon-
strations. For testing, we perform 40 trials per method in the same environment using the same four
objects. 2) Open-World: We collect demonstrations in 16 diverse in-the-wild environments, totaling
933 valid demonstrations using the UMI device. Each demonstration involves moving the gripper to
a randomly selected object within the scene, collectively including 180 distinct household items. For
testing, we evaluate each method across 8 unseen environments, testing 5 times per environment,
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each time randomly selecting one from 20 objects: 5 objects seen in robot data, 10 objects unseen
in robot data but present in synthetic vision-language data, and 5 objects unseen in either dataset.

Reasoning:

Black mouse is for computer 
tasks. I need to pick up black 
mouse to the left of cube, 
which has a arching shape 
that fits the palm.

Instruction: 

“Get the object for computer 
tasks.”

Instruction: 

“Hand me the woven object 
with a wide brim.”

Reasoning:

Straw hat is the woven object 
with a wide brim. I need to 
pick up straw hat to the left 
back of teddy bear, which 
provides sun protection.

Single-Env Open-World

Figure 5: Illustrations of visual grounding tasks. In
the Single-Env setting, we provide task instructions
that require understanding of spatial relationships, ob-
ject attributes, or semantic features. In the Open-World
setting, we further evaluate the model’s generalizable
visual grounding capabilities.

In both settings, training and test instructions
refer to target objects using their names or
through spatial relationships, attributes, or se-
mantic features. Our annotated reasoning ex-
plicitly identifies the target object’s name and
includes additional information about it. We
compare three methods: 1) OneTwoVLA-VL:
Trained on robot data and 16,000 synthetic
vision-language data. 2) OneTwoVLA: Trained
exclusively on robot data for learning reasoning
and acting. 3) π0: Trained solely on robot data
to directly predict actions based on instructions.
Appendix A.3 offers more details.

Explicit reasoning facilitates visual ground-
ing. In the Single-Env setting, as shown in
Table 2, OneTwoVLA achieves a success rate
of 78%, significantly outperforming π0, which
has a success rate of only 5%. In most cases,
OneTwoVLA accurately interprets spatial relationships, object attributes, and semantic features de-
scribed in the instructions, reasons about the correct object, and then successfully picks up the target
object. In stark contrast, π0 consistently fails to comprehend the instructions, even when the target
object is explicitly named. π0 typically extends the gripper forward aimlessly or randomly picks up
the closest object. This clear performance gap demonstrates that explicitly learning to reason helps
the model truly understand the visual world rather than attempting to find shortcuts to overfit actions.
Moreover, we find that the reasoning content also aids the model in fitting actions, as evidenced by
π0’s action mean squared error (MSE) on the validation set being 62% higher than OneTwoVLA’s.

Single-Env Open-World

OneTwoVLA-VL 88% 73%

OneTwoVLA 78% 8%

π0 5% 3%

Table 2: Evaluation results on visual ground-
ing tasks. OneTwoVLA exhibits strong vi-
sual grounding capabilities, attributed to its ex-
plicit reasoning. Moreover, our synthetic vision-
language data significantly enhances the model’s
generalization.

Reasoning-centric vision-language data en-
ables generalizable visual grounding. In the
Open-World setting, OneTwoVLA-VL achieves a
73% success rate, significantly outperforming both
OneTwoVLA and π0. In most cases, OneTwoVLA-
VL can correctly handle objects unseen in the
robot data but present in vision-language (VL) data,
effectively transferring commonsense knowledge
from VL data to the robot policy. Remarkably,
OneTwoVLA-VL generalizes even to novel objects
that appear in neither the robot nor VL training data
(e.g., Sprite, GoPro). We attribute this exceptional generalization capability to VL data co-training,
which better activates web knowledge already encoded in the pretrained vision-language model. In
contrast, OneTwoVLA and π0 frequently exhibit aimless reaching behaviors — even for objects
present in the training data — indicating that they merely overfit to action training data without
developing genuine understanding of the visual environment in this complex and diverse setting.

5 Conclusion
In this paper, we present OneTwoVLA, a single unified model capable of both reasoning and acting,
and adaptively switching between these two modes. This synergy is enabled by our meticulously
designed framework and reasoning-enriched robot data curation. Moreover, we propose a scal-
able pipeline for synthesizing embodied reasoning-centric vision-language data to further enhance
the model’s reasoning and generalization capabilities. Extensive experiments demonstrate OneT-
woVLA’s superior performance across four key abilities: long-horizon task planning, error detection
and recovery, natural human-robot interaction, and generalizable visual grounding.
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A Tasks and Evaluations

In this section, we provide a detailed description of the tasks and evaluations.

A.1 Long-horizon Tasks

Figure 6: Execution processes of three long-horizon tasks: Tomato-Egg, Hotpot, and Cocktail (exempli-
fied by Mountain Fuji preparation).

Fig. 6 shows the complete execution progress of the three long-horizon tasks. Detailed descriptions
of these tasks are as follows:

1) Tomato-Egg: The robot first pours oil, then tomato and egg liquid into a cooking machine.
Once cooking is finished, the robot picks up a spoon hanging on a rack, scoops out the tomato-
egg scramble, transfers it onto a plate, and finally places the spoon into the cooking machine. We
observe that sometimes the robot fails to grip the oil bottle firmly enough, causing it to slip from the
gripper. We collect dedicated recovery data for re-grasping the oil bottle more securely after it has
slipped. This enables the robot to automatically perform this recovery if it encounters a bottle slip
during testing. We collect 200 robot demonstrations for this task.

