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Abstract

A persistent puzzle appears across multiple fields, yet its solution continues to elude full
understanding. How can a network of simple nodes, each evolving with only local informa-
tion and learning with local rules, collectively solve complex global tasks? Such dynamical
stochastic networks generalize cellular automata and recurrent neural networks, model bi-
ological circuits, and can be interpreted as decentralized multi-agent systems. We identify
three fundamental challenges in the efficient learning of dynamical stochastic networks: (1)
constructing precise yet easy-to-use theoretical models; (2) designing mechanisms for local
credit assignment aligned with global objectives; and (3) characterizing the regimes of con-
figurations that enable efficient learning. To address these issues, we adopt a theoretical
framework of objective-driven dynamical stochastic fields, referred to as the intelligent field,
and propose theoretical quantities that capture learnability. Crucially, we show that effi-
cient learning emerges when systems maximize their ability to retain information over time.
Experiments demonstrate that local information retention is linked to global learnability,
shedding light on the future practical design of effective dynamical stochastic networks.

Keywords: Dynamical Stochastic Networks, Learnability, Intelligent Field.

1. Introduction

Figure 1: Illustration of a
Dynamical Stochastic Net.

A dynamical stochastic network can be abstracted as follows.
The system is composed of many interacting nodes, each with
its own hidden state and capable of exchanging signals with
neighboring nodes. The local evolution at each node depends
solely on its local observable information. Additionally, the
system may be influenced by an external environment, which
can either perturb the system or extract information from it.

To make this less abstract, imagine a binary dynamical
stochastic network, arranged in a peculiar configuration, reminiscent of a neural network,
attempting to play blindfold chess in discrete time steps. At every move, the opponent’s
action is encoded as a binary pattern injected into designated input nodes. The network
then evolves for a few internal steps, where each binary node updates its state based solely
on the states of its local neighbors. A readout mechanism then accesses a small subset of
nodes to decode the network’s response move. Over time, the recurrent dynamics act as a
form of memory, enabling the system to maintain a latent representation of the chessboard
using only the sequential stream of moves.

Indeed, this abstract model of dynamical stochastic networks is shown to be capable of
complex behaviors across disciplines. From a computer science perspective, its deterministic
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counterpart, cellular automata, has been shown to be Turing complete (Rendell, 2002; Cook
et al., 2004), a property also shared by recurrent networks (Funahashi and Nakamura,
1993; Siegelmann and Sontag, 1992). Leveraging this computational power, researchers
have extended the idea to stochastic artificial neural networks (Williams, 1992; Hopfield,
1982). From a neuroscience standpoint, locally coupled, recurrent dynamics are a well-
supported account of computation in biological circuits (Maass, 1997; Mante et al., 2013).
Finally, the same system can be viewed as a decentralized partially observable multi-agent
system (Oliehoek et al., 2016; Jin et al., 2024; Zhang et al., 2018; Omidshafiei et al., 2017):
local update rules correspond to agents acting on partial observations.

However, efficient learning of a dynamical stochastic network poses a substantial puzzle.

How can individual nodes, operating on simple local rules, efficiently
learn behaviors such that collectively they achieve a complex global
objective?

Important gaps remain in our understanding of dynamical stochastic networks. We
identify three main challenges in understanding and designing such systems.

• Challenge 1: Theoretical Modeling. Choosing the right theoretical model is
essential. It should be both foundational and easy to use for theoretical analysis while
offering precise and concrete descriptions for algorithmic development.

• Challenge 2: Credit Assignment. The global objective should be decomposed and
propagated within the network. Due to locality, credit assignment must be conveyed
through the local propagation of reward or penalty signals, referred to as objective
signals. With the existence of recurrent connections, each node both sends objective
signals to others and adapts its behavior based on what it receives. This mutual influ-
ence creates complex feedback loops that largely complicate the system’s dynamics.

• Challenge 3: Regimes of Learnability. Many system configurations can lead to
inefficient learning when nodes rely only on local observations. Consider the follow-
ing illustrative example: each node receives signals from its neighbors (and possibly
the environment) and decides whether to propagate a signal onward. Such a system
may operate in two regimes: (1) nodes are overly sensitive and fire signals chaoti-
cally, or (2) nodes fire too sparsely and remain largely unresponsive. In both cases,
learning becomes ineffective for obvious reasons. What remains unclear, however, is
the fundamental quantity that governs learnability in dynamical stochastic networks
more generally. Identifying and exploiting the regimes that enable efficient learning
is therefore another central challenge.

