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Abstract

Real-world formal theorem proving often depends on a wealth of context, including
definitions, lemmas, comments, file structure, and other information. We introduce
miniCTX, which tests a model’s ability to prove formal mathematical theorems that
depend on new context not encountered in training. miniCTX contains theorems
sourced from real Lean projects and textbooks, each associated with a context that
can span tens of thousands of tokens. Models are tasked with proving a theorem
given access to code from the theorem’s repository, which contains context that
is needed for the proof. As a baseline for miniCTX, we tested fine-tuning and
prompting methods that condition theorem proving on preceding context. Both
approaches substantially outperform traditional methods that rely solely on state
information. We found that this ability to use context is not captured by previous
benchmarks such as miniF2F. Alongside miniCTX, we offer NTP-TOOLKIT for
automatically extracting and annotating theorem proving data, making it easy to
add new projects into miniCTX to ensure that contexts are not seen during training.
miniCTX offers a challenging and realistic evaluation of neural theorem provers.

1 Introduction

Formal theorem proving in interactive theorem provers (ITPs) provides a testbed for evaluating the
reasoning capabilities of large language models (LLMs). Theorem proving capabilities can then
directly translate to automation for mathematicians, such as via tools that complete or formalize
proofs [1–4]. However, despite their promise, we see a gap between the evaluation of current language
model-based provers and the complexity of real-world theorem proving.

Our motivating observation is that theorems and proofs depend on various forms of context, such
as newly-defined definitions and lemmas. For instance, to prove results about a square, one might
first formalize a definition of a rectangle, prove some results about rectangles, then specialize them
to a newly-defined square [5] (Figure 1). However, existing methods for training and evaluating
LLM-based theorem provers often fail to incorporate the full range of contextual information available
in real-world projects. For example, benchmarks often focus on proving standalone competition
problems (e.g., miniF2F [6]) or theorems from a library that the model has trained on (e.g., Mathlib [7,
8]), and state-of-the-art LLM-based provers are trained to accept only a proof state as input, making
them unaware of new theorems and definitions [9–11]. While some existing work, including premise
selection techniques [12, 13, 8] and datasets like CoqGym [14], have explored theorem proving based
on information beyond the current state, they often focus on a subset of the available information.
They primarily focus on providing relevant premises, such as lemmas, to assist in proof construction.

Building on these foundations, we propose miniCTX: a benchmark that seeks to expand the scope of
context used in theorem proving. We extend beyond traditional premise selection explored in prior
benchmarks (e.g., [8, 14]) by incorporating a more comprehensive set of contextual elements. This
includes premises, but also prior proofs, comments, notation, and structural components like imports
and declarations. By doing so, miniCTX aims to drive the development of methods that understand
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Table 1: Comparison of theorem proving benchmarks across several key features.
Benchmark Language Premise Full Context Multi-source Temporal Split
miniF2F [6] Multiple ✗ ✗ ✗ ✗
ProofNet [15] Lean ✗ ✓ ✓ ✗
LeanDojo [8] Lean ✓ ✗ ✗ ✗
LeanStep [7] Lean ✓ ✗ ✓ ✗
CoqGym [14] Coq ✓ ✗ ✓ ✗
PISA [16] Isabelle ✗ ✗ ✓ ✗

miniCTX (Ours) Lean ✓ ✓ ✓ ✓

and work with context that occurs in complex, real-world theorem proving tasks. Additionally,
considering the common use of pre-trained language models we mitigate potential data contamination
by continually and automatically updating miniCTX with new Lean projects, so that evaluated
theorems are not seen during training. Our key contributions are:

miniCTX Benchmark: We introduce miniCTX, the first benchmark designed specifically to evaluate
theorem proving in real-world settings where proofs depend on in-file definitions, lemmas, and
context from formal projects. miniCTX presents a unique challenge by requiring models to reason
over long contexts and handle dependencies that arise in real-world theorem proving tasks.

NTP-TOOLKIT: To facilitate the automatic updating of miniCTX, we developed the NTP-TOOLKIT,
which automatically extracts relevant theorems and contexts from Lean projects. Additionally, we
provide a Lean REPL wrapper that enables simpler evaluation on miniCTX.

Baseline Evaluations: We evaluate miniCTX on several existing baseline models, including different
fine-tuning and prompting strategies, as well as premise selection. We also propose file-tuning, a
strong baseline method for training models using full file contexts, where both the theorem statements
and their surrounding context are provided during training. This approach establishes a robust
baseline for future work on context-dependent theorem proving.

Figure 1: Many state of the art provers are trained on a static dataset of theorems and proofs, then
evaluated on standalone problems such as competition problems (left). We argue that neural provers
must also operate in the realistic context-dependent setting, in which results depend on working
with new mathematical objects and their facts, notations, and the structural elements of the project
(imports, variables, etc.) (right).

2 Theorem proving with context

Formal theorem proving involves two stages: defining mathematical objects and facts relevant to the
desired result, then stating and proving the result itself. Many current language model-based provers
focus on the proving process and are trained on static datasets that only use a fixed set of definitions.
As a result, they lack the ability to recognize new definitions or lemmas at test time (Figure 1).
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Context-dependent proving. We study context-dependent theorem proving, where the goal is for
a model to generate proofs y for new theorems x, based on a context c that includes background
information such as definitions, lemmas, or natural language comments. Formally, the problem is

maximizeM E(x,c)∼pEy∼M(·|x,c)v(x, c, y), (1)

where (x, c) ∼ p denotes a (theorem, context) pair from a context distribution p, M is a model that
produces a proof y, and v returns 1 if the proof is correct and 0 otherwise.

We choose Lean [17] as the verifier v, because of the large body of recent theorems in Lean that can
be used as evaluation data, and the abundance of proving methods in Lean that we use as baselines.
We treat a Lean repository as the distribution p. Each context c is a subset of the repository, including
new definitions, lemmas, notations, imports, and comments that are relevant to the theorem.

3 miniCTX: a benchmark for theorem proving with context

We develop miniCTX, a Lean 4 theorem proving benchmark of theorems that depend on newly-
defined lemmas, definitions, and proofs from within a project. miniCTX is currently based on 376
theorems from four projects: (1) Prime Number Theorem (Prime) [18], (2) Polynomial Freman-
Ruzsa Conjecture (PFR) [19], (3) an introductory text on theorem proving (HTPI) [20], (4) recent
results from the standard mathematical library (Mathlib) [21] (motivation and details in §D), (5) high
energy physics formalization in HepLean (HEP) [22], and (6) scientific computing formalizations
(SciLean) [23].

