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Abstract
We study the problem of multi-task learning under
user-level differential privacy, in which n users
contribute data tom tasks, each involving a subset
of users. One important aspect of the problem,
that can significantly impact quality, is the distri-
bution skew among tasks. Tasks that have much
fewer data samples than others are more suscepti-
ble to the noise added for privacy. It is natural to
ask whether algorithms can adapt to this skew to
improve the overall utility.
We give a systematic analysis of the problem, by
studying how to optimally allocate a user’s pri-
vacy budget among tasks. We propose a generic
algorithm, based on an adaptive reweighting of
the empirical loss, and show that in the presence
of distribution skew, this gives a quantifiable im-
provement of excess empirical risk.
Experimental studies on recommendation prob-
lems that exhibit a long tail of small tasks, demon-
strate that our methods significantly improve util-
ity, achieving the state of the art on two standard
benchmarks.

1. Introduction
Machine learning models trained on sensitive user data
present the risk of leaking private user information (Dwork
et al., 2007; Korolova, 2010; Calandrino et al., 2011; Shokri
et al., 2017). Differential Privacy (DP) (Dwork et al., 2006)
mitigates this risk, and has become a gold standard widely
adopted in industry and government (Abowd, 2018; Wilson
et al., 2020; Rogers et al., 2021; Amin et al., 2022).

In this work, we adopt the notion of user-level DP (Dwork &
Roth, 2014; Kearns et al., 2014), which seeks to protect all
data samples of a given user, a harder goal than protecting a
single sample. User-level DP has been studied under differ-
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ent settings, including empirical risk minimization (Amin
et al., 2019; Levy et al., 2021), mean estimation (Cummings
et al., 2022), and matrix completion (Jain et al., 2018; Chien
et al., 2021). The setting we study is that of multi-task learn-
ing, in which users contribute data to multiple tasks. This
is for example the case in recommendation systems: given
a set of n users and m items (pieces of content, such as
movies or songs), the goal is to learn a representation for
each item based on the users’ preferences. Another example
is multi-class classification, where the goal is to learn m
classifiers (one per class). Notice that the training data of a
given user may be relevant to only a small subset of tasks.
This is certainly the case in recommendation, where users
typically interact with a small subset of the catalog of avail-
able content. This can also be the case in classification if
the number of classes is very large. The interaction pattern
between users and tasks can be described using a bipartite
graph Ω ⊆ [m] × [n], such that user j contributes data to
task i if and only if (i, j) ∈ Ω. We will also denote by
Ωi = {j : (i, j) ∈ Ω} the set of users contributing to task i.
The goal is then to minimize the empirical loss summed
over tasks,

L(θ) =

m∑
i=1

∑
j∈Ωi

`(θi;xij , yij), (1)

where θi represents the model parameters for task i, and
xij , yij are respectively the features and labels contributed
by user j to task i. In general, we will assume that Ω, x, and
y are all private.

In practice, the tasks can be imbalanced, i.e. the distribu-
tion of task sizes |Ωi| can be heavily skewed. This is the
case in recommendation systems, in which there is a long
tail of items with orders of magnitude fewer training exam-
ples than average (Yin et al., 2012; Liu & Zheng, 2020).
Classification tasks can also exhibit a similar skew among
classes (Kubat & Matwin, 1997). Under differential privacy
constraints, this skew makes tail tasks (those with less data)
more susceptible to quality losses. This disparate impact of
differential privacy is well documented, for example in clas-
sification with class imbalance (Bagdasaryan et al., 2019)
or in DP language models (McMahan et al., 2018).

A natural question is whether DP algorithms can be made
adaptive to such distribution skew. Some heuristics were
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found to be useful in practice. For example, (Chien et al.,
2021) propose a sampling heuristic, which limits the number
of samples per user, while biasing the sampling towards tail
tasks. This was found to improve performance in practice
(compared to uniform sampling), though no analysis was
provided on the effect of this biased sampling. Another
heuristic was proposed by (Xu et al., 2021), which applies
to DPSGD, and operates by increasing the clipping norm
of gradients on tail tasks. Similarly, this was observed to
improve performance (compared to uniform clipping).

In both cases, the intuition is that by allocating a larger
proportion of a user’s privacy budget to the tail (either via
sampling or clipping), one can improve utility on the tail,
and potentially on the overall objective (1). However, a
formal analysis of biased sampling and clipping remains
elusive, as it introduces a bias that is hard to analyze. We
take a different approach, by introducing task-user weights
wij to have a finer control over the budget allocation. The
weights play a similar role to sampling or clipping: by as-
signing larger weights to a task, we improve utility of that
task. The question is then how to optimally choose weights
w to minimize excess risk on the overall objective (1), under
privacy constraints (which translate into constraints involv-
ing w and Ω). Fortunately, this problem is amenable to
formal analysis, and we derive optimal choices of weights,
and corresponding error bounds, under different assump-
tions on the loss and the task-user graph Ω.

1.1. Contributions

1. We give a formal analysis of the private multi-task learn-
ing problem under distribution skew. We propose a
generic method based on computing task-user weights,
and applying those weights to the loss function (1), as
a mechanism to control each user’s privacy budget al-
location among tasks. The method is generic in that it
applies to several algorithms such as DPSGD (Bassily
et al., 2014; Abadi et al., 2016) or Sufficient Statistics
Perturbation (Foulds et al., 2016).

2. We derive utility bounds that explicitly show how the
budget allocation trades-off privacy and utility (Theo-
rems 3.8 and 3.12). By adapting the allocation to the
task sizes, we obtain utility bounds (Theorem 4.3) with
a guaranteed improvement compared to uniform alloca-
tion. The improvement increases with the degree of skew
in the task distribution.

3. We conduct experiments on synthetic data and two stan-
dard recommendation benchmarks which exhibit a heavy
distribution skew. Our methods significantly improve
accuracy, even compared to strong baselines such as the
tail sampling heuristic of (Chien et al., 2021). We also
provide a detailed analysis of quality impact across tasks.
We find that adaptive budget allocation visibly improves
quality on tail tasks, with a limited impact on head tasks.

1.2. Related Work

A common technique in user-level differential privacy is to
adaptively control the sensitivity with respect to the data
of a user. This is typically done via clipping (Abadi et al.,
2016), sampling (Kasiviswanathan et al., 2013; Amin et al.,
2019), using privacy filters (Feldman & Zrnic, 2021), or
using weights in the objective function (Proserpio et al.,
2014; Epasto et al., 2020) to scale the contribution of high
sensitivity users. Our approach is related, in that we adap-
tively control sensitivity. But while these methods focus on
adapting to users (users with high sensitivity are assigned
lower weights), we focus on adapting to tasks (within each
user, easier tasks are assigned lower weights).

We mention in particular (Epasto et al., 2020), who use
weights to bound user sensitivity, and analyze the optimal
choice of weights under certain assumptions. Their ap-
proach is perhaps the most similar to ours, in that the choice
of weights is phrased as an optimization problem. But our
setting is inherently different: they consider the traditional
ERM setting with a single task, while we consider the multi-
task setting (with heterogeneous tasks). As a result, their
solution assigns identical weights to all examples of a given
user, while our solution is designed to allocate a user’s bud-
get among tasks, and generally assigns different weights to
different examples of a user.

Turning to the multi-task setting, prior work on DP multi-
task learning (Li et al., 2020; Hu et al., 2021) has focused
on task-level privacy, where every user is identified with one
task. We consider a more general setting, in which tasks do
not necessarily coincide with users. In particular, under our
model, it’s important that a user can contribute to more than
one task.

Another related problem is that of answering multiple linear
or convex queries under DP, e.g. (Dwork et al., 2010; Hardt
& Rothblum, 2010; Ullman, 2015). Though related, the
two problems are different because the utility measure is
inherently different: in the multi-query setting, the goal is
to answer all queries accurately (i.e. a minimax objective),
while in the multi-task setting, the utility is a sum across
tasks, as in (1). Besides, algorithms in the multi-query
convex setting (closest to ours) often have to maintain a
distribution over a discretization of the data space, making
them prohibitively expensive in continuous feature spaces,
due to an exponential dependence on the dimension.

In practice, budget allocation among tasks is often done
through uniform sampling, for example in DP SQL (Wilson
et al., 2020), LinkedIn’s Audience Engagement API (Rogers
et al., 2021), and Plume (Amin et al., 2022). The tech-
niques that do adapt to the task distribution (via sampling as
in (Chien et al., 2021) or clipping as in (Xu et al., 2021)) tend
to be heuristic in nature, and lack a rigorous utility analysis.
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To the best of our knowledge, we present the first systematic
analysis of multi-task, user-level DP under distribution skew.
Our method operates directly on the loss function, which
makes it applicable to standard algorithms such as DPSGD,
and has a guaranteed improvement under distribution skew.

2. Preliminaries
2.1. Notation

Throughout the paper, we will denote by Ω ⊆ [m]× [n] the
task-user membership graph, where m,n are the number
of tasks and users, respectively. We assume that m ≤ n.
For all i, let Ωi := {j : (i, j) ∈ Ω} be the set of users who
contribute to task i, and for all j, let Ωj := {i : (i, j) ∈ Ω}
be the set of tasks to which j contributes data. We will
denote by ni = |Ωi|, and by nj = |Ωj |. Let ‖x‖ be the L2

norm of a vector x, and ‖X‖F be the Frobenius norm of
a matrix X . For a symmetric matrix A, let A† denote the
pseudo-inverse of A’s projection on the PSD cone. For a
closed convex set C, let ‖C‖ denote its Euclidean diameter,
and ΠC(·) denote the Euclidean projection on C. Let N d

denote the multivariate normal distribution (of zero mean
and unit variance), and N d×d denote the distribution of
symmetric d× d matrices whose upper triangle entries are
i.i.d. normal. Finally, whenever we state that a bound holds
with high probability (abbreviated as w.h.p.), we mean with
probability 1−1/nc, where c is any positive constant, say 2.

