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Abstract

A prominent methodology in computational neuroscience posits that the brain can be
understood by identifying which artificial neural network models most accurately predict
biological neural activations, measured according to regression test error or other similar
metrics. In this opinion piece, we argue that this methodology has become overused, and
a more pluralistic approach is needed. Our view is that the field lacks a canonical defini-
tion of model goodness, and rather than engaging with this difficult question, the neural
regressions methodology simply asserted a proxy – neural predictivity – then overfit to this
proxy. We begin with an egregious failure of the neural regressions methodology in which
the best fitting models disagreed with key properties of the neural circuit. Next, we high-
light converging empirical and mathematical evidence that explains the disconnect: (linear)
neural regressions are simply discovering the implicit biases of (linear) regression, which
may not appropriately identify models that are actually brain-like. This is an instance
of Goodhart’s law: by selecting neural network models that optimize (linear) neural pre-
dictivity, the field’s results have devolved into re-discovering general properties of (linear)
regression, rather than furthering our understanding of the brain. These insights suggest
that the neural regressions methodology may be insufficient for understanding the brain,
and we call for a critical reevaluation of this methodology in computational neuroscience.

Keywords: Computational neuroscience, brain-score, similarity metrics, neural alignment,
neural network models of the brain, neural regressions methodology

1. Introduction

An influential methodology in computational neuroscience argues that task-optimized deep
artificial neural networks (ANNs) should be considered good models of the brain if they
capture a large fraction of variance in neural population recordings assessed via regressions of
ANN unit activity onto biological neural responses (Yamins and DiCarlo, 2016a). The claim
is that the ANN(s) with better performing neural regressions are more similar to the brain
than alternative models. This approach has been widely used in vision, audition, language,
and spatial navigation, most often with (regularized) linear models but occasionally with
other metrics; due to limited space, we defer citations to Related Work (App. Sec. A).

In this opinion piece, we argue that computational neuroscience lacks sufficiently rich
definitions of neural similarity, and such notions are likely context-dependent and difficult
to construct. The neural regressions methodology sidesteps these challenges by defining
a proxy – for instance, the test R2 of linear regression between biological recordings and
model activations – and then choosing models based on this proxy. The models that win
a selection process (e.g., on BrainScore) may do so more because of implicit biases of the
proxy than because of meaningful relationships with the brain.

This perspective explains why, for example, the neural regressions methodology was
confidently incorrect when applied to models of grid cells: linear regression has no interest
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Figure 1: Computational neuroscience lacks canonical definitions of neural similarity, and
rather than engaging with this difficult question, the neural regressions method-
ology simply devised a proxy – neural predictivity – then overfit to the proxy
without verifying the extent to which the proxy agrees with neural similarity.
Although we don’t define neural similarity here, we emphasize that it is task,
model, and question-dependent, and hence cannot always be neural predictivity.

in key criteria of neural similarity for grid cells: periodic tuning curves (Hafting et al., 2005),
multiple grid modules with specific period ratios (Stensola et al., 2012), toroidal continuous
attractor dynamics (Yoon et al., 2013; Gardner et al., 2022). This perspective also explains a
finding by four independent research groups in different modalities, data, architectures and
recording technologies (Schaeffer et al., 2022; Elmoznino and Bonner, 2024; Tuckute et al.,
2023; Cheng and Antonello, 2024) of a quantitatively consistent relationship between test
R2 and effective dimensionality, that was mathematically refined and further empirically
studied by Canatar et al. (2024): (linear) neural predictivity is (linear) regression, and
(linear) regression has implicit biases, irrespective of the underlying neuroscience. We focus
on linear regression because of its ubiquity in the literature, but other preference functions
(e.g., RSA (Kriegeskorte et al., 2008b), CKA (Kornblith et al., 2019), SVCCA (Raghu et al.,
2017), Procrustes (Williams et al., 2021), etc.) would not escape this critique; rather, they
would simply change the implicit biases of the chosen preference function.

Together, these insights suggest that the neural regression methodology, and more
broadly the idea that a uniform set of metrics can automate model selection, may be fun-
damentally flawed, overfitting to those metrics rather than advancing our understanding of
the brain. We conclude by suggesting a re-evaluation of such methodologies.

