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Abstract

What computational structures emerge in trans-
formers trained on next-token prediction? In this
work, we provide evidence that transformers im-
plement constrained Bayesian belief updating—a
parallelized version of partial Bayesian inference
shaped by architectural constraints. We integrate
the model-agnostic theory of optimal prediction
with mechanistic interpretability to analyze trans-
formers trained on a tractable family of hidden
Markov models that generate rich geometric pat-
terns in neural activations. Our primary analysis
focuses on single-layer transformers, revealing
how the first attention layer implements these con-
strained updates, with extensions to multi-layer ar-
chitectures demonstrating how subsequent layers
refine these representations. We find that attention
carries out an algorithm with a natural interpre-
tation in the probability simplex, and create rep-
resentations with distinctive geometric structure.
We show how both the algorithmic behavior and
the underlying geometry of these representations
can be theoretically predicted in detail—including
the attention pattern, OV-vectors, and embedding
vectors—by modifying the equations for optimal
future token predictions to account for the archi-
tectural constraints of attention. Our approach
provides a principled lens on how architectural
constraints shape the implementation of optimal
prediction, revealing why transformers develop
specific intermediate geometric structures.
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1. Introduction

Transformers excel at next-token prediction (Vaswani et al.,
2017), but their success belies a fundamental tension: op-
timal prediction requires Bayesian belief updating, a recur-
sive process, while their architecture enforces parallelized,
attention-driven computation (Fig. A1). How do transform-
ers resolve this conflict? We show that they develop geomet-
rically structured representations that approximate Bayesian
inference under architectural constraints, revealing a precise
interplay between theoretical necessity and implementation.

In this work, we combine insights from the theory of opti-
mal prediction with neural network analysis. First, compu-
tational mechanics (Shalizi & Crutchfield, 2001a; Marzen &
Crutchfield, 2017; Riechers & Crutchfield, 2018b; Pepper,
2024; Shai et al., 2024) dictates what an optimal predic-
tor must represent: belief states that encode distributions
over futures. Second, mechanistic interpretability reveals
how transformers approximate these states under architec-
tural constraints, bending Bayesian updates into attention’s
parallelizable form (Elhage et al., 2021; Nanda et al., 2023).

By combining these frameworks we reveal why transform-
ers learn certain intermediate structures. We find that the
geometry of a transformer’s internal representations is not
an accident—it is a mathematical signature of how architec-
tural constraints warp otherwise optimal Bayesian inference.
By interpreting learned weights and activations via stan-
dard mechanistic interpretability, we uncover an algorithm
that is well-captured by the constrained belief updating
equations. From first principles, we derive the constrained
belief geometries, and reverse-engineer the transformer’s
computational blueprint, predicting attention patterns, value
vectors, and residual stream geometries precisely. Thus,
beyond verifying that transformers encode belief states, we
show how the specific circuits that implement those states
necessarily deviate from the unconstrained Bayesian ideal
in predictable and theoretically tractable ways.

To concretize these ideas, we focus on transformers trained
on data from the Mess3 class of hidden Markov models
(HMMs) (Marzen & Crutchfield, 2017), which provides
rich and visualizable belief-state geometries and also admits
a tractable optimal predictor. Our primary analysis exam-
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ines single-layer transformers to isolate how the first atten-
tion layer implements constrained belief updating, though
we also demonstrate that these principles extend to multi-
layer architectures where subsequent layers refine the initial
constrained representations. This allows us to rigorously
compare the theoretically optimal geometry with the neural-
activation geometry that transformers learn. More broadly,
we anticipate that the same tension between architecture and
optimal inference arises in large language models trained
on natural text, and that our methodology would shed light
on those more complex cases.

Key contributions:

1. A Unified View of Optimal Prediction and Trans-
former Computation: We bridge the model-agnostic
theory of Bayesian belief states with the model-specific
constraints of attention-based parallel processing. This
synthesis explains why transformers trained on next-
token prediction discover a distinct “constrained belief
updating” geometry—balancing optimal Bayesian in-
ference with the functional form of attention.

2. Spectral Theory of Constrained Belief Updating:
We develop a theoretical framework that analyzes how
eigenvalues of the data-generating transition matrices
determine attention heads’ behavior. By decomposing
belief updates spectrally, we show that multi-head at-
tention naturally implements these scalar updates in
orthogonal modes—even handling oscillatory decay of
influence—through a sum of specialized head outputs.

3. Predictive Experiments and Mechanistic Verifica-
tion: Our approach yields specific, testable predictions
about attention patterns, value vectors, intermediate
fractal representations, and final belief-state geometry.
We confirm these predictions in trained transformers,
demonstrating how the inherently recurrent next-token
task is realized by an attention-based, parallelized im-
plementation of Bayesian belief updates.

2. Background
2.1. Related Work

Features as directions in activation space Modern inter-
pretability research views neural network representations
through the lens of linear geometry, analyzing how acti-
vation patterns align with specific directions that encode
fundamental features (Park et al., 2024). This perspective is
particularly useful given superposition (Elhage et al., 2022),
where networks encode more features than available neurons
using non-orthogonal vectors. Conceptualizing features as
linear directions has been instrumental (Cunningham et al.,
2023; Bricken et al., 2023; Templeton et al., 2024) in under-

standing what information transformers represent, with geo-
metric relationships between features revealing structured
internal representations (Engels et al., 2024). Our work pro-
vides a mechanistic explanation for these non-orthogonal
geometric structures, providing the theoretical why to com-
plement the what of feature representations.

From features to circuits While feature directions re-
veal what information is encoded, understanding how net-
works process this information is done by identifying com-
putational circuits—subnetworks that implement specific
algorithmic operations. Circuits typically combine sim-
pler features into more complex ones as information flows
through the network. Examples include circuits that de-
tect syntax (Elhage et al., 2021), implement indirect object
identification (Wang et al., 2022), or perform basic arith-
metic (Nanda et al., 2023). However, identifying circuits
remains largely a manual process, starting from observed
behaviors and working backwards to discover relevant com-
ponents (although active research is developing automated
approaches; see Conmy et al. (2023); Marks et al. (2024)).