Each theorem in miniCTX consists of the theorem statement, preceding file contents up to the theorem
statement, and metadata, in JSON (see §E.1).

1. Theorem statement,
2. Preceding file contents up to the theorem statement,
3. Metadata, including file name, commit and time which the theorem was added, position

and length of the theorem and proof, and the number and types of premises used in the
human-written proof.

Using our benchmark, users can easily reconstruct the complete context for each theorem, including
both in-file and cross-file context. The in-file context is provided directly by preceding file contents,
while the cross-file context can be reconstructed using the metadata, which includes information on
imported modules. We open-source the dataset and evaluation code.

3.1 Key features and challenges

miniCTX introduces several key features that distinguish it from other theorem proving benchmarks,
addressing challenges that have not been tackled by previous benchmarks:

Real-world theorem proving. Unlike popular benchmarks (e.g., miniF2F [6], ProofNet [15],
FIMO [24]) that focus on isolated competition problems, real-world research-level theorem proving is
heavily dependent on rich mathematical contexts. Therefore, miniCTX includes real-world, complex
theorems from a variety of ongoing Lean projects, such as Prime Number Theorem (Prime) and
Polynomial Freiman-Ruzsa Conjecture (PFR). They rigorously test a model’s ability in real-world
formalization projects. This diversity contrasts with the LeanDojo benchmark [8], which focuses
solely on Mathlib, enabling miniCTX to better test a model’s generalization in different settings.

Contextual evaluation. Proving a theorem often depends on new definitions, lemmas, or other
contextual information, which a model may not have seen during training. miniCTX includes theorems
along with this new context. During evaluation, the model is expected to leverage the provided new
context to help prove the theorem.

Beyond previous datasets like LeanDojo [8] and CoqGym [14], which include relevant definitions and
theorems, miniCTX includes additional useful contextual information that may make some theorems
easier to prove compared to standalone theorems. For instance, Lean source code can have natural
language comments that may help constrain the space of possible proofs. Moreover, some proofs
within a file often have analogous patterns or structure, which may make subsequent theorems easier
to prove (see §E.2). These additional forms of context occur in the real-world process of formalization,
yet their use in neural theorem proving is underexplored.
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Automatically updating the benchmark. Most modern neural theorem provers use a large language
model as a backbone. Therefore, it is crucial to ensure that evaluation content is not seen during
(pre-)training, a problem not addressed by previous benchmarks. miniCTX’s format is amenable to
periodically updating the benchmark with new projects to ensure that proofs are not seen by language
models trained prior to a particular date. Future periodic updates will be automatically extracted from
new Lean projects and commits using NTP-TOOLKIT (§??). See Figure 2 for an illustration.

GPT-4o, DeepSeek
training cutoff

miniCTX
compiled with new 

Lean theorems
 

Evaluate using 
GPT-4o, DeepSeek

Future LLMs 
training cutoff

miniCTX-v2
compiled with newer 

Lean theorems
 

Evaluate using
future LLMs

…

Previous benchmarks 
compiled with Lean 

theorems
(Mathlib, miniF2F)

2023                                           2024                                           2025
New Lean theorems New Lean theoremsLean theorems

Figure 2: miniCTX is automatically updated with Lean
projects to stay ahead of LLM training cutoff dates, making
it a suitable benchmark for real-world theorem proving for
pre-trained models. Figure 3: State-tactic vs. file tuning.

4 Experiments

4.1 Baselines

We evaluate several baselines on miniCTX, demonstrating the importance of context in real-world
theorem proving. Our investigation reveals several open challenges that we discuss in §A. See §B for
a detailed description of the motivation, baselines, data extraction, and evaluation setup, and §H for
full results and more detailed analysis. The baselines are as follows:

Prompting LLMs. We first test the ability of a state of the art API-based model, GPT-4o, to generate
the complete proof in one pass (pass@1) given the theorem statement, with several few-shot examples
provided for guidance. We additionally test whether adding context in the form of preceding file
contents improves the proof rate of GPT-4o.

State-tactic prompting. Another common approach to theorem proving using language models is to
let the model generate a tactic given the current proof state [7–9, 25]. Therefore, we test the state-
tactic prompting setting, which prompts a model specialized for mathematical tasks, Llemma-7b [26],
to output a tactic given a proof state. At test time, the model generates one tactic at a time, and we
use a best-first search to construct full proofs [7–9, 1].

State-tactic tuning. We follow this state-tactic framework and fine-tune a state-tactic tuned model
from DeepSeek-Coder-1.3b [27] to input proof states and output tactics, trained on human-written
tactics in Mathlib, the main mathematical library in Lean, extracted by NTP-TOOLKIT.

File-tuning. We then test whether supplying context, in the form of preceding file contents, to the
model improves performance. Similar to state-tactic tuning, we fine-tune a 1.3b model to generate a
tactic based on (proof state, context) pairs, resulting in the file-tuned model.

Premise selection. To better simulate a complete context and evaluate on project-level generalization,
we apply premise selection to extract relevant premises from imported files within the same repository.
We use the premise retriever provided by LeanDojo [8] to identify the top 20 most relevant definitions
or lemmas from imported modules and append them to the in-file context.

4.2 Results

Context-dependent methods improve theorem proving. Table 2 shows baseline performances
on miniCTX. We see a dramatic improvement for the file-tuned model (trained on full file context)
over the state-tactic model (trained only on proof states) (35.94% vs. 19.53%). Similarly, providing
the preceding file context, which includes definitions and lemmas, to GPT-4o results in dramatic
improvement compared to using just the proof state (27.08% vs. 11.72%). Figure 4 shows the
performance of state-tactic tuned model and file-tuned model on problems with in-file dependencies
compared to those without. These findings highlight the importance of providing models with rich
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Table 2: Performance comparison (%) of different models on miniF2F and miniCTX.
miniF2F miniCTX

Method Test Prime PFR PFRcross Mathlib HTPI HEP SciLean Avg.
GPT-4o (full proof) — 7.06 1.85 6.98 14.00 13.33 31.15 6.52 11.72

+ context — 31.76 5.56 34.88 26.00 17.78 49.18 17.39 27.08
+ context + premise — 29.41 7.41 39.53 — 15.56 44.26 21.74 26.82

State-tactic prompting 28.28 20.00 5.56 0.00 16.00 0.00 31.15 19.57 14.58
State-tactic tuning 32.79 17.65 5.56 0.00 22.00 11.11 52.46 19.57 19.53
File tuning 33.61 40.00 5.56 44.19 34.00 15.56 60.66 45.65 35.94

+ premise — 42.35 11.11 16.28 — 8.89 50.82 32.61 30.21
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Figure 4: Model performance by dependency on premises. For each theorem in miniCTX, we record
as metadata whether its human-written proof depends on other definitions or theorems in the same
file (“in-file”) or in other files (“cross-file”), and test the performance of baselines on each type.

contextual information beyond the immediate proof state, also demonstrating that miniCTX is able to
measure this ability of context-dependent proving.

