
SEQUENCE ANALYSIS USING THE BÉZIER CURVE

Anonymous authors
Paper under double-blind review

ABSTRACT

The analysis of sequences (e.g., protein, DNA, and SMILES string) is essential for
disease diagnosis, biomaterial engineering, genetic engineering, and drug discov-
ery domains. Conventional analytical methods focus on transforming sequences
into numerical representations for applying machine learning/deep learning-based
sequence characterization. However, their efficacy is constrained by the intrinsic
nature of deep learning (DL) models, which tend to exhibit suboptimal perfor-
mance when applied to tabular data. An alternative group of methodologies en-
deavors to convert biological sequences into image forms by applying the concept
of Chaos Game Representation (CGR). However, a noteworthy drawback of these
methods lies in their tendency to map individual elements of the sequence onto
a relatively small subset of designated pixels within the generated image. The
resulting sparse image representation may not adequately encapsulate the com-
prehensive sequence information, potentially resulting in suboptimal predictions.
In this study, we introduce a novel approach to transform sequences into images
using the Bézier curve concept for element mapping. Mapping the elements onto
a curve enhances the sequence information representation in the respective im-
ages, hence yielding better DL-based classification performance. We employed
three distinct protein sequence datasets to validate our system by doing three dif-
ferent classification tasks, and the results illustrate that our Bézier curve method
is able to achieve good performance for all the tasks. For instance, it has shown
tremendous improvement for a protein subcellular location prediction task over
the baseline methods, such as improved accuracy by 39.4% as compared to the
FCGR baseline technique using a 2-layer CNN classifier. Moreover, for Coron-
avirus host classification, our Bézier method has achieved 5.3% more AUC ROC
score than the FCGR using a 3-layer CNN classifier.

1 INTRODUCTION

Sequence analysis, especially protein sequence analysis (Whisstock & Lesk, 2003; Hirokawa et al.,
1998), serves as a foundational undertaking within the field of bioinformatics, possessing a broad
spectrum of applications encompassing drug exploration, ailment detection, and tailored medical
interventions. The comprehension of attributes, functionalities, configurations, and evolutionary
patterns inherent to biological sequences holds paramount significance for elucidating biological
mechanisms and formulating effective therapeutic approaches (Rognan, 2007).

Traditional phylogenetic approaches (Hadfield et al., 2018; Minh et al., 2020) for the analysis of
biological sequences are no longer effective due to the availability of large sequence data, as these
methods are not scalable due to being computationally very expensive. They also require exten-
sive domain knowledge, and incomplete knowledge easily hinders the results. Numerous feature-
engineering-based works exist to encode sequences into numerical form to perform machine learning
(ML)/Deep learning (DL)-based analysis, as ML/DL models are well-known to tackle large datasets
efficiently. For example, OHE (Kuzmin et al., 2020) builds binary vectors against the sequences.
However, it is alignment-based, and sequence alignment is an expensive process. The generated
vectors by OHE are also very sparse and highly dimensional. Another set of approaches (Ali &
Patterson, 2021; Ma et al., 2020) follows the k-mers concept to obtain feature embeddings. But they
also undergo sparsity challenges and are usually computationally expensive. Moreover, some ap-
proaches (Shen et al., 2018; Xie et al., 2016) utilize a neural network to extract feature embeddings

1



from the sequences to perform analysis. However, they usually require large training data to achieve
optimal performance, and acquiring more data is usually an expensive procedure for medical data.

An alternative approach for biological sequence analysis entails the transformation of sequences into
image representations. This adaptation facilitates the utilization of sophisticated DL vision models
to address sequence analysis objectives, as DL models are very popular in achieving state-of-the-art
performance for image classification. FCGR (Löchel et al., 2020), RandomCGR (Murad et al.), and
protein secondary structure prediction (Zervou et al., 2021) are some of the methods that fall under
this category. They are based on the concept of CGR(Chaos Game Representation) (Jeffrey, 1990).
Such mappings are between amino acids and specific pixels of the generated images, which can
result in suboptimal representation due to capturing the information in a sparse way about amino
acids/nucleotides of a sequence in its respective constructed image.

Therefore, in this work, we propose a method based on the Bézier curve (Han et al., 2008) to translate
biological sequences into images to enable the application of DL models on them. Bézier curve (Han
et al., 2008) is a smooth and continuous parametric curve that is defined by a set of discrete control
points. It is widely used to draw shapes, especially in computer graphics and animation. It has been
used in the representation learning domain previously but mainly focusing on extracting numerical
features, such as in (Hug et al., 2020) which does n-step sequence prediction based on the Bézier
curve, (Liu et al., 2021) proposed end-to-end text spotting using the Bézier curve, (Qiao et al.,
2023) does map construction, etc. However, we aim to utilize the Bézier curve to formulate an
efficient mechanism for transforming biological sequences into images by effectively mapping the
components of a sequence onto a curve. Each component, or character (an amino acid, nucleotide,
etc.) of a sequence is represented by multiple lines on the curve which enable more information to be
captured in the respective image, hence producing a better representation. The goal of using Bezier
curves is to create a visualization that aids in the analysis of protein sequences. This visualization
can allow researchers to explore patterns and trends that might provide insights into protein structure
and function.

Our contributions in this work are as follows,

1. We present a novel approach for converting biological sequences into images utilizing the
Bézier function. By harnessing the capabilities of the Bézier curve in conjunction with
deep learning analytical models, we can foster a more profound comprehension of these
sequences. This innovative technique holds promise for advancing our understanding of
biological data and enabling more robust analysis and insights.

2. Using three distinct protein datasets (protein subcellular dataset, Coronavirus host dataset,
ACP dataset) for validating our proposed technique, we show that our method is able to
achieve high performance in terms of predictive performance for various classification
tasks.

