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Abstract

Recent trends in human trajectory prediction are the development of generative1

models which generate distributions of trajectories. However existing metrics2

are suited only for single (unimodal) trajectory instances. Furthermore, existing3

datasets are largely limited to small-scale interactions between people, with little4

to no agent-to-agent environment interaction. To address these challenges, we5

propose a dataset that compensates for the lack of agent-to-environment interaction6

in existing datasets with a new simulated dataset and metrics to convey model7

performance with more reliability and nuance. A subset of these metrics are8

novel multiverse metrics, which are better-suited for multimodal models than9

existing metrics but are still applicable to unimodal models. Our results showcase10

the benefits of the augmented dataset and metrics. The dataset is available at:11

https://mubbasir.github.io/HTP-benchmark/.12

1 Introduction13

The study of human navigation has long been of interest to various research communities such as14

computer graphics [10], computer vision [1], cognitive science [33], and robotics [5]. Advancements15

in these areas have seen widespread practical application in pandemic response, architectural design,16

urban planning, transportation engineering, crowd management, socially compliant robot navigation,17

and entertainment. Accordingly, the influence of human navigation research has reached countless18

individuals and will continue to do so in the foreseeable future.19

Most applications rely on simulation models [20], which are sufficiently accurate to human behavior20

and generalizable to unforeseen circumstances. However, the past five years of predictive modeling21

in computer vision has achieved significantly better accuracy [23], giving it a strong potential to22

overtake the longstanding models from computer graphics. This is largely due to the transition from23

using unimodal, discriminative models [1] that predict a single future trajectory to using multimodal,24

generative models [7, 24, 18] that predict a distribution of future trajectories, which captures the25

inherent uncertainty in human decision-making [25, 4]. Despite the evolution of models, however, the26

accuracy metrics that were introduced with the first unimodal models are still in use today. In order to27

adapt these fundamentally unimodal metrics to multimodal models, the metrics are computed between28

each predicted trajectory and the ground truth trajectory, and the minimum error for each metric is29

reported. This results in a gross overestimation of accuracy that we later show is not consistent with30

the expected accuracy, which may misguide future research efforts. Furthermore, the minimum value31

is not actionable, because while it is evident that a state-of-the-art (SOTA) multimodal model can32

find an accurate trajectory, it cannot determine which trajectory that is on unseen data. We measure33

this uncertainty through a decidability metric.34

Generalizability cannot be maximized by solely improving upon accuracy metrics. An inaccurate35

model can be robust by producing realistic trajectories, and an accurate model can fail to be practicable36
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by being undecidable. Models can exist on the continuum between these two extremes, making it37

critical to consider realism and decidability metrics as well.38

Furthermore, there is a stark class imbalance in existing datasets. While datasets are abundant in39

instances where humans are interacting with each other in open spaces [16, 22, 2, 34, 3, 14], they are40

significantly lacking in both environment information and instances where humans are interacting41

with their environment. Ultimately, this hinders generalization at a global level and has led to some42

models being developed without considering environments at all [1, 7].43

In this work, we provide an augmented human trajectory prediction dataset that compensates for44

the lack of agent-to-environment interaction in existing datasets with a new simulated dataset. To45

understand model performance on this new dataset with more reliability and nuance, we propose a46

comprehensive set of accuracy, realism, and decidability metrics. A subset of these metrics are novel47

multiverse metrics, which are better-suited for multimodal models than existing metrics but are still48

applicable to unimodal models. The evaluation using these metrics decisively evidences that the new49

dataset facilitates better robustness and generalization, that current metrics can be misleading, and50

that there are still remaining challenges to modeling human trajectories. We finally showcase that51

realism metrics can also be used to decide which prediction to take from an undecidable multimodal52

model through the process of Multimodal Model Collapse. Henceforth, we refer to humans as agents,53

since our conceptual framework is broadly applicable, e.g. to robotic and vehicular agents.54
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Figure 1: The above framework image shows (a) the differences between the trajectories of existing
datasets (A2A) and the novel dataset (A2E), (b-c) the models trained and tested on combinations of
A2A and A2E, (d) the proposed set of metrics for evaluating the accuracy, realism, and decidability
of models, and (e) a greedy method for selecting the prediction most realistic movement.