2) Hotpot: Four plates containing beef, green bok choy, enoki mushrooms, and cabbage are placed
on a table with randomized relative positions. A hotpot with a strainer is positioned to the right of
the plates. For each test, the human instructs the robot to dip beef and one type of vegetable. The
robot must accurately pick up the ingredients sequentially, place them in the strainer, wait for them
to cook, and then lift the strainer. Notably, for OneTwoVLA and the dual-system approach, in 10 of
the experiments, the initial instruction is only to dip the beef. While waiting for the beef to cook,
the human interacts with the robot saying,“Could you also dip another vegetable for me?”, requiring
the robot to ask, “Sure! Would you like green bok choy, enoki mushrooms, or cabbage?” Following
the human’s specification, the robot then proceeds to dip the requested vegetable. This interaction
step is omitted for π0 due to its lack of text output capabilities. Furthermore, we observe instances
where the robot fails to grasp the strainer. To address this, we specifically collect recovery data for
correcting misaligned grasps. This enables the robot to automatically perform this recovery if it fails
to pick up the strainer during testing. We collect 600 robot demonstrations for this task.

3) Cocktail: The robot is instructed to prepare one of three cocktails: Mojito, Mountain Fuji,
or Vodka Sunrise. Each cocktail requires pouring 3-4 different ingredients. For OneTwoVLA and
the dual-system approach, in 10 trials, the initial human instruction is general: “Make me a cocktail.”
The robot must clarify by asking: “Which cocktail would you like?”, and then proceed based on the
human’s specific cocktail choice. This interaction step is again omitted for π0. Additionally, during
3 separate Vodka Sunrise trials, the human interrupts with, “I don’t want orange vodka, I want
lemon-flavored one,” requiring the robot to put down the orange vodka and pick up lemon vodka
instead. We collect 100 robot demonstrations for each type of cocktail, totaling 300 demonstrations.
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A.2 Generalizable Planning Tasks

Figure 7: Execution processes of four generalizable planning tasks: Get Icy Cola, Empty Plate,
Prepare Drinks (exemplified by kale juice preparation) and Tool Use.

We collect 2,000 robot demonstrations using the single-arm Franka system and dual-arm ARX sys-
tem. Each demonstration belongs to one category of atomic skill, including pick, place, move, open,
close, and pour. The task instructions and corresponding reasoning contents for these demonstra-
tions focus on short-horizon atomic skills. Training solely on this data limits the model’s generaliz-
able long-horizon planning capabilities. OneTwoVLA overcomes this limitation through co-training
with our synthesized embodied reasoning-centric vision-language data, which equips it to general-
ize to previously unseen tasks. Fig. 7 shows the complete execution progress of these unseen tasks.
Detailed descriptions of these tasks are as follows:

1) Get Icy Cola: The instruction is “Get me a can of icy cola.” The challenge is that a cola can is
not directly visible in the scene. The robot must infer that “icy cola” implies the cola is stored in the
fridge and therefore plan the necessary steps to open the fridge, locate the cola, and retrieve it.

2) Empty Plate: The instruction is “Pass me an empty plate”. However, the plate in the scene is
not empty, as it contains apples and grapes. The robot needs to remove each fruit from the plate
before finally picking up the empty plate.

3) Tool Use: The instruction is “Pick up the cocoa powder can, which is out of reach”. The primary
difficulty here is that the target object is not within the robot’s direct reach. The robot must recognize
the need for a tool (a nearby stick), plan to first grasp the stick, use it to sweep the distant cocoa
powder can within reach, and only then proceed to pick up the can.

4) Prepare Drinks: The robot needs to plan and prepare appropriate drinks based on user intent:
such as coconut latte for “Help me stay awake,” kale juice for “I want something healthy,”
and a blue mood cocktail for “I’m feeling down.” This task requires scene-aware user intent under-
standing capability.

A.3 Visual Grounding Tasks

Task descriptions can be found in Sec. 4.4. In the Single-Env setting, each robot demonstra-
tion is paired with 11 instruction-reasoning pairs. These instructions refer to target objects using
their names (2 instances), spatial relationships (3 instances), attributes (3 instances), or seman-
tic features (3 instances). In the Open-World setting, each demonstration includes a total of 17
instruction-reasoning pairs, broken down as 2 using direct names, 5 using spatial relationships, 5
using attributes, and 5 using semantic features. All instruction–reasoning pairs are first generated
with Gemini 2.5 Pro and then verified by human annotators.
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During testing, we evaluate each method 40 times in both settings. This consists of 10 tests for each
reference type. Table 3 presents the experimental results broken down by these four types.

Here we list the objects used in visual grounding tasks. The Single-Env task uses four objects:
blue cube, eggplant toy, coconut water bottle, and black mouse. For the Open-World task evalua-
tion, we use the following objects (shown in Fig. 8):
1) 5 objects seen in robot data: flower, mouse, cardholder, tissue, and glasses case.
2) 10 objects unseen in robot data but present in synthetic vision-language data: globe, teddy bear,
straw hat, binoculars, trowel, croissant, map, magnifying glass, VR headset, lantern.
3) 5 objects unseen in either dataset: GoPro, Sprite, Starbucks Coffee, HDMI cable, Captain Amer-
ica model.