Premise selection improves performance on high cross-file dependency splits. The results in
Table 2 indicate that premise selection has a mixed impact on model performance. For the GPT-4o,
premise selection improves performance on high cross-file dependency splits, such as PFR, PFRcross,
and SciLean. This suggests that premise selection helps capture the cross-file context, enabling
GPT-4o to make better use of cross-file information. However, for the file-tuned model, premise
selection does not consistently improve results, and even performs worse on the PFRcross split, which
was designed to evaluate the effective use of cross-file premises. Also shown in Figure 4, GPT-4o
benefits significantly from premise selection on problems with high cross-file dependencies, but
degrades in other cases. This suggests that the retrieved premises differ significantly from the in-file
context. Therefore, developing methods that effectively support the integration of cross-file context
(e.g., premise selection) alongside in-file context remains an interesting open research direction for
improving performance on the miniCTX benchmark.

Evaluation on miniF2F. We evaluate baselines on miniF2F, a standard benchmark based on com-
petition problems that do not require context. The file-tuned model improves very little beyond the
state-tactic model (33.61% vs. 32.79%), showing that the dramatic difference in context-dependent
proving abilities seen on miniCTX cannot be captured by miniF2F.

Additional analysis. Further analysis shows that file-tuning delivers greater gains on problems with
stronger dependencies on new lemmas. Both definitions and theorems are crucial in the context, and
models show ability to learn proof structure from previous lemmas. See §?? for more details.

5 Conclusion

We studied the realistic setting of proving theorems that depend on new information and project
constraints, and formulated an evaluation framework for testing generalization using real Lean
projects. We built miniCTX, and found that the predominant method for training neural theorem
provers fails to enable context dependent proving. Our file tuning method provides a strong starting
point for the new challenges opened by our investigation into theorem proving with context.
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[23] Tomáš Skřivan. Scientific computing in lean. https://github.com/lecopivo/SciLean, 2021.

[24] Chengwu Liu, Jianhao Shen, Huajian Xin, Zhengying Liu, Ye Yuan, Haiming Wang, Wei Ju, Chuanyang
Zheng, Yichun Yin, Lin Li, et al. Fimo: A challenge formal dataset for automated theorem proving. arXiv
preprint arXiv:2309.04295, 2023.

[25] Guillaume Lample, Timothee Lacroix, Marie-Anne Lachaux, Aurelien Rodriguez, Amaury Hayat, Thibaut
Lavril, Gabriel Ebner, and Xavier Martinet. Hypertree proof search for neural theorem proving. Advances
in neural information processing systems, 35:26337–26349, 2022.

[26] Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster, Marco Dos Santos, Stephen Marcus McAleer,
Albert Q. Jiang, Jia Deng, Stella Biderman, and Sean Welleck. Llemma: An open language model for
mathematics. In The Twelfth International Conference on Learning Representations, 2024.

[27] Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder: When the large language
model meets programming – the rise of code intelligence, 2024.

[28] Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Mantas Baksys, Igor Babuschkin, and Ilya Sutskever.
Formal mathematics statement curriculum learning, 2022.

[29] Daniel J. Velleman. How to Prove It: A Structured Approach. Cambridge University Press, 3 edition, 2019.

[30] Lean Prover Community. repl. https://github.com/leanprover-community/repl, 2024.

7

https://github.com/lecopivo/SciLean
https://github.com/leanprover-community/repl


Appendix

A Discussion and future challenges

In addition to general improvements in performance, we comment on some specific open challenges.

Making better use of long-contexts. Our file-tuning method simply truncates contexts to be within
a token budget (1024), which can discard useful contextual information. We found gains in providing
GPT-4o 8,000 tokens of context compared to not providing it context, but its absolute performance
was still low. There are several possible strategies that can be explored in future work, including
feeding in the entire context, retrieval, or mixtures of the two.

Repository-level context. We focused on evaluating in-file context in this paper. As shown in
§H.1, many problems require using context outside of the current file. Although we incorporated
premise selection as a means of leveraging cross-file context, our experiments indicate that it does not
consistently improve performance, even on datasets with high cross-file dependencies. This suggests
a need to further investigate how to better integrate premise selection with in-file context. miniCTX
provides sufficient metadata to reconstruct the entire environment, allowing for comprehensive
investigation into premise selection and other potential methods for leveraging cross-file context.

Challenging proofs. Using context through file tuning did not improve performance on the challeng-
ing PFR proofs. Moreover, performance is relatively low (19%) on proofs that had a human-written
proof of longer than five lines (see §H.2). Proving these kinds of theorems remains an open problem.

Working with constraints. As shown in Table 6, model performance drops when the proof cannot
use powerful automation tactics. Models have a tendency to invoke these powerful tactics, and
struggle with more explicit step-by-step proofs. Improving performance in this setting of miniCTX is
an interesting future direction.

B Experiment Details

B.1 Motivation for Baselines

Writing a proof can be seen as a sequential process (x1, y1), (x2, y2), . . . of states xt and tactics
yt. A state contains what is left to prove (the goal), and available information (the hypotheses).
A tactic transitions the proof to a new state. If the state contains no remaining goals, the proof is
complete. Concretely, a user applies tactics by writing Lean code, Lean keeps track of the state, and
the development environment shows the state and the written code.