2 Background and Preliminaries55

Models for Human Trajectory Prediction. Earlier methods such as Social LSTM [1] and Social56

Attention [31] proposed a deterministic model which predict a future trajectory given observed57

trajectories. However, forecasting trajectories inherently introduce the uncertainty in the future, hence58

the utility of those uni-modal models which predict only one future trajectory is limited. Recent59

studies [7, 18, 24, 36, 12, 17] assume the multi-modalities in the future human behavior and predict60

its distribution to embody the uncertainty. In this paper, we focus on three SOTA methodologies to61

showcase our benchmark dataset: SocialGAN [7], PECNet [18], and Trajectron++ [24].62

SocialGAN [7] adopts GAN [6] framework to forecast possible future trajectories and it can avoid63

collisions among pedestrians by introducing a pooling mechanism that captures between-human64

interaction. PECNet [18] solves the trajectory prediction problem by first modeling the future goal65

position distribution using a Variational Autoencoder (VAE) [13], and then predict the future positions66

by interpolating the observed positions and the estimated goal position. Trajectron++ [24] proposes67

2



a graph structured recurrent model based on conditional VAE [28] to predict the future trajectories.68

Further details can be found in the Supplementary Materials.69

We investigate these three models as the representatives of the various SOTA works. We choose70

them because PECNet [18] shows an outstanding performance on the long-term trajectory while71

the short-term trajectory is most well predicted in Trajectron++ [24]. We expect SocialGAN [7], as72

one of the earliest and most frequently referred models, to be a bound around existing models with73

respect to PECNet and Trajectron++. Fig. 1.b shows the coverage comparison of SOTA models in74

terms of the short- and long-term human trajectory prediction accuracy. We differentiate between75

predictive models of short-term and long-term trajectories on the basis of goal conditioning. A model76

that is not goal-conditioned will inherently increase in error as the predicted path length increases,77

sometimes at an exponential rate [24], whereas goal-conditioned models are expected to predict long78

paths without the same trade-off between path length and error.79

Datasets for Human Trajectory Prediction. The computer vision and graphics community have80

collected several human pedestrian trajectory datasets. ETH [21] and UCY [16] are commonly81

used datasets that contain five outdoor scenes with jointly more than 1,600 pedestrian trajectories.82

Stanford Drone Dataset (SDD) [22] consists of eight outdoor scenes tracking 19,000 targets including83

pedestrians, bicyclists, skateboarders, cars, and buses collected from a drone. Stanford Crowd84

Dataset (CFF) [2] consists of pedestrian trajectories collected within a train station building of size85

25m × 100m for 12 × 2 hours captured by a distributed camera network. L-CAS 3D Point Cloud86

People Dataset (LCAS) [34] consists of 28,002 scan frames collected within a university building87

by a 3D LiDAR sensor mounted on a robot that is either stationary or moving. WILDTRACK88

(WT) [3] is a collection of annotated dense pedestrian groups captured by seven static HD cameras89

in a public square for about 60 minutes. The Supplementary Materials provide more details of90

these datasets. Some datasets, such as TrajNet++ [14], augment upon existing datasets. TrajNet++91

combines ETH/UCY, CFF, LCAS, and Wildtrack datasets, as well as a synthetic dataset generated by92

ORCA [30].93

Existing human trajectory datasets have limitations in the sense of embodying interactions. They either94

do not contain agent-to-environment (A2E) interactions [3], or exhibit limited agent-to-agent (A2A)95

interactions at small scale in simple environments. We speculate that many self-centered pedestrians96

are prone to avoid or mitigate, consciously or unconsciously, the influence of the environments and97

other pedestrians during their navigation. In this work, we are proposing datasets that augment A2E98

and A2A interactions, which may bring benefits for enhancing learning models by encoding more99

complex trajectory dynamics.100

Benchmarks for Human Trajectory Prediction. In computer graphics community [27], trajectories101

are, in general, measured by motion statistics such as the number of collisions, average speed, average102

acceleration, and total distance traveled. On the other hand, in machine learning community [14,103

1, 7], the most commonly used evaluation metrics for trajectory forecasting models are Average104

Displacement Error (ADE) and Final Displacement Error (FDE). ADE is the average L2 distance105

between the ground truth and the predicted trajectories across all future steps. FDE is the L2 distance106

between the ground truth final destination and the predicted final destination at the end of the future107

steps. More evaluation metrics in machine learning community are discussed in Supplementary108

Materials.109

ADE and FDE are applicable to unimodal methods which predict only one future sequence that can be110

compared with the ground truth future sequence. However, as aforementioned in this section, many111

multimodal trajectory forecasting models assuming uncertainty and multimodality in pedestrians’112

future behaviors predict k future sequences (usually k = 20). Most of these models report the113

minimum ADE / FDE results among all k predictions, which, in our view, is over optimistic. Not114

only is this a significant underestimation of the error, but it is also an impossible standard in that115

these models are incapable of choosing the prediction with the minimum error. In Section 4 of this116

work, we propose new metrics that can tackle this issue.117

3 Agent-to-Agent and Agent-to-Environment Interaction Dataset118

We propose a comprehensive trajectory prediction dataset A2X that consists of a representative set119