The rest of the paper is organized as follows: Section 2 talks about the literature review, Section 3
discusses the proposed approach in detail, Section 4 highlights the experimental setup details of our
work, Section 5 discusses the results obtained from the experiments, and Section 6 concludes the
paper.

2 LITERATURE REVIEW

Biological sequence analysis is an active research area in the domain of bioinformatics. Numerous
works exist to tackle biological sequences, and most of them aim to map sequences into machine-
readable form to perform further ML/DL-based analysis on them. For instance, OHE (Kuzmin
et al., 2020) constructs binary vectors to represent the sequences, but these vectors are very sparse
and suffer from the curse of dimensionality challenge. Likewise, Spike2Vec (Ali & Patterson, 2021)
& PWkmer (Ma et al., 2020) design feature embeddings based on the k-mers of the sequences. How-
ever, they also undergo the sparsity issue, and computation of k-mers is usually an expensive process,
especially for long sequences. Moreover, some approaches (Shen et al., 2018; Xie et al., 2016) em-
ploy a neural network to obtain the numerical embeddings of the sequences, but their large training
data requirement to attain optimal performance is an expensive requirement. Furthermore, a set of
works (Protein Bert (Brandes et al., 2022), Seqvec (Heinzinger et al., 2019), UDSMProt (Strodthoff
et al., 2020)) follows the utilization of pre-trained models for extracting features from the protein

2



sequences to assist the classification tasks. However, these mechanisms are computationally very
costly. Several kernel matrix-based works (Farhan et al., 2017; Ali et al., 2022) are put forward to
deal with protein sequence classification. These methods build a symmetric kernel matrix to repre-
sent the sequences by capturing the similarity between them, and this matrix is further utilized as
input to the classification tasks. But the kernel matrix is usually of high dimensions, and loading it is
memory inefficient. An alternative set of techniques transforms the sequences into images, particu-
larly for enabling the application of sophistical DL analytical models in the domain of bio-sequence
analysis. These methodologies (Murad et al., 2023; Zervou et al., 2021; Murad et al.; Löchel et al.,
2020) are usually built upon the concept of CGR (Jeffrey, 1990). They follow an iterative mechanism
to construct the images. However, these methods map the components (amino acids/nucleotides) of
a sequence to specific pixels in the corresponding generated image, while our method maps them
onto a Bézier curve, resulting in more intuitive and easy-to-interpret visualization.

3 PROPOSED APPROACH

This section discusses the details of our proposed method, which converts protein sequences into
images following the concept of the Bézier curve to enable the application of sophisticated DL
models on the sequence classification tasks.

The general formula (Baydas & Karakas, 2019) of the Bézier curve is

BZ(t) = Σn
i=0

(
n
i

)
ti(1− t)n−iPi where 0 ≤ t ≤ 1, Pi are known as control points and are

elements of Rk, and k ≤ n.

To construct the protein images, we employ a Bézier curve with n = 3 and k = 2. As images
consist of x and y coordinates, therefore k = 2 is used. The formulas to determine the coordinates
for representing an amino acid in the respective generated image are,

x = (1− t)3 · P0x + 3 · (1− t)2 · t · P1x + 3 · (1− t) · t2 · P2x + t3 · P3x (1)

y = (1− t)3 · P0y + 3 · (1− t)2 · t · P1y + 3 · (1− t) · t2 · P2y + t3 · P3y (2)

where, (P0x , P0y ), (P1x , P1y ), (P2x , P2y ), & (P3x , P3y ) denote the x & y coordinates of the four
distinct control points respectively.

The algorithm and workflow of creating Bézier-based images are illustrated in Algorithm 1 and
Figure 1 respectively. We can observe that given a sequence and number of parameters m as input,
the algorithm and workflow yield an image as output. Note that m indicates the parameter t shown
in the above equations. The process starts by computing the control points by considering the unique
amino acids of the given sequence and their respective ASCII values (numerical), as depicted in steps
4-6 of the algorithm and step (b) of the workflow. A control point is made of a pair of numerical
values representing the x and y coordinates, where x is assigned the index of the first occurrence
of the respective unique amino acid and y holds its ASCII value. Moreover, m linearly spaced
random pairs belonging to [0,1] are generated as parameters (mentioned in step 9 and step (c) of
the algorithm and workflow respectively). Note that we used m = 200 for our experiments. Then
the deviation pair points are generated for every amino acid of the sequence (as exhibited in step
15 of the algorithm and step (d) of the workflow). We utilized 3 deviation pairs to conduct our
experiments. After that, modified pair points are obtained by adding the deviation pairs to the
corresponding amino acid’s control point pair respectively, as shown in step 16 of the algorithm
and step (e) of the workflow. Then the Bézier pair points are extracted from the Bézier function by
employing equation 1 and equation 2 (as presented in step 19 and step (f) of the algorithm and
workflow respectively). Finally, the Bézier pairs are used as x and y coordinates to plot the image
(as shown in step 23 and step (g) of the algorithm and workflow respectively). Note that, we get
multiple Bézier pairs depending on the value of m and we plot all the pairs in the created image to
represent the respective amino acid in the image.