Our work demonstrates that a principled, top-down theoret-
ical framework, based on constrained belief updating, can
guide the search for circuits and provide a deeper under-
standing of their function within the larger network. We
show how specific circuits in the attention mechanism di-
rectly implement the computations predicted by our theory.

Belief state geometry and computational mechanics
Our work draws inspiration from computational mechan-
ics, a framework for studying information processing in
dynamical systems (Shalizi & Crutchfield, 2001b; Crutch-
field, 2012; Riechers & Crutchfield, 2018b). When ap-
plied to sequential data, computational mechanics, in accor-
dance with the POMDP framework (Kaelbling et al., 1998),
shows that optimal prediction requires maintaining beliefs
about the underlying latent states of the data-generating
process (Upper, 1997). These belief states can be visual-
ized as points on a probability simplex, evolving accord-
ing to Bayesian updating rules, and forming characteristic
geometric patterns (Crutchfield, 1994; Marzen & Crutch-
field, 2017). Recent work shows that transformers naturally
discover and encode these belief state geometries in their
activations (Shai et al., 2024). This connection offers a prin-
cipled way to analyze network representations: rather than
reverse-engineering observed behaviors, we can study how
architectural constraints shape the network’s implementa-
tion of theoretically optimal prediction strategies.

This is the approach taken here. We move beyond prior
work by proposing and validating a theory of constrained
belief updating, demonstrating how specific architectural
elements, like the attention mechanism, modify the idealized
belief state dynamics. This perspective shifts the focus from
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Figure 1: Transformers’ internal representations exhibit complex geometric structure matching the belief-state geometry.
(A) Mess3 HMM, vertices represent hidden states with their emission distributions. (B) Ground-truth belief state geometry
of Mess3. Each point represents a belief-state probability distribution over hidden states of the HMM, induced via Bayesian
updates upon a sequence of observed emissions, with proximity to the vertices of the simplex corresponding to the
probabilities of the three hidden states. (C) Schematic of a single-layer transformer with Intermediate activations after
Attention, and Final activations after the subsequent MLP. (D) PCA projections of the model’s final residual stream (left),
before the unembedding, reveals a geometric representation that closely matches the belief geometry shown in (B), whereas
the PCA projection of the intermediate residual stream (right) after attention but before the MLP exhibits an intricate but
different structure. In (B) and (D), points are colored according to the ground-truth belief states associated with the sequence
of tokens that induces the point, taking the three constituent probabilities over hidden states of the HMM as RGB values.

reverse-engineering learned features to understanding why
particular geometric patterns emerge during training as a
consequence of the interplay between optimal prediction
and architectural constraints. Our work provides a concrete
example of how this theoretical framework can be applied
to understand the internal mechanisms of transformers.

2.2. Optimal Prediction and Belief State Geometry

Shai et al. (2024) showed that transformers minimizing next-
token loss internally represent the context-induced proba-
bility density over the entire future of possible token se-
quences:

Pr(Zat1:00| Z1:4 = #1:0) (1

where Zg11.00 = Zg+1, Za+2,-.. denotes the sequence
of random variables for future tokens, Z1.4 = Z1,...,Zq
denotes the sequence of random variables for past tokens,
which is realized by a particular sequence of tokens 21,4 €
Z9 known as the context up to position s.

When we conceptualize the training data as being gener-
ated by an edge-emitting hidden Markov model (Mealy
HMM), we can derive a natural geometric embedding for
these conditional probability distributions. HMMs generate
training data by emitting tokens when moving among its
hidden states S, from one hidden state S; at time ¢ to the
next. The natural geometric embedding is then given by
considering how an initial distribution over hidden states
So ~ My, as a point in the vector space RISI (with coor-
dinates given by the probability elements), evolves upon
seeing a particular sequence of tokens, z1.q. This distri-
bution over the hidden states, which uniquely induces a
probability density over all possible futures, is updated

via Bayes rule according to the substochastic transition

matrices of the HMM, (T(Z))Z ez with matrix elements

Ts(i), = Pr(Zi41 = 2,S141 = §'|S¢ = s). In particular,
the updated distribution, given context z1.q, is

(Zl:d)
Lz10) _ Mol
N = Tran = WQT(ZM)I )

()
where T(z1:2) = T(21) ... 7(2L) and 1 is the column vector
of all ones. In this paper, we will make the simplifying as-
sumption that the training data is sampled from a stationary
stochastic process, in which case the initial distribution over
latent states is the stationary distribution n, = ® = @7,
where T =}~ __; T®) is the row-stochastic transition ma-
trix over hidden states.

Thus, Eq. (2) embeds each token sequence into a probability
simplex over the latent states of the HMM—a point in a
real-valued vector space. The totality of these points forms
a particular geometry, called the belief state geometry, and
is universally found in linear form within the activations
of various deep neural networks, including RNNs (Pepper,
2024) and transformers (Shai et al., 2024).

This precise framework for anticipating intermediate activa-
tions in transformers provides a natural interpretation of the
attention mechanism in which it moves information in a be-
lief simplex for the purposes of building up the architecture-
independent belief state geometry given in Eq. (2).

3. Methodology

Data Generation. Our study focuses on the Mess3
parametrized family of hidden Markov models (Marzen
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& Crutchfield, 2017), which provide a tractable yet rich set-
ting for studying sequence prediction. As shown in Fig. 1A,
these HMMs consist of three hidden states with observ-
able emissions controlled by parameter o and transitions by
parameter x. Higher values of a € [0, 1] mean each state
more strongly prefers its unique emission symbol, providing
clearer information about the generating state. The parame-
ter x € (0, %] controls state persistence—low values create
high inertia where states tend to persist, while high values
increase transition probabilities between states. For each
experimental run, we generate sequences by sampling from
an HMM with specific (o, ) values.

Training Process. We train single-layer transformers
on next-token prediction using gradient descent, with se-
quences sampled from our parametrized HMMs as training
data. The model learns to predict the next token in each
sequence by minimizing cross-entropy loss (see App. B for
details). Our primary analysis focuses on single-layer ar-
chitectures to clearly isolate how the attention mechanism
implements constrained belief updating, though we also
validate that these mechanisms persist as the foundational
computation in deeper networks (Figs. A5;A6).