of trajectories, which will enable better generalization under realistic circumstances that are either120

complex or unsafe and out-of-distribution (OOD) with respect to current datasets.121
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In order to understand what the shortcomings of current datasets are (Sec. 2), we first taxonomize the122

characteristics of human trajectories. The TrajNet++ benchmark [14] proposed an initial taxonomy123

that only considers short-term characteristics, e.g., standing still, moving linearly, or avoiding124

collisions (Fig. 1.a). While the original taxonomy is sufficient for describing the trajectories in many125

real datasets and their agent-to-agent (A2A) interactions, models that learn exclusively from these126

types are insufficient for most applications, which consider environments that have non-navigable127

regions and time frames longer than 5 seconds, which is the practical limit for most models before128

they become exponentially erroneous [24]. We have improved upon this by considering long-term129

characteristics (Fig. 1.a), i.e., pathfinding alone and navigating through crowded bottlenecks. These130

types of trajectories emerge from agent-to-environment (A2E) interactions, which unfold over a131

longer time frame than A2A interactions and are essential for navigation within any environment [29].132

3.1 Agent-to-Agent Interactions133

For representing A2A interactions, we make use of each prior dataset described in Section 2:134

ETH [16], UCY [16], SDD [22], CFF [2], LCAS [34], WT [3], and TrajNet++ [14]. These datasets135

feature transient interactions between agents and little interaction with the environment, which is136

made difficult to measure by the frequent unavailability of environment information. Therefore, we137

approximate environment information based on the principle of stigmergy [19, 11], which observes138

the self-organization of human navigation along trails. For each position that agents have traveled139

through in either the training or testing sets of the ground truth, a 1-meter radius around the position140

is considered to be navigable. This guarantees that predictions with less than 1 meter of displacement141

from the ground truth at all times will never intersect with the environment. In addition, in order to142

compensate for the imbalance between A2A and A2E interactions in prior datasets, we propose the143

generation of synthetic data in addition to that of TrajNet++. While real datasets are valuable for their144

veridicality, there are logistical limitations that prevent the acquisition of real data in OOD scenarios145

that are unsafe for human participants or prohibitively expensive from an organizational standpoint.146

3.2 Agent-to-Environment Interactions147

Two such scenarios are used to sample trajectories exhibiting A2E interactions: (1) pathfinding alone148

in a large, complex environment, which has prohibitive logistical cost and (2) navigating through149

bottlenecks of varied width with a dense crowd, which can be unsafe. Though simulation models150

are normally less accurate than predictive models in predicting human trajectories [1], the prevalent151

Social Force model [10] currently outperforms predictive models in terms of robustness, has been152

used in several application domains [5, 32, 35], and has ecologically validity in these A2E scenarios,153

which have not had sufficient real data for training predictive models until A2X.154
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Figure 2: The above images show the exact dimensions of environments from the bottleneck and
pathfinding scenarios in A2E.

We leverage the Social Force model to simulate 236 scenarios of a single agent navigating between155

random points in complex 112× 112 m2 environments from [29] (Fig. 2). This produces long-term156

isolated interactions between single agents and the environment. We then use the same model157

to simulate well-studied bottleneck scenarios [26, 9] in a 25 × 7 m2 room that vary in terms of158

(a) the density of agents (Level of Service) from {0.2, 0.4, 0.6, 0.8, 1.0} agents/m2 and (b) the159

ratio between the width of the bottleneck and the width of the room (Exit-Entrance Ratio) from160

{0.2, 0.3, 0.4, 0.6, 0.7} (Fig. 2). A total of 398 scenarios have been generated across all combinations161

of Level of Service and Exit-Entrance Ratio. This produces long-term interactions between agents as162

a result of the constricting environment. Exact environment information has been provided for both163
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types of scenarios. We later show that current models trained on existing A2A datasets are unable to164

generalize to these critical scenarios, but with the addition of training data on these scenarios, the165

accuracy of predictions significantely improves.166

4 Accuracy, Realism, and Decidability of Human Trajectory Prediction167

We propose a total of 15 accuracy, realism, and decidability metrics (Fig. 1.d). These metrics are either168

borrowed from computer vision and computer graphics literature [21, 1, 27, 8] or newly developed169

multiverse metrics, which assess the A2A and A2E interactions of both multimodal models with170

k > 1 and unimodal models with k = 1.171

4.1 Preliminaries172
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Figure 3: This im-
ages shows how b =
8 bins would be ar-
ranged in 2D space.