In this paper, we first show how a dynamical stochastic network evolving in continuous
time can be formulated under the intelligent field framework (Zhang and Koyejo, 2025),
where credit assignment is captured through objective propagation. We then introduce
theoretical quantities that characterize learnability and, crucially, show that efficient learn-
ing emerges when systems maximize their ability to retain information over time. Based
on this, we explore how local information retention gives rise to global learnability. Exper-
iments demonstrate our theoretical insights and point toward the future design of scalable
dynamical stochastic networks.
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2. Theoretical Analysis

Throughout this section, we assume that the entire stochastic system of the network, which
evolves in continuous time, is ergodic and is defined on a finite configuration space. A
detailed overview of the intelligent field framework (Zhang and Koyejo, 2025) and complete
derivations of the theoretical results are provided in the Appendix A&B, respectively.

2.1. The Intelligent Field Framework

We model the network as a space X , with each point x ∈ X representing a node. The
system dynamics are described by a field ω(t, x) ∈ Ωx evolving stochastically in spacetime,
where Ωx is a finite set, and the global configuration set is Ω =

∏
xΩx. The theory tracks

the exact dynamics of the probability distribution over configurations, denoted by vectors
|φ(t)⟩ ∈ H. A pure state concentrated on configuration ω ∈ Ω is written as |ω⟩ ∈ H.
The evolution of |φ(t)⟩ is generated by a linear operator G : H → H, i.e., its infinitesimal
generator, where locality implies that G decomposes into a sum of local generators G(x):

d

dt
|φ(t)⟩ = G|φ(t)⟩, G =

∑
x

G(x).

As expected from locality, the local generators commute, i.e., [G(x),G(x′)] = 0, for non-
neighboring x, x′, and each node’s behavior is fully determined by its local generator.

To model how the system receives objective signals such as penalties and rewards, a
higher-dimensional space H̃ := H⊗H is introduced, where it has basis vectors in the form
of |ω′ω⟩. The generator G is lifted to G̃ : H → H̃. Each local node x is then associated
with an objective operator Γx : H̃ → R, and is evolving to minimize its objective value: the
time average of the objective signals it receives. The objective value γ̄(x) and its gradient
with respect to a local generator G(x) are given by

γ̄(x) = lim
T→∞

1

T

∫ T

0
dt ΓxG̃|φ(t)⟩, ∂γ̄(x)

∂G(x)ω′
ω

= Γx(1 + G̃SΠ)Ã(x)ωω′ |φ̄⟩, (1)

where S :=
∫∞
0 dt etG integrates future influences; Π|ω′ω⟩ := |ω⟩ − |ω⟩ is a projection

operator; G(x)ω
′

ω denotes the transition rate at which the local configuration jumps from ω
to ω′; Ã(x)ωω′ is a local action operator that enacts the transition ω → ω′ locally at x; and
|φ̄⟩ denotes the stationary distribution.

2.2. Learnability and Information Retention

We define learnability in the most straightforward way: as the magnitude of the local
gradient (1). If the gradient is close to zero, it becomes difficult for local nodes to determine
how to adjust their behavior. As demonstrated later in the experiments, obtaining large
gradient magnitudes is considerably more challenging than obtaining small ones.

Definition 1 (Learnability) The learnability at a local point x is defined as

Λ(x) :=

∥∥∥∥ ∂γ̄

∂G(x)

∥∥∥∥ ,
where the norm is arbitrary and can be specified as needed.
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If we inspect the gradient (1) closely, without knowing the objective Γ, the gradient
norm is determined by how fast the system mixes, as captured by the following quantities.

Definition 2 (KL Mixing Distance) As etG|ω⟩ represents the distribution of the sys-
tem evolving from a pure state |ω⟩ for time t, we characterize its KL divergence from the sta-
tionary distribution |φ̄⟩ by: Dω(t) := DKL(e

tG|ω⟩∥|φ̄⟩) and D(t) := supω∈Ω DKL(e
tG|ω⟩∥|φ̄⟩).

Theorem 3 (Learnability is Bounded by KL Mixing Distance) The learnability, mea-
sured in ℓ∞-norm, denoted as Λ∞, is bounded by the KL mixing distance. Formally, for
any point x ∈ X : Λ∞(x) ≤ 2

√
2 ∥ΓG̃∥∞ ·

∫∞
0 dt

√
D(t).