2.2. User-Level Differential Privacy

Let D be a domain of data sets. Two data sets D,D′ ∈ D
are called neighboring data sets if one is obtained from the
other by removing all of the data samples from a single user.
Let A : D → S be a randomized algorithm with output
space S.
Definition 2.1 (User-Level Differential Privacy (Dwork &
Roth, 2014)). Algorithm A is (ε, δ)-differentially private
(DP) if for all neighboring data sets D,D′ ∈ D, and all
measurable S ∈ S,

Pr (A(D) ∈ S) ≤ eε Pr (A(D′) ∈ S) + δ.

Remark 2.2. The data of a user j consists of Ωj (the set
of tasks that user contributes to), together with the set of
features and labels {(xij , yij) : i ∈ Ωj}. Notice that the
user-task graph Ω itself is private. For example, in the rec-
ommendation setting, Ω represents which pieces of content
each user interacted with, while the labels yij represent how
much a user liked that piece of content; we want to protect
both.

For simplicity of presentation, our results will be stated in
terms of Rényi differential privacy (RDP). Translation from
RDP to DP is standard, and can be done for example using
(Mironov, 2017, Proposition 3).

Definition 2.3 (User-Level Rényi Differential Pri-
vacy (Mironov, 2017)). An algorithm A is (α, ρ)-Rényi
differentially private (RDP) if for all neighboring data sets
D,D′ ∈ D,

Dα (A(D))||A(D′)) ≤ ρ,

where Dα is the Rényi divergence of order α.

3. Budget Allocation via Weights
First, observe that the objective function (1) can be decom-
posed as

L(θ) =

m∑
i=1

Li(θi); Li(θi) =
∑
j∈Ωi

`(θi;xij , yij), (2)

where θi ∈ Rd are the model parameters for task i, and θ is
a shorthand for (θ1, . . . , θm). For all i, we will denote the
non-private solution of task i by

θ∗i = argmin
θi

Li(θi).

The goal is to learn a private solution θ̂ under user-level DP.
The quality of θ̂ will be measured in terms of the excess
empirical risk,

m∑
i=1

E[Li(θ̂i)]− Li(θ∗i ),

where the expectation is over randomness in the algorithm.
Remark 3.1. Although the objective is decomposable as a
sum of Li(θi), the problems are coupled through the privacy
constraint: since user j contributes data to all tasks in Ωj ,
the combined sensitivity of these tasks with respect to user
j’s data should be bounded. One is then faced with the
question of how to allocate the sensitivity among tasks. This
will be achieved by using weights in the objective function.

Our general approach will be to apply a DP algorithm
to a weighted version of the objective L(θ). Let w :=
(wij)(i,j)∈Ω be a collection of arbitrary positive weights,
and define the weighted multi-task objective

Lw(θ) =

m∑
i=1

∑
j∈Ωi

wij`(θi;xij , yij). (3)

We first give some intuition on the effect of the weights (a
formal analysis will be given in the next section). Suppose
∇` is bounded, and that we compute θ̂ by applying noisy
gradient descent (with fixed noise standard deviation) to
Lw(θ). Then w will have the following effect on privacy
and utility: increasing the weights of task i will generally
improve its utility (since it increases the norm of task i’s
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Algorithm 1 Task-weighted SSP (Sufficient Statistic Pertur-
bation)

1: Inputs: Task-user graph Ω, user features and la-
bels (xij , yij)(i,j)∈Ω, clipping parameters Γx,Γ∗,
weights w, domain C.

2: For all i, j, xij ← clip(xij ,Γx), yij ←
clip(yij ,ΓxΓ∗), where clip(x,Γ) = xmin(1,Γ/‖x‖)

3: for 1 ≤ i ≤ m do
4: Sample ξi ∼ N d, Ξi ∼ N d×d

5: Âi ←
∑
j∈Ωi

wij(xijx
>
ij + λI) + Γ2

xΞi

6: b̂i ←
∑
j∈Ωi

wijyijxij + Γ2
xΓ∗ξi

7: θ̂i ← Â†i b̂i
8: end for
9: Return θ̂

gradients, hence increases its signal-to-noise ratio). Increas-
ing the weights of user j will decrease her privacy (since
it increases the norm of user j’s gradients, hence increases
the L2 sensitivity w.r.t. her data). Utility depends on task
weights (wij)j∈Ωi , while sensitivity/privacy depend on user
weights (wij)i∈Ωj . By characterizing how sensitivity and
utility precisely scale in terms of the weights w, we will be
able to choose w that achieves the optimal trade-off.
Remark 3.2. Although we will apply a DP algorithm to the
weighted objective Lw, utility will always be measured in
terms of the original, unweighted objective L. The weights
should be thought of as a tool to allocate users’ privacy
budget, rather than a change in the objective function.

3.1. Weighted Multi-Task Ridge Regression

We start by analyzing the case of multi-task ridge regression,
optimized using the Sufficient Statistics Perturbation (SSP)
method (Foulds et al., 2016; Wang, 2018). This will pave the
way to the more general convex setting in the next section.

Suppose that each task is a ridge regression problem. The
multi-task objective (2) becomes

L(θ) =

m∑
i=1

∑
j∈Ωi

[
(θi · xij − yij)2 + λ‖θi‖2

]
, (4)

where λ is a regularization constant. The exact solution
of (4) is given by θ∗i = A−1

i bi where

Ai =
∑
j∈Ωi

(xijx
>
ij + λI), bi =

∑
j∈Ωi

yijxij . (5)

We propose a task-weighted version of SSP, described in
Algorithm 1. The private solution θ̂i is obtained by forming
weighted and noisy estimates Âi, b̂i of the sufficient statis-
tics (5), then returning θ̂i = Â†i b̂i. Notice that if we use
larger weights for task i, the relative noise scale in Âi, b̂i be-
comes smaller (see Lines 5-6), which improves the quality

of the estimate, while also increasing the sensitivity. Once
we analyze how the weights affect privacy and utility, we
will be able to reason about an optimal choice of weights.

First, we state the privacy guarantee of Algorithm 1. All
proofs are deferred to Appendix A.
Theorem 3.3 (Privacy guarantee of Algorithm 1). Let
(wij)(i,j)∈Ω be a collection of task-user weights, and let
β = maxj∈[n]

∑
i∈Ωj w

2
ij . Then Algorithm 1 run with

weights w is (α, αβ)-RDP for all α > 1.

The result can be easily translated to traditional DP, for ex-
ample, for all ε, δ > 0 with ε ≤ log(1/δ), if β ≤ ε2

8 log(1/δ) ,
then the algorithm is (ε, δ)-DP.
Remark 3.4. The theorem can be interpreted as follows:
each user j has a total budget β, that can be allocated
among the tasks in Ωj by choosing weights such that∑
i∈Ωj w

2
ij ≤ β. For this reason, we will refer to β as

the user RDP budget.
Remark 3.5. Sampling a fixed number of tasks per user
(as done in (Chien et al., 2021)) is a special case of this
formulation, where wij is a constant if task i is sampled for
user j, and 0 otherwise. Using general weights allows a finer
trade-off between tasks, as we shall see next. There is also
a practical advantage to using weights: sampling methods
require choosing a maximum number of tasks to sample per
user (a hyper-parameter), this number is used in the privacy
accounting to determine user sensitivity. One needs to tune
this hyper-parameter carefully–if it’s too large, many users
are below the threshold and we end up adding too much
noise, and if it’s too small, we might drop too many samples.
When using weights, there is no such hyper-parameter (we
keep all samples of all users), which simplifies parameter
tuning.

For the utility analysis, we will make the following standard
assumption.
Assumption 3.6. We assume that there exist Γx,Γ∗ > 0
such that for all i, j, ‖xij‖ ≤ Γx, ‖θ∗i ‖ ≤ Γ∗, and ‖yij‖ ≤
ΓxΓ∗.
Remark 3.7. We state the result in the ridge regression case
with bounded data to simplify the presentation. Similar
results can be obtained under different assumptions, for
instance when xij are i.i.d. Gaussian, in which case one can
bound the minimum eigenvalue of the covariance matrices
Ai without the need for regularization, see (Wang, 2018) for
a detailed discussion.
Theorem 3.8 (Utility guarantee of Algorithm 1). Suppose
Assumption 3.6 holds. Let ω ∈ Rm be a vector of positive
weights such that for all j,

∑
i∈Ωj ω

2
i ≤ β. Let θ̂ be the

output of Algorithm 1 with weights1 wij = ωi ∀(i, j) ∈ Ω.

1The choice of wij = ωi (all examples of a task share the same
weights) simplifies the proof, and is sufficient to improve utility
under skew, see Section 4.
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Algorithm 2 Task-weighted noisy gradient descent

1: Inputs: Task-user graph Ω, user features and labels
x, y, domain C, clipping parameter Γ, weights w, initial
parameters θ̂(0), numer of steps T , learning rates η(t)

i .
2: for 1 ≤ i ≤ m do
3: for 1 ≤ t ≤ T do
4: Sample ξ(t)

i ∼ N d

5: g
(t)
i ← clip(

∑
j∈Ωi

wij∇θi`(θ
(t−1)
i ;xij , yij),Γ)

6: θ̂
(t)
i ← ΠC [θ

(t−1)
i − η(t)

i (g
(t)
i + Γ

√
T/2 · ξ(t)

i )]
7: end for
8: end for
9: Return θ̂(T ) = (θ̂

(T )
1 , . . . , θ̂

(T )
m )

Then Algorithm 1 is (α, αβ)-RDP, for all α > 1, and w.h.p.,

L(θ̂)− L(θ∗) = O

(
Γ4
xΓ2
∗d

λ

m∑
i=1

1

ω2
i ni

)
. (6)

Theorem 3.8 highlights that under the user-level privacy
constraint (maxj

∑
i∈Ωj ω

2
i ≤ β), there is a certain trade-

off between tasks: by increasing ωi we improve quality for
task i, but this may require decreasing ω for other tasks to
preserve a constant total privacy budget. This allows us to
reason about how to choose weights that achieve the optimal
trade-off under a given RDP budget β. Remarkably, this
problem is convex:

min
ω∈Rd+

m∑
i=1

1

ω2
i ni

s.t.
∑
i∈Ωj

ω2
i ≤ β ∀j ∈ {1, . . . , n}.