Fig. 9 displays the 16 training environments for the Open-World task, while Fig. 10 shows the 8
evaluation environments.

Single-Env Open-World

Name Spatial Attribute Semantic Total Name Spatial Attribute Semantic Total

OneTwoVLA-VL 10/10 8/10 8/10 9/10 35/40 8/10 6/10 7/10 8/10 29/40

OneTwoVLA 10/10 5/10 8/10 8/10 31/40 2/40 0/10 1/10 0/10 3/40

π0 2/10 0/10 0/10 0/10 2/40 1/10 0/10 0/10 0/10 1/40

Table 3: Experimental results for the visual grounding tasks. Results are broken down by the four instruction
reference types: direct names, spatial relationships, object attributes, and semantic features.

Objects seen in robot data

Objects seen in vision-language data

Objects unseen in either dataset

Figure 8: Objects for Open-World task evaluation.

19



Figure 9: Training environments for Open-World visual grounding task.

Figure 10: Evaluation environments for Open-World visual grounding task.
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B More Reasoning Examples

Detailed OneTwoVLA reasoning examples during task execution are presented in this section. These
include examples for long-horizon task planning (Table 4), generalizable planning (Table 5), error
detection and recovery (Table 6), natural human-robot interaction (Table 7), Single-Env visual
grounding (Table 8), and Open-World visual grounding (Table 9).

Instruction: Dip the beef and the green bok choy.
Reasoning:
Scene description: The beef is located on the bottom-right plate. The green
bok choy is on the top-right plate. The pot is in the center-right area of the
table and contains a hotpot strainer.
Plan: 1. Put the beef into the hotpot strainer. 2. Put the green bok choy into
the hotpot strainer. 3. Wait for the ingredients to cook and then pick up the
hotpot strainer.
What I have done: Nothing.
Now I need to: Put the beef into the hotpot strainer.
Instruction: Make me a plate of tomato-egg scramble.
Reasoning:
Scene description: The oil bottle is located at the front of the table. The
cooking machine is on the left side of the table.
Plan: 1. Pour the oil into the cooking machine. 2. Pour the tomatoes and egg
liquid into the cooking machine. 3. Wait for the cooking process to finish,
then pick up the spoon. 4. Scoop out the tomato-egg scramble, transfer it
onto the plate, and place the spoon into the cooking machine.
What I have done: Nothing.
Now I need to: Pour the oil into the cooking machine.
Instruction: Make me a cup of Mountain Fuji cocktail.
Reasoning:
Scene description: The orange-flavored vodka is the second from the left
on the bottom shelf. The Blue Curacao is the second from the right on the
bottom shelf. The lemon juice is the second from the left on the top shelf.
The yogurt is located in the middle of the top shelf.
Plan: 1. Pour the orange-flavored vodka into the glass. 2. Pour the Blue
Curacao into the glass. 3. Pour the lemon juice into the glass. 4. Pour the
yogurt into the glass.
What I have done: Nothing.
Now I need to: Pour the orange-flavored vodka into the glass.

Table 4: Reasoning examples for long-horizon task planning.
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Instruction: Give me an icy cola.
Reasoning:
Scene description: The cola is out of sight, maybe in the fridge.
Plan: 1. Open the fridge door. 2. Pick up the icy cola bottle and place it on
the table. 3. Close the fridge door.

Instruction: Pass me an empty plate.
Reasoning:
Scene description: The grapes and apple are on the plate.
Plan: 1. Pick up the grapes and place them on the table. 2. Pick up the apple
and place it on the table. 3. Pick up the empty plate.

Instruction: I’m exhausted — can you make me a drink to keep me awake?
Reasoning:
I need to make a coconut latte.
Plan: 1. Add thick coconut milk to the coffee cup. 2. Pour espresso into the
cup. 3. Drop in ice cubes.

Instruction: I’ve been eating clean and need a nutritious drink.
Reasoning:
I need to make a glass of kale juice with some kale leaves and ice cubes.
Plan: 1. Pour kale juice into the cup. 2. Put a kale leaf in the cup. 3. Add ice
cubes to the cup.

Instruction: I’m feeling kind of down today. Can you fix me a drink?
Reasoning:
I need to make a Blue Mood cocktail.
Plan: 1. Pour in white rum. 2. Add Blue Curacao. 3. Mix in lemon juice. 4.
Drop in ice cubes.

Instruction: Pick up the cocoa powder bottle that is out of reach.
Reasoning:
Scene description: The cocoa power bottle is out of reach. There is a
wooden stick nearby.
Plan: 1. Grasp the stick. 2. Sweep the cocoa powder bottle closer with the
stick and put down the stick. 3. Pick up the cocoa powder bottle.

Table 5: Reasoning examples for generalizable planning.