The traditional approach to training a language model for theorem proving is to train a model on
(state, tactic) pairs, i.e., train it to predict the next step of a proof (i.e., the tactic), given the state
provided by the proof assistant (i.e., the proof state) [9, 7, 25, 8]. A drawback to this approach is that
at test time, the model is not aware of new context outside of the proof state, such as new lemmas. We
will see later on that models trained with this state-tactic approach fail at context-dependent proving.

As a stronger baseline for context-dependent proving, we present file-tuning, a simple recipe that
trains with (preceding file context, proof state, next-tactic) tuples instead of training with (proof state,
next-tactic) pairs (Figure 3). This lets the model use new definitions, theorems, or other information
that are defined prior to the current tactic at training or at test time. In practice, file-tuning requires
extracting contexts and proof states from Lean, which is done by NTP-TOOLKIT.

B.2 Data extraction

We ran NTP-TOOLKIT’s next-tactic extraction on a snapshot of Mathlib, yielding 307,049 examples
available at l3lab/ntp-mathlib. We then ran NTP-TOOLKIT’s instruction tuning script on these
examples, yielding file-tuning examples and state-tactic examples. For the file-tuning examples, as an
initial method for handling the long Lean files, we either truncate the middle of an input file so that
the file contents is 1024 tokens, or take only the preceding 1024 tokens, with the strategy selected at
random for each example. The state-tactic examples are at l3lab/ntp-mathlib-instruct-st. The
union of file-tuning and state-tactic examples are at l3lab/ntp-mathlib-instruct-context, split
into 583k train, 15k dev, and 15k test examples.
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B.3 Baseline Setups

File-tuning. Next, we fine-tune a language model on the union of file-tuning and state-tactic
examples. We use the DeepSeek-Coder-1.3b language model [27] based on its performance on code
generation tasks and its size, which allowed us to fine-tune with our computational budget. We fine-
tune the model for 3 epochs and select the model based on held-out validation perplexity evaluated
every 4,000 steps. The model is available at l3lab/ntp-mathlib-context-deepseek-coder-1.3b.

State-tactic tuning. We fine-tune a similar model on l3lab/ntp-mathlib-instruct-st using the
same hyperparameters. The model is available at l3lab/ntp-mathlib-st-deepseek-coder-1.3b.

B.4 Evaluation setup

We evaluate models for the task of tactic-based theorem proving: given a theorem statement, a model
generates one tactic at a time while receiving states from the proof assistant. We use a standard
best-first search strategy [9, 7, 28, 8, 1] which prioritizes partial proofs based on the model’s average
log probabilities. This search method is parameterized by the number of generated tactics per iteration
S, and the maximum number of iterations T . We use the setting from [26, 1] (S = 32, and T = 100).

We evaluate five types of baselines: (1) pass@1 full proof generation using GPT-4o: we prompt the
model with only the theorem statement and require it to generate a complete proof (see Appendix
(§G.2) for details of the prompts and few-shot examples); (2) pass@1 full proof generation with
in-file context using GPT-4o: we supplement the theorem statement with up to 8000 tokens of in-file
context; (3) the file-tuning model described in (§4.1); (4) the state-tactic model described in (§4.1);
and (5) a state-tactic prompting model: we prompt a pre-trained language model with (state, tactic)
examples, using Llemma-7b [26].

C Analysis

We analyze the baseline models on miniCTX further along several axes, including the kinds of
contextual dependencies, the difficulty, and the content made available in the context.

File-tuning especially helps on problems with infile dependencies. We use the miniCTX metadata
to categorize theorems based on their in-file dependencies. Figure 6 shows the performance of
state-tactic tuned model and file-tuned model on problems with in-file dependencies compared to
those without. We also show miniF2F as an additional reference point for problems without in-file
dependencies. The file-tuned model shows a marked improvement over the state-tactic tuned model,
especially in problems that have dependencies on context. We conclude that file-tuning specifically
helps in the realistic setting of theorem proving with new definitions and theorems in context.

Premise selection helps but may interfere with in-file context. We use miniCTX metadata to
categorize problems based on their cross-file dependencies, evaluating the impact of premise selection
across the entire dataset. As shown in Figure 4, GPT-4o benefits significantly from premise selection
on problems with high cross-file dependencies, showing improved performance when leveraging
relevant premises from imported files. However, we also observe that premise selection can interfere
with in-file context, leading to inconsistent results, particularly when the available in-file context is
relatively short. This suggests that adding cross-file premises may sometimes disrupt the model’s
ability to focus on the in-file information. Further analysis of this interference is included in §H.3.
This highlights the need for more sophisticated integration strategies that can balance both in-file and
cross-file contexts effectively.

Models can learn from previous proofs in the file context. To determine the contribu-
tion of different components in the in-file context, we conducted an ablation study on the
PFR.ForMathlib.Entropy.Basic file, which contains numerous co-related lemmas and rich natu-
ral language comments, making it an ideal candidate to investigate the influence of different context
components. In this ablation, we systematically removed specific parts of the in-file context and
evaluated the model’s ability to generate proofs under these modified conditions. As shown in Table 3,
both the file-tuned model and GPT-4o benefit from the inclusion of previous proofs in the file context.
This indicates that models are capable of learning proof strategies from existing proofs in the file and
effectively applying them to new problems (see §H.4 for more examples).
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Table 3: Ablation study on different context components for theorem proving.
Environment Definitions Lemma Lemma Natural Language File-tuning GPT-4o

Statement Proof Comments
✗ ✗ ✗ ✗ ✗ 14.12% 8.24%
✓ ✗ ✗ ✗ ✗ 25.88% 2.35%
✓ ✓ ✗ ✗ ✗ 24.71% 9.41%
✓ ✓ ✓ ✗ ✗ 27.06% 22.35%
✓ ✓ ✓ ✓ ✗ 32.94% 34.12%
✓ ✓ ✓ ✗ ✓ 28.24% 23.53%
✓ ✓ ✓ ✓ ✓ 35.29% 31.76%

Table 4: Overview of problem statistics in miniF2F and miniCTX.
Split Problems Avg. Context Length (tokens) Avg. Proof Steps

miniF2F [6] Valid/Test 488 153* 3.0†

miniCTX

Prime 87 10,630 3.6
PFR 54 17,495 27.7
Mathlib 50 14,440 6.1
HTPI 185 39,050 10.7†

All 376 26,106 10.9

*Only counting library imports and definitions. †Excluding theorems without proofs.