Analysis of Representations and Computations. To
study how the model processes information, we analyze
intermediate and final activations in the residual stream
(Fig.1C). We apply principal component analysis (PCA)
to these activations across all possible input sequences,
finding that the representations are well-captured by a low-
dimensional space. In some cases, we slightly rotate the
PCA basis to align with theoretically meaningful directions.
This dimensionality reduction enables us to visualize how
representations evolve through the network—from input
embeddings, through the intermediate state after attention,
to the final output state after the MLP layer (Fig.1D). To
understand how the network manipulates these representa-
tions, we analyze the learned weights and attention patterns,
examining how attention transforms input embeddings into
intermediate representations and how the MLP layer trans-
forms these into the final geometry. At each stage, we com-
pare the learned representations to theoretical predictions
derived from optimal Bayesian updates'.

4. Results

4.1. Intermediate representations are fractals, but not
belief state geometry

Through PCA of the residual stream, we observe two distinct
fractal structures in transformers trained on Mess3 HMM
data: one after the attention mechanism but before the MLP,
and another in the final layer output (Figs. 1, 4). While the

!Code for analysis of can be found here.

final representations align with the geometry of theoretical
belief states, the intermediate fractals exhibit a markedly
different structure. The systematic difference between inter-
mediate and final representations raises two key questions:
(1) How does attention construct these intermediate fractals
and (2) why do they take these particular geometric forms?
The following results reveal the algorithmic process behind
their construction and provides a theoretical explanation for
their previously unexpected structure.

4.2. Intermediate representations are built by
algorithms in the belief simplex

To determine how the intermediate representation is con-
structed, we performed mechanistic interpretability on the
attention heads. We find that attention performs an algo-
rithm with a direct interpretation in the belief simplex.

At every context position, the residual stream can be thought
of as a dpegei-dimensional skip connection communication
channel streaming alongside all layers, carrying all working
memory in a transformer (Elhage et al., 2021). Attention and
MLP modules read in linear transformations of the residual
stream and then add their output to the local residual stream
at each layer (Vaswani et al., 2017).

Following (Elhage et al., 2021), we decompose the attention
operation into two circuits: (i) the output-value (OV) circuit,
which specifies what information is read from each position
and how it transforms into a vector that can be broadcast to
other positions, and (ii) the query-key (QK) circuit, which
computes the similarity of a linearly transformed source and
destination to determine how much to update the destina-
tion’s residual stream with that source’s OV contribution.

For an attention head, the residual stream update &, d(mid) =

7 ;pre) + Gy € Rémoet at the destination position s is:

Ga=Y  Ausii 3)

s<d

Here, 7, = WoWyZ "™ represents the OV circuit’s con-
tribution from source position s, where Wy and Wy are
the attention output and value weight matrices respectively,
—(pre) - . . . ..
and Zs"  is the incoming residual stream vector at position
s. Attention Ay s is determined by the QK circuit through
query—key inner product and the causally masked softmax

operations:

et?ZJ'Es/\/dh
Ags =0s<d =g~
C RS ek V&

s/

“

where g4 = W™ is the query vector from position d,
ks = WxZ®™ is the key vector from position s, dj, is the
head dimension, and W and Wk are each djy X dmoder Weight
matrices. Recall that attention is non-negative 0 < Ag, <1
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Figure 2: Intermediate Representation Construction by Attention. A transformer trained on Mess3 with x = 0.15 and
o = 0.6 exhibits intermediate representations constructed through a specific attention mechanism. (A) The OV vectors
(arrows) form three distinct clusters, each corresponding to a token and positioned at the vertices of a triangle, while
token embeddings (circles) are clustered near the origin. (B) Our theoretical predictions for the OV vectors (shown for
all (position, token) pairs) and embeddings (for positions > 2) align closely to those found in the trained transformer.
(C) Attention patterns are primarily determined by the positional distance between the destination and source tokens,
following an exponential decay described by (1 — 3z)!"~!l. They are largely independent of specific token sequences. (C,
inset) The theoretical (Eq. (13)) and actual values in the attention pattern align closely. (D) Construction of intermediate
representations for five input subsequences of increasing length (from the example sequence 01120, shown left to right). The
attention mechanism builds the fractal by taking linear combinations of the three ¥ vectors. The colored vectors illustrate
the components of the sum for each example subsequence, while the gray dots represent all possible vector sums for all
sequences at that position.

and, for each destination position d, the attention to all integrated. As the attention weight decays with distance,
sources sums to one: » 4 Ags = 1. Eq. (3) shows how the impact of past tokens on the current belief state dimin-
each attention head computes its update by weighting the ishes over time. Through this process of weighted vector
transformed values (¥;) from all previous positions accord-  addition within the belief simplex, the attention mechanism
ing to their relevance (Aq ) to the current position. constructs the intermediate representations, resulting in the
observed fractal structure shown in Fig. 2D. Incredibly, the
computation the attention head performs is completely
interpretable as a dynamic process in the belief simplex.

Our analysis yields several key insights into how the atten-
tion mechanism constructs the intermediate representations.
First, we find that projecting token embeddings (the inputs
into the attention head) onto PCA space reveals three clus-
ters that lie close to the origin, as shown in Fig.2A. Mean-
while, the OV projections form update vectors v that cluster
in three directions pointing toward the vertices of a triangle,  The interpretation of attention as operating in the belief sim-
naturally interpreted as the vertices of the belief simplex  plex suggests a connection to the theory of belief updating.
in Fig. 2. The model combines these directions through  Since the OV circuit is only able to access information from
weights Ay determined by the QK circuit as described by the source token that is attended to, we can write a con-
Eq. (3). For Mess3, these attention weights are invariant to  strained belief updating equation that sums contributions
token identity and decay exponentially with distance from from the value of the token n = d — s places back for each
the current position, controlling how past information is  value of n, assuming the initial belief is the stationary distri-

4.3. Relating Intermediate Representations to Belief
Updating Equations



Constrained belief updates explain geometric structures in transformer representations

bution of the HMM, 7. This gives the following equation
for the constrained belief at position d in the sequence:

d

=+ (aTl=T9 — ) (5)

s=1

7;§Z1:d)

where 7' is the HMM’s hidden state transition matrix
(marginalizing out the emissions), and T!% is the HMM
transition matrix conditioned on seeing token z (see App. A
for details). Eq. (5), interpreted as a context-induced point
in a vector space, is the natural geometric embedding of

d
Pr(Sa) + > [Pr(Su|Z=2) —Pr(Sa)] . (6)

s=1

This equation describes the best possible embedding if you
haven’t seen any context, Pr(Sy) = =, followed by inde-
pendent corrections to that prediction from the token at each
preceding context position, Pr(S4|Zs = z5) — Pr(Sq) =
wT!%T9=5 — 7. Notably, since Eq. (6) is a distribution
over latent states Sy rather than merely the next token Zg 1,
this constrained-update equation naturally implemented by
attention implies a probability density over all extended
futures Z441..0 rather than just the next timestep.