Instruction: Dip the beef and the enoki mushrooms.
Reasoning:
Scene description: Some of the beef and the green bok choy are in the
hotpot strainer. But I fail to grasp the hotpot strainer due to misalignment.
Plan: 1. Put the beef into the hotpot strainer. 2. Put the enoki mushrooms
into the hotpot strainer. 3. Wait for the ingredients to cook and then pick up
the hotpot strainer.
What I have done: 1. Put the beef into the hotpot strainer. 2. Put the enoki
mushrooms into the hotpot strainer.
Now I need to: Retract, reposition to align with the strainer, and try
grasping again.
Instruction: Make me a plate of tomato-egg scramble.
Reasoning:
Scene description: The oil bottle is located at the front of the table. The
cooking machine is on the left side of the table. But I discover that the oil
bottle slips from the gripper.
Plan: 1. Pour the oil into the cooking machine. 2. Pour the tomatoes and egg
liquid into the cooking machine. 3. Wait for the cooking process to finish,
then pick up the spoon. 4. Scoop out the tomato-egg scramble, transfer it
onto the plate, and place the spoon into the cooking machine.
What I have done: Nothing.
Now I need to: Retry to grasp the oil bottle with increased firmness.

Table 6: Reasoning examples for error detection and recovery.
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Instruction: Dip the beef for me.
Human: Could you also dip another vegetable for me?
Robot: Sure! Would you like green bok choy, enoki mushrooms, or cabbage?
Human: I want some green bok choy.
Reasoning:
Scene description: Some of the beef is in the hotpot strainer. The green bok
choy is on the top-left plate.
Plan: 1. Put the beef into the hotpot strainer. 2. Put the green bok choy into
the hotpot strainer. 3. Wait for the ingredients to cook and then pick up the
hotpot strainer.
What I have done: 1. Put the beef into the hotpot strainer.
Now I need to: Put the green bok choy into the hotpot strainer.
Instruction: Make me a cup of Vodka Sunrise.
Human: I don’t want orange vodka, I want lemon-flavored one.
Reasoning:
Scene description: The grenadine syrup and orange juice have been poured
into the glass. The lemon-flavored vodka is the second from the right on the
top shelf.
Plan: 1. Pour the grenadine syrup into the glass. 2. Pour the orange juice
into the glass. 3. Put down the orange vodka, and retrieve the lemon vodka.
What I have done: 1. Pour the grenadine syrup into the glass. 2. Pour the
orange juice into the glass.
Now I need to: Put down the orange vodka, and retrieve the lemon vodka.

Table 7: Reasoning examples for natural human robot interaction.

Instruction: Pick up the black mouse.
Reasoning:
I need to pick up the black mouse, which is to the left back of the eggplant,
has a smooth, arching shape that fits the palm, and is a key component of a
typical office workstation.

Instruction: Pick up the object which is to the left back of the coconut water
bottle.
Reasoning:
I need to pick up the blue cube, which is identified by its blue shade, and is a
solid form useful for creating stable structures.

Instruction: Pick up the object which exhibits a purple coloration.
Reasoning:
I need to pick up the eggplant, which is to the right of the coconut water
bottle, and is a common ingredient in ratatouille.

Instruction: Pick up the object which is a packaged drink.
Reasoning:
I need to pick up the coconut water bottle, which is to the left back of the
blue cube, and has a cylindrical form.

Table 8: Reasoning examples for Single-Env visual grounding.
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Instruction: Bring me the Sprite.
Reasoning:
I need to pick up green Sprite, which is a model of a drink, located on the
right side of the table.

Instruction: Give me the object behind the seashell.
Reasoning:
I need to pick up the lantern to the left of the croissant, which is black with a
metal structure, and holds light and can be carried.

Instruction: Hand me the object which is black and round.
Reasoning:
I need to pick up the alarm clock sitting on the left side of the table.

Instruction: I need something to get a closer look at this fine print.
Reasoning:
I need to pick up the magnifying glass, which is to the right of the red pepper,
and has a wooden handle and a circular lens.

Table 9: Reasoning examples for Open-World visual grounding.
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C Synthetic Vision-Language Data Examples

Our 16,000 synthetic images are entirely annotated by Gemini 2.5 Pro, without any human inter-
vention. For 6,000 of these images, we generate visual grounding tasks. Each of these images is
annotated with 17 instruction-reasoning pairs, with the instructions referring to objects using their
direct names (2 instances), spatial relationships (5 instances), attributes (5 instances), and semantic
features (5 instances). For the remaining 10,000 images, we annotate a long-horizon planning task
along with a corresponding high-level, step-by-step plan for task completion. We also attempt to
use GPT-4o for annotating our synthetic images but find its spatial understanding to be weak. We
therefore use Gemini 2.5 Pro, which demonstrates strong spatial reasoning capabilities.

We present illustrative examples synthesized by our embodied reasoning-centric visual-language
data synthesis pipeline. Table 10 and Table 11 show samples of synthesized data for visual grounding
and long-horizon tasks, respectively, each including textual descriptions of tabletop layouts, synthe-
sized images corresponding to these descriptions, and the accompanying instruction-reasoning pairs
(for visual grounding example, we only show one pair for each of the four reference types). Fig. 11
illustrates the effects of applying fisheye distortion or compositing a robot gripper with adaptive
brightness to the synthetic images.