If the task-user graph Ω were public, one could solve the
problem exactly. But since task-user membership often
represents private information, we want to protect Ω. Our
approach will be to compute an approximate solution. Be-
fore tackling this problem, we first derive similar weight-
dependent privacy and utility bounds for noisy gradient
descent.

3.2. Weighted Multi-Task Convex Minimization

We now consider the more general problem of minimizing
empirical risk for convex losses in the multi-task setting.
Our method applies noisy GD (Bassily et al., 2014) to the
weighted objective (3). This is summarized in Algorithm 2.
We will consider two standard settings, in which noisy GD
is known to achieve nearly optimal empirical risk bounds:
Assumption 3.9 (Lipschitz convex on a bounded domain).
Assume that C is a bounded convex domain, and that there
exists Γ > 0 such that `(θ;x, y) is a convex and Γ-Lipschitz
function of θ ∈ C, uniformly in x, y.
Assumption 3.10 (Lipschitz, strongly convex). Assume
that there exist λ,Γ > 0 such that `(θ;x, y) is a λ-strongly
convex and Γ-Lipschitz function of θ, uniformly in x, y.

Next, we derive privacy and utility bounds.

Theorem 3.11 (Privacy guarantee of Algorithm 2). Let
(wij)(i,j)∈Ω be a collection of task-user weights, and let
β = maxj∈[n]

∑
i∈Ωj w

2
ij . Then Algorithm 2 is (α, αβ)-

RDP for all α > 1.

Theorem 3.12 (Utility guarantee of Algorithm 2). Let
ω ∈ Rm be a vector of positive weights such that for all j,∑
i∈Ωj ω

2
i ≤ β. Let θ̂ be the output of Algorithm 2 with

weights wij = ωi. Then Algorithm 2 is (α, αβ)-RDP, for
all α > 1. Furthermore,

(a) Under Assumption 3.9, if T = 2
d

∑m
i=1 n

2
i∑m

i=1 1/ω2
i

and η(t)
i =

‖C‖
Γ
√
ω2
i n

2
i+Td/2

1√
t
, then

E[L(θ)]− L(θ∗) = Õ

‖C‖Γ√md
√√√√ m∑

i=1

1

ω2
i

 ,

(7)
where Õ hides polylog factors in ni.

(b) Under Assumption 3.10, if T = 2
d

|Ω|∑m
i=1 1/ω2

i ni
, and

η
(t)
i = 1

ω2
i niλt

, then

E[L(θ)]− L(θ∗) = Õ

(
Γ2d

λ

m∑
i=1

1

ω2
i ni

)
. (8)

We consider some special cases, as a consistency check.

Single task Suppose there is a single task (m = 1),
then the RDP budget constraint is simply satisfied with
ω2

1 = β. Plugging this into the bounds from the theo-
rem, and dividing by the number of examples n (as our
loss L is a summation, instead of average, over all exam-
ples), we get that the average empirical risk is bounded by
Õ
(
‖C‖Γ

√
d

n
√
β

)
and Õ

(
Γ2d
λn2β

)
in the convex and strongly con-

vex case, respectively. This recovers the usual convex ERM
bounds (Bassily et al., 2014) – with the correspondence
β = O

(
ε2/ log(1/δ)

)
.

Complete bipartite Ω Suppose there are m tasks and
each user participates in all tasks. Then the budget con-
straint becomes mω2

i = β for all i. Plugging this into the
bounds and dividing by mn (total number of examples),
we get that the average empirical risk is Õ

(
‖C‖Γ

√
md

n
√
β

)
and

Õ
(

Γ2md
λn2β

)
in the convex and strongly convex case, respec-

tively. Notice that this is equivalent to solving a single task
in dimension md, and the resulting ERM bound is the same.
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4. Optimizing Weights Under Distribution
Skew

Equipped with the utility bounds of the previous section,
we can ask what choice of weights minimizes the error
bound under a given privacy budget. Observe that all
utility bounds (6), (7), (8) are increasing in the quantity∑m
i=1

1
ω2
i n
γ
i

, where γ = 0 in the convex case, and γ = 1 in
the strongly convex case (for both SSP and noisy GD). This
amounts to solving a constrained optimization problem of
the form

min
ω∈Rm+

m∑
i=1

1

ω2
i n

γ
i

s.t.
∑
i∈Ωj

ω2
i ≤ β, ∀j ∈ {1, . . . , n}.

(9)

In general, the task-user graph Ω is private (see Remark 2.2).
We cannot solve (9) exactly, but under distributional assump-
tions on Ω, we can solve it approximately.

In modeling the distribution of Ω, we take inspiration from
the closely related problem of matrix completion, where
a standard assumption is that elements of Ω are sampled
uniformly at random, see e.g. (Jain et al., 2013) – in other
words, Ω is an Erdős-Rényi random graph. However, mak-
ing such assumption implies that the task sizes ni = |Ωi|
concentrate around their mean, and this fails to capture the
task-skew problem we set out to solve. Instead, we will
relax the assumption by removing uniformity of tasks while
keeping uniformity of users. Specifically,

Assumption 4.1. Assume that Ω is obtained by sampling,
for each task i, ni users independently and uniformly from
{1, . . . , n}. Furthermore, assume that the task sizes ni are
publicly known, and that ni ≥ 1 for all i.

In practice, both users and tasks can be heterogeneous. In
that sense, Assumption 4.1 is a stylized model, that is meant
to primarily capture the task long tails. We leave extensions
to the user heterogeneous case to future work.

The assumption that ni are publicly known is relatively
mild: in some applications, this information is available, for
example in video recommendation, the number of views of
each video is often public. A similar assumption was made
by (Epasto et al., 2020), where the number of examples con-
tributed by each user is assumed to be public. When ni are
not available, the solution can be based on private estimates
of ni; we derive in Appendix B the extension to this case.
In experiments, we will always privately estimate ni and
account for the privacy cost of doing so.

A consequence of Assumption 4.1 is that the quantity
Bj :=

∑
i∈Ωj ω

2
i (that appears in the inequality constraint

in equation (9)) becomes a random variable, that is concen-
trated around its mean, which is equal to

∑m
i=1

ni
n ω

2
i . More

precisely, we will show that, w.h.p., all Bj are bounded

above by c(n) ·
∑m
i=1

ni
n ω

2
i for an appropriate c(n). Then

we can replace the n constraints in (9) by a single constraint
(for the privacy guarantee, the constraints will be enforced
with probability 1, as we will discuss below; but for the
purpose of optimizing the utility bound, it suffices that the
constraints hold w.h.p.). The problem becomes:

min
ω∈Rm+

m∑
i=1

1

ω2
i n

γ
i

s.t. c(n)

m∑
i=1

ni
n
ω2
i ≤ β, (10)

which we can solve in closed form as follows. Let β̄ =
β
c(n) . The Lagrangian is

∑m
i=1

1
ω2
i n
γ
i

+ λ(
∑m
i=1 niω

2
i −

nβ̄) (λ is a Lagrange multiplier), and the KKT conditions
yield: ∀i, − 1

ω3
i n
γ
i

+ λniωi = 0,
∑m
i=1 niω

2
i = nβ̄, which

simplifies to

ω∗i =
n
−(γ+1)/4
i√∑m

i′=1 n
(1−γ)/2
i′ /nβ̄

. (11)

With ωi in this form and c(n) = c log n, it can be shown (see
Lemma A.4) that w.h.p., maxj

∑
i∈Ωj ω

2
i ≤ β. But since

we need the privacy guarantee to always hold, we simply
add the following clipping step: let w∗ be the task-user
weights defined as

w∗ij = ω∗i min

(
1,

√
β∑

i′∈Ωj
ω∗i′

2

)
∀i, j ∈ Ω. (12)

In other words, for each user j, if the total sensitivity∑
i′∈Ωj

ω∗i′
2 exceeds β, we scale down the weights of this

user to meet the budget. This step ensures that the privacy
guarantee is exact. But for utility analysis, we know that
w.h.p., w∗ij = ωi (since the constraint is satisfied w.h.p.), so
utility bounds will hold w.h.p.
Remark 4.2 (Weight clipping preserves privacy). Observe
that from eq. (12), the clipped weights of user j only depend
on ω∗ (which is released differentially privately) and on Ωj ;
it does not depend on data of other users j′. This means that
weight clipping can be done separately for each user, much
like gradient clipping in DPSGD. Furthermore, the clipped
weights are never publicly released, the weight clipping is
internal to each algorithm.

The next theorem provides the utility guarantee under
weights w∗.
Theorem 4.3 (Privacy-utility trade-off of Algorithms 1
and 2 under adaptive weights). Suppose Assumption 4.1
holds.

(a) Under Assumption 3.6, let θ̂ be the output of Algo-
rithm 1 run with weights w∗ (eq. (11)-(12) with γ = 1).
Then w.h.p.,

L(θ̂)− L(θ∗) = Õ
(

Γ4
xΓ2
∗dm

2

nλβ

)
. (13)
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(b) Under Assumption 3.9, if Algorithm 2 is run with
weights w∗ (eq. (11)-(12) with γ = 0) and parame-
ters listed in Theorem 3.12(a), then

Ẽ[L(θ)]− L(θ∗) = Õ

(
‖C‖Γ

√
md

nβ

m∑
i=1

n
1/2
i

)
,

(14)
where Ẽ denotes expectation conditioned on a high
probability event.