It is useful to take a step back and get a handle on the intu-
ition for Eq. (5) and Eq. (6). Bayesian inference (Eq. (2))
requires multiplying token-specific transition matrices, a
fundamentally recursive process where updates depend on
the full history integrated up to the previous step. In con-
trast, an attention head computes its output at position d
via a parallel, feedforward weighted sum (Eq. 3) of value
vectors, v, from source positions s < d. Crucially, each v,
contains only local information from position s. It cannot
directly access or depend on the specific tokens between s
and d due to the parallel nature of the value computation
and attention weighting. Therefore, the most information
that token z, can independently contribute to the belief at
position d within this single-layer constraint is the correc-
tion derived from knowing zs occurred d — s steps prior,
assuming a default starting belief m and no knowledge of
intervening tokens. These independent displacements from
the stationary distribution over latent states is the difference
of probability distributions: Pr(Sg|Zs) — Pr(Sg). Linear
algebraically, this contribution is precisely 7712 T4~% — 7.
Summing these over all past sources naturally yields the
constrained belief update form in Eq. (5) (see Fig. Al for a
conceptual diagram). It represents the best possible parallel
approximation achievable by a single attention layer given
its architectural limitations.

Eq. (5)’s constrained belief geometry closely matches the
intermediate structure observed in the central range of
a € [0.2,0.6], as shown in the left two columns in Fig. 4.
As a moves further from this range, we observe gradually

increasing deviations between predicted and actual repre-
sentations, though the overall structure remains similar. A
complete characterization of how these deviations scale with
« remains for future work.

Fig. A3 demonstrates that transformers reliably discover
these theoretical geometries during training, with MSE to
the constrained belief theory decreasing rapidly for post-
attention activations while MSE to the full belief geometry
simultaneously decreases for post-MLP activations. The
final converged representations show strong quantitative
agreement with our theoretical predictions (Fig. A4), with
MSE values orders of magnitude lower than random initial-
ization for both the constrained and full belief geometries.

4.4. Attention Implements a Spectral Algorithm to
Build the Constrained Beliefs

Eq. (5) shows how the attention pattern in our model must
relate to powers of the Markov transition matrix of the
underlying hidden states, 7", where n is the relative token
distance.

To understand how this works, we turn to spectral analysis.
The main goal is to understand how information or influence
from a past token (at source position s) propagates to affect
the belief state at the current destination position d. This
influence mathematically depends on the sequence of hidden
state transitions between s and d, captured by powers of the
HMM transition matrix, 795,

Spectral decomposition (using eigenvalues A and associated
projectors 7)) is a standard mathematical tool to analyze
matrix powers because it simplifies 7" intoasum ) _, A" 7).
The eigenvalues (\) are crucial because they tell us the
rate at which the influence of past information decays (if
|A| < 1) or even oscillates (if X is negative or complex) as
the distance n = d — s increases.

Our key finding is that the learned attention weights (A s
in Eq. 3) directly implement this propagation effect, effec-
tively learning to approximate the A\?~* decay predicted
by the theory. This explains why attention patterns often
show exponential decay, and why multiple heads are needed
to capture oscillatory patterns arising from negative eigen-
values. Furthermore, this spectral perspective allows us
to make precise, verifiable predictions about the learned
OV vectors and token embeddings, directly connecting the
dynamics of the data (via T”s eigenvalues) to the specific
parameters learned by the transformer.

When T is diagonalizable with a set of eigenvalues A, it
then has a simple spectral decomposition such that we can
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rewrite Eq. (5) as

d
A = YN NearlEn ()
s=1 AeAr\{1}

where T, is the spectral projection operator associated with
eigenvalue A (Riechers & Crutchfield, 2018a). In this di-
agonalizable case, T\ = > ;2 |A\x)(\|, where a, is the
algebraic multiplicity of the eigenvalue A, with right eigen-
states satisfying T'|A\r) = A |A), left eigenstates satisfying
(Me| T = X {\g|, all satisfying the orthonormality condition
(Aj|Ax) = d; 5. Notably in Eq. (7), all dependence on inter-
token distance now lies solely in the exponentiation of the
eigenvalues, which all live on or within the unit circle in the
complex plane for a stochastic transition matrix like 7.

For the Mess3 process, the stochastic matrix 7" has eigenval-
ues A = {1, (}, where { = 1 — 3z is a degenerate eigen-
value with multiplicity a; = 2. We observed that the atten-
tion weight n tokens back is approximately ¢" = (1 —3z)",
which suggests a strong connection between the theoreti-
cally motivated Eq. (7) and the architectural-implementation
Eq. (3). Encouraged by this correspondence and further ev-
idence of similarity, we make the ansatz that the role of
attention in the first layer is to implement the constrained
belief update of Eq. (6) via Eq. (7)’s spectral mechanism >.
Taking this ansatz seriously allows us to precisely anticipate
the analytic form of the learned attention pattern.