The above quantity only accounts for the worst case. A more accurate characterization
may be obtained by considering the average case. In this case, it is standard to show that
the KL mixing distance at time t is essentially the amount of information retention.

Definition 4 (Information Retention) Sample ω0 ∼ |φ̄⟩, evolve it for time t we have a
random variable ωt, where its distribution follows etG|ω⟩. We denote the global information
retention to be

Θ(t) := I(ω0;ωt)/H(|φ̄⟩),

where I(·; ·) denotes mutual information. The Shannon entropy H(|φ̄⟩) of the stationary
distribution |φ̄⟩ serves as a normalization factor such that Θ(t) ∈ [0, 1] (detailed in Propo-
sition 7).

Proposition 5 (Information Retention ⇐⇒ KL Mixing Distance) The following
identity holds. Θ(t) ·H(|φ̄⟩) = Eω∼|φ̄⟩[Dω(t)].

Therefore, we can see that information retention is closely related to learnability. We
can marginalize the information retention Θ(t) to obtain a locally observable quantity.

Definition 6 (Local Information Retention) Sample ω0 ∼ |φ̄⟩, evolve ω for time t we
have a random variable ωt. Given local space Ωx ⊂ Ω, we observe local random variables
(ω0)|Ωx

, (ωt)|Ωx
∈ Ωx. We denote the local information retention over Ωx to be Θ|Ωx

(t) :=
I((ω0)|Ωx

; (ωt)|Ωx
)/H(|φ̄⟩|Ωx

), where H(|φ̄⟩|Ωx
) is the Shannon entropy of the marginalized

stationary distribution |φ̄⟩|Ωx
.

Proposition 7 The local information retention Θ|Ωx
(t), for any non-empty Ωx ⊆ Ω, has

the following properties: (i) Θ|Ωx
(0) = 1; (ii) limt→∞Θ|Ωx

(t) = 0; (iii) Θ|Ωx
(t) ∈ [0, 1], but

may not be monotonic in t.

Based on the theoretical insights, numerical simulations (Appendix C) show that the
network exhibits a sharp transition into a high-learnability regime as local information
retention increases from low to high.

3. Discussion and Future Work

The preliminary results highlight imminent future steps: conducting a deeper theoretical
analysis of learnability, incorporating information retention as a design constraint, and
implementing dynamical stochastic neural networks to address practical AI tasks.
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Appendix A. An Overview of Intelligent Fields

Intelligent field refers to the framework of objective-driven dynamical stochastic fields (Zhang
and Koyejo, 2025), which can be used to model dynamical stochastic networks. This field-
theoretical framework is precise in describing the dynamics using a compact mathematical
language.

We begin by considering the network as a space X , where each point x ∈ X corresponds
to a node in the network. The dynamics of the network system are thus modeled by a
field ω(t, x) ∈ Ωx evolving in spacetime. The set of global configurations is denoted as
Ω =

∏
xΩx. An illustrative figure, as provided originally in (Zhang and Koyejo, 2025), is

shown in Figure 2.

Figure 2: (Illustration of the intelligent field theoretical framework) A spacetime diagram
illustrating the evolution of local configurations ω(t, x) over time for three entities x1, x2, x3
in a discrete space X . Time progresses vertically from t to t′ = t + ∆t, where ∆t is an
infinitesimal time step. Each horizontal layer corresponds to the system at a specific time.
Dashed gray arrows represent directed neighboring relationships, indicating directions of
signal propagation (e.g., x1 receives signals from x3, but not from x2). Solid arrows represent
communication and objective signals, which only propagate forward in time and are limited
to immediate neighbors as defined by the dashed links. This shows that the updated local
configuration ω(t′, x) depends only on the previous configurations of the entity and its
neighbors at time t. The local objective value is defined as the long-term average of the
received objective signals, and each entity evolves to minimize its own local objective.

