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Abstract
Understanding context is key to understanding001
human language, an ability which Large Lan-002
guage Models (LLMs) have been increasingly003
seen to demonstrate to an impressive extent.004
However, though the evaluation of LLMs en-005
compasses various domains within the realm006
of Natural Language Processing, limited atten-007
tion has been paid to probing their linguistic008
capability of understanding contextual features.009
This paper introduces a context understand-010
ing benchmark by adapting existing datasets to011
suit the evaluation of generative models. This012
benchmark comprises of four distinct tasks and013
ninedatasets, all featuring prompts designed to014
assess the models’ ability to understand context.015
First, we evaluate the performance of LLMs un-016
der the in-context learning pretraining scenario.017
Experimental results indicate that pre-trained018
dense models struggle with understanding more019
nuanced contextual features when compared to020
state-of-the-art fine-tuned models. Second, as021
LLM compression holds growing significance022
in both research and real-world applications,023
we assess the context understanding of quan-024
tized models under in-context-learning settings.025
We find that 3-bit quantization leads to vary-026
ing degrees of performance reduction on our027
benchmark. We conduct an extensive analysis028
of these scenarios to substantiate our experi-029
mental results.030

1 Introduction031

Discourse understanding, as one of the fundamen-032

tal problems in NLP, focuses on modeling linguis-033

tic features and structures that go beyond indi-034

vidual sentences (Joty et al., 2019). Understand-035

ing discourse requires resolving the relations be-036

tween words/phrases (coreference resolution) and037

discourse units (discourse parsing and discourse re-038

lation classification) in the previous context, iden-039

tifying carry-over information for the following040

context (dialogue state tracking), and recognizing041

discourse-specific phenomena (ellipsis).042

LLMs have garnered substantial attention from 043

both academia and the industry due to their remark- 044

able capability in comprehending language and 045

world knowledge. Their unparalleled performance 046

across a diverse range of benchmarks and datasets 047

has firmly established their significance in a rel- 048

atively short period of time. As LLMs continue 049

to push the boundaries of scale and capability, the 050

evaluation of their multifaceted abilities becomes 051

an equally vital endeavor. Consequently, the devel- 052

opment of robust evaluation methodologies to as- 053

sess specific aspects of LLMs becomes imperative. 054

In addition, these methodologies should focus on 055

helping achieve a comprehensive understanding of 056

their advancement while clearly delineating their 057

limitations. However, recently published LLMs, 058

such as OPT (Zhang et al., 2022), LLaMA (Tou- 059

vron et al., 2023) and GPT-4 (OpenAI, 2023), are 060

only evaluated on limited benchmarks, and have a 061

significant drawback: they neglect the inclusion of 062

discourse-related datasets for evaluation, thereby 063

limiting the comprehensive assessment of their lan- 064

guage understanding capabilities. 065

To provide a comprehensive evaluation, plenty 066

of benchmarks and datasets address various 067

facets of language understanding, including bench- 068

marks that delve into common sense knowledge 069

(Hendrycks et al., 2021a; Kwiatkowski et al., 2019), 070

as well as linguistic capabilities like sentiment anal- 071

ysis, natural language inference, summarization, 072

text classification, and more (Bang et al., 2023b; 073

Liang et al., 2022). These general benchmarks and 074

specific dataset evaluations exhibit certain limita- 075

tions. Despite the requirement for contextual infor- 076

mation in these benchmarks to effectively tackle 077

tasks (for example, sentiment analysis requires an 078

understanding of polarities within the given text), 079

none of these benchmarks cater to tasks that de- 080

mand a nuanced comprehension of linguistic fea- 081

tures within a provided context. 082

On the other hand, recent LLMs, by virtue of 083
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possessing billions of parameters, have led to an ex-084