As Bézier curves are known for their ability to smoothly interpolate control points, using them to
connect control points for representing amino acids ensures a visually smooth transition between
points, making the visualization more intuitive and easy to interpret. Moreover, introducing ran-
domness to the control points by adding deviations results in controlled CGR. While the approach
deviates from traditional CGR, it helps reveal patterns that might not be apparent in regular CGR
due to the scattering of control points. This randomness mimics the inherent variability and noise

3



Algorithm 1 Bézier Curve Based Image Generation

1: Input: Sequence seq, No. of Parameters m
2: Output: Image img
3: conPoint = {} ▷ dictionary for control points
4: for i, aa ∈ seq do: ▷ every unique amino acid aa in seq
5: conPoint[aa] = [i, ASCII(aa)] ▷ assign control point the index i and ASCII of aa
6: end for
7: xCord = [] ▷ list for x coordinates
8: yCord = [] ▷ list for y coordinates
9: t V al = Get m pairs ∈ [0, 1] ▷ list of m pairs of parameters

10: ite = 3 ▷ no of deviations pair points. It can have any value.
11: for a ∈ seq : do ▷ every amino acid a in seq
12: org point = conPoint[a] ▷ control point of a
13: points = [org point]
14: for i ∈ (ite) : do
15: dev = Get Random Pair ▷ get a random pair
16: mod point = org point + dev ▷ get a modified control point
17: points.append(mod point)
18: end for
19: curve point = Get Bezier Point(points, t V al) ▷ get bezier curve points from bezier func
20: xCord = curve point[:0] ▷ get x coords of curve
21: yCord = curve point[:1] ▷ get y coords of curve
22: end for
23: img = plot(xCord, yCord) ▷ get image by plotting x & y coords
24: return(img)

Figure 1: The workflow of our system to create an image from a given sequence and a number of
parameters m. We have used ”MAVM” as an input sequence here. Note that the cur P ts consists
of a set of values for x coordinates and y coordinates.

present in biological sequences. It can be justified as an attempt to capture the inherent variability in
protein sequences that can arise due to mutations, structural differences, or experimental variations.

4 EXPERIMENTAL EVALUATION

This section discusses the details of the experimental setup used to perform the experiments. It
highlights the datasets, baseline methods, and classification models. All experiments are carried out
on a server having Intel(R) Xeon(R) CPU E7-4850 v4 @ 2.40GHz with Ubuntu 64-bit OS (16.04.7
LTS Xenial Xerus) having 3023 GB memory. We employed Python for implementation and the
code is available online for reproducability 1.

1Available in the published version

4



4.1 DATA STATISTICS

We have used 3 distinct protein sequence datasets, a nucleotide-based dataset, a musical dataset,
and a SMILES string dataset to evaluate our proposed system. The reason to use such diversified
datasets is to show the generalizability of our method for any type of sequence. Each dataset is
summarized in Table 1. Further details of the datasets are given in Appendix C.

Table 1: The summary of all the datasets used to perform the evaluation of our method.

Dataset Description

Protein
Subcellular
Localization

It has 5959 unaligned protein sequences distributed among 11 unique
subcellular locations. The associated subcellular location is predicted
for a given protein sequence as input.

Coronavirus
Host

The unaligned spike protein sequences from various clades of the Coro-
naviridae family are collected to form this dataset. It contains 5558
spike sequences distributed among 22 unique hosts.

Anticancer
Peptides
(ACPs)

It consists of 949 unaligned peptide-protein sequences along with their
respective anticancer activity on the breast cancer cell lines distributed
among the 4 unique target labels.

Human
DNA (Human
DNA)

It consists of 2, 000 unaligned Human DNA nucleotide sequences which
are distributed among seven unique gene families. These gene families
are used as labels for classification. The gene families are G Protein
Coupled, Tyrosine Kinase, Tyrosine Phosphatase, Synthetase, Synthase,
Ion Channel, and Transcription Factor containing 215, 299, 127, 347,
319, 94, & 599 instances respectively.

SMILES
String (Shamay
et al., 2018)

It has 6, 568 SMILES strings distributed among ten unique drug sub-
types extracted from the DrugBank dataset. We employ the drug sub-
types as a label for doing classification. The drug subtypes are Barbi-
turate [EPC], Amide Local Anesthetic [EPC], Non-Standardized Plant
Allergenic Extract [EPC], Sulfonylurea [EPC], Corticosteroid [EPC],
Nonsteroidal Anti-inflammatory Drug [EPC], Nucleoside Metabolic In-
hibitor [EPC], Nitroimidazole Antimicrobial [EPC], Muscle Relaxant
[EPC], and Others with 54, 53, 30, 17, 16, 15, 11, 10, 10, & 6352 in-
stances respectively.

Music
Genre (Li
et al., 2003)

This data has 1, 000 audio sequences belonging to 10 unique music gen-
res, where each genre contains 100 sequences. We perform music genre
classification tasks using this dataset. The genres are Blues, Classical,
Country, Disco, Hiphop, Jazz, Metal, Pop, Reggae, and Rock.

4.2 BASELINE MODELS

We compared the performance of our proposed method with various baselines. These baselines
are categorized into three groups: feature-engineering-based baselines, kernel-based baseline, and
image-based baselines. The feature-engineering-based baselines (OHE (Kuzmin et al., 2020)), WD-
GRL (Shen et al., 2018)) consist of methods that map the bio-sequences into numerical vectors to
enable the application of ML/DL models on them. In the kernel-based baseline (String kernel (Ali
et al., 2022; Farhan et al., 2017)), the goal is to design a kernel matrix and then use kernel PCA to
get the final embeddings, which can then be used as input to classical ML models, like SVM, Naive
Bayes (NB), Multi-Layer Perceptron (MLP), K-Nearest Neighbors (KNN), Random Forest (RF),
Logistic Regression (LR), and Decision Tree (DT), to perform sequence classification. The image-
based baselines (FCGR (Löchel et al., 2020), RandomCGR (Murad et al.), Spike2CGR (Murad
et al., 2023)) aim to transform the bio-sequences into images to perform DL-based classification.
The baseline methods used are summarized in Table 2 and their further details are mentioned in
Appendix D.

4.3 CLASSIFICATION MODELS

In the realm of classification tasks, we have employed two distinct categories of classifiers: Image
models and Tabular models. For both categories, the data follows 80− 20% split for train-test sets,
and the train set is further divided into 70−30% train-validation sets. These splits follow a stratified
sampling strategy to keep the distribution the same as given in the original data.