The theory characterizes the dynamics of the probability distribution of the field con-
figurations, and thus no approximation is made. The probability distribution concentrated
in one configuration ω ∈ Ω is represented by a basis vector |ω⟩ ∈ H where H is the Hilbert
space spanned by all basis vectors. The inner product of two basis vectors is denoted by
⟨ω′ | ω⟩ = δω

′
ω , where δω

′
ω is the Kronecker delta function. A generic probability distribu-

tion over system configuration is represented by a state vector |φ⟩ ∈ H with normalization∑
ω∈Ω⟨ω | φ⟩ = 1 and ⟨ω | φ⟩ ≥ 0, where ⟨ω | φ⟩ is the probability of observing configuration

ω given the distribution |φ⟩. The evolution of the system’s state vector |φ(t)⟩ is governed
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by its infinitesimal generator G : H → H, and locality implies that the global generator
can be decomposed into a sum of local generators G(x):

d

dt
|φ(t)⟩ = G|φ(t)⟩, G =

∑
x

G(x). (2)

As expected from locality, the local generators commute, i.e., [G(x),G(x′)] = 0, if x and x′

are not neighbors.
Drawing an analogy to quantum field theory, the generators in this framework corre-

spond to the system’s Hamiltonian, and a path integral formalism naturally arises. The
Lagrangian L(wt, w

+
t ) of the entire system is expressed as a sum over local Lagrangians

L(wt,x, w
+
t,x). The transition probability ⟨ω′|eGT |ω⟩, representing the evolution of the sys-

tem from configuration ω to ω′ over time T , can be formulated via a path integral using
this Lagrangian:

L(wt, w
+
t ) =

∑
x

L(wt,x, w
+
t,x), ⟨ω′|eGT |ω⟩ =

∫
Dω exp

{
−
∫ T

0
dt L(wt, w

+
t )

}
. (3)

As we take the limit H → 0, where the entropy H quantifies the system’s stochasticity
(as rigorously defined in Proposition 2.22 of (Zhang and Koyejo, 2025)), the path that
minimizes the Lagrangian integral becomes the dominant contribution to the path integral.
This parallels how taking ℏ → 0 would reveal the classic limit in Feynman’s path integral
of a quantum system.

To model how the system receives objective signals such as penalties and rewards, a
higher-dimensional space H̃ := H⊗H is introduced, where it has basis vectors in the form
of |ω′ω⟩, and the generator G is lifted to G̃ : H → H̃. Each local node x is then associated
with an objective operator Γx : H̃ → R, and evolves to minimize its objective value: the
time average of the objective signals it receives over an infinite time horizon. The objective
value γ̄(x) and its gradient with respect to a local generator G(x) are given by

γ̄(x) = lim
T→∞

1

T

∫ T

0
dt ΓxG̃|φ(t)⟩, ∂γ̄(x)

∂G(x)ω′
ω

= Γx(1 + G̃SΠ)Ã(x)ωω′ |φ̄⟩, (4)

where S :=
∫∞
0 dt etG is a linear operator that integrates future influences; Π|ω′ω⟩ :=

|ω⟩ − |ω⟩ is a projection operator; G(x)ω
′

ω denotes the transition rate at which the local
configuration jumps from ω to ω′; Ã(x)ωω′ is a local action operator that enacts the transition
ω → ω′ locally at x; and |φ̄⟩ denotes the stationary distribution.

Credit assignment of the network is done via the propagation of objective signals. It
is shown that any objective propagation can be represented as a linear operator, which is
termed the objective propagator. In particular, an interesting class of such propagators is

P[Q] := 1 + G̃SQΠ, (5)

where Q can be any linear operator that satisfies a normalization constraint. In this way,
each node can locally compute a closed-form gradient expression that guides how it should
adapt its behavior.

In summary, Zhang and Koyejo (2025) provide a theoretical framework that describes
both the dynamics and credit assignment in intelligent fields through objective propagation.
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Appendix B. Complete Derivation of the Theoretical Results

Theorem 8 (Theorem 3 Restated) The learnability, measured in ℓ∞-norm, denoted as
Λ∞, is bounded by the KL mixing distance. Formally, for any point x ∈ X :

Λ∞(x) ≤ 2
√
2 ∥ΓG̃∥∞ ·

∫ ∞

0
dt

√
D(t). (6)

Proof Consider a two-entity view of the system: it is composed of two entities, x and the
rest y := X\x. We call x the acting entity and the rest the environmental entity.

In the two-entity view, the following notations become handy and clearer. The entity x
possesses a configuration µ ∈ M and α ∈ A, where only α is observable to the environmental
entity y. Symmetrically, entity y possesses a configuration ν ∈ N and β ∈ B, where only β
is observable to entity x. Therefore, the system configuration is described by:

ω = (α, β, µ, ν) ∈ Ω, where Ω = A× B ×M×N . (7)

It is proven (Zhang and Koyejo, 2025) that locality implies the following decomposition
of the generator G.

G = M+N, (8)

where G is the generator of the whole system, M = G(x) is the generator of the acting
entity, and N =

∑
x′∈X\xG(x′) is the generator of the environmental entity. Note that M

completely characterizes the behavior of the acting entity.