2. Neural Regressions Can Reach Incorrect Conclusions with High
Confidence

In vision, Bowers et al. (2023) documented how artificial networks preferred by the neural
regressions methodology lack or contradict properties of primate vision, and others have
identified additional flaws (Mehrer et al., 2020; Xu and Vaziri-Pashkam, 2021; Han et al.,
2023; Feather et al., 2023; Feghhi et al., 2024). Here, we chose to focus on the clearest
example of a failure of the neural regressions methodology: grid cells.

Why focus on grid cells? Grid cells – a surprising and important Nobel Prize-winning
discovery (Hafting et al., 2005) – differ from vision, audition and language in that humanity
possesses scientific models (Fiete et al., 2008b; Burak and Fiete, 2009a, 2006; Sreenivasan
and Fiete, 2011a) that have repeatedly proven predictive (Stensola et al. (2012); Yoon et al.
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(2013); Gardner et al. (2022)), not in the regressions sense but in the sense of exhibiting
fundamental properties, e.g., localization of each module to a two-dimensional subspace,
quantization of grid module periods, preserved low-dimensional dynamics across waking
and sleep. In a domain we understand well, how did the regressions methodology do?

When applied to a specific neural circuit (grid cells) that humanity possesses
near-normative models of, the neural regressions methodology preferred

incorrect models with high confidence.

As context, the key research questions of grid cells are modeling their dynamics and the
evolutionary causes for their existence. Previous and now near-normative models of grid
cells showed how strong recurrent interactions leading to pattern formation, coupled with
a way for movement inputs to shift the pattern phase and thus perform path integration,
could generate grid cell dynamics (Burak and Fiete, 2009b; Khona et al., 2022); and that
multiple grid modules played key roles in disambiguating position over large ranges and in
error correction (Fiete et al., 2008c; Sreenivasan and Fiete, 2011b). Later, models based
on deep recurrent networks trained in a supervised manner to path integrate were shown
to learn grid-like units (Banino et al., 2018; Cueva and Wei, 2018; Sorscher et al., 2019),
and neural-regressions based work (Nayebi et al., 2021) showed that these supervised deep
recurrent path integrators achieved the best performance possible at predicting recordings
from mouse medial entorhinal cortex, leading the authors to call for better neural data.

However, multiple independent lines of evidence demonstrated that these high R2 deep
learning models are worse models of grid cells: (1) The required supervised targets, putative
place cells, contradict known biological properties of place cells at both the single cell and
population levels (Schaeffer et al., 2023a); (2) The grid-like units lack key properties of real
grid cells: properly periodic triangular tuning curves, multiple discrete grid modules, and
specific ratios between grid modules (Schaeffer et al., 2022, 2023b); (3) the artificial grid
units in some works were statistically indistinguishable from low pass-filtered noise (Sorscher
et al., 2019, 2023). (4) In terms of evolutionary origins, the path integration objective of
high-R2 networks is not a sufficient objective for grid cells, as shown in Kanitscheider and
Fiete (2017b,a); Schaeffer et al. (2023b), argued by prior theoretical work (Fiete et al.,
2008a; Sreenivasan and Fiete, 2011a; Mathis et al., 2012; Wei et al., 2015), and shown by
newer deep learning models (Gao et al., 2018; Xu et al., 2022; Dorrell et al., 2023; Schaeffer
et al., 2024; Xu et al., 2024a,b). For common criteria of neural similarity to grid cells, see
App. Sec. B

Why, then, did the neural regressions methodology so strongly support deep path inte-
grators despite their discrepancies with known important properties of the neural circuit?