To derive the analytic form of the attention pattern, we
assume that there is a linear map f : Réme — RISI-1
from the residual stream to the hyperplane containing the
probability simplex over the hidden states of a minimal
generative model of the data (the 2-simplex in this case).
Let [In = I — Ty = I — 17 be the projection from RIS!
to the hyperplane R/~ containing the simplex. Our full
ansatz is thus f (fd(mid)) = Fﬁzl‘d)H A or, more explicitly:

d
FEMY =3 Y xRrhT 9

s=1 XeAr\{1}

= FEP) + D Agsf(5) - 9)

s<d

From this, we group source-specific terms to infer that

F@P) + Agaf (Ba) = 7T — 70 (10)
and
Agsf(@) = > MaTlTy ford>s. (1)
AeAr\{1}

From Eq. (11), we notice that f(7) is in the linear span
of the non-stationary left eigenstates of 7. Le., f(;) €

The details of this correspondence break down if there are
many attention heads in the first layer.

span({(A] : A\(A\| = T' ()| and X # 1}) and, in particular,
f(¥) - |1) = 0 such that adding any of the OV vectors to
any stochastic vector (whose elements by definition add to
one) keeps you in the hyperplane of the probability simplex.

For the Mess3 family of processes, 1" has a single eigenvalue

¢ = 1 — 3z with multiplicity a; = 2 besides its eigenvalue
of 1. Accordingly, Eq. (11) simplifies to

Agsf(3) = ¢OSmTI= T, ford > s, (12)

which forces f (%) = cnTI*T, for some ¢ € R indepen-
dent of d, from which we obtain

Ader,s = CmAd,s

So, for example, A, ; implies Aq ; for all destinations d
> 2; and As o implies Aq o for all destinations d > 3.

ford >s. 13)

For Mess3, T, = I — |1)(1| = I — 1, since all projection
operators must sum to the identity. Combining this insight
with Eq. (12) tells us about the OV-vector for all positions:

¢

14
Am-i—l,m ( )

f(Un) = (ﬂ'T‘Z"" — ).
Notably, Eq. (14) tells us that all OV-vectors associated
with the same token must be parallel—f (%) o f(¥y) if
zs = zg—Wwhich is consistent with what we observe in our
experiments (Fig. 2A). Moreover, the magnitude of the m™"
OV-vector is inversely proportional to the attention element
Apn41,m, Which is again consistent with our experiments
(Fig. 2AB). In our experiments, we find A ; to be signif-
icantly larger than all the other A, ,, elements, while
the latter all cluster together; the magnitude of v is corre-
spondingly smaller than all of the other strongly clustered
U, magnitudes.

Combining Egs. (10) and (14) constrains the embedding
f(fv(rgre)) _ (1 _ CAmm )(ﬂ_T\zm _ 71')

Amii,m (15)
to be parallel to the OV-vectors, as we indeed observe.

Egs. (13), (14) and (15) make strong predictions about the
Sform of the attention pattern and how it relates to OV-vectors
and token embeddings, which must be true if the first layer
of attention is indeed implementing the constrained belief
updates over latent states of a generative model of the train-
ing data. These relationships are all borne out in our ex-
periments (Fig. 2ABC), except for some scalar discrepancy
in the first two embedding vectors (see Appendix D for
quantification), which is a strong validation of the predictive
power of our framework.

4.4.1. NEGATIVE EIGENVALUES REQUIRE MORE
ATTENTION HEADS

For the transition matrix 7" to be row stochastic (a require-
ment for a valid HMM), 2 must be in the range [0, 0.5].
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Interestingly, when ¢ < 0 (which occurs when = > 1/3),
the predicted pattern oscillates and cannot be captured by a
single attention head, since attention pattern entries must be
non-negative. In these cases, we observe that a single-head
transformer captures an incomplete representation of the
belief state geometry, and the transformer performs corre-
spondingly worse (App. F). However, upon adding a second
attention head, the model converges to the solution pre-
dicted by the belief updating equation, even in the presence
of oscillatory dynamics, as shown in Fig. 3.

The anticipated need for a second attention head when the
data-generating transition matrix has a negative eigenvalue
further demonstrates how our analysis provides a handle
to relate the architectural constraints of the attention mech-
anism to the structure of the training data. In fact, our
framework provides more specific predictions for the atten-
tion pattern and its relation to embedding and OV-vectors in
this case too.

With two attention heads, the update to the residual stream
at the destination position s becomes

d 2
Ga=> > Alam (16)
s=1 h=1

where each head now has its own QK and OV matrices.
With the negative eigenvalue ¢ < 0 and two attention heads,
we can relate the constrained belief update to the details of
attention and embedding via

S5 T, (17)

N

F@&™) = (—1)d_s(—4)d_
_f ~<pre> ED I

s<d

(Q)f(—'(Q))}

This is naturally accommodated by

AL F@D) = 46,0 e[0T RTIFT, and  (18)
AL FE) = =01 (CayolCl TR TIET (19)
for d > s, which irrﬂie\s that the E\Q/ectors point in op-
posite directions, f(z")’gl)) = —f(z");@), with f(ﬁs(h)) 0%

(wT!* — ) and
AL, = Al ford>s,  (20)

consistent with our experiments as shown in Fig. 3. We
note that the magnitudes of OV vectors are tied to attention

(1 2 (2 .
= AL FED) = AR £(5)], with
7| € R, which is also observed in Fig. 3.

magnitudes via c(4~*
c=|wT% —
4.5. Post-MLP geometries

While the intermediate geometry is well characterized by
our constrained belief equations, the MLP transformation is

A PCA of Input Space and OV Vectors B Attention Patterns
1511 oV vectors, Vs ‘ 06

B Head1 A Head2 ™
o
§ 101/ e Embedding, X4 0.4
[
o
£ | 0.2 4
S 5 * = I
5 5 -l
g 1 00
g o s <
& -0.2 1
2
S =51 —0.4
U
8 4
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Figure 3: Attention heads combine to capture oscillatory
dynamics in belief updating. (A) In the token embedding
space, the model uses each attention head to embed tokens
on opposite poles of the simplex. (B) The attention patterns
of the two heads (shown here averaged over all sequences)
act as positive and negative components. When combined,
they produce the oscillatory pattern predicted by the expo-
nentiated eigenvalue (" = (1 — 3z)" = (—1)"(3z — 1)™.

more complex. Through purely local computations at each
position, the MLP learns a continuous nonlinear warping
that transforms the intermediate fractal structure into the
final belief geometry.