Moreover, Fig. 12, 13, and 14 detail the specific prompts used with Gemini 2.5 Pro throughout our
pipeline: Fig. 12 shows the prompt for generating diverse tabletop descriptions, while Fig. 13 and 14
illustrate the prompts for generating visual grounding and long-horizon task instructions and their
associated reasoning, respectively.
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Tabletop layout description: The entire scene is sharp and focused. From a
45-degree overhead view, observe a medium-sized, rectangular driftwood
table with a natural, uneven texture. On it are displayed seashells, a coral
sculpture, a nautical map under a magnifying glass, a vintage lantern, and a
model sailboat, backed by a beach house and ocean view.

Direct instruction: Can you pass me the map?
Reasoning: I need to pick up the map, located towards the center of the table.

Spatial instruction: Get me the object sitting on the back right area of the
paper item.
Reasoning: I need to pick up the miniature sailboat model, which is placed
on the map near the top right corner of the map.

Attribute instruction: I need the item with the complex branching structure.
Reasoning: I need to pick up the large piece of coral positioned at the left
side of the table.

Semantic instruction: Could you pass me the device used for seeing small
details much larger?
Reasoning: I need to pick up the magnifying glass situated on the map near
the bottom right corner of the map.
Tabletop layout description: The entire scene is sharp and focused. From a
45-degree overhead view, observe a large, oval, stone table with a rough
texture, set outdoors in a mountain retreat. On it, a hearty meal of grilled
trout, wild rice, steamed vegetables, a jug of water, and a lantern. The rugged
outdoor setting is enhanced by the surrounding pine trees and the fading
twilight.

Direct instruction: Can you hand me the lantern?
Reasoning: I need to pick up the black lantern situated at the back left of the
rock table.

Spatial instruction: Pass me the item directly to the left of the grilled trouts.
Reasoning: I need to pick up the fork sitting to the immediate left of the
grilled trouts.

Attribute instruction: Please give me the plate with the long, silvery food
item.
Reasoning: I need to pick up the plate containing the two cooked fish
positioned in front of the vegetable bowl.

Semantic instruction: Hand me that grain-based side dish, please.
Reasoning: I need to pick up the plate of wild rice located at the back left, to
the left of the vegetable bowl.
Tabletop layout description: The entire scene is sharp and focused. From a
45-degree overhead view, observe a rectangular maple table with a honey
finish, placed in a sunny conservatory. A watering can, a terracotta pot with
blooming flowers, a gardening book, gloves, and a small birdhouse are
charmingly scattered on it. Glass panels reveal a lush garden outside.

Direct instruction: Can you pass me the watering can?
Reasoning: I need to pick up the green watering can positioned on the back
left side of the table.

Spatial instruction: I want the item located on the front right side of the
table.
Reasoning: I need to pick up the pair of gardening gloves, situated on the
front right area of the table surface.

Attribute instruction: I need the object that’s open and has pages with text.
Reasoning: I need to pick up the book, which is open and located between
the watering can and the brown gloves.

Semantic instruction: Please pass me the item that could provide shelter for
small birds.
Reasoning: I need to pick up the wooden birdhouse, sitting on the back right
side of the table.

Table 10: Examples of synthetic vision-language data for visual grounding tasks.
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Tabletop layout description: The entire scene is sharp and focused. From a
45-degree overhead view, directly facing the cluttered table, observe a rustic
wooden surface covered in vibrant fresh ingredients like tomatoes, peas,
herbs, and spices. A cutting board, knife, spoon, and book are laid out,
bathed in bright light, against a backdrop of softly visible shelves with plants.

Instruction: Prepare a Fresh Herb and Tomato Relish.
Reasoning:
Plan: 1. Chop the tomatoes using the knife and cutting board. 2. Chop the
fresh basil and parsley. 3. Combine the chopped tomatoes, basil, and parsley
in a bowl. 4. Add the green peas and the dried herbs and spices from the
piles on the board to the bowl. 5. Mix all ingredients thoroughly using the
wooden spoon.
Tabletop layout description: The entire scene is sharp and focused. From a
45-degree overhead view, directly facing the cluttered table, observe a low
Japanese tea table with a woven tatami mat beneath it, showcasing a tea set, a
small bonsai tree, and a scroll. The scene plays out indoors, in a serene,
minimalist room, emphasizing peaceful tranquility.

Instruction: Prepare and serve tea.
Reasoning:
Plan: 1. Pick up the teacup and place it next to the teapot. 2. Fill the teapot
with hot water. 3. Pour tea from the teapot into the teacup. 4. Place the
teapot on the table. 5. Serve the teacup to the guest.
Tabletop layout description: The entire scene is sharp and focused. From a
45-degree overhead view, directly facing the cluttered table, observe a small
potted plant beside an empty terracotta pot. A soil bag, a silver trowel, and
various tools are scattered across the worn wooden surface. The scene takes
place outdoors, in a garden full of flowers, bathed in warm afternoon light.

Instruction: Repot the small plant into the larger terracotta pot.
Reasoning:
Plan: 1. Remove the plant from its current small pot. 2. Add soil from the
bag into the bottom of the larger terracotta pot using the trowel. 3. Place the
plant in the center of the larger pot. 4. Fill the remaining space in the larger
pot with soil from the bag using the trowel. 5. Use the trowel to gently firm
the soil around the base of the plant.

Tabletop layout description: The entire scene is sharp and focused. From a
45-degree overhead view, directly facing the cluttered table, observe a white
folding table at an outdoor market. Assorted fruits, vegetables, and price tags
cover the table. The bright, natural light enhances the colors of the produce.