ponential surge in computational and storage costs085

(Brown et al., 2020b), which hinders the deploy-086

ment of large models to personal devices and re-087

stricts the on-device performance of language un-088

derstanding tasks. To address this challenge, model089

compression methods, which can reduce memory090

and disk requirements of both model training and091

inference, have gained attention. Existing compres-092

sion techniques, such as 3-bit quantization (Frantar093

et al., 2022), have demonstrated the potential to re-094

duce model sizes with only marginal performance095

trade-offs. However, the evaluation of quantiza-096

tion methods suffers from two deficiencies. Firstly,097

quantization methods are primarily evaluated on098

limited benchmarks and datasets, such as Lambada099

(Paperno et al., 2016), ARC (Boratko et al., 2018),100

PIQA (Tata and Patel, 2003), BoolQ (Clark et al.,101

2019), and StoryCloze (Mostafazadeh et al., 2017).102

Secondly, previous work has not delved into a lin-103

guistic analysis to identify where the model efficacy104

wanes.105

Given the above shortcomings, this paper evalu-106

ates LLMs on a context understanding benchmark107

constructed from varied discourse understanding108

datasets. We conduct an extensive analysis of LLM109

performance on this benchmark, including models110

of varying sizes and those subjected to compres-111

sion techniques, aiming to provide a more com-112

prehensive understanding of context understanding113

capability of the LLMs. The contributions of this114

paper can be summarized as follows:115

• Our work introduces a contextual understand-116

ing benchmark, including four tasks, for the117

evaluation of LLMs. We also present prompts118

designed for in-context learning on each task.119

• We evaluate LLMs of varying sizes from dif-120

ferent model families and provide an analysis121

on these models’ capability for context under-122

standing.123

• We evaluate post-training compressed models124

in ICL settings and conduct an analysis of the125

reduction in context understanding capability126

compared to dense models.127

2 Related Work128

2.1 In-context Learning Evaluation129

The paradigm of ICL (Brown et al., 2020a) is130

rapidly gaining importance. Studies have demon-131

strated that the generalization of LLMs to var- 132

ious downstream NLP tasks, such as MMLU 133

(Hendrycks et al., 2021b), is significantly enhanced 134

when provided with a small number of examples 135

as prompts (Brown et al., 2020a; Chowdhery et al., 136

2022; Hoffmann et al., 2022; Rae et al., 2022; Anil 137

et al., 2023; Touvron et al., 2023; OpenAI, 2022, 138

2023). Recent research has extensively evaluated 139

the performance of LLMs across a spectrum of 140

language-related tasks, spanning from text genera- 141

tion to understanding input sequences. This assess- 142

ment contains a wide array of benchmarks, includ- 143

ing SUPER-GLUE (Wang et al., 2019; Laskar et al., 144

2023), and tasks such as question answering, in- 145

formation retrieval, sentiment analysis (Bang et al., 146

2023b; Liang et al., 2022), dialogue (Heck et al., 147

2023), and text classification (Yang and Menczer, 148

2023). 149

2.2 Model Compression for LLMs 150

Model compression techniques can be broadly cat- 151

egorized into three main approaches: compression 152

during training, compression associated with fine- 153

tuning, and post-training methods. In terms of 154

quantization during training, this technique enables 155

LLMs to adapt to low-precision representations dur- 156

ing the training process (Liu et al., 2023). Model 157

compression with fine-tuning involves quantization 158

awareness into the fine-tuning stage (Kim et al., 159

2023; Dettmers et al., 2023). Post-training tech- 160

niques, on the other hand, are applied after the com- 161

pletion of an LLMs training phase and typically 162

involve the use of calibration data. This category 163

comprises two primary approaches: pruning, which 164

removes redundant or non-salient weights to induce 165

sparsity (Frantar and Alistarh, 2023), and quantiza- 166

tion, which employs low-precision numeric repre- 167

sentations of weights and activations (Nagel et al., 168

2020; Frantar et al., 2022; Yuan et al., 2023). Prior 169

research shows that quantization outperforms prun- 170

ing in several settings (Kuzmin et al., 2023), thus 171

in this work, we focus on model quantization and 172

its impact on the selected context-aware tasks. 173

3 Task Selection & Design 174

Our contextual understanding benchmark includes 175

four tasks with nine datasets, as presented in Table 176

1. In the following sections, we provide detailed 177

explanations of each task and the corresponding 178

datasets, along with the designed prompts for ICL 179

evaluations. 180
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Type Task Dataset Context

Doc Coreference WSC273 Nominal &
eventual reference

OntoNotes
Discourse PDTB-3 Relations between

discourse units

Dial.

DST MultiWoz Entity carryover
within context

Query
Rewrite

MuDoCo

Ellipsis and reference
QReCC
InCar

GECOR
CANARD

Table 1: Tasks and datasets in the context understanding
benchmark.

3.1 Coreference Resolution181

The coreference resolution task (CR) contributes to182

achieving a coherent understanding of the overall183

meaning conveyed within the text. Thus, it plays a184

critical role in diving into language models’ capa-185

bility to grasp coreference relations as well as con-186

textual nuances within documents. We select two187

coreference datasets: WSC273 (Levesque et al.,188

2012) and OntoNotes 5.0 (Pradhan et al., 2013).189

WSC273, which contains the first 273 examples190

from the Winograd Schema Challenge, is a dataset191

that requires the system to read a sentence with192

an ambiguous pronoun and select the referent of193

that pronoun from two choices. OntoNotes is a194

human-annotated corpus of documents annotated195

with multiple layers of linguistic information in-196

cluding syntax, propositions, named entities, word197

sense, and in-document coreference. As it is one198

of the most frequently used datasets for training199

coreference models, prior research has achieved200

significant advancements under the supervised fine-201

tuning paradigm (Lee et al., 2017; Joshi et al., 2020;202

Bohnet et al., 2023). However, these model designs203

cannot be extended to generative models under ICL204

settings. Recently, Le and Ritter (2023) have lever-205

aged document templates for LLMs; however, their206

evaluation is confined to prominent models such as207

InstructGPT (Ouyang et al., 2022), neglecting the208

fact that smaller models lack the generative capac-209

ity required to accomplish such tasks. Due to these210

limitations, we propose a novel multiple-choice211

task design. In this design, we provide the men-212

tions and evaluate the model on resolution. Each213

option represents a potentially markable span.1 Ta-214

1Considering the inferior performance of small models on
the mention detection task, we utilize gold markable spans
coreference linking.