(c) Under Assumption 3.10, if Algorithm 2 is run with w∗

(eq. (11)-(12) with γ = 1) and parameters listed in
Theorem 3.12(b), then

Ẽ[L(θ)]− L(θ∗) = Õ
(

Γ2dm2

nλβ

)
. (15)

In all three cases, the algorithm is (α, αβ)-RDP for all
α > 1.

To understand the effect of adapting to task skew, we
compare these bounds to the case when we use uni-
form weights. With uniform weights, the privacy con-
straint yields ωuniform

i = (nβ̄/
∑m
i′=1 ni′)

1/2, ∀i. Tak-
ing the ratio between the utility bound for ωuniform and
the utility bound for ω∗, we obtain the following: In
the Lipschitz bounded case, the relative improvement is

R0(n1, . . . , nm) =
(m

∑m
i=1 ni)

1/2∑m
i=1 n

1/2
i

. In the strongly convex

case (both for SSP and noisy GD), the relative improve-

ment is R1(n1, . . . , nm) =
∑m
i=1

1
ni

∑m
i=1 ni

m2 . In particular,
R0, R1 are lower bounded by 1 (by Cauchy-Schwarz), and
equal to 1 when the task distribution is uniform (all ni are
equal). In both cases, the improvement can be arbitrary large.
To see this, consider the extreme case when n1 = m1+ν

and ni is a constant for all otherm−1 tasks (ν > 0). A sim-
ple calculation shows that in this case, the leading term as
m→∞ isR0 ≈ mν/2 andR1 ≈ mν . Both are unbounded
in m.

Finally, we give a qualitative comment on the optimal
weights (11). While it’s clear that increasing the weight
of a task improves its quality, it was not clear, a priori, that
increasing weights on tail tasks benefits the overall objec-
tive (1) (since tail tasks represent fewer terms in the sum).
The analysis shows that this is indeed the case: the optimal
trade-off (see eq. (11)) is obtained when ωi ∝ n

−(1+γ)/4
i ,

i.e. larger weights are assigned to smaller tasks. This can
be explained by a certain diminishing returns effect that de-
pends on the task size: from the optimization problem (10),
the marginal utility benefit of increasing ωi is smaller for
larger tasks (due to the nγi term in the objective). At the
same time, the marginal privacy cost of increasing ωi is
higher for larger tasks (due to the ni term in the constraint).

5. Empirical Evaluation
To evaluate our methods, we run experiments2 on large-
scale recommendation benchmarks on the MovieLens data
sets (Harper & Konstan, 2016). As mentioned in the intro-
duction, recommendation problems are known to exhibit
a long tail of content with much fewer training data than
average, and this is the main practical issue we seek to ad-
dress. We also run experiments on synthetic data, reported
in Appendix C.

In our evaluation, we investigate the following questions:

1. Whether on realistic data sets, our adaptive weight meth-
ods can improve the overall utility by shifting weights
towards the tail, as the analysis indicates. In particular,
Theorem 4.3 suggests that (under distributional assump-
tions on Ω), the optimal task weights are of the form
ωi ∝ n

−(1+γ)/4
i . We experiment with weights of the

form ωi ∝ n−µi for different values of µ ∈ [0, 1].
2. Do we observe similar improvements for different algo-

rithms? Our analysis applies both to SSP (Algorithm 1)
and noisy GD (Algorithm 2). We run the experiments
with both algorithms.

3. Beyond improvements in the average metrics, what is
the extent of quality impact across the head and tail of
the task distribution?

Experimental setup Each of the MovieLens data sets
consists of a sparse matrix of ratings given by users to
movies. The first benchmark, from Lee et al. (2013), is a
rating prediction task on MovieLens 10 Million (abbrevi-
ated as ML10M), where the quality is evaluated using the
RMSE of the predicted ratings. The second benchmark,
from (Liang et al., 2018), is a top-k item recommendation
task on MovieLens 20 Million (abbreviated as ML20M),
where the model is used to recommend k movies to each
user, and the quality is measured using Recall@k. Figure 7
in the appendix shows the movie distribution skew in each
data set. For example, in ML20M, the top 10% movies
account for 86% of the training data.

In both cases, we train a DP matrix factorization model.
We identify movies to tasks and apply our algorithms to
learning the movie embedding representations, for details,
see Appendix D.

The current state of the art on these benchmarks is the DP al-
ternating least squares (DPALS) method (Chien et al., 2021),
which we use as a baseline. We will compare to DPALS both
with uniform sampling (sample a fixed number of movies
per user, uniformly at random) and with tail-biased sam-
pling (sort all movies by increasing counts, then for each

2The code is available at the following repository:
https://github.com/google-research/google-research/tree/master/
dp alternating minimization
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Figure 1. Privacy-utility trade-off on ML10M, using uniform sam-
pling, tail-biased sampling, and adaptive weights (our method),
applied to DPALS (top) and DPSGD (bottom). The utility is mea-
sured using RMSE (lower is better).

user, keep the k first movies). The latter was a heuristic
specifically designed by (Chien et al., 2021) to address the
movie distribution skew, and is the current SOTA.

We also experiment with DPSGD on the same benchmarks,
and compare uniform sampling, tail-biased sampling, and
adaptive weights.

When computing adaptive weights for our methods, we first
compute private estimates n̂i of the counts (which we in-
clude in the privacy accounting), then define task weights
following eq. (11)-(12), but allowing a wider range of expo-
nents. More precisely, we replace eq. (11) with

ω∗i =
n̂−µi√∑m

i′=1 n̂
−2µ+1
i′ /nβ̄

, (16)

where µ is a hyper-parameter. In the analysis, the optimal
choice of weights corresponds to µ = 1/4 in the convex
case (eq. (11) with γ = 0), and µ = 1/2 in strongly convex
case (eq.(11) with γ = 1). We experiment with different
values of µ ∈ [0, 1] to evaluate the effect of shifting the
weight distribution towards the tail.

Effect of adaptive weights on privacy-utility trade-off
We first evaluate the privacy/utility trade-off. The results
are reported in Figure 1 (for ML10M) and Figure 2 (for
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Figure 2. Privacy-utility trade-off on ML20M, using uniform sam-
pling, tail-biased sampling, and adaptive weights (our method),
applied to DPALS (top) and DPSGD (bottom). The utility is mea-
sured using Recall@20 (higher is better).

ML20M), where we also include non-private baselines for
reference. Our adaptive weights methods achieve the state
of the art on both benchmarks. We see improvements when
applying adaptive weights both to DPSGD and DPALS. The
extent of improvement varies depending on the benchmark.
In particular, the improvement is remarkable on the ML20M
benchmark across all values of ε; using adaptive weights
significantly narrows the gap between the previous SOTA
and the non-private baseline.

To illustrate the effect of the exponent µ, we report, in
Figure 3, the performance on ML10M for different values
of µ. The best performance is typically achieved when µ
is between 1

4 and 1
2 , a range consistent with the analysis.

For larger values of µ (for example µ = 1), there is a
clear degradation of quality, likely due to assigning too little
weight to head tasks. The trend is similar on ML20M, see
Figure 9 in the appendix.

Impact on head and tail tasks To better understand the
extent of quality impact on head/tail movies, we report the
same metrics, sliced by movie counts. We sort the movies i
by increasing counts ni, then group them into equally sized

8



Multi-Task Differential Privacy Under Distribution Skew

0 1/8 1/4 1/3 1/2 1
0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

te
st

 R
M

SE
= 5
= 10
= 20

(a) DPALS on ML10M

0 1/8 1/4 1/3 1/2 1
0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

te
st

 R
M

SE

= 5
= 10
= 20

(b) DPSGD on ML10M

Figure 3. Effect of the weight exponent µ (see eq. (16)) on the
ML10M benchmark, using DPALS (top) and DPSGD (bottom).

buckets, and compute average metrics3 on each bucket. The
results are reported in Figure 4 for ε = 1, and similar plots
are provided in Appendix D for other values of ε.

The results show a clear trade-off between head and tail
tasks. On buckets 0 and 1 (tail), it is generally the case that
the larger µ is, the better the quality, while on bucket 4, the
opposite trend can be observed. This is consistent with the
intuition that as µ increases, more budget is assigned to the
tail, which tends to shift the trade-off in favor of the tail.

Even compared to the previous SOTA (tail-sampling), the
improvements on all but the top bucket are significant. Al-
though the tail sampling heuristic was designed to improve
tail quality, the experiments indicate that adaptive weights
are much more effective. Furthermore, the parameter µ
allows more control over this trade-off.

Finally, to give a concrete illustration of these improvements,
we inspect the quality of recommendations on a few sample
queries, reported in Appendix D. We find that there is a
visible improvement on tail recommendations in models
trained using our method.

3Since recall is naturally lower on tail tasks, we report Re-
call@k with larger k for tail buckets: we use k = 20 for the first
bucket, 40 for the second, 60 for the third, and so on. This allows
for more readable plots.
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(a) RMSE on ML10M (ε = 1).
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Figure 4. RMSE and Recall metrics for ε = 1, sliced by movie fre-
quency. Each bucket contains an equal number of movies. Buckets
are ordered by increasing movie counts.

6. Conclusion
To address the practical problem of long-tailed data distribu-
tions, we formally analyze the question of budget allocation
among tasks under user-level DP. Our method is based on
computing weights that adapt to the task distribution. We
quantify utility improvements under optimal weights, in a
range of settings. Importantly, the method achieves signifi-
cant improvements on benchmarks, and allows finer control
over quality trade-offs between head and tail tasks.