In accordance with both unimodal and multimodal predictive models, we173

utilize the following notation for their predictions. A prediction scenario is174

defined by a set of n agents present in an environment E at the same time.175

Each agent a has tp frames of past position data as input and tf frames of176

future position data for ground truth Ya,0 ∈ Rtf×2 and for each prediction177

Ŷa,j ∈ Rtf×2, where 0 ≤ j < k. All position data is in meters and has a178

frame rate of 1/∆t hertz based on the dataset. The position at the t-th frame179

is Ya,0,t ∈ R2 for the ground truth and Ŷa,j,t ∈ R2 for prediction j, where180

0 ≤ t < tf . We then compute the velocities corresponding to the ground truth181

Va,0 ∈ R(tf−1)×2 and each prediction V̂a,j ∈ R(tf−1)×2.182

Many of the following metrics make use of aggregate functions. For any d-dimensional vector183

v ∈ Rd, we denote the minimum value by Ω(v), the mean value by Θ(v), and the maximum value184

by O(v). For a matrix of d-many 2D vectors V ∈ Rd×2, function Ξ(V, b) transforms the 2D vectors185

into a probability distribution p ∈ Rb over a vector of b-many equiangular bins, which radiate from186

the origin (Fig. 3). Finally, we denote the L2 norm by ‖ · ‖.187

4.2 Accuracy Metrics: Comparison to Ground Truth188

Accuracy metrics from computer vision literature are responsible for comparing the ground truth with189

the predictions based on the displacement error.190

Average Displacement Error (ADE). ADE is computed for each prediction j as aj , the average191

distance between a position in the ground truth and a position in the prediction across tf frames192

(Eq. 1) [21]. It is then aggregated across the k predictions in three ways: minimum, mean, and193

maximum, which offers a more reliable expectation of a model’s accuracy than the minimum alone.194

Final Displacement Error (FDE). FDE is computed for each prediction j as bj , the distance195

between the final positions of the ground truth and the prediction (Eq. 2) [1]. It is aggregated across196

the k predictions in the same ways as ADE for better reliability.197

ADE
(
Ya, Ŷa

)
=
[
Ω(a),Θ(a),O(a)

]
s.t. aj =

1

tf

tf−1∑
t=0

∣∣∣∣∣∣Ya,0,t − Ŷa,j,t

∣∣∣∣∣∣ , 0 ≤ j < k

(1)

FDE
(
Ya, Ŷa

)
=
[
Ω(b),Θ(b),O(b)

]
s.t. bj =

∣∣∣∣∣∣Ya,0,tf−1 − Ŷa,j,tf−1

∣∣∣∣∣∣ , 0 ≤ j < k

(2)

4.3 Realism Metrics: Motion and Interaction Statistics198

Realism metrics are used to describe the movement and interactions within the ground truth and199

the predictions separately. These metrics can then be used to uncover more nuanced differences200

between the ground truth and predictions. While they cannot ensure that predictions are accurate,201
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they can ensure that predictions are realistic in their movement and plausible. Every realism metric is202

computed in the same way for both the ground truth and predictions, so Y is interchangeable with Ŷ203

and V with V̂. For generality, we consider the ground truth as a unimodal model with k = 1, but we204

refer to it as having k paths instead of predictions.205

The following motion statistics are used to describe the movement of agent a in either the ground truth206

or averaged across the k predictions. They have been used to evaluate crowd simulations in computer207

graphics research [27], but have not yet been used to evaluate predictive models in computer vision.208

Path Length. The average path length (m) for an agent a is computed by first finding the length of209

each path j and then averaging the values across all k paths (Eq. 3).210

Speed. In order to report the speed (m/s), the magnitudes S ∈ Rk×(tf−1) of velocities in Va are first211

computed for each agent a. Next, two values are reported for speed: the mean speed averaged across212

k paths and the maximum speed averaged across k paths. For each path j of agent a, the mean and213

maximum speed are computed across tf − 1 frames (Eq. 4).214

Acceleration Magnitude. Similar to speed, we first compute the magnitudes A ∈ Rk×(tf−2) of the215

difference between every pair of consecutive velocities in Va for each agent a. The acceleration216

magnitude (m/s2) A(Va) is then reported in the same way as speed: the mean acceleration magnitude217

averaged across k paths and the maximum magnitude averaged across k paths (Eq. 5).218

L(Ya) =

[
1

k

k−1∑
j=0

tf−2∑
t=0

∣∣∣∣∣∣Ya,j,t+1 −Ya,j,t

∣∣∣∣∣∣] (3)

S(Va) =

[
1

k

k−1∑
j=0

Θ
(
Sj

)
,

1

k

k−1∑
j=0

O
(
Sj

)]

s.t. Sj,t =
∣∣∣∣∣∣Va,j,t

∣∣∣∣∣∣ , 0 ≤ t < tf − 1

(4)