3. The Neural Regressions Methodology Reveals Insights Into
Regression, Not Insights Into the Brain

Schaeffer et al. (2022) were unable to obtain the networks or neural recordings of mouse me-
dial entorhinal cortex to investigate this question, but made a rough conjecture: “different
[models] achieve different neural predictivity scores because different models learn different
intrinsic dimensionalities that then provide richer/poorer bases for linear regressions.” As
evidence, the authors trained the same networks studied by Nayebi et al. (2021) and showed
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that reported test Pearson correlations exhibit an approximately linear-log relationship with
a measure of effective dimensionality of networks’ representations called participation ratio
(Fig 2a). To be more mathematically precise, consider P stimuli, and denote artificial acti-
vations with M units as X ∈ RP×M and biological responses with N neurons as Y ∈ RP×N .
The authors fit linear models using a training set of size p < P :

β̂(p)
def
= argmin

β∈RM×N

||X1:p β −Y1:p||2F + αreg||β||2F (1)

Letting XXT =
∑P

i=1 λiviv
T
i , Schaeffer et al. (2022) found that approximately:

Test R2 ∼ α log(Participation Ratio) + β ; Participation Ratio
def
=

(
∑P

i=1 λi)
2∑P

i=1 λ
2
i

(2)

Concurrent and subsequent work found quantitatively similar results across species, modal-
ities, brain circuits and neural recording technologies: Elmoznino and Bonner (2024) in
deep convolutional networks trained on vision tasks to predict macaque IT cortex (Fig 2b),
Tuckute et al. (2023) in deep auditory networks to predict human brain-wide fMRI responses
(Fig 2c), and Cheng and Antonello (2024) in language models to predict human brain-wide
fMRI responses (Fig. 2d). This finding by four independent research groups across different
data modalities, training tasks, ANN architectures, species and neural recording technolo-
gies is puzzling. Are these results indicative of some deeper scientific insight into the brain?
In our view, no. This pattern is attributable to the neural regressions methodology, not the
brain. Participation ratio (PR) was a reasonable first guess that was refined into a more
descriptive spectral theory of the neural regressions methodology; specifically, Canatar et al.

(2024) showed the normalized error Eg(p) of any linear model Ŷ(p)
def
= Xβ̂(p) is given as:

Eg(p)
def
=

||Ŷ(p)−Y||2F
||Y||2F

=
P∑
i=1

||YTvi||22
||Y||2F

· κ2

1− γ

1

(pλi + κ)2
, (3)

where κ = αreg+κ
∑P

i=1
λi

pλi+κ , γ =
∑P

i=1
pλ2

i
(pλi+κ)2

. This result reveals higher dimensionality

can reduce prediction error, but not always, and that a full characterization depends on
the interplay between eigenvalues, eigenvectors and regression targets. Importantly, note
that this theory of neural predictivity makes no assumptions about a neural, behavioral,
biological, ethological or otherwise meaningful relationship betweenX andY. Rather, as its
origin makes clear (Bordelon et al., 2020; Canatar et al., 2021), this theory is fundamentally
a description of linear regression (Schaeffer et al., 2023c). This leads to the realization:

Taken to its extreme, the neural regressions methodology has taught us the
implicit biases of our chosen proxy function (e.g., test R2 of linear regression),
not which candidate artificial neural networks are actually similar to the brain.

Due to space limitations, we defer our Future Outlook to App. Sec. D.
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Appendix A. Published Work Using the Neural Regressions
Methodology

The neural regressions methodology has been widely used in vision (Yamins et al., 2014;
Eickenberg et al., 2017; Schrimpf et al., 2018; Kar et al., 2019; Kubilius et al., 2019; Schrimpf
et al., 2020; Zhuang et al., 2021; Jang et al., 2021; Xu and Vaziri-Pashkam, 2021; Storrs
et al., 2021; Ratan Murty et al., 2021; Conwell et al., 2022; Kazemian et al., 2024), audition
(Kell et al., 2018; Vaidya et al., 2022; Millet et al., 2022; Tuckute et al., 2023), language
Pereira et al. (2018); Jain et al. (2020); Schrimpf et al. (2021); Antonello et al. (2021);
Pasquiou et al. (2022); Caucheteux and King (2022); Caucheteux et al. (2023); Goldstein
et al. (2023); Aw and Toneva (2023); AlKhamissi et al. (2024); Hosseini et al. (2024); Oota
et al. (2024); Cheng and Antonello (2024); Kauf et al. (2024); Antonello et al. (2024);
Tuckute et al. (2024); Mischler et al. (2024); Hong et al. (2024), and spatial navigation
Nayebi et al. (2021), most often with (regularized) linear models, but occasionally with
non-linear models. This list is not exhaustive and we welcome readers to contact us to
suggest additional appropriate citations.