5



Table 2: The summary of all the baseline methods which are used to perform the evaluation.

Category Method Description

Feature
Engineering
based methods

OHE It generates binary vector-based numerical embeddings of the se-
quences.

WDGRL It is an unsupervised approach that uses a neural network to extract
numerical features from the sequences.

Kernel Method String Kernel
Given a set of sequences as input, this method designs n × n kernel
matrix that can be used with kernel classifiers or with kernel PCA to get
feature vectors

Image based
methods

FCGR It maps the protein sequences into images by following the concept of
CGR and constructs n-flakes-based images.

RandomCGR This method follows a random function for determining the coordinates
of amino acids of protein sequences to create images.

Spike2CGR This technique combines CGR with minimizers and k-mers concepts to
determine the images of given protein sequences.

4.3.1 IMAGE MODELS

These models are used for image-based classification. We construct four custom convolutional neu-
ral networks (CNNs) classifiers with varying numbers of hidden layers to do the classification tasks.
These models are referred to as 1-layer, 2-layer, 3-layer & 4-layer CNN classifiers, and they consist
of 1, 2, 3, & 4 hidden block A modules respectively. A block A module contains a convolution
layer followed by a ReLu activation function and a max-pool layer. These custom CNN networks
are employed to investigate the impact of increasing the number of hidden layers on the final pre-
dictive performance. Moreover, a vision transformer model (ViT) is also used by us for performing
the classification tasks. As ViT is known to utilize the power of transformer architecture, we want
to see its impact on our bio-sequence datasets classifications. Furthermore, we also examine the
consequences of using pre-trained vision models for classifying our datasets, and for that, we used
pre-trained ResNet-50 (He et al., 2016), EfficientNet (Tan & Le, 2019), DenseNet (Iandola et al.,
2014) and VGG19 (Simonyan & Zisserman, 2015) models. The image classifiers are summarized in
Table 3, and further details about their respective architectures and hyperparameters can be viewed
in Appendix E.1.1.

Table 3: The summary of all the image models used to perform the evaluation through image clas-
sification.

Category Model Description

Custom CNN

1-layer CNN A custom CNN model with one hidden block A module (layer).

2-layer CNN A custom CNN model with two hidden block A modules (layers).

3-layer CNN A custom CNN model with three hidden block A modules (layers).

4-layer CNN A custom CNN model with four hidden block A modules (layers).

Transformer ViT A vision transformer classifier following the architecture of the trans-
former to do image-based classification.

Pre-trained

VGG19 The pre-trained VGG19 (Simonyan & Zisserman, 2015) is employed to
do image-based classification.

ResNet-50 The pre-trained ResNet-50 (He et al., 2016) is employed to do image-
based classification.

EfficientNet The pre-trained EfficientNet (Tan & Le, 2019) is employed to do image-
based classification.

DenseNet The pre-trained DenseNet (Iandola et al., 2014) is employed to do
image-based classification.

4.3.2 TABULAR MODELS

These models aim to classify the numerical data. We have used two distinct DL tabular models in
our experimentation, which are known as the 3-layer tab CNN model & the 4-layer tab CNN model.
3-layer tab CNN model consists of 3 hidden linear layers, while 4-layer tab CNN has 4 hidden linear
layers. In each of the classifiers, the hidden layers are followed by a classification linear layer. The
hyperparameters chosen by us after fine-tuning are 0.001 learning rate, ADAM optimizer, NLL loss
function, and 10 training epochs. Moreover, the input vectors from WDGRL are of dimensions 10,
as it transforms the data into low dimensional space. Furthermore, we employed some ML models
(SVM, Naive Bayes (NB), Multi-Layer Perceptron (MLP), K-Nearest Neighbors (KNN), Random
Forest (RF), Logistic Regression (LR), and Decision Tree (DT)) to classify the kernel-method-based
feature embeddings.

6



5 RESULTS AND DISCUSSION

This section provides an extensive discussion of the classification results obtained by our proposed
method and the baseline approaches for 3 distinct classification tasks using 3 different datasets re-
spectively.

5.1 PROTEIN SUBCELLULAR DATASET’S PERFORMENCE

The classification results of the protein subcellular dataset via different evaluation metrics are men-
tioned in Table 4. We can observe that in the case of the custom CNN models, the performance
stopped increasing after two layers. It could be because of the dataset being small in size which
causes the gradient vanishing problem. Moreover, for the ViT model although the Bézier images
have maximum performance as compared to the FCGR and RandomCGR images, however, the
overall performance gained by the ViT model is less than the custom CNN models. A reason for
this could be the dataset being small in size as ViT typically requires substantial training data to
surpass CNN models. Additionally, in ViT a global attention mechanism is used which focuses
on the entire image, but in the images generated by all three methods (FCGR, RandomCGR &
Bézier) the pertinent information is concentrated in specific pixels, with the remaining areas be-
ing empty. Consequently, the global attention mechanism may not be as efficient for these im-
ages as a local operation-based CNN model, which is tailored to capture localized features effi-
ciently. The feature-engineering-based methods are yielding very low performance as compared to
our image-based methods (especially FCGR & Bézier) indicating that the image-based representa-
tion of bio-sequences is more effective in terms of classification performance over the tabular one.
The pre-trained ResNet-50 classifier corresponding to the Bézier method has the optimal predictive
performance for all the evaluation metrics. It shows that the ResNet-50 is able to generalize well
to the Bézier generated images. It may be due to the architecture of ResNet (like skip connections)
enabling the learning on our small dataset. Overall, the pre-trained models (ResNet, VGG19, & Ef-
ficientNet) are performing well for the Bézier based images, except the DensetNet model. A reason
for DenseNet having very bad performance could be the dataset being small, as DenseNet typically
requires large data to yield good performance. Furthermore, among the image-based methods, our
Bézier method is tremendously outperforming the baselines for every evaluation metric correspond-
ing to all the vision DL classifiers. This can be because the average length of sequences in the protein
subcellular localization dataset is large and our technique uses the Bézier curve to map each amino
acid, so a large number of amino acids results in more effective capturing of information about the
sequences in their respective constructed images.