Instruction: Prioritize fresh produce to boost your daily vitamin intake.
Reasoning:
Plan: 1. Pick up some tomatoes and place them in the basket. 2. Pick up
some lemons and place them in the basket. 3. Pick up some oranges and
place them in the basket. 4. Carry the basket to checkout.

Table 11: Examples of synthetic vision-language data for long-horizon tasks.
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Figure 11: Augmentations for our synthetic images. From left to right: original synthetic images, synthetic
images with fisheye distortion, synthetic images with a robot gripper composited with adaptive brightness, and
synthetic images with both fisheye distortion and compositing a robot gripper with adaptive brightness.
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Create 30 detailed 50-word prompts that describe scenes from a 45-degree top-down view of a table. 
The table should have a clear description of its shape, size, texture, and color. On the table, place 
around five objects, describing each object in detail and their positions relative to each other (e.g., 
object A is placed above object B). The background and environment should be clearly defined, either 
indoor or outdoor, and the scene should be rich in detail. Ensure there is no blurriness or out-of-focus 
areas, and the lighting and atmosphere should enhance the realism.


Please ensure each of the following prompts is unique and creatively different, varying the table, 
objects, environment (like indoor or outdoor), lighting, and overall atmosphere. 


Each prompt should start with "The entire scene is sharp and focused. From a 45-degree overhead 
view, observe ...", followed by a description of the table's **COLOR** (this could be diverse across 
different prompts), shape, texture, size, etc.


Use the following format to separate each prompt: 
**START Prompt <Prompt ID>** 
[Detailed description of the scene] 
**END Prompt <Prompt ID>**


Repeat this process for 30 distinct prompts. Request to generate all at once.

Figure 12: Prompt used to generate tabletop descriptions.
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In the provided image, you will notice several items placed on a table. Your task is to come up with 17 
different instructions based on these items. These tasks will be categorized into three types based on object 
properties: spatial, semantic, and attribute.


Spatial pertains to the object's position in space (e.g., on top of the plate, to the right of the book, or at the 
bottom right corner of the table).


Semantic refers to the object's general, high-level meaning (e.g., sushi is a type of Japanese food, a kettle is 
used for boiling water, a book is meant for reading, etc.).


Attribute is concerned with the object's specific features or characteristics (e.g., a ball is round, a handle is 
made of wood, etc.).


For the objects on the table in the image, your task is to create 17 instructions, which can either directly ask 
for an object or describe it using its spatial, semantic, or attribute properties (e.g., "pass me the item on the 
plate," "give me something that helps with drying hair," or "hand me the yellow object").


Each task is essentially a "pick" task, but the instruction should sound natural and realistic.


After giving the instruction, provide a more specific description that starts with "I need to pick up," and then 
clearly name the object, possibly with some additional spatial details to help locate it.


When describing a location, try to be as accurate as possible. Avoid using vague descriptions such as "in 
the middle/center of the table," "near," "beside," or "next to," as these could apply to many objects. 
Instead, use precise relative positioning, such as "to the left front of an object," "on top of an object," 
"between object A and object B," "to the right back of an object," or "behind an object.”


When giving instructions, avoid mentioning the specific name of the object and instead use pronouns like 
"item," "object," or "device."


When providing attribute instructions, only list 1 or 2 properties of the object.


Your Tasks: 
First, generating 2 tasks with direct references to the object name. 
Then, generate 5 tasks **only** related to spatial properties (focusing on the location of the objects). 
Next, generate 5 tasks related to semantic properties (focusing on the general meaning or purpose of the 
objects). 
Finally, generate 5 tasks related to attribute properties (focusing on specific features of the objects).


For each task, follow this format: 
**Start Task <task id>** 
Instruction: ... 
I need to pick up ... 
**End Task <task id>**


Separate these 4 types of tasks by 
### Tasks Related to Spatial Properties 
### Tasks Related to Semantic Properties 
### Tasks Related to Attribute Properties

Figure 13: Prompt used to generate visual grounding task instructions and reasoning.

In the given image, there is a table with several items placed on it in a messy manner.


Your task is to first imagine a long-horizon task based on the items in the image (such as organizing the 
table, making a sandwich, etc.). This task needs to be relatively long-term, meaning it should require about 
several steps to complete.


The second step is to provide a plan, where each step is a brief action description (e.g., Pick up sth and 
place it somewhere, Close sth, Open sth, Move sth to somewhere, etc.).


Output in the following format: 
**Start Task** 
Instruction: ... 
1. 
2. 
… 
N. 
**End Task**


If you cannot think of an interesting task, simply output "Fail to think of a plan."


Note that the instruction and plan should be brief and precise.

Figure 14: Prompt used to generate long-horizon task instructions and reasoning.
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D Implementation Details

D.1 Robot Data Intervals

As mentioned in Sec. 3.2, we segment robot demonstrations into two types of intervals: reasoning
intervals and acting intervals. Below, we detail what OneTwoVLA learns in each interval type.

1) Reasoning intervals, OneTwoVLA learns to:

• Predict [BOR] and the updated reasoning content R̂ based on the latest reasoning content R.

• Predict [BOA] and actions based on the updated reasoning content R̂.