Appendix B. Example Criteria of Neural Similarity to Grid Cells

In this paper, we intentionally do not provide a general definition of “neural similarity” (see
Future Outlook - App. Sec. D), in part because we feel such a definition is likely highly
context dependent. But we can offer a constructive example in the narrow context of grid
cells. When considering models, researchers often consider the following (non-exhaustive)
list of relevant criteria for evaluating whether a model is similar to the circuit:

• Individual neurons exhibit equilateral triangular periodic tuning curves

• In the population of grid cells, multiple grid periodicities exist

• The periodicities of the grid cells is quantized

• The quantized periods of the modules exhibit precise ratios between adjacent periods

• The population of grid cells topologically lives on the cross product of multiple twisted
tori, one per module

• That topological structure is a continuous attractor
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Figure 2: Four independent publications studying four different modalities and brain cir-
cuits in three different species found a consistent quantitative heuristic: Test
R2 is an affine transformation of the log participation ratio (Eqn. 2). Note the
log-X scaling in the top right. Figures from Schaeffer et al. (2022); Elmoznino
and Bonner (2024); Tuckute et al. (2023); Cheng and Antonello (2024). Canatar
et al. (2024) later provided a more comprehensive spectral theory of the neural
regressions methodology, which demonstrates results like these are attributable
to general properties of linear regression.
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Appendix D. Future Outlook: Methodological Pluralism

Despite our critiques of the regression methodology, model-system comparison is a neces-
sary component of a modeling science. How then, can we move beyond flaws arising as a
consequence of emphasizing only a single metric?

One short-term answer: use a number of different comparisons that emphasize different
aspects of model and system. This may include comparing behavior on top of neural acti-
vations, as is already a feature of the Brain-Score platform (Schrimpf et al. (2018); Yamins
and DiCarlo (2016b)), neural dynamics on top of neural geometry (Ostrow et al., 2023), or
using a variety of different metrics that have different biases (Han et al. (2023)). Beyond
linear regression, computational neuroscience has introduced a number of other candidates
into the literature, including RSA (Kriegeskorte et al. (2008a)), Procrustes (Williams et al.
(2021)), CKA (Kornblith et al. (2019)), SVCCA (Raghu et al. (2017)) , and a number of
variants of these metrics. These developments are promising, although it is worth noting
that any single method alone can fall prey to Goodhart’s law. It is also important to note
that depending on the scientific question, the type of system feature being compared may
change. All of the above metrics only seek to compare geometric features of neural activa-
tions. Recently proposed methods, such as Dynamical Similarity Analysis (DSA, Ostrow
et al. (2023)) seek to compare different features of the system like dynamical structure. Us-
ing more types of comparison, both in terms of metrics and data, will mitigate the biases
of individual comparisons, making Goodharting more challenging (but still possible) and
resulting in more robust conclusions.

In the longer-term, beyond significantly increasing the number of types of comparisons
being done, it is worth taking a step back and asking ‘what do we mean by neural similarity’?
We intentionally did not attempt to propose notions of neural similarity here, for two
reasons. Firstly, 4 pages is too short to both critique the neural regressions methodology
and propose and justify an alternative. Secondly, the “right” notions are likely (1) highly
bespoke to the particular brain circuit and/or behavior being studied, (2) effortful to identify
and quantify, (3) contentious in the community. Answering this question will likely warrant
an entirely separate paper. To briefly sketch our view, neural similarity is almost certainly
a function of the scientific question at hand. In some cases, similarity may be the geometry
of neural activations, in which case the above family may be sufficient, provided a battery
of metrics are used. In other cases, more care should be taken to define ’similarity’ and
identify modes of comparison that allow to draw real conclusions about the brain, not our
metric.

15


	Introduction
	Neural Regressions Can Reach Incorrect Conclusions with High Confidence
	The Neural Regressions Methodology Reveals Insights Into Regression, Not Insights Into the Brain
	Published Work Using the Neural Regressions Methodology
	Example Criteria of Neural Similarity to Grid Cells
	Test R2 Versus Participation Ratio
	Future Outlook: Methodological Pluralism