Fig. 4 shows the close match between theoretical predic-
tions and observed representations across different Mess3
parameter settings, confirming our theoretical understanding.
The transformation involves stretching and compressing dif-
ferent regions of the space while maintaining topological
structure, though a full characterization of its mathematical
properties remains for future work.

To verify that our single-layer analysis captures the funda-
mental computation even in deeper networks, we analyzed
4-layer transformers trained on the same Mess3 data. We
find that the first attention layer consistently implements the
constrained belief update mechanism, Eq. (5), with subse-
quent layers progressively transforming the representation
toward the full Bayesian belief geometry, Eq. (2). Quantita-
tive MSE analysis (Fig. A6) shows that first-layer attention
outputs align well with constrained beliefs while later lay-
ers systematically improve alignment with full Bayesian
beliefs. This progression is shown in Fig. A5, confirming
that our theoretical framework for the first layer remains the
foundational computation in multi-layer networks.

5. Discussion and Conclusion

We have shown how combining computational mechanics
with mechanistic interpretability yields a principled un-
derstanding of why transformers trained on Mess3 HMM
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Intermediate Final
Theoretical Activations Theoretical Activations
Ad
x=0.15 v
a=0.6

o X

Figure 4: Comparison of model representations and theo-
retical predictions for different Mess3 hyperparameters in
each row. Each subfigure shows four columns: (i) Interme-
diate representation from Eq. (5). (ii) PCA projection of
the model activations in the intermediate layer. (iii) Ground
truth belief state geometry from Eq. (2). (iv) PCA projection
of the final activations after the MLP.

data learn intermediate fractal-like structures, and how these
structures systematically transition into final belief-state
representations. By focusing primarily on single-layer
transformers, we isolated the fundamental computation per-
formed by the attention mechanism, while also demonstrat-
ing that these principles extend to the first layer of deeper
networks. This approach provides a top-down theoretical ex-
planation grounded in the tension between optimal Bayesian
belief updates and the parallel, attention-based constraints
of transformer computation, developing geometric observa-
tions of activation space into mechanistic understanding of
the underlying computational principles.

Implications for interpretability. Our work demonstrates
an alternative to bottom-up architectural analysis. Knowing
the structure of optimal predictors allows us to predict and
verify the specific intermediate computations that are imple-
mented by the attention mechanism. Our analysis reveals
the computational role of specific directions in activation
space—showing how the geometry of belief updates shapes
the learned representations. Additionally, by focusing on
a small, tractable HMM, we see how specific properties of
its transition matrix lead to oscillatory patterns that require
specialized multi-head solutions due to the non-negativity
constraints of attention mechanisms. Rather than relying

on general observations that attention heads specialize, our
analysis reveals precisely why and how multiple heads must
coordinate: the non-negativity constraints of attention, com-
bined with oscillatory patterns in optimal belief updates,
necessitate specific decompositions across heads, providing
concrete mechanistic understanding of their functional roles.
This demonstrates how combining theoretical understanding
with architectural constraints can yield precise, verifiable
interpretations of neural network components.

Limitations and future work. Our experiments used
small transformers (1 and 4 layers), with analysis focused
on the first attention layer. For training data we used the
specialized Mess3 family of HMMs with full support over
the space of all possible sequences of tokens. We discovered
how transformers implement belief updates when attention
patterns depend primarily on positional distances, while
token-specific information is handled through value vectors.
While we validated that the first layer of multi-layer trans-
formers implements the same constrained belief updating
mechanism (Figs. A5;A6), with subsequent layers refining
toward full Bayesian beliefs, our techniques must be adapted
to both larger transformer architectures and data-generating
processes that capture the complexities of real-world data.
While this setting offers clear insights, it does not capture
many aspects of natural language. Future work could apply
these techniques to processes that better reflect properties
of natural language—hierarchical, with sparse support over
sequences. Moreover, the interplay between multi-head at-
tention and deeper layer stacks likely exhibits additional
nuances that our primary single-layer analyses only begins
to uncover. Finally, while we showed that the final MLP
layer refines partial updates to approximate full Bayes, the
deeper question of why gradient descent converges on these
circuits remains ripe for further investigation.

Conclusion. By combining computational mechanics
with mechanistic interpretability, we have shown how trans-
formers implement inherently recursive Bayesian updates
through parallel computations via the attention mechanism,
and how these intermediate representations are refined into
the final form. This reconciles model-agnostic theories
of next-token prediction with the reality of architecture-
specific constraints. We hope our results not only advance
interpretability for HMM-like toy tasks but also inspire
deeper theoretical insights into how large-scale transformers
produce—and exploit—belief-like structures in real-world
applications.
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A. Mathematical Details of HMMs and Belief State Geometry

In this work we created training data from a class of Hidden Markov Models (HMMs) called Mess3. The HMMs have three
hidden states S = {1, 2, 3} and emit from a vocabulary of three tokens Z = {0, 1, 2}.

The HMMs in this class are parameterized by « and x, with dependent quantities 5 = (1 — a)/2and y = 1 — 2.

The labeled transition matrices define the probability of moving to state 7 (indexing columns) and emitting the token on the
label, z, conditioned on being in state ¢ (indexing rows), P(s;, z|s;) and are:

ay Bz pr]

7O = |az By Bz (2D
lax  Bx Py]
(By ax Bz

TV = Bz oy Bz (22)
fr oz Byl
By Br  ax]

T® = Bz By azx (23)
Bz Bz ay]

Note that even though the dynamics amongst the emissions are infinite-Markov order, the dynamics amongst the hidden

states are Markov, with a transition matrix given by marginalizing out the token emissions: 7= __ T,

Since Mess3 has non-zero row sums for each labeled transition matrix, we can also define a conditional transition matrix,
T'#, with elements TJZ] = P(sjlz, s;), which is given by normalizing each labeled transition matrix such that every row
sums to 1.