• Predict actions based on the latest reasoning content R without supervising [BOA]. This is to
prevent incorrect action prediction if the model fails to update the reasoning promptly during
deployment.

2) Acting intervals, OneTwoVLA learns to:

• Predict [BOA] and actions based on the latest reasoning content R.

• (Optional) Predict [BOR] based on outdated reasoning without supervising the reasoning content.
This is included because we observe that during deployment, the model sometimes fails to enter
the reasoning mode. Since predicting decision tokens is essentially a binary classification prob-
lem, and acting intervals are typically significantly longer than reasoning intervals, the model
predominantly learns to predict [BOA], leading to an imbalanced classification problem. This
optional training helps to increase the proportion of [BOR] predictions.

Additionally, it is important to note that reasoning interval during training is designed to encourage
the model to learn the reasoning process more effectively. In real-world deployment, the robot
only reasons at a small number of steps (rather than continuous intervals), ensuring that the overall
operational efficiency is almost unaffected.

D.2 Policy Training

As shown in Sec. 3.1, we use π0 as our base model. For each task, we train the model for 30,000
steps on 8xH100 GPUs, requiring approximately 10 hours. We adopt training hyperparameters from
π0. We make two modifications to the original π0’s input. Firstly, we use the current image It

and the reference image Iref as image observations. We incorporate Iref because the textual scene
descriptions in reasoning may become outdated as the task progresses (e.g., an object’s position
described relative to the gripper becomes invalid upon gripper movement). Including Iref, which
corresponds to the image observation for the current reasoning content, helps prevent model confu-
sion that might arise from potentially outdated textual descriptions. Second, we input not only the
current robot proprioceptive states but also the proprioceptive states from 0.05 and 0.25 seconds ear-
lier. This temporal context allows the model to generate more consistent and smooth actions during
execution.

D.3 Deployment

In real-world deployment, we use the temporal ensemble [80] technique to ensure smooth action ex-
ecution. Specifically, in acting mode, the policy generates temporally overlapping action sequences
every 0.2 seconds. At any given timestep, multiple predicted actions are averaged using exponential
weighting to determine the actual executed actions.

Table 12 lists the computation time for π0, along with the computation time for OneTwoVLA in
acting mode for varying input token counts and in reasoning mode for varying output token counts,
all of which are tested while processing two image inputs on an NVIDIA 4090 GPU. In acting
mode, although OneTwoVLA has additional reasoning content as input and outputs an extra [BOA]
compared to π0, this has minimal impact on computation time and remains well below 0.2 seconds,
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thus execution efficiency is not affected in this mode. In reasoning mode, when the reasoning token
count is low (less than 20 tokens), execution efficiency is unaffected; however, when reasoning
content is lengthy (exceeding 100 tokens), the robot needs to pause for a few seconds. Nevertheless,
reasoning only occurs at a few critical moments, resulting in minimal impact on overall execution
efficiency. For example, in one trial of the Tomato-Egg task, the entire long-horizon task takes 183
seconds, with reasoning occurring 5 times, totaling 16 seconds of reasoning time, which accounts
for 8.7% of the total duration. Similarly, in one trial of the preparing Mountain Fuji task, the
entire long-horizon task takes 135 seconds, with reasoning occurring 5 times, totaling 14 seconds of
reasoning time, which accounts for 10.4% of the total duration.

# input tokens # output tokens computation time

π0 20 0.082 s
OneTwoVLA-Act-20 20 1 0.102 s
OneTwoVLA-Act-200 200 1 0.104 s

OneTwoVLA-Reason-20 200 20 0.853 s
OneTwoVLA-Reason-100 200 100 2.346 s
OneTwoVLA-Reason-200 200 200 4.361 s

Table 12: Computation times of π0 and OneTwoVLA. π0’s input tokens consist solely of instruction ℓ.
OneTwoVLA’s input tokens are typically longer, including instruction and latest reasoning content (ℓ and R). In
acting mode (OneTwoVLA-Act rows), OneTwoVLA’s output token is a single [BOA]. While in reasoning mode
(OneTwoVLA-Reason rows), OneTwoVLA outputs [BOR] and updated reasoning content, R̂. We showcase
computation times when its output token length is 20, 100, and 200.
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E Other Findings

Instruction: “Grasp cube.” Instruction: “Grasp bottle.”Instruction: “Grasp cube.” Instruction: “Grasp bottle.”

Reasoning:

There are two cubes on the 
table. I choose the left one to 
grasp.

Reasoning:

There are two bottles on the 
table. I choose the left one to 
grasp.

Execution: Execution:

Reasoning:

There are two cubes on the 
table. I choose the right one to 
grasp.

Execution: Execution:

Reasoning:

There are two bottles on the 
table. I choose the right one to 
grasp.

Figure 15: Multi-modality task illustration. Two cubes and two bottles are symmetrically placed on the table.
When the instruction doesn’t specify grasping the left or right object, OneTwoVLA can reason to grasp either
the left or the right object, producing multi-modal actions.

E.1 OneTwoVLA Produces Multi-Modal Actions

In this section, we design experiments to show OneTwoVLA’s capability to produce multi-modal
actions.