A(Va) =

[
1

k

k−1∑
j=0

Θ
(
Aj

)
,

1

k

k−1∑
j=0

O
(
Aj

)]

s.t. Aj,t =
∣∣∣∣∣∣(Va,j,t+1 −Va,j,t

)
/∆t

∣∣∣∣∣∣ , 0 ≤ t < tf − 2

(5)

Traditional measures of collision are unsuitable for multimodal models in which an agent a may be219

colliding with agent b when it takes the direction of path j, but not when it takes the direction of path220

j + 1. We therefore propose multiverse metrics such as Agent Collision-Free Likelihood (ACFL)221

and Environment Collision-Free Likelihood (ECFL) to measure the A2A and A2E interactions of222

multimodal models respectively.223

Agent Collision-Free Likelihood (ACFL). In order to assess the quality of A2A interaction under224

the kn possible futures for n agents, we propose ACFL, which computes the probability that agent a225

has a path that is free of collision in all of the k(n−1) possible futures with other agents (Eq. 6). The226

indicator function 1R>0 returns 1 when the distance between agents a and b is greater than r meters227

at time t, and 0 otherwise. This means that if their centers of mass are within r meters of each other,228

they are considered to be colliding. For analysis, r has been set to 0.3 meters (∼1 foot).229

Environment Collision-Free Likelihood (ECFL). ECFL complements ACFL in that it measures the230

quality of A2E interaction under the k possible futures that agent a can interact with the environment231

(Eq. 7). Namely, it reports the probability that agent a has a path that is free of collision with the232

environment. The environment is represented by a binary matrix E, in which each cell corresponds233

to a square space and is equal to 1 if that space is navigable and 0 otherwise. E[0, 0] is aligned with234

the origin of the position data Y, but E has a scale of 1/s meters per unit as opposed to 1 meter per235

unit like Y. This means that the position [x, y] = Ya,j,t of agent a taking path j at time t maps to236

E
[
bs · yc, bs · xc

]
. For analysis, s has been set to 2 based on the dataset. When agent a’s center of237

mass is intersecting a non-navigable region of the environment like a wall, the agent is considered to238

be colliding with the environment.239
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ACFL(Y, a) =

[
1

k

k−1∑
j=0

n−1∏
b=0

k−1∏
i=0

tf−1∏
t=0

1R>0

(∥∥Ya,j,t −Yb,i,t

∥∥− r
)]

s.t. a 6= b (6)

ECFL(Ya,E) =

[
1

k

k∑
j=1

tf−1∏
t=0

E
[ ⌊

s ·Ya,j,t,1

⌋
,
⌊
s ·Ya,j,t,0

⌋ ] ]
(7)

MVE(Ya) = −
∑
p∈p

p · log2(p) s.t. p = Ξ
(
D, 20

)
,

Dj =
1

tf − 1

( tf−1∑
t=1

Ya,j,t

)
−Ya,j,0 , 0 ≤ j < k

(8)

4.4 Decidability Metric: Certainty in Movement Direction240

Decidability is a measure of a model’s uncertainty in the movement direction of agents, and it is not241

strictly opposite between unimodal and multimodal models. If a multimodal model has low enough242

uncertainty in an agent’s direction of movement, we consider it to be decidable.243

Multiverse Entropy (MVE). We compute MVE to measure the decidability for agent a. We first244

transform each path j into an average direction vector Dj ∈ R2 as the vector from the initial position245

Ya,j,0 to the average position of the tf − 1 subsequent points (Eq. 8). The average direction vectors246

D are then transformed into a probability distribution p ∈ Rb over a vector of b-many equiangular247

bins (Fig. 3). Finally, the entropy of p is reported as MVE. High values of ACFL and ECFL are248

contingent on low MVE (high decidability), because high certainty in the direction that an agent249

will travel along will cause fewer potential collisions with other agents (ACFL) and the environment250

(ECFL). For experimental purposes, b has been set to k, so that MVE is maximized when every251

prediction is in a different direction.252

4.5 Comparing Realism Metrics253

In order to compare realism metrics between the ground truth and predictions for an agent a, we254

first compute a feature vector for the ground truth Fa =
〈
L(Ya,0),S(Va),A(Va),ACFL(Y, a),255

ECFL(Ya,E)
〉
, where 〈·, ·〉 denotes vector concatenation. The same vector concatenation is used256

to compute the feature vector F̂a,j ∈ R7 for each prediction j. Equation 9 returns the percent257

differences Ĉa ∈ Rk between the feature vectors of each prediction j and the ground truth of agent a.258

Ĉa,j =
100

7

6∑
f=0

∣∣∣F̂a,j,f − Fa,0,f

∣∣∣
Fa,0,f

s.t. Fa,0,f > 0 , 0 ≤ j < k (9)