A.1. Full belief updates

An important part of the work presented here is about how an optimal observer of token emissions from the HMM would
update their beliefs over which of the hidden states the HMM is in, given a token sequence. If the observer is in a belief state
given by a probability distribution 77 (a row vector) over the hidden states of the data-generating process, then the update
rule for the new belief state )’ given that the observer sees a new token z is:

. UT(Z)
T = hren

(24)

where 1 is a column vector of ones of appropriate dimension, with the denominator ensuring proper normalization of the
updated belief state. In general, starting from the initial belief state 17, we can find the belief state after observing a
sequence of tokens zg, 21, ..., 2N:

A21:4) n@T(ZO)T(Zl) < TEN)
Tl = ’I’]QT(ZO)T(ZQ L. T(N)T

(25)

For stationary processes, the optimal initial belief state is given by the stationary distribution 17, = 7 over hidden states of
the HMM (the left-eigenvector of the transition matrix 7' =) T (*) associated with the eigenvalue of 1).

The beliefs have a geometry associated with them, called the belief-state geometry. The belief-state geometry is given by
plotting the belief distribution over the HMM’s hidden states induced from each possible sequence of tokens as a point in
the probability simplex over these hidden states.
A.2. Constrained belief updates
Incorporating past contributions to belief updates in parallel, as the attention mechanism suggests, we instead obtain
(za—n)n
{z1.4) __ 7T T B )
7] 7T+Z( T E Y T (26)

n=0
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For processes like Mess3 that have non-zero row sums for each labeled transition matrix, this can be written more simply as:

d—1
fﬁzl‘”) =7+ Z(ﬂ'TlZ"*"T" — Tr) , 27

n=0

which is the form that appears in the main text. For other processes that don’t satisfy this condition, slight modifications of
the equations in the main text follow straightforwardly from Eq. (26).

B. Model architecture and training procedure

We employ a standard single-layer transformer model with learned positional embeddings. The model architecture follows
the conventional transformer design, with di,04e1 = 64 and dg = 256. Depending on the Mess3 parameters, we use either a
single-head or a double-head attention mechanism. We conduct a systematic sweep over the HMM parameters « and z,
training a separate model for each pair. Models are trained on next-token prediction using cross-entropy loss, with batch size
128. We use Adam optimizer (Kingma & Ba, 2017) with a 10~ learning rate and no weight decay. Each model is trained
for approximately 15 million tokens.

We generate all possible input sequences up to length 10, recording hidden activations from the transformer’s residual stream.
These activations are organized into a dataset capturing the model’s response to all input patterns.

Input sequences consist of three symbols, embedded with positional information, without a beginning-of-sequence (BOS)
token.

13
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C. Recurrent vs. Parallel Belief Updating

Optimal Bayesian Inference is Fundamentally Recurrent

20 ® 0 O 6
Sequence Full Bayesian Inference

Belief at position / depends

A 4 A 4 v A 4 A 4 directly on belief at i-1
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Constrained Belief Updating Recapitlates the Parallel Nature of Attention
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Figure Al: Diagrammatic visualization comparing the recurrent nature of Optimal Bayesian Inference (top), to the parallel
attention mechanism (middle), and the parallel Constrained Belief Updating presented in this paper.
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D. Quantification of Theoretical Predictions
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Figure A2: Embeddings for the first two positions are correctly predicted to be parallel to the OV vectors, as with all of
the embeddings; however the sign of the predicted embedding for these first two positions deviates from the observed
embedding. We do not yet understand the reason for this discrepancy, but still find it remarkable that the bulk of the
high-dimensional computation carried out by attention—attention pattern, OV vectors, and all embeddings beyond the first
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two positions—can be very precisely understood by a sequence of operations in the two-dimensional simplex.

E. Multi-layer experiments

F. Minimal architectural requirements

To verify our theoretical understanding of the transformer’s computational requirements, we conduct a systematic evaluation
across different architectural configurations. Fig. A7 shows that the model achieves good performance with minimal
architecture: a single layer with two attention heads is sufficient to achieve low KL divergence across different Mess3

15



Constrained belief updates explain geometric structures in transformer representations

Evolution of Normalized MSE During Training (with Zoomed Inset)
—— Mid (Post-Attn/Pre-MLP) —— Post (Post-MLP) -~ Random Init

x15 a20

0.75

0.50

0.25

0.00
x50_a20 x50_a60

o

B
o

w
(V)

0.75

Normalized MSE (MSE / Initial MSE)

0.50

o 3% - 1 0.25

—

0.0 == === 0.00
0 4 8 12 16 20 0 4 8 12 16 20
Training Checkpoint Index (0 = Random Init) Training Checkpoint Index (0 = Random Init)