Instruction: Please carefully read the following passages.
For each passage and the options, you must identify which
option the mention marked in *bold* refers to. If the
marked mention does not have any antecedent, please se-
lect “no antecedent”.
Context: ... To express *its* determination ... the Chinese
securities regulatory department ... this stock reform ...
Choices:
A. no antecedent
B. the Chinese securities regulatory department
C. this stock reform
...
Question: What does *its* refer to?
Answer: B

Table 2: An OntoNotes example of prompt and answer.

ble 2 presents an example of the input to the model2. 215

The entire prompt consists of five parts: (1) an in- 216

struction that provides guidance to the model for 217

the task, (2) a document containing plain text with 218

a selected mention span highlighted using a bold 219

symbol, (3) a list of choices, which includes all 220

the gold mentions present in the document, (4) a 221

question that directs the model’s attention, and (5) 222

a guiding word answer that prompts for the out- 223

put. We experiment with multiple instructions and 224

prompts and provide the one with the best perfor- 225

mance. Linking scores are computed for each ques- 226

tion and the results are subsequently aggregated for 227

evaluation. We utilize the official evaluation met- 228

rics from the CoNLL-2012 shared task (Pradhan 229

et al., 2012), which employs the CoNLL F1 score, 230

derived from the averaging of three coreference 231

metrics: MUC, B3, and CEAFϕ4. 232

3.2 Dialogue State Tracking 233

Dialogue state tracking (DST) is an important task 234

in the area of task-oriented dialogue (TOD) model- 235

ing (Young et al., 2013), where the dialogue agent 236

tracks the key information provided by the user as 237

the conversation progresses. Table 3 provides an 238

example from MultiWOZ (Budzianowski et al., 239

2018) where the user expresses the constraints 240

when looking for a restaurant. The output of DST 241

is typically maintained in slot-value pair format. 242

Previous research has explored ICL capabilities 243

on MultiWOZ and demonstrated promising results 244

compared to fine-tuning models (Hu et al., 2022; 245

Heck et al., 2023). However, these studies either 246

involve partial training or are untested with smaller 247

and quantized models. Here we adopt a straight- 248

forward and simplified ICL approach proposed by 249

2Detailed examples for each task design can be found in
Appendix A.
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Ontology:
{“slots”: {“restaurant-pricerange”: “price budget for the
restaurant”, ... },
“categorical”: {“restaurant-pricerange”: [‘cheap’, ‘expen-
sive’, ‘moderate’], ...} }
Instruction: Now consider the following dialogue be-
tween two parties called the “system” and “user”. Can you
tell me which of the “slot” was updated by the “user” in
its latest response to the “system”? Present the updates in
JSON format. If no “slots” were updates, return an empty
JSON list. If you encounter “slot” that was requested by
the “user” then fill them with “?”. If a user does not seem
to care about a discussed “slot” fill it with “dontcare”.
[Previous Dialogue State]
[Conversation]:
“system”: “”
“user”: “I’m looking for a moderately priced place to eat
that’s in the centre of town.”
Output: {“restaurant-pricerange”: “moderate”,

“restaurant-area”: “centre”}

Table 3: A DST example of prompt and answer.

Heck et al. (2023), and test it on MultiWOZ v2.2250

(Zang et al., 2020). The prompt to the model con-251

sists of domain knowledge from ontology, an in-252

struction, previous dialogue state (the belief state253

accumulated until the previous user turn) and the254

conversation proceeding to the current turn. The255

ontology could be very long if we consider all do-256

mains in the dataset; thus, given the input length257

constraint of LLMs, only the knowledge relevant to258

the conversation is provided. Following literature,259

we report joint goal accuracy (JGA) (Mrkšić et al.,260

2017) for evaluating the performance of DST.261

3.3 Implicit Discourse Relation Classification262

Discourse demonstrates its importance beyond in-263

dividual sentences, which emphasizes the ways264

in which different segments of a text interconnect265

and structure themselves to convey a coherent and266

meaningful message. The PDTB-3 corpus, as intro-267

duced by Webber et al. (2019), annotates implicit268

discourse relations across elementary discourse269

units (EDUs)3. These relations imply connections270

between EDUs and may be made explicit by in-271

serting a connective. Within the context of the272

understanding benchmark, we opt for the implicit273

discourse relation classification task for two pri-274

mary reasons. Firstly, the order of the two EDUs275

is provided, enabling the model to directly utilize276

this information. Secondly, the connective trigger-277

ing the relation is implicit, increasing the task’s278

complexity. In this task (Disc.), two EDUs are279

fed as input, and the objective of the task is to280

3EDU refers to the smallest segment of a text that conveys
a complete and coherent meaning within larger discourse.