We have also added results of the Spike2CGR baseline method in Table 4 and we can observe
that this method is underperforming for all the classifiers for every evaluation metric as compared
to our proposed Bézier method. This indicates that the images created by the Bézier technique
are of high quality in terms of classification performance as compared to the Spike2CGR-based
images. Moreover, the String kernel-based results also showcase very low performance as compared
to the image-based method, hence again indicating that converting sequences to images gives a more
effective representation than mapping them to vectors.

5.2 CORONAVIRUS HOST DATASET’S PERFORMANCE

The Coronavirus host dataset-based classification performance via various evaluation metrics is re-
ported in Appendix F.1 Table 14. We can observe that for the custom CNN models, the performance
is not directly proportional to the number of hidden layers, i.e., increasing the number of hidden
layers does not result in better performance, as most of the top values reside corresponding to the
1-layer CNN model and the 2-layer CNN model. This could be because the host dataset is not large
enough to tackle a heavy CNN model, hence ending up having a gradient vanishing problem, which
stops the model from learning. Apart from that, the ViT model is exhibiting lower performance than
the custom CNN model and it can be yet again due to the dataset being small. Moreover, among the
pre-trained models, ResNet-50 & VGG19 are showcasing nearly similar performance as the custom
CNN classifiers (with Bézier-based images yielding maximum performance), which indicates that
these models are able to generalize well using the images created by our Bézier method. However,
DenseNet and EfficientNet are demonstrating very low performance for all evaluation metrics may
be because the size of host data is small and these models typically need large data to attain good per-

7



Table 4: Classification results for different models and algorithms for Protein Subcellular Local-
ization dataset. The top 5% values for each metric are underlined.

Category DL Model Method Acc. ↑ Prec. ↑ Recall ↑ F1
(Weig.)
↑

F1
(Macro)
↑

ROC
AUC ↑

Train
Time
(hrs.) ↓

Tabular Models

3-Layer
Tab CNN

OHE 0.449 0.405 0.449 0.401 0.227 0.667 0.398
WDGRL 0.458 0.315 0.458 0.354 0.163 0.751 0.109

4-Layer
Tab CNN

OHE 0.404 0.409 0.404 0.384 0.215 0.657 0.525
WDGRL 0.457 0.309 0.457 0.351 0.161 0.708 0.130

String
Kernel

- SVM 0.496 0.510 0.496 0.501 0.395 0.674 5.277
- NB 0.301 0.322 0.301 0.265 0.243 0.593 0.136
- MLP 0.389 0.390 0.389 0.388 0.246 0.591 7.263
- KNN 0.372 0.475 0.372 0.370 0.272 0.586 0.395
- RF 0.473 0.497 0.473 0.411 0.218 0.585 7.170
- LR 0.528 0.525 0.528 0.525 0.415 0.678 8.194
- DT 0.328 0.335 0.328 0.331 0.207 0.568 2.250

Custom CNN Models

1-Layer

FCGR 0.545 0.542 0.545 0.527 0.386 0.653 3.065
RandmCGR 0.292 0.172 0.292 0.211 0.102 0.528 6.443
Spike2CGR 0.460 0.453 0.460 0.432 0.277 0.603 6.879
Bézier 0.948 0.919 0.948 0.931 0.769 0.890 3.455

% impro. of Bézier from
FCGR

40.3 37.7 40.3 40.4 38.3 23.7 -12.72

% impro. of Bézier from
Spike2CGR

48.8 46.6 48.8 49.9 49.2 28.7 49.7

2-Layer

FCGR 0.565 0.565 0.565 0.554 0.432 0.677 4.074
RandmCGR 0.295 0.171 0.295 0.216 0.104 0.530 6.433
Spike2CGR 0.461 0.454 0.461 0.433 0.278 0.604 8.932
Bézier 0.959 0.971 0.959 0.963 0.904 0.965 13.089

% improv. of Bézier from
FCGR

39.4 40.6 39.4 40.9 47.2 28.8 -221.28

% impro. of Bézier from
Spike2CGR

49.8 51.7 49.8 53 62.6 36.1 -2922.8

3-Layer

FCGR 0.504 0.518 0.504 0.501 0.376 0.656 4.821
RandmCGR 0.303 0.186 0.303 0.228 0.110 0.532 8.930
Spike2CGR 0.429 0.430 0.429 0.421 0.287 0.612 3.998
Bézier 0.951 0.965 0.951 0.952 0.881 0.957 14.983

% improv. of Bézier from
FCGR

44.7 44.7 44.7 44.8 50.5 30.1 -210.78

% impro. of Bézier from
Spike2CGR

52.2 53.5 52.2 53.1 59.4 35.5 -274.7

4-Layer

FCGR 0.539 0.524 0.539 0.525 0.393 0.663 5.146
RandmCGR 0.311 0.181 0.311 0.229 0.110 0.536 10.234
Spike2CGR 0.420 0.420 0.420 0.424 0.280 0.600 9.121
Bézier 0.938 0.958 0.938 0.944 0.884 0.959 15.456