Natural language comments contribute in certain settings. Our ablation also explored the effect
of natural language comments in the in-file context. Though the impact was not dramatic, comments
written in natural language were found to be helpful in certain settings. In scenarios where proofs
were excluded from the context, adding comments resulted in slight performance gains for both
models. For the file-tuned model, these gains were further amplified when proofs were included
alongside comments, demonstrating the value of combining formal context with explanatory natural
language. However, for GPT-4o, the presence of comments when proofs were included led to a slight
decrease in performance, suggesting that effective context selection may vary depending on the model
architecture and underlying training characteristics.

File-tuning improves across all difficulty levels and context lengths. Finally, Appendix §H.2 shows
performance on problems categorized by the length of the human-written proof (when available),
which we take as a rough proxy of the problem difficulty. The file-tuned model improved on all
three difficulty categories. Appendix §H.2 also shows that file-tuning had improved accuracy across
context lengths, particularly for problems with longer contexts. Longer contexts may imply more
dependencies, suggesting that these problems can benefit more from file-tuning.

Models rely on common symbolic automation. To demonstrate an additional kind of context-
dependence, we perform an additional analysis on Math2001 [20], which is another Lean textbook
setting.1 In particular, the textbook code disables powerful automation tactics including simp
and linarith to promote manual reasoning, akin to traditional textbook exercises. For example,
Math2001 includes numerous arithmetic problems that are trivial with automation tactics (e.g.,
linarith) but are challenging for models to explicitly prove with step-by-step reasoning (e.g.,
via calc). In Table 6 we evaluate models with the automation disabled, and observe substantial
performance drops, confirming the reliance on automation tactics. We also find that the state-tactic
tuned model relies on simp for unseen definitions, making it performing similarly well to the
file-tuned model on theorems that only rely on new definitions (§H.6).

D miniCTX Source

Prime Number Theorem. PrimeNumberTheoremAnd [18] is a project started in January 2024 that
formalizes the prime number theorem in Lean as well as related concepts, such as residue calculus
on rectangles in C. We find the files Rectangle.lean and ResidueCalcOnRectangles.lean
suitable for our purpose of testing context-dependent theorem proving, especially when we use
preceding file content as context, as each file is self-contained within the project and contains new
definitions (rectangles, squares) and many interdependent lemmas. See §E.2 for an illustration of such

1See Appendix F.1 for further details on Math2001. Due to licensing we do not include it in miniCTX.
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lemmas. In addition, most theorems from ResidueCalcOnRectangles.lean rely on the definitions
from Rectangle.lean, which serves as a perfect example of cross-file dependencies. We extracted
87 theorems from these files. Assuming that a model was trained prior to January 2024, this split
guarantees the evaluation of project-level, context-level, and theorem-level generalization.

PFR. PFR [19] is a project started in November 2023 that formalizes a proof of the Polynomial
Freiman–Ruzsa (PFR) conjecture. We included 54 theorems from PFR. We find that proofs of
theorems in PFR tend to be much more monolithic and longer in length than those in Mathlib or other
libraries. PFR also defines custom mathematical concepts and notations (such as Ruzsa distance) and
a proof typically depends on many lemmas in PFR outside the current file. All of the theorems were
added to PFR after November 2023. Assuming that the model was trained prior to this date, this split
guarantees the evaluation of project-level, context-level, and theorem-level generalization.

Recent Mathlib Commits. Lean’s mathematical library, Mathlib [21], is a community-maintained
Lean repository including mathematical concepts as well as programming APIs and common tactics.
It is the single largest Lean library that users contribute to, and is therefore representative of the
production environment in which neural theorem provers are deployed. Mathlib is a long-standing
project, and it is common practice to train language model-based provers on Mathlib. It is therefore
likely that Mathlib source files have been observed during training. However, Mathlib is frequently
updated, with new definitions, theorems, and refactorings occurring on a daily basis. Hence we can
test theorem-level generalization by tasking a model with proving newly added theorems, given a
context that may or may not have been observed during training.

We included 50 theorems added to Mathlib in April 2024, by filtering recent Mathlib commits to ones
that only add new theorems. Many of the theorems added are simple lemmas that depend on earlier
ones (e.g., ones seen during training). As Mathlib generally refactors new theorems by breaking down
long theorems to shorter lemmas, most new theorems are not difficult to prove, and give a realistic
representation of where neural theorem provers are used. Assuming that the model was trained prior
to April 2024, the Mathlib split guarantees the evaluation of theorem-level generalization.

HTPI. HTPI contains the Lean code for the book How to Prove It (HTPI) [29], which explains
a systematic approach to constructing mathematical proofs with Lean. It covers various topics,
including elementary logic, number theory, and proving techniques like mathematical induction,
along with their implementation in Lean. As supplementary material to the textbook, the problems in
HTPI are formulated in a similar fashion: the files typically start with basic definitions and lemmas
that might be used throughout the entire file, followed by exercises and several example problems.2
Therefore, models can utilize definitions, lemmas, and proof structures from example problems to
solve similar exercises. Intuitively, the model must understand and apply the context provided within
each file, making it an effective benchmark for testing context-aware theorem-proving models.

E miniCTX Examples

Here we give some examples of the miniCTX and its sources to illustrate the format of the data and
how and why we collect certain theorems.

E.1 Example Entry

An entry in the miniCTX dataset consists of the theorem statement, preceding file contents, and
metadata information. For example, given the following theorem s_eq_pow_two in context:

import Mathlib.Data.Real.Basic

/-!
# Square function
We define the squaring function `s : R → R` to be `s x := x * x`.
-/

2The main chapter and exercises are separated in the original project: HTPILeanPackage. We manually
merged them for evaluation in the fork: HTPILeanPackage4.7.
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def s (x : R) : R := x * x

lemma s_eq_pow_two {x : R} : s x = x ^ 2 := by
rw [s, pow_two]

We collect its data into miniCTX, formatted in JSON as follows:

{
# Preceding file content
"srcContext": "import␣Mathlib.Data.Real.Basic\\n\\n/-!\\n#␣Square␣function\\nWe␣

define␣the␣squaring␣function␣`s␣:␣\\u211d␣\\u2192␣\\u211d`␣to␣be␣`s␣x␣:=␣x␣*␣
x`.\\n-/\\n\\ndef␣s␣(x␣:␣\\u211d)␣:␣\\u211d␣:=␣x␣*␣x\\n\\n",