To compute optimal weights, our analysis relied on certain
distributional assumptions on the task-user graph Ω, and
although this allowed us to model the task distribution skew,
relaxing these assumptions is a promising direction. In
particular, it may be possible to directly compute a privacy-
preserving solution of problem (9) in its general form, us-
ing techniques similar to the constraint-private LPs studied
by (Hsu et al., 2014).
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Appendix
The proofs of the main results are provided in Appendix A. Appendix B discusses the case when task counts are not public.
We report additional experiments on synthetic data (Appendix C) and real data (Appendix D).

A. Proofs
A.1. Theorem 3.3 (Privacy Guarantee of Algorithm 1)

Proof. The result is an application of the Gaussian mechanism. The procedure computes, for i ∈ [m], the estimates Âi and
b̂i (Lines 5-6), given as follows

Âi = Āi + Γ2
xΞi, Āi =

∑
j∈Ωi

wij(xijx
>
ij + λI)

b̂i = b̄i + ΓxΓyξi, b̄i =
∑
j∈Ωi

wijyijxij

where Ξi ∼ N d×d, ξi ∼ N d. Let Ā be the matrix obtained by stacking (Āi)i∈[n]. If Ā′ is the same matrix obtained without
user j’s data, then

‖Ā− Ā′‖2F =
∑
i∈Ωj

‖wijxijx>ij‖2F ≤
∑
i∈Ωj

w2
ijΓ

4
x ≤ βΓ4

x

where we use the fact that for all i, ‖xij‖ ≤ Γx and
∑
j∈Ωi

w2
ij ≤ β. Since we add Gaussian noise with variance Γ4

x,
releasing Â is (α, αβ2 )-RDP (Mironov, 2017).

Similarly, if b̄ is obtained by stacking (b̄i)i∈[m], and b̄′ is the same vector without user j’s data, then ‖b̄ − b̄′‖2 ≤∑
i∈Ωj ‖wijyijxij‖2 ≤

∑
j∈Ωi

w2
ijΓ

2
yΓ2

x ≤ βΓ2
yΓ2

x, and releasing b̂ is (α, αβ2 )-RDP. By simple RDP composition, the
process is (α, αβ)-RDP.

A.2. Theorem 3.8 (Utility Guarantee of Algorithm 1)

Proof. Since by assumption, the weights satisfy
∑
i∈Ωj

ω2
i ≤ β, the RDP guarantee is an immediate consequence of

Theorem 3.3.

To prove the utility bound, recall that the total loss is a sum over tasks

L(θ) =

n∑
i=1

‖Aiθi − bi‖2F + niλ‖θi‖2. (17)

We will bound the excess risk of each term, using the following result. For a proof, see, e.g. (Wang, 2018, Appendix B.1).

Lemma A.1. Suppose Assumption 3.6 holds. Consider the linear regression problem L(θi) = ‖Aiθi − bi‖2F , let θ∗i be its
solution, and θ̂i be the SSP estimate obtained by replacing Ai and bi with their noisy estimates Âi = Ai + σΓ2

xΞ, b̂i =
bi + σΓ2

xΓ∗ξ where Ξ ∼ N d×d, ξ ∼ N d. Then

Li(θ̂i)− Li(θ∗i ) = O
(
d2Γ2

xΓ2
∗

αni
σ2

)
,

where α =
λmin(A>i Ai)d

niΓ2
x

= λd
Γ2
x

.

Fix a task i. Since by assumption all weights wij are equal to ωi, Lines 5-6 become Âi = ωiAi + Γ2
xΞi and b̂i =

ωibi + Γ2
xΓ∗ξi, and θ̂i is the solution to Âiθi = b̂i. This corresponds to the SSP algorithm, applied to the loss Li, with noise

variances σ2 = 1
ω2
i

. By Lemma A.1, we have

Li(θ̂i)− Li(θ∗i ) = O
(
d2Γ2

xΓ2
∗

α

1

niω2
i

)
(18)

We conclude by summing (18) over i ∈ [m].
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A.3. Theorem 3.11 (Privacy Guarantee of Algorithm 2)

Proof. The result is an application of the Gaussian mechanism. At each step t of Algorithm 2, the procedure computes, for
i ∈ [m], a noisy estimate of the gradient g(t)

i =
∑
j∈Ωi

g
(t)
i (Line 5). Let g(t) ∈ Rmd be the vector obtained by stacking

g
(t)
i for all i. And let g′(t) be the same vector obtained without user j’s data. Then

‖g′(t) − g(t)‖22 =
∑
i∈Ωj

‖wij∇`(θi;xij , yij)‖22

≤ Γ2
∑
i∈Ωj

wij2

≤ βΓ2.

where we use the assumption that
∑
i∈Ωj wij2 ≤ β. Since we add Gaussian noise with variance Γ2T/2, the procedure is

(α, αβ/T )-RDP. Finally, by composition over T steps, the algorithm is (α, β)-RDP.

A.4. Theorem 3.12 (Utility Guarantee of Algorithm 2)

We will make use of the following standard lemmas (for example Lemma 2.5 and 2.6 in (Bassily et al., 2014)). Let f be a
convex function defined on domain C, let θ∗ = argminθ∈C f(θ). Consider the SGD algorithm with learning ηt.

θ(t+1) = ΠC [θ
(t) − ηtg(t)].

Assume that there exists G such that for all t, E[g(t)] = ∇`(θ(t)) and E[‖g(t)‖2] ≤ G2,

Lemma A.2 (Lipschitz case). Let η(t) = ‖C‖
G
√
t
. Then for all T ≥ 1,

E[f(θ(t))]− f(θ∗) = O
(
‖C‖G log T√

T

)
.

Lemma A.3 (Strongly convex case). Assume that f is λ strongly convex and let η(t) = 1
λt . Then for all T ≥ 1,

E[f(θ(t))]− f(θ∗) = O
(
G2 log T

λT

)
.

proof of Theorem 3.12. First, since wij = ωi, the gradient g(t)
i in Line 5 of the algorithm becomes

g
(t)
i = ωi∇Li(θ(t−1)

i ).

Let ĝ(t)
i = g

(t)
i + Γ

√
T/2ξ

(t)
i . Then E[ĝ

(t)
i ] = g

(t)
i and

E[‖ĝ(t)
i ‖

2] = E[‖g(t)
i ‖

2] + E[‖Γ
√
T/2ξ

(t)
i ‖

2]

≤ Γ2[ω2
i n

2
i + Td/2].

In the first line we use independence of ξ(t)
i and g(t)

i . In the second line we use that the variance of a multivariate normal is
d, and the fact that Li has Lipschitz constant niΓ (since it is the sum of ni terms, each being Γ-Lipschitz).

Define
G2
i = Γ2[ω2

i n
2
i + Td/2].

First, consider the Lipschitz bounded case. Applying Lemma A.2 to f = ωiLi, G = Gi, and ηi = ‖C‖
Gi
√
t
, we have for all T

ωi E[Li(θi)− Li(θ∗i )] = O
(
‖C‖Gi log T√

T

)
.
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Multiplying by 1
ωi

and summing over tasks i ∈ {1, . . . ,m}, we have

E[L(θ)]− L(θ∗) = O

(
‖C‖Γ log T√

T

m∑
i=1

√
n2
i +

Td

2ω2
i

)

= O

‖C‖Γ log T
√
m

√√√√∑m
i=1 n

2
i

T
+

m∑
i=1

d

2ω2
i


where we used

∑m
i=1

√
ai ≤

√
m
∑m
i=1 ai (by concavity). Finally, setting T to equate the terms under the square root, we

get T = 2
d

∑m
i=1 n

2
i∑m

i=1 1/ω2
i

, and with this choice of T ,

E[L(θ)]− L(θ∗) = Õ

‖C‖Γ√md
√√√√ m∑

i=1

1

ω2
i

 ,

as desired.

We now turn to the strongly convex case. Applying Lemma A.3 to f = ωiLi, G = Gi (same as above), strong convexity
constant ωiniλ, and ηi = 1

ωiniλt
, we have for all T ,

ωi E[Li(θi)− Li(θ∗i )] = O
(
G2
i log T

niωiλT

)
.

Multiplying by 1
ωi

and summing over tasks, we get

E[L(θ)]− L(θ∗) = O

(
Γ2 log T

λ

(
1

T

m∑
i=1

ni +
d

2

m∑
i=1

1

ω2
i ni

))
.

Setting T to equate the last two sums, we get T = 2
d

∑m
i=1 ni∑m

i=1 1/ω2
i ni

and with this choice of T ,

E[L(θ)]− L(θ∗) = Õ

(
Γ2d

λ

m∑
i=1

1

ω2
i ni

)
,

as desired.

A.5. Theorem 4.3 (Privacy-Utility Trade-off Under Adaptive Weights)

To prove the theorem, we will use the following concentration result:
Lemma A.4 (Concentration bound on the privacy budget). Suppose that Assumption 4.1 holds and let B > 0 be given. Let

ni = |Ωi| and ωi = n
−(1+γ)/4
i /

√∑
i′ n

(1−γ)/2
i′ /nB. Then there exists c > 0 (that does not depend on B) such that, with

high probability, for all i,
∑
i∈Ωj ω

2
i ≤ Bc log n.

Proof. Fix a user j. We seek to bound
∑
i∈Ωj ω

2
i . Let pij = P ((i, j) ∈ Ω). Recall that by Assumption 4.1, pij = ni/n.

For each i, define Xi as the random variable which takes value ω2
i = nBn

−(1+γ)/2
i /

∑
i′ n

(1−γ)/2
i′ with probability ni/n

and 0 otherwise. Then bounding
∑
i∈Ωj ω

2
i is equivalent to bounding

∑m
i=1Xi.