Instruction: Given two arguments and a list of connective
words, please select the most likely connective between
two arguments.
[Relation Description]
Input:
Arg 1: Amcore, also a bank holding company, has assets
of $1.06 billion.
Arg 2: Central’s assets are $240 million.
Question: What is the connective that best describes the
relation between two arguments?
Choices:
A. Temporal B. Contingency C. Comparison D. Expansion
Answer: C

Table 4: A PDTB example of prompt and answer.

correctly identify the relation between them. Due 281

to the nuanced differences between each relation 282

and the demand for annotators with rich linguistic 283

knowledge and extensive annotation training, the 284

classification task poses challenges to fine-tuned 285

classification models. 286

The PDTB3 corpus classifies discourse relations 287

into four categories - Temporal, Contingency, 288

Comparison, and Expansion. We convert this task 289

into a multiple-choice question and experiment 290

with classes as options. In the classes scenario, 291

the task offers four options, with each representing 292

a distinct discourse relation class. Table 4 exhibits 293

the components of the prompt. It includes an in- 294

struction at the beginning, followed by a concise 295

description of each relation, a context with two ar- 296

guments, a question along with answer choices, and 297

a trigger word. We evaluate each model’s perfor- 298

mance on this dataset using accuracy as the metric. 299

3.4 Query Rewrite 300

While document-based CR (OntoNotes, Section 301

3.1) covers various types of coreference relations 302

across multiple genres, it does not allow the ability 303

to evaluate certain aspects which are important to 304

understand context. Firstly, the CR task typically 305

focuses on document-based coreference chains , ne- 306

glecting mention resolution in dialogues. Secondly, 307

ellipsis, which is the omission of one or more words 308

from a clause while still allowing it to be under- 309

stood in context, is a crucial linguistic phenomenon 310

frequently encountered in speech and conversation. 311

It is essential for language models to grasp and 312

accurately identify ellipses within context. Incor- 313

porating these features into the benchmark is thus 314

pivotal when evaluating context understanding. 315

Query rewrite (QR) is the task of rewriting the 316

last utterance of a user into a context-free, indepen- 317

dent utterance that can be interpreted without dia- 318
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Instruction: Rewrite the last query following interaction
into a well-formed, context independent query. Resolve
any disfluencies or grammatical errors in the query.
Input:
User: Try to reach Forbes now .
Bot: Forbes at Washington Post ? Or Forbes of Publishing
Division ?
User: Publishing Division .
Rewrite: Forbes of Publishing Division

Table 5: A query rewrite example of prompt and answer.

log context. The objective of the task is to identify319

the entity or events references from the previous320

query, whether through a pronoun or an omitted321

word/phrase, and then generate a new query that322

includes the previous context directly.323

We incorporate five QR datasets in the pro-324

posed benchmark: MuDoCo (Martin et al., 2020),325

QReCC (Anantha et al., 2021), InCar (Regan et al.,326

2019), GECOR (Quan et al., 2019), and CANARD327

(Elgohary et al., 2019). These datasets span mul-328

tiple genres and domains in dialogues. We exper-329

iment with various prompts used for fine-tuning330

models and present the results with the best se-331

lections. Table 5 presents a concise prompt com-332

prising an instruction along with context for each333

dialogue. To assess the quality of generated queries,334

we follow the metrics from previous research, par-335

ticularly BLEU (Papineni et al., 2002) and ROUGE336

(Lin, 2004).337

4 Experiments338

The evaluation was conducted on a computational339

infrastructure comprising 8 × A100 GPUs. We340

experiment with three model families. For smaller341

models, we consider OPT (Zhang et al., 2022),342

ranging from 125M to 2.7B. Although OPT also343

offers larger models, we opt for LLaMA (Touvron344

et al., 2023) as the mid-sized LMs, spanning from345

7B to 65B parameters, due to showcased superior346

performance by prior works. For large-scale LMs,347

we leverage GPT-3.5-turbo4. For each model,348

on every dataset, we assess five different settings:349

zero-shot, one-shot, 5-shot, 8-shot, and 10-shot.350

We randomly select the examples from the training351

set for the few-shot prompting.5352

4https://platform.openai.com/docs/models/
gpt-3-5

5WSC273 itself is a test set and it does not have any fine-
tuning scores, so we only report the zero-shot results in the
table.