5 Results259

In order to understand the limits of not only the SOTA but also the models that paved the way towards260

the SOTA, we evaluate three critical multimodal models that are capable of either short-term or261

long-term trajectory prediction and provide a large coverage over the performance of prior models262

(Fig. 1.b). In particular, we have selected (1) Social GAN (SGAN) [7], one of the earliest models;263

(2) Trajectron++ (T++) [24], a SOTA model for short-term trajectory prediction; and (3) PECNet264

(PECN) [18], a SOTA model for long-term trajectory prediction.265

Training Protocol. Each of the three models was trained on 3 combinations from the A2X Dataset:266

A2A interaction, A2E interaction, and both (Fig. 1.b), producing a total of 9 models. Each trained267

model was then evaluated on the testing sets of the 3 combinations (Fig. 1.c). The results of the268

evaluations on A2A and A2E are reported in Table 1, while the results on both A2A and A2E269

combined and corresponding visualizations are reported in the Supplementary Materials. According270

to the dataset, the following parameters have been set for the evaluation: k = 20, tp = 8, tf = 12,271
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and ∆t = 0.4, meaning that each agent is receiving 3.2 seconds of input data and predicting 4.8272

seconds into the future.273

Each row of Table 1 reports the accuracy, realism, and decidability metrics of a model averaged274

across the agents of every testing scenario for a given dataset. The first 5 columnns of realism metrics275

correspond to the dimensions of F and F̂, the feature vectors used to compute the percent difference276

between the ground truth (GT) and predictions. The mean percent difference Θ(Ĉa) of each agent a277

is averaged across all agents and reported in the final column of the realism metrics. For all accuracy278

metrics, the realism percent difference, and the decidability metric, a lower value is favorable, while279

for the remaining realism metrics, a value closer to the ground truth is favorable.280

Te
st Model Train

Accuracy Metrics Realism Metrics Decidab.

ADE ↓ FDE ↓ Length Speed Accel. ACFL ECFL %Diff. ↓ MVE ↓
min / mean / max min / mean / max mean / max mean / max

A
ge

nt
-t

o-
A

ge
nt

In
te

ra
ct

io
n GT N/A 0.00 / 0.00 / 0.00 0.00 / 0.00 / 0.00 4.43 1.01 / 1.32 0.29 / 1.04 0.95 1.00 0 0.00

SGAN
A2A 0.36 / 0.77 / 1.50 0.62 / 1.61 / 3.33 4.22 0.96 / 1.42 0.09 / 0.56 0.30 0.98 48 0.90
A2E 2.21 / 2.48 / 2.81 4.02 / 4.65 / 5.48 3.15 0.72 / 1.38 0.12 / 0.40 0.58 0.97 51 0.70
Both 0.37 / 0.74 / 1.35 0.65 / 1.55 / 2.97 4.13 0.94 / 1.32 0.06 / 0.33 0.33 0.98 51 0.84

PECN
A2A 0.63 / 0.65 / 0.68 1.12 / 1.28 / 1.45 4.50 1.02 / 2.15 0.48 / 3.41 0.56 0.98 56 0.07
A2E 1.25 / 1.28 / 1.31 1.83 / 2.00 / 2.20 4.50 1.02 / 4.16 1.13 / 8.80 0.59 0.98 166 0.10
Both 0.73 / 0.76 / 0.79 1.44 / 1.59 / 1.74 4.78 1.08 / 2.61 0.49 / 4.57 0.57 0.98 85 0.10

T++
A2A 0.22 / 0.66 / 1.85 0.42 / 1.51 / 4.16 4.38 1.00 / 2.32 0.36 / 3.09 0.22 0.98 47 1.08
A2E 0.56 / 1.06 / 1.77 1.13 / 2.29 / 3.90 4.22 0.96 / 1.79 0.29 / 2.18 0.25 0.98 46 1.41
Both 0.23 / 0.64 / 1.76 0.43 / 1.48 / 4.02 4.35 0.99 / 2.27 0.35 / 2.96 0.22 0.98 47 1.13

A
ge

nt
-t

o-
E

nv
.I

nt
er

ac
tio

n

GT N/A 0.00 / 0.00 / 0.00 0.00 / 0.00 / 0.00 5.51 1.25 / 1.40 0.18 / 0.51 1.00 1.00 0 0.00

SGAN
A2A 0.28 / 0.66 / 1.33 0.50 / 1.48 / 3.14 5.42 1.23 / 1.70 0.08 / 0.45 0.29 0.90 47 0.82
A2E 0.19 / 0.41 / 0.96 0.27 / 0.86 / 2.17 4.19 0.95 / 1.33 0.09 / 0.28 0.35 0.94 48 0.64
Both 0.19 / 0.56 / 1.25 0.32 / 1.28 / 3.02 5.03 1.14 / 1.57 0.08 / 0.40 0.32 0.92 49 0.65