% improv. of Bézier from
FCGR

39.9 43.4 39.9 41.9 49.1 29.6 -200.36

% impro. of Bézier from
Spike2CGR

51.8 53.8 51.8 52 60.4 35.9 -69.4

Vision Transformer ViT

FCGR 0.226 0.051 0.226 0.083 0.033 0.500 0.180
RandmCGR 0.222 0.049 0.222 0.080 0.033 0.500 0.154
Spike2CGR 0.222 0.051 0.222 0.083 0.147 0.500 0.176
Bézier 0.462 0.254 0.462 0.327 0.147 0.572 0.160

% improv. of Bézier from
FCGR

23.6 20.3 23.6 24.4 11.4 7.2 11.11

% impro. of Bézier from
Spike2CGR

24 20.3 24 24.4 0 7.2 -9.09

Pretrained Vision Models

ResNet-
50

FCGR 0.368 0.268 0.368 0.310 0.155 0.556 3.831
RandmCGR 0.293 0.174 0.293 0.211 0.102 0.527 13.620
Spike2CGR 0.368 0.175 0.368 0.214 0.105 0.565 10.992
Bézier 0.964 0.967 0.964 0.961 0.907 0.948 11.415

% improv. of Bézier from
FCGR

59.6 69.9 59.6 65.1 75.2 39.2 -197.96

% impro. of Bézier from
Spike2CGR

59.6 79.2 59.6 74.7 80.2 38.3 -3.8

VGG-19

FCGR 0.316 0.209 0.316 0.241 0.114 0.533 14.058
RandmCGR 0.288 0.192 0.288 0.218 0.105 0.525 26.136
Spike2CGR 0.351 0.352 0.351 0.333 0.211 0.550 19.980
Bézier 0.896 0.879 0.896 0.873 0.680 0.840 18.837

% improv. of Bézier from
FCGR

58 67 58 63.2 56.6 30.7 -33.99

% impro. of Bézier from
Spike2CGR

54.5 52.7 54.5 56.3 46.9 29 5.7

DenseNet

FCGR 0.081 0.006 0.081 0.012 0.013 0.500 2.001
RandmCGR 0.094 0.008 0.094 0.016 0.015 0.500 1.974
Spike2CGR 0.099 0.010 0.099 0.020 0.002 0.500 2.111
Bézier 0.011 0.000 0.011 0.000 0.002 0.500 2.668

% improv. of Bézier from
FCGR

-7 -0.6 -7 -1.2 -1.1 0 -33.33

% impro. of Bézier from
Spike2CGR

-8.8 -1 -8.8 -2 0 0 -26.3

EfficientNet

FCGR 0.100 0.088 0.100 0.094 0.035 0.532 31.194
RandmCGR 0.284 0.107 0.284 0.152 0.078 0.500 30.223
Spike2CGR 0.320 0.230 0.320 0.230 0.200 0.500 25.497
Bézier 0.834 0.787 0.834 0.797 0.483 0.751 20.312

% improv. of Bézier from
FCGR

73.4 69.9 73.4 70.3 44.8 21.9 34.88

% impro. of Bézier from
Spike2CGR

51.4 55.7 51.4 56.7 28.3 25.1 20.3

8



formance. Additionally, the feature-engineering-based methods lean towards a lower performance
bound for all the evaluation metrics corresponding to both 3-layer Tab CNN & 4-layer Tab CNN,
and most of the ML classifiers based on the String kernel also showcase less performance. This
indicates that converting the host sequences into images can preserve more relevant information in
the respective images about the sequence in terms of classification performance as compared to con-
verting them into vectors. Furthermore, among the image generation methods, RandomCGR has
the lowest performance for every metric while Bézier (our method), Spike2CGR, and FCGR have
comparable performance as they yield most of the top values for all the metrics. Overall, Bézier
seems to perform well for the host classification task, implying that the images generated by it are
of good quality for classification.

5.3 ACP DATASET’S PERFORMANCE

The classification performance achieved using the ACP dataset for various evaluation metrics is
summarized in Appendix F.2 Table 15. We can observe that increasing the number of inner layers
for the custom CNN models does not enhance the predictive performance, as 1-layer CNN & 2-layer
CNN models portray higher performance. This could be because the ACP dataset is very small, so
using a large model can cause a gradient vanishing challenge and, hence, hinder the learning process.
Additionally, the ViT model is yielding lower performance than the custom CNN models and it can
be due to yet again the dataset being very small. Moreover, the pre-trained ResNet-50 and VGG19
models depict very similar performance as the custom CNN models. This shows that the ResNet and
VGG19 models are able to generalize well to our Bézier-based data. However, the EfficeintNet and
Denset classifiers portray very low performance for every evaluation metric. It can be due to their
architectures which require large data for fine-tuning the model, however, our dataset is extremely
small. Furthermore, the feature-engineering-based embedding approaches are overall showcasing
bad performance (except for 4 tab CNN OHE) as compared to the image-based methods. It implies
that the bio-sequences’s information is effectively preserved in the respective image form rather than
the vector form generated from the feature-engineering methods in terms of predictive performance.
Note that, although the String kernel embedding-based ML classifiers are yielding the highest per-
formances corresponding to every evaluation metric, our method’s performance is also close to it,
which means that our method is also yielding an effective representation for sequences. For the
image-based embedding methods, we can notice that our method (Bézier) and the FCGR baselines
illustrate comparable predictive results, while RandomCGR and Spike2CGR lean toward the lower
performance bound. Overall, we can claim that the Bézier method exhibits good performance for
the ACP classification task.