4.1 Dense Model 353

Results of the three model families are reported in 354

Table 6, along with results of fine-tuned (FT) mod- 355

els to help better interpret how well the pre-trained 356

models behave with ICL. For each, we present the 357

N-shot setting that yields the highest score (see 358

Appendix B for details). Overall, performance im- 359

proves as the model size increases and pre-trained 360

models with ICL struggle to catch up with FT mod- 361

els on most tasks. 362

Coreference Resolution Larger models exhibit 363

promising performance on the WSC273 task, indi- 364

cating that LLMs can effectively handle "simple" 365

coreference relations within limited contexts and 366

mentions. However, when it comes to document- 367

based CR with complex clusters, their performance 368

substantially drops 6. Even on providing ground- 369

truth mentions, the highest-performing GPT is only 370

on par with rule-based coreference systems (Man- 371

ning et al., 2014) and is far from the end-to-end 372

fine-tuned SpanBERT (Joshi et al., 2020). The gap 373

between ICL and FT results highlights that under 374

the ICL setting, LLMs struggle to build coreference 375

chains without adequate domain-specific examples. 376

Specifically, models except GPT perform signifi- 377

cantly worse on the MUC metric. Error analysis re- 378

veals that these models are inclined to create more 379

clusters, including singleton clusters. This implies 380

that pre-trained LLMs encounter difficulties in un- 381

derstanding long-range contextual information. 382

DST A similar trend is observed as CR where 383

OPT and LLaMA models fall behind GPT-3.5 sig- 384

nificantly. This suggests that these models fail to 385

extract key information as the conversation pro- 386

ceeds, even with the provision of 5 to 10 demon- 387

strations and the distilled relevant domain ontology 388

in prompt. Our error analysis indicates that most of 389

the errors happen due to the misdetection of slots 390

or the wrong predicted value in a slot-value pair. 391

Only GPT-3.5 reaches the level of FT results which 392

is a fine-tuned T5 base model (Bang et al., 2023a). 393

Implicit discourse relation classification We 394

observe an increase in scores when the model size 395

exceeds 7B. However, even the best-performing 396

6Note that the OntoNotes dataset is substantially larger
than the others. We observe that inference on the entire test
set becomes extremely time-consuming, particularly with the
larger models; further, the cost of running inference on GPT-
3.5 starts becoming non-negligible. Consequently, we propose
limiting the OntoNotes test set to a 10% sub-sample, which is
the setting we consistently adopt.
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Task Dataset Metrics OPT LLaMA GPT FT
125M 350M 1.3B 2.7B 7B 13B 30B 3.5-turbo

CR

WSC273 Acc 58.24 66.67 76.19 77.66 86.81 89.38 89.01 88.64 N/A

OntoNotes

MUC 12.66 7.58 13.21 8.29 10.31 31.8 33.56 56.32 77.26
B3 53.8 52.26 53.54 52.41 52.20 58.43 58.66 68.20 73.43

CEAFϕ4 31.09 29.49 31.40 30.10 32.63 38.0 39.27 50.72 74.46
Avg. F1 32.52 29.78 32.72 30.27 31.71 42.74 43.83 58.41 76.03

DST MultiWOZ JGA 11.11 27.96 26.61 28.08 32.30 28.12 42.24 57.40 63.79
Disc. PDTB-3 Acc 10.04 10.04 10.04 16.15 17.16 26.01 39.77 43.83 76.23

QR

MuDoCo BLEU 0.46 0.36 7.02 49.2 41.12 61.15 66.51 57.14 80.31
ROUGE1 1.52 12.18 10.98 65.61 56.07 74.78 77.88 79.37 92.01

QReCC BLEU 4.53 31.27 26.35 40.09 28.19 38.64 58.68 55.24 58.67
ROUGE1 13.91 58.18 53.10 68.32 48.27 56.40 78.74 79.98 81.75

InCar BLEU 0.00 7.66 12.71 27.42 28.20 42.13 48.58 63.66 88.45
ROUGE1 3.41 28.76 30.45 49.63 49.96 56.73 64.18 83.51 95.24

GECOR BLEU 0.20 26.40 26.32 49.99 53.27 66.30 73.80 63.34 82.56
ROUGE1 4.06 42.13 42.57 65.89 69.23 80.99 86.03 79.00 92.63

CANARD BLEU 2.61 19.39 24.24 34.66 21.34 29.32 47.24 47.12 57.46
ROUGE1 9.82 45.63 49.36 62.73 38.17 46.61 69.73 74.61 81.06

Table 6: Few-shot results of two open-sourced models and GPT-3.5 on the context understanding benchmark. The
results with the best number of few-shot examples are reported for each task. Fine-tuning (FT) results serves as a
reference when evaluating LLMs’ capability under ICL setup.

model, GPT, achieves > 30 points lower than the397

current SOTA fine-tuned model (Liu and Strube,398

2023). We carefully examine the predictions for399

each model and found that all models tend to pre-400

dict the same relation class for every example, al-401

beit with their individual preferences for the se-402

lected relation. This suggests that the models strug-403

gle to distinguish the nuances between different404

relation classes and fail to correctly identify rela-405

tions across EDUs within context.406

Query Rewriting The gap between small and407

large models is significantly huge, compared to the408

other tasks. For instance, OPT-125M cannot even409

complete the rewriting task. Analysis on predic-410

tions of small models indicates that the model is not411

capable of following the instructions or learning412

patterns from the few-shot examples. We identify a413

few major error types: (1) generating the next sen-414

tence, instead of rewriting; (2) rewriting the wrong415

user turn from the conversation; (3) copying the last416

user utterance without any rewriting. These errors417

get reduced as the model size increases. However,418

similar to the previous three tasks, the best ICL419

results achieved by GPT is far from the fine-tuned420

models.7 It is worth noting that OPT-2.7B performs421

on par or notably better than LLaMA-7B, which is422

somewhat not aligned with the findings in Beeching423

7In literature, the best FT results come from different mod-
els across five QR datasets, where some are not even LLM
based. To ensure fair comparison, we fine-tuned a T5 large
model on each QR dataset.