PECN
A2A 0.47 / 0.49 / 0.51 0.98 / 1.12 / 1.27 5.35 1.22 / 1.72 0.32 / 2.79 0.64 0.92 117 0.03
A2E 0.29 / 0.31 / 0.34 0.63 / 0.75 / 0.90 5.64 1.28 / 2.44 0.40 / 3.50 0.60 0.94 148 0.04
Both 0.32 / 0.34 / 0.37 0.70 / 0.81 / 0.92 5.64 1.28 / 2.29 0.34 / 3.41 0.60 0.93 157 0.06

T++
A2A 0.17 / 0.81 / 2.43 0.34 / 1.86 / 5.54 5.48 1.25 / 3.10 0.53 / 4.41 0.18 0.90 43 1.24
A2E 0.10 / 0.29 / 0.64 0.19 / 0.69 / 1.61 5.41 1.23 / 1.63 0.18 / 1.38 0.47 0.95 40 0.73
Both 0.12 / 0.37 / 1.11 0.23 / 0.87 / 2.55 5.41 1.23 / 2.00 0.27 / 2.04 0.42 0.93 40 0.76

Table 1: This table showcases the evaluation results of Social GAN (SGAN), PECNet (PECN), and
Trajectron++ (T++) after training on either A2A, A2E, or both A2A and A2E and testing on A2A and
A2E separately. For every metric in a testing set, the best value has been made bold for each model.

Analysis. As expected, we find that models trained on a single type of interaction perform poorly on281

test scenarios that feature the other type of interaction (Tab. 1). By training any of the three models282

on both types of interactions, we find that the accuracy of this model is either nearly the highest or283

the highest according to mean ADE/FDE compared to the same model trained on either A2A or A2E.284

For instance, T++Both trained on both types of interactions achieves the lowest mean ADE on A2A285

across all 9 trained models.286

However, we cannot rely only on the accuracy of models to determine which is best, since anything287

short of perfect accuracy carries risk. The realism metrics allow us to better understand the model’s288

performance in the context of its application. For example, we find that the maximum speed and289

acceleration for T++Both are significantly higher than the ground truth, which for an application in290

socially compliant robot navigation can discomfort or potentially harm surrounding humans [15]. In291

contrast, SGANBoth has lower average accuracy by a small margin, but it boasts higher realism by a292

large margin in terms of maximum speed, maximum acceleration magnitude, and ACFL. We attribute293

SGANBoth’s higher ACFL to the tighter spread of its predictions than T++Both according to MVE.294

Ultimately, the choice of a model depends on the application, but without the joint consideration of295

the proposed accuracy and realism metrics, a practitioner may be led to choose an unsuitable model.296

We have made 5 other notable observations from Table 1. (1) There are instances of models297

(highlighted in red) where relying on the optimistic lens of existing evaluations (i.e., minimum ADE298

and FDE) would lead to choosing models that are less accurate than others on average. (2) Models299

trained exclusively on A2E interactions tend to have lower likelihoods of A2A collision (higher300

ACFL) than models trained on A2A interactions alone or on both types of interactions, highlighting301

the important of A2E for improving robustness even in OOD scenarios such as A2A. (3) While this302

also holds true for the likelihood of A2E collision (ECFL) when testing on A2E, we find that ECFL303

is nearly perfect for A2A scenarios, indicating that A2A scenarios do not challenge models with A2E304
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interactions. (4) PECNet has the highest ACFL by an enormous margin owing to its MVE, which is305

low enough to consider PECNet as decidable and likely helps it in performing long-term trajectory306

prediction. Finally, (5) models trained on both types of interactions do not yet generalize to A2E307

better than models trained on A2E alone as some models have for A2A, meaning that there is still308

much room for improvement.309

Multimodal Model Collapse (MMC). Accuracy metrics cannot be computed on never-before-seen310

data, because the ground truth is unknown. Consequently, it becomes impossible to find the predicted311

path with minimum error in accuracy and selecting an arbitrary prediction risks the maximum error.312

We therefore propose MMC, a baseline greedy method which can make use of the realism metrics to313

collapse the k predictions of an undecidable multimodal model into a single well-informed prediction.314

In particular, we rely on the proposed comparison of realism metrics (Sec. 4.5), but instead of315

computing Fa from ground truth testing data Ya,0 for each agent a, we compute it as the average316

across all agents in the ground truth training data from the same environment. We then replace the k317

predictions Ŷa with the single prediction j that minimizes the percent difference Ĉa,j for each agent318

a, which is the closest in realism to prior ground truth for the same type of scenario (Eq. 9). This,319

certainly, does not guarantee the optimal selection for a single agent. But it minimizes the overall320

error in selecting predictions for all agents. Table 2 shows the result of applying this technique to all321