5.4 HUMAN DNA DATASET PERFORMANCE

The classification results for the DL model using the Human DNA dataset are given in Table 5. We
can observe that the pre-trained vision models and the vision transformer classifier are yielding very
low performance corresponding to every image-based strategy. It can be again due to the gradient
vanishing problem because of the small size of the dataset. Moreover, the customer CNN models are
obtaining high performance, especially for the 1-layer CNN model and 2-layer CNN model. Note
that increasing the number of layers in the custom CNN models is reducing the performance, and a
small dataset could be a reason for this behavior too. We can also notice that our proposed Bézier
method is able to achieve performance in the top 5% for almost every evaluation metric correspond-
ing to the custom CNN classifiers. Furthermore, the image-based methods clearly outperform the
feature-engineering ones, hence indicating that converting the nucleotide sequences to images can
retain more information about the sequences as compared to mapping them to vectors in terms of
classification predictive performance. Similarly, the String kernel method-based ML classifiers, ex-
cept RF, also portray less performance than the custom CNN models which yet again proves that
converting sequences into images is more effective than mapping them to vectors.

5.5 SMILES STRING DATASET PERFORMANCE

9



Table 5: Classification results for different models and algorithms for Human DNA dataset. The
top 5% values for each metric are underlined.

Category DL Model Method Acc. ↑ Prec. ↑ Recall ↑ F1
(Weig.)
↑

F1
(Macro)
↑

ROC
AUC ↑

Train
Time
(hrs.) ↓

Tabular Models

3-Layer
Tab CNN

OHE 0.627 0.699 0.627 0.613 0.566 0.729 0.024
WDGRL 0.657 0.716 0.657 0.649 0.601 0.758 0.020

4-Layer
Tab CNN

OHE 0.680 0.704 0.680 0.661 0.581 0.762 0.042
WDGRL 0.654 0.692 0.654 0.635 0.551 0.743 0.038

String
Kernel

- SVM 0.618 0.617 0.618 0.613 0.588 0.753 39.791
- NB 0.338 0.452 0.338 0.347 0.333 0.617 0.276
- MLP 0.597 0.595 0.597 0.593 0.549 0.737 331.068
- KNN 0.645 0.657 0.645 0.646 0.612 0.774 1.274
- RF 0.731 0.776 0.731 0.729 0.723 0.808 12.673
- LR 0.571 0.570 0.571 0.558 0.532 0.716 2.995
- DT 0.630 0.631 0.630 0.630 0.598 0.767 2.682

Custom CNN Models

1-Layer

FCGR 0.717 0.719 0.717 0.709 0.711 0.834 0.351
RandmCGR 0.820 0.827 0.820 0.816 0.787 0.872 0.355
Spike2CGR 0.662 0.698 0.662 0.660 0.627 0.768 0.353
Bézier 0.710 0.712 0.710 0.700 0.713 0.831 0.339

% impro. of Bézier from
Spike2CGR

5.1 1.4 5.1 4 8.6 6.3 -3.9

2-Layer

FCGR 0.705 0.708 0.705 0.694 0.691 0.831 0.365
RandmCGR 0.785 0.791 0.785 0.782 0.750 0.845 0.622
Spike2CGR 0.665 0.685 0.665 0.664 0.633 0.786 0.692
Bézier 0.700 0.722 0.700 0.695 0.659 0.803 0.350

% impro. of Bézier from
Spike2CGR

3.5 3.7 3.5 3.1 2.6 1.7 49.4

3-Layer

FCGR 0.632 0.641 0.632 0.623 0.609 0.767 0.332
RandmCGR 0.710 0.724 0.710 0.697 0.661 0.807 0.530
Spike2CGR 0.580 0.636 0.580 0.582 0.514 0.715 0.331
Bézier 0.426 0.498 0.426 0.351 0.298 0.594 0.376

% impro. of Bézier from
Spike2CGR

-15.4 -13.8 -15.4 -23.1 -21.6 -12.1 -13.59

4-Layer

FCGR 0.300 0.090 0.300 0.138 0.065 0.500 0.331
RandmCGR 0.287 0.082 0.287 0.128 0.063 0.500 0.521
Spike2CGR 0.377 0.385 0.377 0.305 0.232 0.562 0.311
Bézier 0.313 0.097 0.313 0.149 0.068 0.500 0.321

% impro. of Bézier from
Spike2CGR

-6.4 -28.8 -6.4 -15.6 -16.4 -6.2 -3.2

Vision Transformer ViT

FCGR 0.300 0.090 0.300 0.138 0.065 0.500 0.782
RandmCGR 0.295 0.140 0.295 0.142 0.097 0.510 0.828
Spike2CGR 0.307 0.094 0.307 0.144 0.067 0.500 3.787
Bézier 0.382 0.326 0.382 0.323 0.239 0.613 0.654

% impro. of Bézier from
Spike2CGR

7.5 23.2 7.5 17.9 17.2 11.3 82.7

Pretrained Vision Models

ResNet-
50

FCGR 0.357 0.251 0.357 0.283 0.208 0.500 0.495
RandmCGR 0.290 0.192 0.290 0.137 0.072 0.500 0.481
Spike2CGR 0.352 0.341 0.352 0.295 0.208 0.565 2.443
Bézier 0.408 0.244 0.408 0.294 0.184 0.561 0.873

% impro. of Bézier from
Spike2CGR

5.6 -9.7 5.6 -0.1 -2.4 -0.4 64.2

VGG-19

FCGR 0.345 0.285 0.345 0.249 0.181 0.540 1.078
RandmCGR 0.287 0.082 0.287 0.128 0.063 0.500 1.115
Spike2CGR 0.307 0.094 0.307 0.144 0.067 0.500 3.032
Bézier 0.317 0.132 0.317 0.176 0.098 0.510 1.221

% impro. of Bézier from
Spike2CGR

1 3.8 1 3.2 3.1 1 59.7

DenseNet

FCGR 0.075 0.005 0.075 0.010 0.019 0.500 0.764
RandmCGR 0.062 0.003 0.062 0.007 0.016 0.500 0.825
Spike2CGR 0.067 0.004 0.067 0.008 0.018 0.500 1.295
Bézier 0.078 0.007 0.078 0.013 0.022 0.491 0.822