We have

E[Xi] = Bn
(1−γ)/2
i /

∑
i′

n
(1−γ)/2
i′ ,

Var[Xi] ≤ E[X2
i ] = (ni/n) ·

(
nBn

−(1+γ)/2
i /

∑
i′

n
(1−γ)/2
i′

)2

= nB2n−γi /
(∑

i′

n
(1−γ)/2
i′

)2

≤ B2/n ,
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where the last inequality is by the fact that ∀i, ni ≥ 1 (see Assumption 4.1). Hence we have that

m∑
i=1

E[Xi] = B ,

m∑
i=1

Var[Xi] ≤ (m/n)B2 ≤ B2,

where we use the assumption that n ≥ m. Furthermore, we have ω2
i ≤ B since ∀j, ni ≥ 1. By the standard Bernstein’s

inequality ((Boucheron et al., 2013) §2.8), there exists c > 0 (that does not depend on B or ni) such that:

Pr

(
m∑
i=1

Xi ≥ Bc log n

)
≤ 1/n3 .

The high probability bound follows by taking the union over all the i’s.

Proof of Theorem 4.3. Let ω∗, w∗ be the weights given in eq. (11)-(12), respectively (ω∗ are the optimal weights, and w∗

are their clipped version). We apply Lemma A.4 with B = β̄ = β/c log n and hence obtain that with high probability, for
all i,

∑
j∈Ωi

ω∗i
2 ≤ β. In other words, w.h.p. clipping does not occur and w∗ij = ωi for all (i, j) ∈ Ω. Conditioned on this

high probability event, we can apply the general utility bounds in Theorems 3.8 and 3.12, with ωi = ω∗i . This yields the
desired bounds.

A.6. Related Work on Class-Imbalanced Learning

The question of distribution skew has been studied in the non-private setting, and several techniques have been proposed to
address class imbalance, either using re-sampling or re-weighting (Brodersen et al., 2010; Huang et al., 2016; Wang et al.,
2017; Cui et al., 2019). The main question in this line of work is that if one measures performance using a balanced metric
(i.e. one that assigns equal importance to the different classes, rather than following the skewed data distribution), how
should one modify the training process to improve quality? This question is orthogonal to our approach. Our study shows
that regardless of the loss being optimized (i.e., even if one cares about the empirical, not the balanced loss), learning can be
improved through a more careful allocation of the privacy budget. It should be possible to obtain a similar improvement in
the balanced case, in which the objective function assigns equal weights to each task (for example by defining Li(θi) in
eq. (2) to be a mean instead of a sum).

B. Utility Analysis Under Approximate Counts
In Section 4, the optimal choice of weights ω∗ assumes knowledge of the counts ni. If the counts ni are not public, we can
use DP estimates n̂i, and use them to solve the problem. Since differentially private counting has been studied extensively,
we only state the utility bound in terms of the accuracy of the noisy counts – the final privacy bound can be done through
standard composition. For any constant s > 0, we call a counting procedureM s-accurate, if w.h.p., the counts n̂i produced
byM satisfy that |n̂i − ni| ≤ s for all i.

We will give an analysis of Algorithm 1 with approximate counts. The general idea is to apply the algorithm with weights ω̂
of the same form as the optimal weights ω∗, but where the exact counts are replaced with estimated counts. Suppose we are
given s-accurate count estimates n̂i. Define

ω̂i =
1

(n̂i + s)1/2
√
m/nβ̄

, (19)

This corresponds to eq. (11), but with ni replaced by n̂i+s (it will become clear below why we need to slightly over-estimate
the counts).

As in the exact case, we need to clip the weights, so that the privacy guarantee always holds. Define the clipped version ŵ as

ŵij = ω̂i min
(

1,
β1/2

(
∑
i′∈Ωj ω̂

2
i′)

1/2

)
∀(i, j) ∈ Ω. (20)

Remark B.1. The input to the algorithm are the unclipped weights ω̂, which are computed differentially privately. The
clipped weights are not released as part of the procedure. They are simply used as a scaling factor in the computation of
Âi, b̂i (Lines 5-6).
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Theorem B.2 (Privacy-utility trade-off of Algorithm 1 with estimated counts). Suppose Assumptions 3.6 and 4.1 hold. Let
n̂i ∈ Rm be count estimates from an s-accurate procedure for some s > 0. Define ω̂, ŵ as in eq. (19)-(20). Let θ̂ be the
output of Algorithm 1 run with weights ŵ. Then Algorithm 1 is (α, αβ)-RDP for all α > 1, and w.h.p.,

L(θ̂)− L(θ∗) = Õ

(
Γ4
xΓ2
∗dm

nλβ

m∑
i=1

n̂i + s

ni

)
. (21)

Proof of Theorem B.2. We first show that w.h.p., the approximate weights ω̂i under-estimate the exact weights ω∗i . This
will allow us to argue that w.h.p., clipping will not occur.

First, define the function g : Rd → Rd,

gi(η) =
1

η
1/2
i

√
m/nβ̄

.

Observe that whenever η ≤ η′ (coordinate-wise), g(η) ≥ g(η′) (coordinate-wise).

Let η∗ be the vector of true counts (η∗i = ni), and η̂ be the vector or approximate counts η̂i = ni. We have that ω∗ = g(η∗)
and ω̂ = g(η̂+ s). But since by assumption, the counts estimates are s-accurate, then w.h.p., |n̂i−n∗i | ≤ s, thus η∗ ≤ η̂+ s
and

ω̂ = g(η̂ + s) ≤ ω(η∗) = ω∗,

that is, the estimated weights ω̂ under-estimate the optimal weights ω∗ w.h.p. (this is precisely why, in the definition of ω̂,
we used the adjusted counts η̂ + s instead of η̂).

Next, ω̂ ≤ ω∗ implies that ∑
i∈Ωj

ω̂2
i ≤

∑
i∈Ωj

ω∗i
2. (22)

We also know, from Lemma A.4 (applied with B = β̄), that w.h.p.,
∑
i∈Ωj ω

∗
i

2 ≤ cβ̄ log n = β for all j. Combining this
with (22), we have that w.h.p., ω̂ satisfies the RDP budget constraint, therefore wij = ω̂2

i (clipping does not occur since the
budget constraint is satisfied).

Applying Theorem 3.8 with weights ω̂ yields the desired result.

We compare the utility bounds under adaptive weights with exact counts (13), adaptive weights with approxi-
mate counts (21), and uniform weights. The bounds are, respectively, Õ

(
Γ4
xΓ2
∗dm

2

nλβ

)
, Õ

(
Γ4
xΓ2
∗dm

nλβ

∑m
i=1

n̂i+s
ni

)
, and

Õ
(

Γ4
xΓ2
∗d

nλβ

∑m
i=1 ni

∑m
i=1

1
ni

)
.

The cost of using approximation counts (compared to exact counts) is a relative increase by the factor

1

m

m∑
i=1

n̂i + s

ni
≤ 1

m

m∑
i=1

ni + 2s

ni

= 1 +
2

m

m∑
i=1

s

ni
.

where we used that w.h.p., n̂i ≤ ni + s. The last term is the average relative error of count estimates. If the estimates are
accurate on average, we don’t expect to see a large utility loss due to using approximate counts.

C. Synthetic Experiments
We conduct experiments following the setup in Section 3. Specifically, we consider m = 100 linear regression tasks of
dimension d = 5 and data from n = 10, 000 users. We assume that each task has an optimal solution θi, and each user j
has a vector uj , such that xij = uj , and yij = 〈ui, θj〉+N (0, σ2

F ), with σF representing some inherent data noise. We
generate uj and θi from a Gaussian distribution N d and projected to the unit ball, and set σF = 10−3.

To model a skewed distribution of tasks, we first sample, for each task i, a value qi ∈ [0, 1] following a power law
distribution with parameter a = 1, 2 (the pdf of the distribution is f(x) ∝ axa−1), representing two level of skewness. We
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then normalize qis such that they sum up to 20. Then we construct Ω by sampling each (i, j) with probability qi. This way,
in expectation, each user contributes to 20 tasks, and qin users contribute to task i. The distribution of qin is plotted in
Figure 5a. We partition the data into training and test sets following an 80-20 random split.

We run AdaDPALS and AdaDPSGD with weights set to ωi ∝ n−µi for varying µ, where ni is the number of users
contributing to task i. The weights are normalized per user. Setting µ = 0 corresponds to the standard unweighted objective
function. Since the purpose of the experiment is to validate the analysis and illustrate the algorithm in an stylized setting, we
run the algorithm using the exact nis instead of estimating them privately. In Figure 5b-5e, we plot the RMSE for different
values of µ and ε, for both algorithms and skewness. We set δ = 10−5.
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(b) DPMultiRegression. Skewness a = 1.
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(c) DPMultiRegression. Skewness a = 2.
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(d) DPSGD. Skewness a = 1.
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Figure 5. RMSE vs. µ on synthetic data. δ = 10−5.

We observe that with uniform weights (µ = 0), the quality of the estimate can be quite poor, especially at lower values
of ε. The quality improves significantly as we increase µ. Theoretical analysis (Equation (11)) suggests µ = 1/2 as the
optimal choice, yet the empirically optimal µ can vary case by case. This may be due to the fact that the analysis makes no
assumptions about the feature and label distribution, while in the experiment, the data is sampled from a linear model; we
leave further analysis into designing better weighting strategies for easier data for future work.

D. Additional Experiments on MovieLens and Million Song Data
In this section, we report additional experiments on MovieLens and Million Song Data (Bertin-Mahieux et al., 2011) data
sets. The code used to run the experiments is made available at the following URL: https://github.com/google-research/
google-research/tree/master/dp alternating minimization.

We report additional experiments on the larger Million Song Data benchmark (abbreviated as MSD), see Figures 6-8. Due to
the larger size of the data, we were only able to tune models of smaller size (embedding dimension of up to 32), but we
expect the trends reported here to persist in larger dimension.
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Table 1. Statistics of the MovieLens and Million Song data sets.
ML10M ML20M MSD

n (number of users) 69,878 136,677 571,355
m (number of items) 10,677 20,108 41,140

|Ω| (number of observations) 10M 9.99M 33.63M
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Figure 6. Privacy-utility trade-off on the Million Song Data benchmark.