et al. (2023) where LLaMA-7B even outperforms 424

OPT-66B in many tasks, including ARC (Clark 425

et al., 2018), HellaSwag (Zellers et al., 2019), and 426

MMLU (Hendrycks et al., 2021b). 427

All in all, this section presents a holistic compar- 428

ison of LLMs’ behaviors on the target context un- 429

derstanding tasks. On the tasks with structured out- 430

puts such as CR or DST, even small models show 431

a certain level of context understanding and seem 432

to follow the task instruction. Classification tasks 433

such as discourse relation selection are deemed the 434

easiest among all tasks; however, the small models 435

are even worse than a random guess (25%). As for 436

the generative task, the ability to complete query 437

rewriting can be only observed in the case of larger 438

models, as the model has the freedom to generate 439

arbitrary content that does not follow the prompt. 440

Except for DST, FT models demonstrate marked 441

superiority over pre-trained models, highlighting 442

the potential for improving LLMs’ competence on 443

these context understanding tasks. 444

4.2 Model Compression Technique 445

As we focus on evaluating context understanding 446

of LLMs in an ICL setup, we evaluate models quan- 447

tized using GPTQ (Frantar et al., 2022) , which is 448

an efficient one-shot weight quantization algorithm 449

based on approximate second-order information 450

that compresses the model post-training. It enables 451

a reduction in memory and disk requirements by 452

up to 80%, compared to the pre-quantized model. 453
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Dataset Metrics 7B-D 30B-Q 30B-D
WSC273 Acc 86.81 87.18 89.01

OntoNotes

MUC 10.31 25.37 33.56
B3 52.20 56.80 58.66

CEAFϕ4 32.63 36.93 39.27
Avg. F1 31.71 39.70 43.83

MultiWOZ JGA 32.30 41.99 42.24
PDTB-3 Acc 17.16 31.29 39.77

MuDoCo BLEU 41.12 59.22 66.51
ROUGE1 56.07 71.38 77.88

QReCC BLEU 28.19 53.72 58.68
ROUGE1 48.27 74.13 78.74

InCar BLEU 28.20 39.69 48.58
ROUGE1 49.96 56.32 64.18

GECOR BLEU 53.27 70.41 83.36
ROUGE1 69.23 73.80 86.03

CANARD BLEU 21.34 45.07 47.24
ROUGE1 38.17 67.15 69.73

Table 7: Comparison between dense and quantized mod-
els. Dense LLaMA-7B and 3-bit quantized LLaMA-
30B share similar memory and disk requirements. D
represents dense model and Q denotes quantized model.

4.3 Quantized Model Results454

GPTQ (Frantar et al., 2022) has been shown to455

effectively reduce the model size to 3 bits with-456

out incurring substantial performance losses across457

a range of NLP tasks, such as MMLU, ARC,458

StoryCloze. However, whether this performance459

preservation can be extended to contextual under-460

standing was unclear.461

Table 7 presents the comparison between the462

dense and 3-bit quantized LLaMA models. In463

contrast to previous studies on 3-bit quantization,464

we observed that quantization leads to fluctuated465

drops in performance across the four tasks. Specifi-466

cally, in WSC273, MultiWoz, and CANARD, post-467

training quantization incurs only a marginal per-468

formance drop (∼1.7 points). However, in the re-469

maining datasets, quantization results in significant470

performance drops.471

The results further show that the quantized472

LLaMA-30B model consistently outperforms the473

dense LLaMA-7B model across all tasks despite be-474

ing comparable in disk and memory requirements.475

For CR, the 30B quantized model achieves sig-476

nificantly higher scores on the OntoNotes dataset477

across all metrics. The MUC metric shows the478

most substantial improvement, indicating that the479

quantized 30B model partially overcomes the ten-480

dency to create small clusters for mentions. For481

DST on MultiWOZ, the 30B quantized model show482

a 30% relative improvement over the 7B model in483

JGA. On discourse parsing with PDTB-3, the ac-484

Dataset 6.7/7B 13B 30B
O. L. O. L. O. L.

Mudoco 53.1 41.1 55.2 61.1 55.2 66.5
71.8 56.0 72.1 74.7 71.5 77.8

QReCC 46.6 28.1 43.7 38.6 43.8 58.6
73.4 48.2 71.6 56.4 71.9 78.7

InCar 40.3 28.2 41.9 42.1 44.6 48.5
64.8 49.9 62.6 56.7 65.3 64.1

GECOR 58.8 53.2 60.9 66.3 58.2 73.8
75.7 69.2 78.3 80.9 76.1 86.0

CANARD 43.8 21.3 37.5 29.3 41.3 47.2
72.0 38.1 66.0 46.6 69.3 69.7

Table 8: Comparison between OPT (O.) and LLaMA
(L.) across five query rewrite datasets

curacy of quantized 30B model is almost double, 485

17.16% vs 31.29%. Across all QR datasets, the 486

quantized 30B model substantially improves NLG 487

scores compared to the dense 7B model, with rela- 488

tive gains ranging from 15-50%. The largest gap is 489

observed on GECOR. 490

In general, we show that the quantized 30B 491

LLaMA model consistently and significantly out- 492

performs the dense 7B model as a result of the 493

increased scale, despite using 3-bit quantization. 494

The benefits of greater model scale thus outweigh 495

the impacts of quantization in understanding dis- 496

course. We believe this finding would be beneficial 497

when deploying LLMs in real-world applications 498

with disk and runtime constraints. 499

5 Case Study: Query Rewrite 500

In this section, we provide in-depth analysis by 501

comparing the two open-sourced model families 502

OPT and LLaMA, and the impact of quantization, 503

using query rewrite as the target task. 504

5.1 OPT vs. LLaMA 505

Prior works (Beeching et al., 2023) have consis- 506

tently shown that, under the same model size, 507

LLaMA outperforms OPT. However, their perfor- 508

mance on QR, as shown in Table 8, does not follow 509

this pattern. When the model size is around 7B, 510

OPT consistently performs better than LLaMA by 511

a significant margin across the five QR datasets. 512

The two models perform on par with each other at 513

13B. The superiority of LLaMA is only obvious 514

with 30B model size. From another perspective, al- 515

though we expect performance to improve as model 516

size increases, we observe this trend on LLaMA, 517

but not on OPT. These results suggest that it may 518

not be correct to conclude the overall superiority 519

between two model families by only comparing on 520
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Context
User: what is the name of india pakistan border line
Bot: The Radcliffe Line was the boundary demarcation

line between the Indian and Pakistani portions of the
Punjab and Bengal provinces of British India.