Tasks and Evaluations. Two identical cubes are symmetrically placed on a table, each with an iden-
tical bottle positioned symmetrically behind it. Using the UMI device, we collect 50 demonstrations
for each of these four objects (totaling 200 demonstrations). Each demonstration instruction is either
“Grasp the cube” or “Grasp the bottle,” without specifying left or right. During testing, the object
positions and the robotic gripper’s initial pose remain fixed. Each method is tested 20 times per
instruction.

Comparative Methods. 1) OneTwoVLA: For each demonstration, we explicitly include disam-
biguating reasoning content (e.g., specifying picking up the left or right object) to resolve the ambi-
guity. 2) π0: The model receives the original instruction directly, without explicit disambiguation.

Experimental Results. As shown in Fig. 15, OneTwoVLA demonstrates multi-modal action capa-
bility by alternating between reasoning to grasp objects from either side. Specifically, in the “grasp
cube” experiment, OneTwoVLA grasps the left cube 9 times and the right cube 11 times. In the
“grasp bottle” experiment, it grasps the left bottle 8 times and the right bottle 12 times. OneT-
woVLA achieves this balanced left-right performance because its reasoning process is probabilistic,
which means the model can sample different decisions (such as whether to grasp from the left or
right) based on predicted token probabilities, much like language models generate varied responses
from the same input. In contrast, although flow matching [62, 63] or diffusion [81, 82] algorithms
theoretically enable multi-modality, π0 consistently selects only the right-side objects, exhibiting
only unimodal behavior, similar to observations in some other studies [83]. Additionally, the dis-
ambiguating reasoning content helps the model fit actions more accurately. This is evidenced by
π0 occasionally failing to grasp the block, while OneTwoVLA consistently achieves precise grasps.
Moreover, π0’s action mean squared error (MSE) on the validation dataset is 56% higher than OneT-
woVLA’s. This interesting finding suggests that when training on large-scale, variable-quality robot
datasets, detailed annotation of reasoning content may enhance action learning.

33



E.2 OneTwoVLA Produces Reasoning-Compliant Actions

Our experiments show that the actions generated by OneTwoVLA consistently align with its reason-
ing, even when the reasoning itself is incorrect. This finding is similar to observations in previous
work [49]. For example, in the Hotpot task, if OneTwoVLA occasionally reasons incorrectly about
food locations, it proceeds to reach toward those incorrect positions. Similarly, in the Open-World
experiment, OneTwoVLA moves to the object specified in its reasoning, even if that object does
not align with the instruction. This indicates that OneTwoVLA’s cognition and behavior are highly
unified, showcasing synergistic reasoning and acting. Additionally, this interesting phenomenon
may indicate that improving the model’s reasoning ability (e.g., through additional vision-language
data, using more powerful VLM as the base model, or more precise reasoning annotations) may
contribute to generating more appropriate actions.

F Hardware Setup

Figure 16: Robot platform overview. We employ two robot platforms: a single-arm Franka system (left) and
a dual-arm ARX system (right).

We utilize two robot platforms. The primary platform (Fig. 16, left) is a single 7-DoF Franka arm
equipped with a Weiss WSG-50 parallel-jaw gripper. A wrist-mounted GoPro camera with fisheye
lens provides wide-angle observations. The arm is mounted on a custom height-adjustable table that
can be pushed by a person—while not autonomous, this mobility allows us to evaluate the policy
beyond traditional laboratory environments. The action space is 7-dimensional (6-DoF end-effector
pose plus gripper width). Expert demonstrations for this platform are collected using UMI [79].

The second platform (Fig. 16, right) features two 6-DoF ARX arms with parallel-jaw grippers and
a three-camera system (two wrist-mounted and one base-mounted). It also includes a holonomic
wheeled base and a 1-DoF torso lift mechanism, though these components have not yet been utilized
in our experiments. The resulting action space is 14-dimensional (2 × 7). Expert demonstrations
are collected via teleoperation using a Meta Quest headset.
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G Failure Cases

Instruction: “Prepare a plate 
of tomato-egg scramble.”

Instruction: “Dip the beef and 
the green bok choy.”

Instruction: “Make me a cup 
of Vodka Sunrise.”

Instruction: “Pick up the 
small basketball toy.”

Figure 17: Failure cases of OneTwoVLA.

Despite the promising performance of OneTwoVLA, it still makes mistakes. Fig. 17 illustrates the
main failure cases of OneTwoVLA. In the Tomato-Egg task, OneTwoVLA occasionally fails to
grip the yellow plate containing tomato and egg liquid firmly enough, resulting in the plate being
dropped (see the first column in Fig. 17). In the Hotpot task, OneTwoVLA sometimes misidentifies
the location of the target ingredient. For instance, as shown in the Fig. 17 second column, the robot
is instructed to pick up green bok choy but instead it attempts to pick up enoki mushrooms. The
third column of Fig. 17 shows a case in Cocktail task, where OneTwoVLA fails to pour the orange
juice accurately while preparing the Vodka Sunrise, causing the juice to spill. In the Open-world
experiments, OneTwoVLA shows vulnerability when encountering objects that are not present in
either the robot data or our synthesized vision-language data. For instance, as illustrated in the
Fig. 17 fourth column, the robot consistently moves toward the chessboard despite being instructed
to pick up the small basketball toy. We believe that training on larger robot datasets, as well as co-
training with richer vision-language data, can further facilitate OneTwoVLA in learning fine-grained
actions and improve generalization capabilities.
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