Figure A3: Evolution of Normalized Mean Squared Error (MSE) During Training Across Experimental Conditions.
Each subplot shows the MSE for one experimental condition (labeled by title), normalized by the initial MSE value from the
randomly initialized model (represented at Checkpoint Index 0). The Y-axis represents MSE relative to this random baseline
(Lower is better), where the dashed line at Y=1 indicates performance equal to random initialization. The X-axis represents
the training checkpoint index, starting from the random initialization at index 0. Lines: Show the normalized MSE for
Mid (Post-Attention/Pre-MLP, blue circles) and Post (Post-MLP, orange squares) activations, reflecting their fit to their
respective theoretical geometries over training. For Mid activations we regress to the Constrained Belief geometry, while for
Post activations we regress to the Full (unconstrained) Belief geometry. Insets: Provide a zoomed-in view of the Y-axis
from -0.02 to 0.5, highlighting the convergence behavior at low MSE values. Observations: Across all conditions, both
Mid and Post activation representations show significantly improved geometric fits (normalized MSE drops well below 1)
compared to the random baseline as training progresses. Some conditions (e.g., a=20) may show an initial transient increase
in normalized MSE before rapid improvement.
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Final Trained Model Fit to the Theoretical Predictions
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Figure A4: Comparison of Final Trained Model Fit vs. Random Initialization Across Experimental Conditions. The
bar chart displays the Absolute Mean Squared Error (MSE, lower is better), comparing the geometric fit of activations at the
final training checkpoint against the initial random model state. Results are shown for four different experimental conditions
(X-axis). Within each condition, bars represent: Mid (Post-Attention/Pre-MLP) Activations, MSE of the regression to the
Constrained Belief Geometry: Blue bars. Post (Post-MLP) Activations, MSE of the regression to the Full (unconstrained)
Belief Geometry: Orange bars. Solid bars indicate the MSE for the final trained model, while transparent bars of the
same color show the MSE for the randomly initialized model (baseline). Numerical labels specify the precise MSE values
achieved by the trained models. Observations: Across all conditions, the trained model (solid bars) achieves lower MSE,
indicating a much better fit to the underlying theoretical geometries compared to the random baseline (transparent bars).
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Figure A5: Visualization of Activation Geometry via Regressions onto the Full Belief State. The figure displays 2D
projections of transformer activations after linear regression onto the Full (unconstrained) Belief state geometry (Eq. (2))
for all stages, arranged in a 2x2 grid. Each quadrant corresponds to a different experimental condition (combinations of x
and a, labeled above each quadrant). Within each quadrant, the top row shows visualizations for Mid (Post-Attention/Pre-
MLP) activations, and the bottom row shows visualizations for Post (Post-MLP) activations, across Layers 0-3 (columns).
Points in all plots are colored according to the ground truth Full Belief state coordinates (Eq. (2)), projected into RGB
space. Importantly, all visualizations show regressions to the Full Belief state geometry (and not the Constrained Belief
geometry). Top Row (Mid Activations): Shows Mid activations after being regressed onto the Full Belief geometry (Eq. (2)).
Bottom Row (Post Activations): Shows Post activations after being regressed onto the Full Belief geometry (Eq. (2)). This
visualization qualitatively shows how well activations linearly map to the Full Belief state throughout the network. Notably,
the residual stream activations after the first attention layer but before the MLP (Layer O mid, top-left plot within each
quadrant), despite being regressed onto the Full Belief target, visually retain a structure resembling the Constrained Theory
geometry (Eq. (5)). This indicates that the constrained structure is the dominant feature linearly recoverable from early Mid
activations, even when seeking the best fit to the final target geometry. Comparing subsequent Mid and Post stages across
layers (moving rightwards) reveals the accurate fit to the Full Belief state geometry.
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Multilayer Transformer Fits to Constrained and Full Belief Geometry
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Figure A6: Quantitative Fit of Multi-Layer Transformer Activations to Theoretical Geometries Across Residual
Stream Stages. Absolute Mean Squared Error (MSE, log scale) comparing activation representations to the Constrained
Theory (Eq. (5)) and the Full (unconstrained) Belief state geometry (Eq. (2)) across interleaved residual stream stages
(LO Mid, LO Post, ..., L3 Post) of a 4-layer transformer. The figure presents results for four experimental conditions
(combinations of x=15, 50 and a=20, 60) in a 2x2 grid. Lines: Show absolute MSE comparing activation fits to theoretical
geometries. Solid lines represent the trained model; dashed lines represent the random baseline. Green Stars: Fits of the
residual stream activations to the Constrained Theory (Eq. (5)). Orange Circles: Fit of the residual stream activations
to the Full Belief geometry (Eq. (2)). At the residual stream after the first attention but before the first MLP (L0 Mid),
the fit to the Constrained Theory (green) is better (lower MSE) than the fit to the Full Belief geometry (orange) across
all conditions, supporting the hypothesis that the initial layer’s attention mechanism implements the constrained update.
The fit to the Full Belief geometry (orange line) improves dramatically after the first MLP, and at that point the residual
stream activations switch to fitting the Full Belief geometry better than the Constrained Belief geometry. The fit to the
Constrained Theory (green line) does not show this convergence and may worsen in later layers. The MSE values for the
trained transformer (solid lines) are consistently orders of magnitude lower than the corresponding random baselines (dashed
lines), demonstrating that these geometric alignments are learned features resulting from training.
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Figure A7: Validation KL divergence between model predictions and optimal probabilities across different architectural
configurations. Results shown for various Mess3 parameter settings (z and «) and model architectures (number of heads
and layers). The model achieves good performance with minimal architecture: a single layer with two attention heads is
sufficient across parameter settings.

parameter settings. This empirical finding aligns with our theoretical analysis - when x > 1/3, the belief update patterns
contain oscillatory components that require two heads to implement due to the non-negativity constraint of attention. The
necessity of two heads is visually demonstrated in Fig. A8. For x = 0.5, where the optimal update pattern has significant
oscillatory components, a single-head transformer fails to capture the correct belief geometry. With two heads, the model
can properly implement these updates through complementary attention patterns, resulting in representations that closely
match the ground truth geometry.

G. Dimensionality of Residual Stream Activations

Table 1: Cumulative explained variance ratios for PCA components of the residual stream activations at the intermediate
position (after attention) and the final position (before unembedding). The table shows results for different settings of the
Mess3 HMM parameters x and a.

Intermediate Final

x 0.15 0.15 0.5 0.5 0.15 0.15 0.5 0.5
component « 0.2 0.6 0.6 0.2 0.2 0.6 0.6 0.2

0.5408 0.4648 0.4074 0.5268 0.9618 0.4947 0.4596 0.6503
0.8768 0.8894 0.8028 0.8519 0.9825 0.7681 0.7096 0.8592
0.9673 0.9859 0.8913 09173 0.9943 0.9811 0.8855 0.9689
0.9749 0.9903 0.9455 0.9649 0.9960 0.9897 0.9189 0.9755
09815 0.9929 0.9848 0.9886 0.9969 0.9916 0.9428 0.9807
0.9870 0.9942 0.9978 0.9977 0.9976 0.9931 0.9586 0.9850
0.9914 09955 0.9986 0.9984 0.9981 0.9945 0.9723 0.9886

NNk W= O

We perform PCA on the residual stream activations after the attention module (intermediate) and before the unembedding
layer (final). The effective dimensionality of the residual stream is low, with the first few components capturing most of the
variance (See Table 1). In most cases, the first 3 components explain over 90% of the variance. For x = 0.5, the effective
dimensionality is higher, possibly due to the oscillatory dynamics of the belief updating equation in this regime. Further
investigation is needed to fully understand this phenomenon.
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Figure A8: Comparison of learned belief geometry with one head (left) versus two heads (middle) against ground truth
(right) for two different Mess3 parameter settings. With x = 0.5, where the optimal update pattern requires both positive
and negative components, a single head fails to capture the correct geometry due to the non-negativity constraint of attention.
Two heads allow the model to properly implement these updates, resulting in geometry that closely matches the ground truth.
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