User: who created the radcliffe line
Bot: The Radcliffe Line was named after its architect, Sir

Cyril Radcliffe, who was the joint chairman of the two
boundary commissions for the two provinces.

User: when was the line published
Gold answer: when was the radcliffe line published
Prediction 1 (repeat the last query): when was the line
published
Prediction 2 (language modeling): 1947

Table 9: An example of two major types of errors found
in the query rewrite task.

a certain range of model sizes or on a certain set of521

tasks.522

5.2 Dense vs. Quantized523

We conduct a quantitative analysis on the error524

types of query rewriting to investigate the perfor-525

mance gap between dense and quantized models526

with comparable computing requirements. Across527

the five datasets, we identify two main error types528

that account for nearly 80% of the total errors. First,529

the model repeats the last query without rewriting530

the referred entity. In this case, the model seems531

to understand the instruction but fails to compre-532

hend the referred entity within the context. This533

type of error can be primarily associated with the534

model’s context understanding capability. Second,535

the model treats the task as a language modeling536

(LM) task, as shown in Table 9, where it provides537

a response to the last query. In this scenario, the538

model appears to struggle to understand the task539

instruction, even with several few-shot examples.540

We classify this error type as more related to the541

model’s ICL ability.542

We perform manual error annotations on the543

five QR datasets8. Table 10 illustrates the num-544

ber of errors for the three selected model settings545

in LLaMA for each dataset. A consistent trend is546

observed across all QR datasets. In terms of re-547

peat errors, the 30B dense model exhibits fewer er-548

rors, around half, compared to the 7B dense model549

(297 vs. 469). However, 3-bit GPTQ quantization550

leads to an increase in this type of error, reaching551

a similar error count to the 7B dense model (458552

vs. 469). This suggests that 3-bit quantization553

reduces the model’s ability to comprehend the con-554

text. Regarding LM errors, the 30B dense model555

810% test data on QReCC and CANARD was graded.

Type Dataset 7B D 30B Q 30B D

Repeat

MuDoCo 260 247 194
QReCC 86 90 26
InCar 17 15 8

GECOR 59 62 37
CANARD 47 44 32

Total 469 458 297

LM

MuDoCo 71 29 16
QReCC 80 28 16
InCar 19 20 15

GECOR 6 1 0
CANARD 127 76 59

Total 232 125 106

Table 10: Number of the major two types errors on
three LLaMA models (7B dense, 30B quantized, and
30B dense) found in Query rewrite. Repeat stands for
repeat-the-last-query error and LM denotes language
modeling error.

also significantly outperforms the 7B dense model, 556

with 106 errors compared to 232. It is to be noted 557

that the quantized model generates 125 LM errors, 558

slightly more than the 30B dense model. However, 559

it generates significantly fewer (around 50%) errors 560

compared to the 7B dense model. This indicates 561

that 3-bit quantization maintains the ICL capability 562

when evaluated on our benchmark. 563

6 Conclusion 564

This paper introduces a contextual understanding 565

benchmark designed to assess the performance of 566

LLMs. We collect nine existing datasets spanning 567

four tasks, each carefully tailored to suit generative 568

models. This benchmark encompasses essential 569

elements for assessing linguistic comprehension 570

within context, including both document and dia- 571

log based contextual understanding. Experimental 572

results under an in-context learning setting reveal 573

that LLMs struggle with nuanced linguistic fea- 574

tures within this challenging benchmark, exhibit- 575

ing inconsistencies with other benchmarks that em- 576

phasize other aspects of language. To the best of 577

knowledge, we are also the first to compare dense 578

models and post-training quantization models in 579

contextual understanding tasks. This comparison 580

highlights that 3-bit post-training quantization re- 581

duces the general understanding capacity of con- 582

text, particularly in complex references and task- 583

oriented dialogue states. Our proposed contextual 584

comprehension benchmark thus provides a unique 585

perspective on the contextual dimension of lan- 586

guage understanding and offers a valuable addition 587

to existing LLM evaluations. 588
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Limitations589