The gradient of the objective γ̄ given by the environment with respect to the agent’s
generator can thus be formulated as

∂γ̄

∂Mα′µ′

αβµ

= ΓG̃SΠÃαβµ
α′µ′ |φ̄⟩. (9)

Note that |φ̄⟩ is the stationary state, representing the stationary distribution of the whole
system. Let us denote p̄(·) as the stationary distribution over ω = (α, β, µ, ν) ∈ Ω. Then,
the above gradient formula can be rewritten as

∂γ̄

∂Mα′µ′

αβµ

=

∫ ∞

0
dt Eν∼p̄(·|αβµ)

[
ΓG̃etG(|α′βµ′ν⟩ − |αβµν⟩)

]
· p̄(αβµ). (10)
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We start from the gradient formula (10):

Λ∞(x) = max
αβµα′µ′

∣∣∣∣∣ ∂γ̄

∂Mα′µ′

αβµ

∣∣∣∣∣ (11)

= max
αβµα′µ′

∣∣∣∣∫ ∞

0
dt Eν∼p̄(·|αβµ)

[
ΓG̃etG(|α′βµ′ν⟩ − |αβµν⟩)

]
· p̄(αβµ)

∣∣∣∣ (12)

≤ max
αβµα′µ′

∣∣∣∣∫ ∞

0
dt Eν∼p̄(·|αβµ)

[
ΓG̃etG(|α′βµ′ν⟩ − |αβµν⟩)

]∣∣∣∣ (13)

≤ max
αβµα′µ′

Eν∼p̄(·|αβµ)

[∫ ∞

0
dt

∣∣∣ΓG̃etG(|α′βµ′ν⟩ − |αβµν⟩)
∣∣∣] (14)

≤ max
αβµα′µ′

Eν∼p̄(·|αβµ)

∥ΓG̃∥∞ ·
∫ ∞

0
dt

∥∥etG(|α′βµ′ν⟩ − |αβµν⟩)
∥∥
1︸ ︷︷ ︸

(A)

 . (15)

In the last step, the norm ∥ · ∥1 is the L1 norm which applies to Hilbert space H with the
canonical orthonormal basis {|ω⟩}ω∈Ω. Accordingly, the norm of the linear operator ΓG̃ is
the operator norm with respect to the L1 norm, which is equivalent to the L∞ norm on H.

In the next step, we deal with the term (A) as above. The trick is that we insert
the stationary distribution |φ̄⟩ ∈ H, where |φ̄⟩ = etG|φ̄⟩ is a fixed point, and then apply
Pinsker’s inequality.

(A) =
∥∥etG(|α′βµ′ν⟩ − |φ̄⟩+ |φ̄⟩ − |αβµν⟩)

∥∥
1
≤

∥∥etG(|α′βµ′ν⟩ − |φ̄⟩)∥1 + ∥etG(|φ̄⟩ − |αβµν⟩)
∥∥
1

(16)

=
∥∥etG|α′βµ′ν⟩ − |φ̄⟩∥1 + ∥etG|αβµν⟩ − |φ̄⟩

∥∥
1

(17)

≤
√
2DKL(etG|α′βµ′ν⟩∥|φ̄⟩) +

√
2DKL(etG|αβµν⟩∥|φ̄⟩) (Pinsker’s inequality)

≤ 2
√

2D(t). (Definition 2)

Combining the above, we arrive at

Λ∞(x) ≤ max
αβµα′µ′

Eν∼p̄(·|αβµ)

[
∥ΓG̃∥∞ ·

∫ ∞

0
dt 2

√
2D(t)

]
(18)

= ∥ΓG̃∥∞ ·
∫ ∞

0
dt 2

√
2D(t). (19)

Rearranging the above inequality completes the proof.

Proposition 9 (Proposition 5 Restated) The following identity holds.

