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Abstract

Deep learning models are often poorly calibrated, i.e., they may produce over-
confident predictions that are wrong, implying that their uncertainty estimates are
unreliable. While a number of approaches have been proposed recently to calibrate
classification models, relatively little work exists on calibrating regression models.
Temperature Scaling is one of the most popular methods for classification calibra-
tion, often performing better than or comparably to more sophisticated methods.
We investigate the use of Temperature Scaling for regression calibration under
notion of quantile calibration.

1 Introduction

One of main reasons probabilistic machine learning models are important is that they provide
uncertainty estimates. Uncertainty quantification enables informed decision making. The caveat
however is that these decisions are reliable only if uncertainty is "reliable". Calibration offers a precise
mathematical definition of what reliability means. Calibration is important for critical applications
like healthcare, self-driving cars, etc. Calibration in context of classification models has been studied
extensively. [16, 19, 20, 21, 15, 11, 10, 18, 12, 6]. Recently, [9] proposed a new notion of calibration
for regression called Quantile Calibration. We investigate the use of temperature scaling, which is
one of the most popular classification calibration methods, for regression calibration under notion of
quantile calibration.

2 Background and Definitions

2.1 Classification Calibration

Definition 1 (Binary Classification Calibration). Given M : X → [0, 1], we say that M is calibrated
if the following holds

P
[
Y = 1

∣∣∣ M[X] = p
]
= p ∀p ∈ [0, 1] (1)

If we pick a value between [0, 1], say 0.8, then among all the examples whose predicted probability
of belonging to class 1 is 0.8, the proportion of examples that actually belong to class 1 should be 0.8.
The objective of post-hoc calibration is to learn a mapping R s.t the new model R ◦M is calibrated
[17].

Usually, the calibration mapping is learned on the training set or the validation set. However, ideally,
it should be done on a separate calibration dataset. Given such a calibration dataset {xk, yk}, a map-

ping R is learned on a re-calibration dataset
{

M[xk] ,

∑m
i=1 I

[(
M[xk] = M[xi]

)
∧
(
yi = 1

)]∑m
i=1 I

[
M[xk] = M[xi]

] }
,
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which is essentially empirical approximation to Eq.1. Based on the mappings considered, we can
get different calibration methods. With Logistic mapping we get Platt Scaling [16]; with Isotonic
mapping, we get Isotonic Calibration [20]. etc. The notion of calibration in classification models has
been extended to multi-class settings as well [10, 12, 17])

2.2 Temperature Scaling

Temperature Scaling is one of the state-of-art methods for classification calibration. Temperature
Scaling was originally conceived in context of knowledge distillation [8]. Despite its simplicity,
it performs better than or comparaby to more sophisticated methods, like Bayesian Binning into
Quantiles, Isotonic Regression, Dirichlet Calibration, etc. [10, 6]. Essentially, temperature scaling
learns a mapping of form R(p) = pT

2.3 Quantile Calibration

Unlike classification calibration, notion of calibration for regression is relatively new. In one of
the earliest attempts in this direction, [5] proposed various notions of calibration for regression
but didn’t propose algorithms to recalibrate a miscalibrated model. Recently, [9] proposed a new
notion of calibration called Quantile Calibration based on Probabilistic Calibration in [5] and
applied it to calibrate regression models. A probabilistic regression model can be seen as conditional
PDF/conditional CDF. In the rest of the paper, we express it as conditional CDF M : X → (Y →
[0, 1]). So, M(x) denotes model’s predicted CDF for x ∈ X denoted as Fx
Definition 2 (Quantile Calibration). Given a regression model M : X → (Y → [0, 1]) and X,Y
jointly distributed as P, the model M is said to be Quantile Calibrated iff

P
[
[M(X) ](Y ) ≤ p

]
= p ∀p ∈ [0, 1] (2)

An appealing aspect of quantile calibration is that we get calibrated confidence intervals. Just
like post-hoc classification calibration, the objective of post-hoc regression calibration is to learn
a mapping R s.t. R ◦M is quantile calibrated. The mapping R to be learned is given by following
observation.
Theorem 1. For any Model M : X → (Y → [0, 1]), and given canonical calibration mapping
R(p) = P

[
[M(X)](Y ) ≤ p

]
, R ◦M is quantile calibrated

In addition to proposing above definition of calibration, [9] suggested use of Isotonic Calibration,
well known technique for classification calibration. Given calibration dataset {xi, yi}mi=1 Isotonic
Calibration for quantile calibration is obtained by using isotonic regression on a re-calibration dataset

D =
{ (

M(xi)[yi] , 1
m

∑m
j=1 I

[
M(xj)[yj ] ≤M(xi)[yi]

] ) }m
i=1

.Note that the only difference
between isotonic calibration in classification calibration and regression calibration is how recalibration
dataset is constructed. Quantitatively, calibration is measured by `2 quantile calibration error. Given a
test set {xn, yn}Nn=1, with predictions are Fn = M(xn) and m equidistant points {pm}Mm=1 in (0, 1]

CE(F ) = 1

M

M∑
i=1

[ N∑
j=1

1

N
I[Fj(yj) ≤ pi]− pi

]2
(3)

3 Temperature Scaling for Quantile Calibration

We propose to learn canonical calibration mapping of quantile calibration by temperature scaling
R(x) = xp. Our proposal is justified by following simple lemma.
Claim 1. let F be CDF of any r.v then for any α > 0 we have that Fα is valid CDF again.