This work provides an evaluation of various pre-590

trained LLMs, including OPT, LLaMA, and GPT,591

on our understanding benchmark. However, we592

have not evaluated other LLMs designed for longer593

input scenarios, such as LongLLaMA (Tworkowski594

et al., 2023).595

In our evaluation, we focus on the GPTQ quan-596

tization method, analyzing its performance on our597

benchmark. We do not include other post-training598

quantization techniques, such as RPTQ (Yuan et al.,599

2023), in this work.600

Our evaluation concentrates on English datasets,601

primarily utilizing LLMs pre-trained with English602

data. All of the four tasks on our benchmark have603

datasets from other languages. The coreference604

dataset OntoNotes 5.0 contains annotations of Ara-605

bic and Chinese. In addition, recent releases such606

as CorefUD (Nedoluzhko et al., 2022) promote607

standardization of multilingual coreference anno-608

tations. In DST, CrossWOZ (Zhu et al., 2020) is a609

cross-domain wizard-of-oz task-oriented dataset.610

Long et al. (2020) develop TED-CDB, a Chi-611

nese discourse relation dataset. The query rewrite612

task also has datasets in other languages, such as613

REWRITE (Su et al., 2019) and Restoration-200K614

(Pan et al., 2019). Finally, specific LLMs opti-615

mized for individual languages, such as ChatGLM616

(Du et al., 2022), exist and are not a part of our617

evaluation.618
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Coreference Resolution
Instructions: Please carefully read the following passages. For each passage and the options, you must identify which option the mention marked in *bold* refers to. If the marked mention does
not have any antecedent, please select “no antecedent”.

[Few-shot examples]

Context: — basically , it was unanimously agreed upon by the various relevant parties . To express *its* determination , the Chinese securities regulatory department compares
this stock reform to a die that has been cast . It takes time to prove whether the stock reform can really meet expectations , and whether any deviations that arise during the stock reform can be
promptly corrected . Dear viewers , the China News program will end here . This is Xu Li . Thank you everyone for watching . Coming up is the Focus Today program hosted by Wang Shilin .
Good-bye , dear viewers .
Choice:
A. the Chinese securities regulatory department
B. this stock reform
C. the stock reform
D. you
E. everyone
F. no antecedent
Question: What does *its* refers to?
Answer: A

Dialogue State Tracking
Consider the following list of concepts, called "slots" provided to you as a json list.

“slots”: {“restaurant-pricerange”: “price budget for the restaurant”,
“restaurant-area”: “area or place of the restaurant”,
“restaurant-food”: “the cuisine of the restaurant you are looking for”,
. . .
“hotel-postcode”: “postal code of the hotel”,
‘hotel-ref”: “reference number of the hotel booking”

}

Some “slots” can only take a value from predefined list:

“categorical”: {“restaurant-pricerange”: [‘cheap’, ‘expensive’, ‘moderate’],
“restaurant-area”: [’centre’, ’east’, ’north’, ’south’, ’west’],
“restaurant-bookday”: [’monday’, ’tuesday’, ’wednesday’, ’thursday’, ’friday’, ’saturday’, ’sunday’],
. . .
“hotel-internet”: [’free’, ’no’, ’yes’], “hotel-area”: [‘centre’, ‘east’, ‘north’, ‘south’, ‘west’]

}

Now consider the following dialogue between two parties called the “system” and “user”. Can you tell me which of the “slot” was updated by the “user” in its latest response to the “system”?
Present the updates in JSON format. If no “slots” were updates, return an empty JSON list. If you encounter “slot” that was requested by the “user” then fill them with “?”. If a user does not
seem to care about a discussed “slot” fill it with “dontcare”.

Input:
Previous state: {}
“system”: “”
“user”: “I’m looking for a moderately priced place to eat that’s in the centre of town.”
Output: {“restaurant-pricerange”: “moderate”, “restaurant-area”: “centre”}

Implicit Discourse Relation Classification
Instructions: Given two arguments and a list of connective words, please select the most likely connective between two arguments.

Below are the descriptions of four discourse relation labels. Please find the correct label for each example.

Temporal: The tag temporal is used when the situations described in the arguments are intended to be related temporally.
Contingency: The tag Contingency is used when the situation described by one argument provides the reason, explanation or justification for the situation described by the other.
Comparison: The tag Comparison is used when the discourse relation between two arguments highlights their differ- ences or similarities, including differences between expected consequences
and actual ones.
Expansion: The label Expansion is used for relations that expand the discourse and move its narrative or exposition forward.

[Few-shot examples]

Input:
Arg 1: Amcore, also a bank holding company, has assets of $1.06 billion.
Arg 2: Central’s assets are $240 million.
Question: What is the connective that best describes the relation between two arguments?
A. Temporal
B. Contingency
C. Comparison
D. Expansion
Answer: C

Query Rewrite
Instructions: Rewrite the last query following interaction into a well-formed, context independent query. Resolve any disfluencies or grammatical errors in the query.

[Few-shot examples]

Input:
User: Try to reach Forbes now .
Bot: Forbes at Washington Post ? Or Forbes of Publishing Division ?
User: Publishing Division .
Rewrite: Forbes of Publishing Division

Table 11: Examples of task design for each task in the context understanding benchmark.

Task Coreference DST Discourse Query Rewrite
Dataset WSC273 OntoNotes MultiWOZ PDTB3 MuDoCo QReCC InCar GECOR CANARD

N-example Zero-shot One-shot 5-shot 8-shot 10-shot 5-shot 10-shot 10-shot 5-shot

Table 12: N-shot settings for each task & dataset that yields the highest scores. For each task and model, we use
consistent N-shot settings for comparison.
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