# Theorem statement
"theoremStatement": "lemma␣s_eq_pow_two␣{x␣:␣\\u211d}␣:␣s␣x␣=␣x␣^␣2",

# Fully qualified theorem name
"theoremName": "s_eq_pow_two",

# Temporal metadata
"fileCreated": "(git␣commit)",
"theoremCreated": "(git␣commit)",

# Source metadata
"file": "MyProject/Square.lean",
"module": "MyProject.Square",
"positionMetadata": {
# Line number the theorem is on
"lineInFile": 10,
# Number of tokens before the theorem
"tokenPositionInFile": 152,
# Number of premises (definitions, theorems) before the theorem
"theoremPositionInFile": 1

},

# Dependency metadata
"dependencyMetadata": {
# Number of definitions or lemmas defined in this file that the theorem uses
"inFilePremises": true,
"numInFilePremises": 1,
# Number of definitions or lemmas defined in this repository that the theorem

uses (including in-file ones)
"repositoryPremises": true
"numRepositoryPremises": 1,
# Number of total premises (in file, repository, or otherwise)
"numPremises": 2,
# Modules imported in the current file
"importedModules": ["Mathlib.Data.Real.Basic", ...]

},

# Proof metadata
"proofMetadata": {
"hasProof": true,
"proof": "by\n␣␣rw␣[s,␣pow_two]",
"proofType": "tactic",
"proofLengthLines": 2,
"proofLengthTokens": 20

}
}

In additional to individual entries, we also record the version (git commit) of the repository.
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E.2 Prime Number Theorem example

We collect theorems from the Rectangle.lean file in PrimeNumberTheoremAnd. The following
excerpt from Rectangle.lean demonstrates the scenario that often arises in a theorem proving
environment where context is critical to producing a proof:

import Mathlib.Analysis.Complex.CauchyIntegral
import Mathlib.Analysis.Complex.Convex

open Complex Set Topology

open scoped Interval

variable {z w : C} {c : R}

/-%%
\begin{definition}\label{Rectangle}\lean{Rectangle}\leanok
A Rectangle has corners $z$ and $w \in \C$.
\end{definition}
%%-/
/-- A `Rectangle` has corners `z` and `w`. -/
def Rectangle (z w : C) : Set C := [[z.re, w.re]] ×C [[z.im, w.im]]

namespace Rectangle

lemma symm : Rectangle z w = Rectangle w z := by
simp [Rectangle, uIcc_comm]

lemma symm_re : Rectangle (w.re + z.im * I) (z.re + w.im * I) = Rectangle z w := by
simp [Rectangle, uIcc_comm]

When proving the final lemma symm_re, a model can benefit much from the preceding file contents,
which include (1) the existing imports from Mathlib, variable declarations, and open namespaces
that provide a syntactic context for this theorem, (2) the new definition Rectangle in the context,
which the model has not seen in training, (3) natural language and LaTeX documentation of the file
and Rectangle definition, (4) the analogous (in this case identical) proof of the preceding theorem
symm. We demonstrate that performance on Rectangle.lean is indeed much higher when preceding
file contents are given as context to a model.

For future data added to miniCTX that specifically test the preceding file contents as context, we will
ensure it is standalone like Rectangle.lean, i.e. it does not import any other unseen files from the
same repository, so the preceding file contents already contain all important information relevant to
the proof.

F Additional datasets

In addition to problems in miniCTX, we also evaluated other datasets that are not included due to
copyright reasons.

F.1 Math2001

Math2001 [20] contains the Lean code for the book The Mechanics of Proof by Heather Macbeth, an
introductory text on mathematical theorem proving with accompanying Lean code. Each chapter of
The Mechanics of Proof covers an introductory topic and walks through how to write the associated
mathematics in Lean, along with exercises. The topics include proofs by calculation, proofs with
structure, parity and divisibility, logic, induction, number theory, functions, sets, and relations. A
unique aspect of Math2001 is that it disables common Lean automation for pedagogical purposes.
For example, a student must write out an equality proof in detail, with each step justified. It also
defines new tactics and definitions separate from the common Lean libraries. Typically a file in the
textbook will show examples of such proofs, followed by exercises for a student to complete. We
can view this as a form of contextual adaptation: a model must prove the theorem according to the
constraints of the textbook. Math2001 has 41 files that include examples and exercises. We selected 1
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Models Math2001
GPT-4o (full proof) 11.76%
GPT-4o (+ context) 43.13%
State-tactic prompting 31.37%
State-tactic tuning 27.45%
File tuning 41.18%

Table 5: Performance comparison of different models on Math2001.

Automation File (%) State-tactic (%)

Enabled 41.18 11.76
Disabled 27.45 7.84

Table 6: Performance on the Math2001 split with and without access to standard automation.

to 2 theorems from each file (depending on the length of the file), for a total of 50 theorems. Of these,
31 have no proof in the Math2001 repository, hence testing theorem-level generalization.

Context-aware models surpass state-based models Table 5 shows the performance comparison
of different models. Both the GPT-4o model, which includes context in the input, and the file-tuned
model perform significantly better than the other models. This demonstrates the importance of context
information in context-dependent textbook-style problems.

Models rely on common symbolic automation. The Math2001 split originally disables powerful
automation tactics including simp and nlinarith to promote manual reasoning, akin to traditional
textbook exercises. In Table 6 we evaluate models with the automation disabled, and observe
substantial performance drops, confirming a heavy reliance of current models on these automation
tactics. An examination of the training corpus further revealed a general dependency on automated
tactics within real Lean projects, indicating that our models have learned to rely on these tactics.

G NTP-TOOLKIT and file-tuning details

G.1 Data extraction

NTP-TOOLKIT contains a general-purpose data extraction tool that extracts examples from an arbitrary
Lean 4 repository and formats them into examples that can be used to compile miniCTX, as well
as for language-model fine-tuning. The tool is implemented in Lean based on Kim Morrison’s
lean-training-data.