9 models. On average, we find that the ADE/FDE of the collapsed prediction is only ∼15.76% worse322

than the mean ADE/FDE of the uncollapsed predictions, and ∼31.63% better than the maximum323

ADE/FDE. Although the accuracy of the most realistic prediction is lower than the average accuracy324

over 20 predictions, its performance is consistently much better than the worst-case and it ultimately325

makes the undecidable model applicable to unseen data.326

Te
st Model Train Accuracy Metrics Realism Metrics Decidab.

ADE ↓ FDE ↓ Length Speed Accel. ACFL ECFL %Diff. ↓ MVE ↓
min = mean = max min = mean = max mean / max mean / max

A
ge

nt
-t

o-
A

ge
nt

In
te

ra
ct

io
n GT N/A 0.00 0.00 4.43 1.01 / 1.32 0.29 / 1.04 0.95 1.00 0 0.00

SGAN
A2A 0.91 1.99 4.28 0.97 / 1.20 0.16 / 0.41 0.69 0.99 37 0.00
A2E 2.57 4.97 3.75 0.85 / 1.32 0.20 / 0.37 0.79 0.97 40 0.00
Both 0.86 1.86 4.25 0.97 / 1.15 0.11 / 0.23 0.70 0.99 41 0.00

PECN
A2A 0.65 1.27 4.44 1.01 / 1.56 0.33 / 1.79 0.66 0.98 56 0.00
A2E 1.28 2.03 4.33 0.98 / 3.23 1.02 / 6.37 0.68 0.98 166 0.00
Both 0.76 1.55 4.70 1.07 / 2.12 0.44 / 3.18 0.64 0.98 85 0.00

T++
A2A 0.81 1.83 4.51 1.03 / 1.31 0.44 / 0.98 0.66 0.99 26 0.00
A2E 1.05 2.27 4.53 1.03 / 1.32 0.42 / 0.97 0.63 0.98 30 0.00
Both 0.81 1.84 4.51 1.03 / 1.31 0.44 / 1.00 0.65 0.99 26 0.00

A
ge

nt
-t

o-
E

nv
.I

nt
er

ac
tio

n

GT N/A 0.00 0.00 5.51 1.25 / 1.40 0.18 / 0.51 1.00 1.00 0 0.00

SGAN
A2A 0.76 1.84 5.00 1.14 / 1.44 0.15 / 0.33 0.63 0.96 38 0.00
A2E 0.69 1.60 4.73 1.08 / 1.30 0.13 / 0.23 0.68 0.98 40 0.00
Both 0.73 1.77 4.55 1.03 / 1.36 0.16 / 0.27 0.66 0.97 40 0.00

PECN
A2A 0.49 1.11 5.39 1.22 / 1.45 0.25 / 1.10 0.69 0.93 117 0.00
A2E 0.30 0.71 5.54 1.26 / 1.71 0.31 / 1.41 0.62 0.93 148 0.00
Both 0.34 0.78 5.60 1.27 / 1.97 0.32 / 1.41 0.64 0.94 157 0.00

T++
A2A 0.90 2.06 4.99 1.13 / 1.48 0.57 / 1.27 0.46 0.97 31 0.00
A2E 0.34 0.86 5.36 1.22 / 1.44 0.29 / 0.85 0.61 0.98 24 0.00
Both 0.52 1.20 5.34 1.21 / 1.48 0.41 / 0.99 0.57 0.97 28 0.00

Table 2: This table reports the results of MMC on each of the 9 trained models. On average, MMC
produces predictions that are consistently better than the worse case prediction prior to MMC. Only
one value is reported for ADE and FDE, because the minimum, mean, and maximum are equal when
k = 1. The MVE is always 0 when k = 1.

6 Conclusion327

With the growing attention toward human trajectory prediction, it has become more important than328

ever to unify future research efforts in the right direction in terms of datasets and benchmark. In this329

work, we have brought to light the shortcomings of existing datasets, which hinder generalization, and330

existing evaluation metrics, which misrepresent model performance. By augmenting existing datasets331

with scenarios that feature substantial interactions between pedestrian agents and the environment,332

we have evidenced that models can generalize better. By proposing a comprehensive set of novel and333

existing evaluation metrics, we have not only proven the unreliability of existing evaluation metrics,334

but also highlighted the subtle factors that are essential for choosing the best trajectory prediction335

model for a particular application. Together, these contributions show that there is still room for much336

improvement even among the SOTA models.337
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