D.1. Detailed Experimental Setting

We follow the same experimental setting as (Jain et al., 2018; Chien et al., 2021; Jain et al., 2021). When reporting (ε, δ)
DP guarantees, we use values of ε ∈ [1, 20], and take δ = 10−5 for ML10M and δ = 1/n for ML20M and MSD. All
hyper-parameter values are specified in the source code.

We solve a private matrix completion problem, where the training data is a partially observed rating matrix (yij)(i,j)∈Ω

(where yij is the rating given by user j to item i), and the goal is to compute a low-rank approximation Y ≈ UV >, by
minimizing the following objective function:

L(U, V ) =
∑

(i,j)∈Ω

(〈ui, vj〉 − yij)2 + λ|ui|2 + λ|vj |2.

The matrix U ∈ Rn×d represents item embeddings, and the matrix V ∈ Rm×d represents user embeddings.

Algorithms We consider a family of alternating minimization algorithms studied by (Chien et al., 2021; Jain et al., 2021),
in which we will use our algorithm as a sub-routine. This is summarized in Algorithm 3.

Algorithm 3 Alternating Minimization for Private Matrix Completion

1: Inputs: Training data {yij}(i,j)∈Ω, number of steps T , initial item matrix Û (0), pre-processing RDP budget β0, training
RDP budget β.

2: Pre-process the training data (with RDP budget β0).
3: for 1 ≤ t ≤ T do
4: V̂ (t) ← argminV L(Û (t−1), V )
5: Compute a differentially private solution Û (t) of minU L(U, V̂ (t)) (with RDP budget β)
6: end for
7: Return Û (T )

Algorithm 3 describes a family of algorithms, that includes DPALS (Chien et al., 2021), and the AltMin algorithm of (Jain
et al., 2021). It starts by pre-processing the training data (this includes centering the data, and computing private counts to
be used for sampling or for computing adaptive weights). Then, it alternates between updating V and updating U . Updating
V is done by computing an exact least squares solution, while updating U is done differentially privately.
Remark D.1. The algorithm only outputs the item embedding matrix Û . This is indeed sufficient for the recommendation
task: given an item matrix Û (learned differentially privately), to generate predictions for user j, one can compute the user’s
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Figure 7. Task distribution skew in MovieLens and Million Song Data.

embedding v∗j = argminv∈Rd
∑
i∈Ωj (〈ûi, v〉 − yij)2 + λ|v|2, then complete the j-th column by computing Ûv∗j . This

minimization problem only depends on the published matrix Û and user j’s data, therefore can be done in isolation for each
user (for example on the user’s own device), without incurring additional privacy cost. This is sometimes referred to as the
billboard model of differential privacy, see for example (Jain et al., 2021).

Notice that updating the item embeddings U (Line 5 in Algorithm 3) consists in solving the following problem differentially
privately:

min
U

m∑
i=1

∑
j∈Ωi

(〈ui, vj〉 − yij)2 + λ|ui|2.

This corresponds to our multi-task problem (1), where we identify each item to one task, with parameters θi = ui, features
xij = vj , and labels yij . Then we can either apply Algorithm 1 (SSP with adaptive weights), or Algorithm 2 (DPSGD with
adaptive weights) to compute the item update. The baselines we compare to are summarized in Table 2.

Table 2. Algorithms used in experiments.
Method Sub-routine used to update U

(Line 5 in Algorithm 3)
Budget allocation method

DPALS (uniform) SSP Uniform sampling
DPALS (tail) SSP Tail-biased sampling of (Chien et al., 2021)
AdaDPALS Algorithm 1 Adaptive weights (eq. (11)-(12))
DPSGD (uniform) DPSGD Uniform sampling
DPSGD (tail) DPSGD Tail-biased sampling of (Chien et al., 2021)
AdaDPSGD Algorithm 2 Adaptive weights (eq. (11)-(12))

We compare to two algorithms: the DPALS method (Chien et al., 2021) which is the current SOTA on these benchmarks,
and the DPSGD algorithm (which we found to perform well in the full-batch regime, at the cost of higher run times). In each
case, we compare three methods to perform budget allocation: using uniform sampling, the tail-biased sampling heuristic
of (Chien et al., 2021), and our adaptive weights method. Note that tail sampling is already adaptive to the task skew: it
estimates task counts and uses them to select the tasks to sample for each user.

Both for tail-sampling and adaptive weights, movie counts are estimated privately, and we account for the privacy cost of
doing so. The proportion of RDP budget spent on estimating counts (out of the total RDP budget) is 20% for ε = 20, 14%
for ε = 5 and 12% for ε = 1. This was tuned on the DPALS baseline (with tail sampling).

Metrics The quality metrics that the benchmarks use are defined as follows: Let Ωtest be the set of test ratings. Then for a

given factorization U, V , RMSE(U, V ) =
√∑

(i,j)∈Ωtest (〈ui,vj〉−yij)2

|Ωtest| . Recall is defined as follows. For a given user i, let

Ωj
test be the set of movies rated by the user j. If we denote by Ω̂j the set of top k predictions for user j, then the recall is

defined as Recall@k = 1
n

∑n
j=1

|Ωj test∩Ω̂j |
min(k,|Ωj test|) .
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(b) ML10M, ε = 5.

0 1 2 3 4
Count bucket

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

RM
SE

AdaDPALS ( = 1)
AdaDPALS ( = 1/2)
AdaDPALS ( = 1/3)
AdaDPALS ( = 1/4)
DPALS (tail)
DPALS (uniform)

(c) ML10M, ε = 20.
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(d) ML20M, ε = 1.
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(e) ML20M, ε = 5.
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(f) ML20M, ε = 20.
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(g) MSD, ε = 1.
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(h) MSD, ε = 5.
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Figure 8. Metrics sliced by movie frequency (i.e. frequency), on the ML10M, ML20M, and MSD benchmark, using the DPALS method.
Each bucket contains an equal number of movies. Buckets are ordered by increasing frequency.
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Figure 9. Comparison of the adaptive weights method with different values of µ on ML20M, when applied to DPALS (left) and DPSGD
(right).

D.2. Quality Impact on Head/Tail Movies

In Figure 8, we report sliced RMSE (on ML10M) and Recall (on ML20M and MSD), for different values of ε.
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The following trend can be observed on all benchmarks, across all values of ε. DPALS with tail sampling improves upon
uniform sampling, especially on the tail buckets. Our method (AdaDPALS) further improves upon tail sampling. The
improvement is quite significant for lower values of ε, and for tail buckets. For example, on ML10M with ε = 1 (Figure 8a)
we observe a large gap in RMSE, across all values of µ; the improvement is at least 21.6% on bucket 0, at least 23.7% on
bucket 1, at least 22.8% on bucket 3, and at least 8.4% on bucket 4. The gap narrows as ε increases, which is consistent with
the global privacy/utility trade-off plots in Figure 1.

The exponent µ controls the trade-off between head and tail tasks: recall that the weights are defined as ωi ∝ 1/n̂µi where
n̂i are the count estimates. A larger value of µ induces larger weights (and hence better quality) on the tail. This is visible
on both benchmarks and across all values of ε: on lower buckets 0 and 1, better performance is obtained for larger values of
µ, while the trend is reversed for the top bucket.

When comparing performance on the overall objective, we find that the best performance is typically achieved when
µ = 1/4, see Figures 3 and 9. When applied to DPALS performance remains high for a range of µ ∈ [1/4, 1/2]. When
applied to DPSGD, performance seems more sensitive to µ, and the best performance is achieved for µ = 1/4.

D.3. Qualitative Evaluation on ML20M

To give a qualitative evaluation of the improvements achieved by our method, we inspect a few example queries. Though
anecdotal, these examples give a perhaps more concrete illustration of some of the quality impact that our method can have,
especially on tail recommendations. We will compare the following models: the ALS non-private baseline (same model
in Figure 1-b), and two private models with ε = 1: the DPALS method with tail-biased sampling, and Ada-DPALS (with
adaptive weights) with µ = 1/3 (we found that values of µ ∈ [1/4, 1/2] are qualitatively similar).

We evaluate the models by displaying the nearest neighbor movies to a given query movie, where the similarity between
movies is defined by the learned movie embedding matrix V̂ (the similarity between two movies i1 and i2 is 〈v̂i1 , v̂i2〉. We
select a few examples in Table 3; for additional examples, the models can be trained and queried interactively using the
provided code. We select examples with varying levels of frequency (shown in the last column), to illustrate how privacy
may affect quality differently depending on item frequency.

The first query is The Shawshank Redemption, the most frequent movie in the data set. We see a large overlap of the top
nearest neighbors according to all three models. In other words, privacy has little impact on this item. A similar observation
can be made for other popular items.

The second query is Pinocchio, a Disney animated movie from 1940. The nearest neighbors according to the non-private
baseline (ALS) are other Disney movies from neighboring decades. The DPALS results are noisy: some of the top neighbors
are Disney movies, but the fifth and sixth neighbors seem unrelated (Action and Drama movies). The AdaDPALS model
returns more relevant results, all of the neighbors being Disney movies.

The third example is Harry Potter and the Half-Blood Prince, an Adventure/Fantasy movie. The nearest neighbors from the
ALS baseline are mostly other Harry Potter movies. The DPALS model misses the Harry Potter neighbors, and instead
returns mostly action/adventure movies with varying degrees of relevance. The AdaDPALS model recovers several of Harry
Potter neighbors.

The next example is Nausicaä of the Valley of the Wind, a Japanese animated movie from Studio Ghibli, released in 1984.
The nearest neighbors according to the ALS model are similar movies from Studio Ghibli. The neighbors returned by
DPALS are much more noisy: The first result (Spirited Away) is a Studio Ghibli movie and is the most relevant in the list.
Other neighbors in the list are arguably unrelated to the query. AdaDPALS returns much more relevant results, all neighbors
are Japanese animation movies, and five out of six are from Studio Ghibli.