Specifically, NTP-TOOLKIT takes in a configuration file with one or more Lean repositories specified.
Each repository is transformed into next-tactic and full proof examples stored in JSON Lines files.
The next-tactic data is suitable for making file-tuning examples of the form (context, state, next-tactic):

{
"state": # tactic state ,
"nextTactic": # pretty-printed next tactic,
"srcUpToTactic": # source code in the file up to the tactic invocation,
"decl": # declaration without proof (e.g., statement of a theorem),
"declUpToTactic": # source code in the declaration up to the tactic invocation,
"declId": # unique identifier of the declaration

}

The full proof data is suitable for making evaluation examples of the form (context, theorem, proof):

{
"srcUpToDecl": # source code in the file up to the declaration,
"decl": # declaration without proof (e.g., statement of a theorem),
"declId": # unique identifier of the declaration,
"proof": # proof
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}

Full proof data is also suitable for training a model to directly generate a full proof, and NTP-TOOLKIT
also provides Lean source with proof states interleaved, both of which we do not explore in this work.

G.2 Input-output formatting.

Below we show the inputs and outputs for file-tuning and state-tactic tuning. In the paper we refer to
the natural language description at the beginning of the input as an “instruction”, and refer to a set of
inputs and outputs as described below as “instruction-tuning data”.

G.2.1 File tuning.

Given an example containing a state, next-tactic, and preceding file contents (srcUpToTactic), the
data is formatted as:

Input:

/- You are proving a theorem in Lean 4.
You are given the following information:
- The file contents up to the current tactic, inside [CTX]...[/CTX]
- The current proof state, inside [STATE]...[/STATE]

Your task is to generate the next tactic in the proof.
Put the next tactic inside [TAC]...[/TAC]
-/
[CTX]
{srcUpToTactic}
[/CTX]
[STATE]
{state}
[/STATE]
[TAC]

Output:

{nextTactic}
[/TAC]

G.2.2 State-tactic tuning.

Given an example containing a state and next-tactic, the data is formatted as:

Input:

/- You are proving a theorem in Lean 4.
You are given the following information:
- The current proof state, inside [STATE]...[/STATE]

Your task is to generate the next tactic in the proof.
Put the next tactic inside [TAC]...[/TAC]
-/
[STATE]
{state}
[/STATE]
[TAC]
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Output:

{nextTactic}
[/TAC]

G.2.3 GPT-4o prompt

For full proof generation task with only theorem statement, we use the following prompt:

Your task is to generate complete proofs for problems stated in Lean4. You may use any
tactics available in Mathlib, but no additional context, definitions, or theorems from the
problem’s file will be provided. Focus on crafting proofs using general knowledge and
techniques applicable in Lean4. Here are some examples:

lemma deriv_scale {f : CS (n + 1) E} : (f.scale R).deriv = R−1 ·
f.deriv.scale R := by

ext v ; by_cases hR : R = 0 <;> simp [hR, scale]
· simp [deriv, smul] ; exact deriv_const _ _
· exact ((f.hasDerivAt (R−1 · v)).scomp v (by simpa using (hasDerivAt_id

v).const_smul R−1)).deriv

theorem mul_dvd_mul_left (a : α) (h : b | c) : a * b | a * c := by
obtain ⟨d, rfl⟩ := h
use d
rw [mul_assoc]

/- Now here is your exercise. There is no need to restate the problem. If
needed, think through the proof using comments. -/

{theorem statement}

For full proof generation task with additional infile context, we use the following prompt:
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Your task is to generate complete proofs for problems stated in Lean4. For each problem, you
will be provided with the context from the file in which the theorem is stated. This context
includes useful external libraries, along with important definitions and theorems that are
relevant to the proof. You are encouraged to use any tactics, definitions, lemmas, or theorems
defined within this context to construct your proof. Please pay careful attention to indentation
and formatting to ensure that the proof adheres to Lean4 syntax standards. Here are some
examples:

#Context:
import Mathlib.Analysis.Calculus.Deriv.Support
import Mathlib.Analysis.Distribution.SchwartzSpace
import Mathlib.Order.Filter.ZeroAndBoundedAtFilter

open Real Complex MeasureTheory Filter Topology BoundedContinuousFunction
SchwartzMap BigOperators

variable {E : Type*} [NormedAddCommGroup E] [NormedSpace R E] {{n : N}}

@[ext] structure CS (n : N) (E : Type*) [NormedAddCommGroup E] [NormedSpace
R E] where

toFun : R → E
h1 : ContDiff R n toFun
h2 : HasCompactSupport toFun

noncomputable def scale (g : CS n E) (R : R) : CS n E := by
by_cases h : R = 0
· exact ⟨0, contDiff_const, by simp [HasCompactSupport, tsupport]⟩
· refine ⟨fun x => funscale g R x, ?_, ?_⟩

· exact g.h1.comp (contDiff_const.smul contDiff_id)
· exact g.h2.comp_smul (inv_ne_zero h)

/- Truncated -/

/- Now here is your exercise. There is no need to restate the problem. If
needed, think through the proof using comments. -/

#Context:
{}

#Problem:
{}

{theorem statement}

H Additional results and analysis

H.1 Dependency distribution
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Figure 5: Percentage of different dependencies in the human-written proof of theorems in miniCTX
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H.2 Performance by proof length and context length
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Figure 6: Performance by dependency type. For each theorem in miniCTX, we record as metadata
whether its human-written proof depends on other definitions or theorems in the same file, and test
the performance of baselines on each type. File-tuned models substantially outperform state-tactic
tuned models on theorems with definition and/or theorem dependencies.
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Figure 7: Performance of two baselines on different difficulty levels and context lengths, as measured
by the length of human-written proof in lines and the size of the preceding file contents in tokens.
File-tuning substantially improves theorem-proving abilities across all cases, but especially when the
theorem is easier and the context is longer.

H.3 Interference between in-file context and retrieved premises

In our experiments, we attempted to supply both in-file context (in the form of preceding code) and
premise context (in the form of retrieved premises) to GPT-4o for proving a theorem. In Figure 8, we
present an analysis of the impact of the length of retrieved premises on the resulting proof success
rate.

Longer retrieved premises hurt performance. The results indicate that problems with a lower
premise-to-context length ratio tend to have higher success rates. Specifically, successful problems
often feature relatively shorter premises as proportion of the full context length. This suggests that
models are better able to utilize and focus on relevant in-file context when the cross-file premises
are proportionally smaller. Conversely, when the length of the premises becomes relatively large
compared to the full context, it may overwhelm or distract the model, reducing its ability to effec-
tively utilize the in-file information. This finding highlights the importance of ensuring a balanced
integration of premises with the in-file context to maintain model focus and improve proof generation
performance.
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Figure 8: Impact of length of retrieved premises on GPT-4o model performance. A higher premise-
to-context length ratio is correlated with lower success rates, suggesting that too much premise in
context overwhelms the model.