Proof.

1. Non-decreasing and right continuous : G′(x) = αF (x)α−1 > 0 as α > 0 and right
continuous because it is polynomial
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Figure 1: plot of xT for different values of T

2. lim
x→∞

G(x) = lim
x→∞

F (x)α =
[
lim
x→∞

F (x)
]α

= 1α = 1

3. lim
x→−∞

G(x) = lim
x→−∞

F (x)α =
[

lim
x→−∞

F (x)
]α

= 0α = 0

Such family of distributions are called exponentiated distributions which have been well-studied in
the Statistics literature [7, 1, 2, 14]

An ideal desirable for the family of mappings is that it should be flexible enough to correct wide
ranges of mis-calibrations. Importantly, it should contain y = x, because it shouldn’t harm already
well-calibrated model. Fig. 1 shows that the temperature scaling family is an ideal candidate. Now
for fitting the parameter T , we use Eq. 3

T ∗ = argmin
T

1

M

M∑
i=1

[( N∑
j=1

1

N
I[Fj(yj) ≤ pi]

)T
− pi

]2
A couple of key advantages of temperature scaling over isotonic regression are as follows

1. One of important drawbacks of isotonic regression is that, after isotonic calibration, the
CDF losses its smoothness and the PDF becomes discontinuous, which is undesirable. With
temperature scaling, the smoothness is preserved

2. It is much simpler and easier to use than isotonic regression as we are just fitting a single
parameter T. In particular, the updated PDF and CDF values can be obtained in O(1) time,
unlike isotonic regression

4 Experiments

We consider two different architectures - Dropout VI [3, 4] and Deep Ensembles [13]. The dataset
sizes ranges from 308 to 515345 and input feature dimensions ranges from 6 to 91. Every dataset,
except Year Prediction MSD, is divided into 5 splits whereas for Year Prediction MSD there is a
single split where we train on 463715 points and test on 51630 points. This experiment is repeated 5
times and averages are reported except for year prediction MSD. We use 2 hidden layer network with
128 units with ReLU activation, and trained with Adam Optimizer with a learning rate of 10−2 for
64 epochs. For Temperature Scaling we use the LBFGS optimizer and run it for 50 epochs, and for
calibration dataset we use the training dataset. The results are presented in Tab. 1 and Tab. 2. The
calibration plots are shown in Fig. 2 and Fig. 3. The average temperature is shown in Tab. 3 and the
plot of calibration loss vs temperature is shown in Fig. 4
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Heteroscedastic Dropout VI

Dataset Calibration Error(%) NLL

base Iso TS base Iso TS

Air Foil 12.72 ± 1.99 17.44 ± 2.91 15.23 ± 2.72 2.71 ± 0.02 2.30 ± 0.05 -0.18 ± 0.10

Boston Housing 23.30 ± 3.83 30.17 ± 4.99 31.57 ± 10.05 3.23 ± 0.03 2.68 ± 0.09 0.20 ± 0.17

Concrete Strength 29.75 ± 2.32 34.71 ± 3.97 40.46 ± 6.99 3.65 ± 0.02 3.34 ± 0.06 0.13 ± 0.21

Fish Toxicity 3.05 ± 0.36 1.40 ± 0.16 5.18 ± 0.76 1.25 ± 0.01 0.64 ± 0.02 -0.01 ± 0.01

Kin8nm 7.26 ± 0.22 0.22 ± 0.02 14.88 ± 3.04 -0.87 ± 0.01 -1.60 ± 0.02 0.31 ± 0.07

Protein Structure 3.04 ± 0.42 0.05 ± 0.00 8.23 ± 2.02 2.89 ± 0.00 2.21 ± 0.01 0.32 ± 0.06

Red Wine 3.23 ± 0.73 2.96 ± 0.24 4.65 ± 2.03 0.97 ± 0.00 0.37 ± 0.03 0.10 ± 0.00

White Wine 4.02 ± 0.41 4.38 ± 0.17 4.80 ± 0.78 1.10 ± 0.00 0.52 ± 0.03 0.02 ± 0.01