The last example is Interstellar, a Sci-Fi movie released in 2014. The ALS neighbors are other popular movies released
around the same time (2013-2014) with a bias towards Action/Sci-Fi. Both private models (DPALS and AdaDPALS) return
mixed results. Some results are relevant (Action/Sci-Fi movies) but others are arguably much less relevant, for example the
third DPALS neighbor is a Hitchcock movie from 1945. AdaDPALS neighbors appear slightly better overall, in particular it
returns two movies from the same director.

As can be seen from these examples, AdaDPALS generally returns better quality results compared to DPALS. If we compare
both models to the non-private baseline (ALS), the overlap between AdaDPALS and ALS is generally larger then the overlap
between DPALS and ALS. To quantify this statement, we generate, for each movie, the top-20 nearest neighbors according
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to each model, then compute the percentage overlap with ALS. The results are reported in Figure 10.
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Figure 10. Percentage overlap between the top-20 nearest neighbors according to private models (ε = 1) with the top-20 nearest neighbors
according to the non-private baseline (ALS). Each bucket contains an equal number of movies (ordered by increasing frequency).

Model Movie title Genres Frequency (in training set)

Shawshank Redemption, The (1994) Crime—Drama 47518

ALS Usual Suspects, The (1995) Crime—Mystery—Thriller 33834
Silence of the Lambs, The (1991) Crime—Horror—Thriller 42738
Pulp Fiction (1994) Comedy—Crime—Drama—Thriller 44626
Schindler’s List (1993) Drama—War 35334
Apollo 13 (1995) Adventure—Drama—IMAX 26192
Forrest Gump (1994) Comedy—Drama—Romance—War 40422

DPALS Silence of the Lambs, The (1991) Crime—Horror—Thriller 42738
Usual Suspects, The (1995) Crime—Mystery—Thriller 33834
Schindler’s List (1993) Drama—War 35334
Pulp Fiction (1994) Comedy—Crime—Drama—Thriller 44626
Forrest Gump (1994) Comedy—Drama—Romance—War 40422
Braveheart (1995) Action—Drama—War 32735

AdaDPALS Silence of the Lambs, The (1991) Crime—Horror—Thriller 42738
Pulp Fiction (1994) Comedy—Crime—Drama—Thriller 44626
Usual Suspects, The (1995) Crime—Mystery—Thriller 33834
Forrest Gump (1994) Comedy—Drama—Romance—War 40422
Schindler’s List (1993) Drama—War 35334
Braveheart (1995) Action—Drama—War 32735

Pinocchio (1940) Animation—Children—Fantasy—Musical 5120

ALS Snow White and the Seven Dwarfs (1937) Animation—Children—Drama—Fantasy—Musical 7865
Dumbo (1941) Animation—Children—Drama—Musical 3580
Cinderella (1950) Animation—Children—Fantasy—Musical—Romance 3957
Aristocats, The (1970) Animation—Children 2669
Fantasia (1940) Animation—Children—Fantasy—Musical 6135
Alice in Wonderland (1951) Adventure—Animation—Children—Fantasy—Musical 3487

DPALS Snow White and the Seven Dwarfs (1937) Animation—Children—Drama—Fantasy—Musical 7865
Jumanji (1995) Adventure—Children—Fantasy 6203
Beauty and the Beast (1991) Animation—Children—Fantasy—Musical—Romance—IMAX 16391
Aladdin (1992) Adventure—Animation—Children—Comedy—Musical 19912
Assassins (1995) Action—Crime—Thriller 1146
Miracle on 34th Street (1947) Comedy—Drama 2445

AdaDPALS Snow White and the Seven Dwarfs (1937) Animation—Children—Drama—Fantasy—Musical 7865
Fantasia (1940) Animation—Children—Fantasy—Musical 6135
Pocahontas (1995) Animation—Children—Drama—Musical—Romance 2815
Sword in the Stone, The (1963) Animation—Children—Fantasy—Musical 2217
Dumbo (1941) Animation—Children—Drama—Musical 3580
Jungle Book, The (1994) Adventure—Children—Romance 2765

Table 3. Nearest neighbors according to ALS (non-private), DPALS, and AdaDPALS (µ = 1/3).
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Model Movie title Genres Frequency

Harry Potter and the Half-Blood Prince (2009) Adventure—Fantasy—Mystery—Romance—IMAX 2176

ALS Harry Potter and the Deathly Hallows: Part 1 (2010) Action—Adventure—Fantasy—IMAX 2099
Harry Potter and the Order of the Phoenix (2007) Adventure—Drama—Fantasy—IMAX 2896
Harry Potter and the Deathly Hallows: Part 2 (2011) Action—Adventure—Drama—Fantasy—Mystery—IMAX 2265
Sherlock Holmes (2009) Action—Crime—Mystery—Thriller 2877
Harry Potter and the Goblet of Fire (2005) Adventure—Fantasy—Thriller—IMAX 4773
Tangled (2010) Animation—Children—Comedy—Fantasy—Musical—Romance—IMAX 1259

DPALS Animatrix, The (2003) Action—Animation—Drama—Sci-Fi 1216
Ratatouille (2007) Animation—Children—Drama 4728
Avengers, The (2012) Action—Adventure—Sci-Fi—IMAX 2770
Tangled (2010) Animation—Children—Comedy—Fantasy—Musical—Romance—IMAX 1259
Slumdog Millionaire (2008) Crime—Drama—Romance 5415
Sherlock Holmes: A Game of Shadows (2011) Action—Adventure—Comedy—Crime—Mystery—Thriller 1166

AdaDPALS Harry Potter and the Deathly Hallows: Part 2 (2011) Action—Adventure—Drama—Fantasy—Mystery—IMAX 2265
Harry Potter and the Prisoner of Azkaban (2004) Adventure—Fantasy—IMAX 6433
Ratatouille (2007) Animation—Children—Drama 4728
Sherlock Holmes: A Game of Shadows (2011) Action—Adventure—Comedy—Crime—Mystery—Thriller 1166
Harry Potter and the Order of the Phoenix (2007) Adventure—Drama—Fantasy—IMAX 2896
Avatar (2009) Action—Adventure—Sci-Fi—IMAX 4960

Nausicaä of the Valley of the Wind (Kaze no tani no Naushika) (1984) Adventure—Animation—Drama—Fantasy—Sci-Fi 2151

ALS Laputa: Castle in the Sky (Tenkû no shiro Rapyuta) (1986) Action—Adventure—Animation—Children—Fantasy—Sci-Fi 2227
My Neighbor Totoro (Tonari no Totoro) (1988) Animation—Children—Drama—Fantasy 3593
Kiki’s Delivery Service (Majo no takkyûbin) (1989) Adventure—Animation—Children—Drama—Fantasy 1421
Porco Rosso (Crimson Pig) (Kurenai no buta) (1992) Adventure—Animation—Comedy—Fantasy—Romance 1022
Grave of the Fireflies (Hotaru no haka) (1988) Animation—Drama—War 2026
Howl’s Moving Castle (Hauru no ugoku shiro) (2004) Adventure—Animation—Fantasy—Romance 3503

DPALS Spirited Away (Sen to Chihiro no kamikakushi) (2001) Adventure—Animation—Fantasy 9161
Terminal, The (2004) Comedy—Drama—Romance 1963
Finding Neverland (2004) Drama 3371
Ring, The (2002) Horror—Mystery—Thriller 3535
Kill Bill: Vol. 1 (2003) Action—Crime—Thriller 12467
Man Who Wasn’t There, The (2001) Crime—Drama 2157

AdaDPALS Spirited Away (Sen to Chihiro no kamikakushi) (2001) Adventure—Animation—Fantasy 9161
My Neighbor Totoro (Tonari no Totoro) (1988) Animation—Children—Drama—Fantasy 3593
Princess Mononoke (Mononoke-hime) (1997) Action—Adventure—Animation—Drama—Fantasy 6101
Ghost in the Shell (Kôkaku kidôtai) (1995) Animation—Sci-Fi 4070
Howl’s Moving Castle (Hauru no ugoku shiro) (2004) Adventure—Animation—Fantasy—Romance 3503
Laputa: Castle in the Sky (Tenkû no shiro Rapyuta) (1986) Action—Adventure—Animation—Children—Fantasy—Sci-Fi 2227

Interstellar (2014) Sci-Fi—IMAX 1048

ALS Gone Girl (2014) Drama—Thriller 847
Edge of Tomorrow (2014) Action—Sci-Fi—IMAX 881
Gravity (2013) Action—Sci-Fi—IMAX 1248
Guardians of the Galaxy (2014) Action—Adventure—Sci-Fi 1072
Wolf of Wall Street, The (2013) Comedy—Crime—Drama 1060
Grand Budapest Hotel, The (2014) Comedy—Drama 1339

DPALS Day After Tomorrow, The (2004) Action—Adventure—Drama—Sci-Fi—Thriller 1233
Alive (1993) Drama 994
Spellbound (1945) Mystery—Romance—Thriller 1365
Source Code (2011) Action—Drama—Mystery—Sci-Fi—Thriller 1595
Fast and the Furious, The (2001) Action—Crime—Thriller 1406
Ice Storm, The (1997) Drama 3020

AdaDPALS Django Unchained (2012) Action—Drama—Western 2692
Inception (2010) Action—Crime—Drama—Mystery—Sci-Fi—Thriller—IMAX 9147
Dark Knight Rises, The (2012) Action—Adventure—Crime—IMAX 2848
Intouchables (2011) Comedy—Drama 1803
Source Code (2011) Action—Drama—Mystery—Sci-Fi—Thriller 1595
Avatar (2009) Action—Adventure—Sci-Fi—IMAX 4960

Table 4. Nearest neighbors according to ALS (non-private), DPALS, and AdaDPALS (µ = 1/3).
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