H.4 Example of learning proofs from context

The file-tuned model is able to utilize the proofs in the context. Here is an example of the model
making minimal modification to the proofs from the context:

Input:

...

theorem Set.left_not_mem_uIoo {a b : R} : a /∈ Set.uIoo a b :=
fun ⟨h1, h2⟩ 7→ (left_lt_sup.mp h2) (le_of_not_le (inf_lt_left.mp h1))

theorem Set.right_not_mem_uIoo {a b : R} : b /∈ Set.uIoo a b := by

Output:

rintro ⟨h1, h2⟩
exact (right_lt_sup.mp h2) (le_of_not_le (inf_lt_right.mp h1))

H.5 Example of using theorems from context

The file-tuned model is able to utilize the stated theorems in the context. Here is an example of the
model using the previously defined theorem in the proof:

Input:
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. . .
lemma RectSubRect {x0 x1 x2 x3 y0 y1 y2 y3 : R} (x0_le_x1 : x0 ≤ x1)

(x1_le_x2 : x1 ≤ x2)
(x2_le_x3 : x2 ≤ x3) (y0_le_y1 : y0 ≤ y1) (y1_le_y2 : y1 ≤ y2) (y2_le_y3
: y2 ≤ y3) :
Rectangle (x1 + y1 * I) (x2 + y2 * I) ⊆ Rectangle (x0 + y0 * I) (x3 + y3 *
I) := by

rw [rect_subset_iff, mem_Rect, mem_Rect]
refine ⟨⟨?_, ?_, ?_, ?_⟩, ?_, ?_, ?_, ?_⟩
all_goals simpa using by linarith

lemma RectSubRect' {z0 z1 z2 z3 : C} (x0_le_x1 : z0.re ≤ z1.re) (x1_le_x2 :
z1.re ≤ z2.re)
(x2_le_x3 : z2.re ≤ z3.re) (y0_le_y1 : z0.im ≤ z1.im) (y1_le_y2 : z1.im ≤
z2.im)

(y2_le_y3 : z2.im ≤ z3.im) :
Rectangle z1 z2 ⊆ Rectangle z0 z3 := by

Output:

simpa using RectSubRect x0_le_x1 x1_le_x2 x2_le_x3 y0_le_y1 y1_le_y2
y2_le_y3

H.6 Example of using unseen definitions

The state-tactic tuned model is able to utilize the unseen definitions that appear in the proof state. In
the following example Set.uIoo is a newly defined definition, which is never seen for state-tactic
tuned model:

Input:

theorem uIoo_of_le {α : Type*} [Lattice α] {a b : α} (h : a ≤ b) : Set.uIoo
a b = Ioo a b := by

[STATE]
1 goal
zw: C
c: R
α: Type u_1
inst: Lattice α
ab: α
h: a ≤ b
⊢ uIoo a b = Ioo a b
[/STATE]

Output:

simp [uIoo, h]

This leads the state-tactic tuned model to perform similarly well as the file-tuned model on problems
that only rely on new definitions, and not new theorems (see Figure 6).
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I Dataset hosting and maintenance

miniCTX is released on HuggingFace: l3lab/miniCTX, distributed under the Apache 2.0 license.
Data extraction tool NTP-TOOLKIT is released on GitHub: cmu-l3/ntp-toolkit, under the MIT
license. We note that the underlying data for the individual splits of miniCTX are also released under
the Apache 2.0 license. We include the licensing information in the dataset repository. We plan to
regularly update and maintain the dataset to include examples from new projects.

J NTP-TOOLKIT guideline

We introduced NTP-TOOLKIT in §??. With the NTP-TOOLKIT, users can extract and annotate new
theorems and proofs from any valid Lean project, in miniCTX format. The extracted data can be
used either as updates to miniCTX, or as training data (for which we also provide instruction tuning
utilities). We also develop a lightweight evaluation framework for easy evaluation on miniCTX.

J.1 Preliminary

The evaluation code relies heavily on the Lean REPL [30], which operates within the project
environment. Therefore, it is essential that the project builds without any errors. Additionally, the
version of Lean used in the project should match the version supported by the REPL. While the Lean
REPL supports versions ≥ 4.3.0, for the best experience with data extraction and evaluation, we
recommend evaluating projects that use Lean version 4.7.0 (all miniCTX theorems are in 4.7.0). We
plan to continuously update NTP-TOOLKIT to support newer versions.

J.2 Using the NTP-TOOLKIT

The NTP-TOOLKIT is designed to easily extract and annotate theorem proving data from Lean projects,
by simply providing the project URL. To use the NTP-TOOLKIT for data extraction, follow these
steps:

1. Installation: Clone the NTP-TOOLKIT repository from GitHub to your local machine, and
checkout the Lean version tag corresponding to the extracted project (e.g., v4.7.0). Ensure
that you have the required dependencies installed, as listed in the repository’s README
file.

2. Configuration: Supply GitHub URL, commit hash, and root modules of your Lean project
in a JSON configuration file. Make sure that your project is using a compatible version of
Lean. NTP-TOOLKIT will extract data from all modules imported by the root modules.

3. Data extraction: Run the data extraction script provided by the toolkit. Specify the
--full_proof_training_data and --premises options to extract miniCTX-style data,
which will be stored in an minictx.jsonl output file. Specify the --declarations
option to additionally extract the premises in each module, for premise retrieval. The
full_proof_training_data outputs can be additionally used for fine tuning (assuming
the extracted data is dated before the current temporal split of miniCTX).

For detailed commands and additional options, please refer to the README file in the NTP-TOOLKIT
repository.

J.3 miniCTX Evaluation

We provide a comprehensive evaluation pipeline in the miniCTX-eval repository, supporting both
tactic-prediction and full-proof generation tasks. Users should place the extracted JSONL file from
the NTP-TOOLKIT into the data folder. To run an evaluation task, execute the task script by specifying
the dataset path, the corresponding project path, and the path to the Lean REPL. This setup ensures
that the evaluation is conducted within the correct environment and with the necessary data inputs.
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https://huggingface.co/datasets/l3lab/miniCTX
https://github.com/cmu-l3/ntp-toolkit
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