Year Prediction MSD 3.83 ± NA 0.02 ± NA 9.96 ± NA 3.47 ± NA 3.59 ± NA -0.38 ± NA

Table 1: Base denotes the base model without post-hoc calibration. Iso denotes the model after
isotonic calibration and TS denotes the model after Temperature scaling
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Figure 2: Dashed line (y=x) indicates perfect calibration. The closer to dashed line, the better
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Deep Ensembles with Adversarial Training

Dataset Calibration Error(%) NLL

base Iso TS base Iso TS

Air Foil 23.93 ± 2.92 38.70 ± 2.64 23.93 ± 5.22 2.92 ± 0.10 2.96 ± 0.10 -0.23 ± 0.11

Boston Housing 37.61 ± 7.82 50.71 ± 5.02 40.01 ± 16.61 4.45 ± 0.44 4.32 ± 0.39 0.09 ± 0.62

Concrete Strength 39.97 ± 4.06 51.05 ± 3.86 37.95 ± 7.27 4.91 ± 0.20 4.86 ± 0.22 -0.23 ± 0.27

Fish Toxicity 3.50 ± 0.43 6.34 ± 0.13 5.10 ± 0.96 1.64 ± 0.03 1.18 ± 0.03 0.10 ± 0.06

Kin8nm 0.64 ± 0.36 5.36 ± 0.08 3.44 ±2.03 -1.34 ± 0.00 -1.66 ± 0.02 0.18 ± 0.04

Protein Structure 2,37 ± 0.16 0.07 ± 0.01 3.19 ± 0.32 2.60 ± 0.00 1.72 ±0.00 0.08 ± 0.02

Red Wine 7.95 ± 0.36 16.75 ± 0.82 10.06 ± 1.38 1.98 ± 0.07 1.15 ± 0.18 -0.01 ± 0.07

White Wine 8.71 ± 1.29 19.51 ± 0.59 9.40 ± 3.15 1.64 ± 0.04 0.73 ± 0.11 -0.04 ± 0.02

Year Prediction MSD 1.31 ± NA 0.07 ± NA 3.05 ± NA 3.34 ± NA 3.67 ± NA -0.21 ± NA

Table 2: Base denotes the base model without post-hoc calibration. Iso denotes the model after
isotonic calibration and TS denotes the model after Temperature scaling
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Figure 3: Dashed line (y=x) indicates perfect calibration. The closer to dashed line, the better
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Dataset dimensions RMSE Avg temperature

N D Dropout Ensembles Dropout Ensembles

Air Foil 1503 5 3.61 ± 0.06 3.15 ± 0.07 0.87 ± 0.02 0.88 ± 0.07
Boston Housing 506 13 4.64 ± 0.19 4.87 ± 0.16 1.07 ± 0.07 0.96 ± 0.13

Concrete Strength 1030 8 9.00 ± 0.18 9.11 ± 0.25 1.04 ± 0.07 0.93 ± 0.07
Fish Toxicity 908 6 0.93 ± 0.00 0.93 ± 0.01 0.98 ± 0.05 0.98 ± 0.07

Kin8nm 8182 8 0.09 ± 0.00 0.07 ± 0.00 0.88 ± 0.02 0.93 ± 0.02
Protein Structure 45730 9 4.63 ± 0.01 4.11 ± 0.27 1.16 ± 0.03 1.05 ± 0.01

Red Wine 1599 11 0.65 ± 0.00 0.69 ± 0.00 1.07 ± 0.03 0.98 ± 0.06
White Wine 4898 11 0.73 ± 0.00 0.76 ± 0.01 1.01 ± 0.01 0.94 ± 0.02

Year Prediction MSD 515345 90 9.12 ± NA 8.70 ± NA 0.84 ± NA 0.91 ± NA

Table 3: Base denotes the base model without post-hoc calibration. Iso denotes the model after
isotonic calibration and TS denotes the model after Temperature scaling
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Figure 4: plots showing varying T and calibration loss on calibration dataset

5 Discussion

Tab. 1 and Tab. 2 show that Temperature Scaling doesn’t perform as well as expected in case of
quantile calibration. One would think one reason for this is because we are using training data as
calibration dataset. But this is not the case because in case of Isotonic regression there is two orders
of magnitude improvement for large datasets like Protein,Year prediction MSD. We conjecture two
hypotheses as to why Temperature Scaling is not performing as expected:

1. Temperature Scaling is flexible but may not be flexible enough because we are just using
single parameter (T ), while isotonic regression is non-parametric method.

2. Using Calibration error as objective for fitting T may be another reason. If this is the case,
using better suited and properly regularized objective could alleviate the problem.

6 Conclusion

We investigated the performance of Temperature Scaling for regression calibration in context of
quantile calibration and found that it doesn’t perform as well as it does for classification calibration.
We have identified some potential reasons for this and it would be interesting to investigate them
further to see whether this simple method can be useful for regression calibration.
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