Θ(t) ·H(|φ̄⟩) = Eω∼|φ̄⟩[Dω(t)]. (20)
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Proof Denoting the transition probability pt(ω
′ | ω) := ⟨ω′|etG|ω⟩, we start from the

definition of the KL divergence:

Eω∼p̄[Dω(t)] =
∑
ω

p̄(ω)
∑
ω′

pt(ω
′ | ω) log pt(ω

′ | ω)
p̄(ω′)

(21)

=
∑
ω

p̄(ω)
∑
ω′

pt(ω
′ | ω) log p̄(ω)pt(ω

′ | ω)
p̄(ω)p̄(ω′)

. (22)

Next, to connect it with mutual information, let us examine more closely at the distribution
of (ω0, ωt). Note that we denote p̄ as the probability mass function of the stationary
distribution, which is essentially the same as the stationary state |φ̄⟩ ∈ H. Given that
ω0 ∼ p̄ is from the stationary distribution, the marginal distribution of ωt is also the
stationary distribution (formally, |φ̄⟩ = etG|φ̄⟩ is the fixed point). Therefore, we have
Pr(ωt = ω′) = p̄(ω′). Given this observation, we can continue from above:

(22) =
∑
ω

Pr(ω0 = ω)
∑
ω′

Pr(ωt = ω′ | ω0 = ω) log
Pr(ω0 = ω) Pr(ωt = ω′ | ω0 = ω)

Pr(ω0 = ω) Pr(ωt = ω′)
(23)

=
∑
ω,ω′

Pr(ω0 = ω, ωt = ω′) log
Pr(ω0 = ω, ωt = ω′)

Pr(ω0 = ω) Pr(ωt = ω′)
(24)

= I(ω0;ωt) = Θ(t) ·H(p̄). (25)

Proposition 10 (Proposition 7 Restated) The local information retention Θ|Ωx
(t), for

any non-empty Ωx ⊆ Ω, has the following properties: (i) Θ|Ωx
(0) = 1; (ii) limt→∞Θ|Ωx

(t) =
0; (iii) Θ|Ωx

(t) ∈ [0, 1], but may not be monotonic in t.

Proof First, by the definition of mutual information,

I((ω0)|Ωx
; (ω0)|Ωx

) = H((ω0)|Ωx
) = H(p̄|Ωx

). (26)

Note that we denote p̄ as the probability mass function of the stationary distribution, which
is essentially the same as the stationary state |φ̄⟩ ∈ H.

This implies

Θ|Ωx
(0) =

I((ω0)|Ωx
; (ω0)|Ωx

)

H(p̄|Ωx
)

= 1. (27)

Then, given the ergodicity, there is a unique stationary distribution |φ̄⟩, and its marginal is
also unique. Therefore, the random variable (ω∞)|Ωx

) follows the distribution p̄|Ωx
, which

does not have information about ω0. Therefore, I((ω0)|Ωx
; (ω∞)|Ωx

) = 0.
Lastly, it is easy to see that

0 ≤ I((ω0)|Ωx
; (ωt)|Ωx

) = H((ω0)|Ωx
)−H((ω0)|Ωx

| (ωt)|Ωx
) ≤ H((ω0)|Ωx

) = H(p̄|Ωx
). (28)

Therefore, Θ|Ωx
(t) ∈ [0, 1]. Noting that the marginal process ωt may not be Markovian, we

can see that the mutual information I((ω0)|Ωx
; (ωt)|Ωx

) is not necessarily non-increasing.
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Appendix C. Numerical Simulation

In this synthetic experiment, we ask a small binary dynamical stochastic network to learn
the XOR operation. The network consists of 13 nodes, each connected to two other nodes,
with recurrent connections included. When an input is given to two nodes, the network runs
for 30 steps, after which the environment reads the output from a node to check whether
it matches the result of the XOR operation. The results are presented and discussed in
Figure 3, showing how local information retention is closely related to global learnability.

(a) As the activation probability across all
nodes is gradually increased, the network
transitions from a under-activated regime to
an over-activated regime. Both local infor-
mation retention and learnability peak be-
tween these two phases. However, in this
scenario, both learnability and information
retention are significantly lower than those
observed in (b). This suggests that simply
controlling the activation probability and
operating at the edge of under/over activa-
tion does not guarantee great learnability.

(b) As local information retention is con-
trolled and increased, the network transi-
tions from the regime of low information
retention to a regime of rigidity where it
becomes almost deterministic. During this
transition, learnability sees a sudden im-
provement. However, sample efficiency un-
dergoes a sudden decline. It’s important to
note that sample efficiency improves when
the network utilizes the P[Q] objective
propagation, which decomposes and prop-
agates objective signals more effectively.

Figure 3: A binary dynamical stochastic network consisting of 13 nodes is tasked with
learning the XOR operation. Each node is connected to two other nodes, with recurrent
connections present. When given an input to two nodes, the network is run for 30 steps,
after which the environment reads the output from a node to check if it matches the result
of the XOR operation.
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