% impro. of Bézier from
Spike2CGR

1.1 0.3 1.1 0.5 0.4 -0.9 36.5

EfficientNet

FCGR 0.200 0.141 0.200 0.147 0.094 0.517 0.814
RandmCGR 0.287 0.082 0.287 0.128 0.063 0.500 0.837
Spike2CGR 0.275 0.169 0.275 0.187 0.112 0.524 1.343
Bézier 0.313 0.097 0.313 0.149 0.068 0.500 0.844

% impro. of Bézier from
Spike2CGR

3.8 -7.2 3.8 -3.8 -4.4 -2.4 37.1

The classification results for the DL model using the SMILES String dataset are given in Table 6. We
can observe that, the performance achieved by all the classifiers corresponding to every embedding
strategy (image or vector) is very good and similar to each other, except for the DenseNet and Effi-
cientNet models which have bad results. A reason for the bad results could be the small size of the

10



data as DenseNet and EfficientNet usually operate on large datasets to have optimal performance.
Note that, although most of the classifiers portray similar results, our method achieves the maxi-
mum performance. Moreover, as this data contains sequences constituted of more than 20 unique
characters, therefore, the FCGR & Spike2CGR methods failed to operate on them. Furthermore,
our image-based method is performing better than the tabular ones (feature-engineering-based and
String kernel-based), hence obtaining images of sequences is more useful for the classification tasks.

Table 6: Classification results for different models and algorithms for SMILES String dataset. The
best value for each metric is underlined. As the performances of most of the models are the same
and highlighting the top 5% includes a lot of data, that’s why we only underlined the best one.

Category DL Model Method Acc. ↑ Prec. ↑ Recall ↑ F1
(Weig.)
↑

F1
(Macro)
↑

ROC
AUC ↑

Train
Time
(hrs.) ↓

Tabular Models

3-Layer
Tab CNN

OHE 0.966 0.935 0.966 0.950 0.098 0.500 0.132
WDGRL 0.966 0.935 0.966 0.950 0.098 0.500 0.001

4-Layer
Tab CNN

OHE 0.966 0.935 0.966 0.950 0.098 0.500 0.155
WDGRL 0.966 0.935 0.966 0.950 0.098 0.500 0.001

String
Kernel

- SVM 0.812 0.813 0.812 0.811 0.084 0.502 10.254
- NB 0.537 0.643 0.537 0.549 0.096 0.502 1.24
- MLP 0.789 0.788 0.789 0.790 0.079 0.505 13.149
- KNN 0.844 0.858 0.844 0.842 0.087 0.503 2.348
- RF 0.929 0.927 0.929 0.925 0.098 0.507 9.315
- LR 0.772 0.769 0.772 0.760 0.073 0.502 5.652
- DT 0.834 0.829 0.834 0.832 0.075 0.508 3.318

Custom CNN Models

1-Layer RandmCGR 0.962 0.926 0.962 0.944 0.098 0.500 0.988
Bézier 0.970 0.942 0.970 0.956 0.109 0.512 1.003

% impro. of Bézier from
RandomCGR

0.8 1.6 0.8 1.2 1.1 12 -1.51

2-Layer RandmCGR 0.962 0.926 0.962 0.944 0.098 0.500 0.989
Bézier 0.970 0.942 0.970 0.956 0.109 0.512 1.253

% impro. of Bézier from
RandomCGR

0.8 1.6 0.8 1.2 1.1 12 -26.6

3-Layer RandmCGR 0.962 0.926 0.962 0.944 0.098 0.500 1.411
Bézier 0.970 0.942 0.970 0.956 0.109 0.511 1.082

% impro. of Bézier from
RandomCGR

0.8 1.6 0.8 1.2 1.1 12 80.04

4-Layer RandmCGR 0.962 0.926 0.962 0.944 0.098 0.500 1.331
Bézier 0.970 0.942 0.970 0.956 0.109 0.512 1.210

% impro. of Bézier from
RandomCGR

0.8 1.6 0.8 1.2 1.1 12 9.09

Vision Transformer

ViT RandmCGR 0.962 0.926 0.962 0.944 0.098 0.500 1.876
Bézier 0.970 0.942 0.970 0.956 0.109 0.512 1.864

% impro. of Bézier from
RandomCGR

0.8 1.6 0.8 1.2 1.1 12 0.63

Pretrained Vision Models

ResNet-
50

RandmCGR 0.962 0.926 0.962 0.944 0.098 0.500 1.872
Bézier 0.970 0.940 0.970 0.950 0.100 0.500 1.142

% impro. of Bézier from
RandomCGR

0.8 1.4 0.8 0.6 0.2 0 38.99

VGG-19 RandmCGR 0.962 0.926 0.962 0.944 0.098 0.500 7.120
Bézier 0.970 0.940 0.970 0.950 0.100 0.500 2.899

% impro. of Bézier from
RandomCGR

0.8 1.4 0.8 0.6 0.2 0 59.2

DenseNet RandmCGR 0.001 0.024 0.001 0.004 0.000 0.500 5.043
Bézier 0.001 0.023 0.001 0.066 0.000 0.500 2.867

% impro. of Bézier from
RandomCGR

0 1 0 6.2 0 0 43.14

EfficientNet RandmCGR 0.962 0.926 0.962 0.944 0.098 0.500 4.892
Bézier 0.969 0.938 0.969 0.950 0.100 0.500 3.892

% impro. of Bézier from
RandomCGR

0.6 1.2 0.6 5.6 0.2 0 20.44

5.6 MUSIC GENRE DATASET PERFORMANCE

11



The classification results for the DL model using the Music Genre dataset are given in Table 7. An
important point to note here is that since the number of unique characters in the music data is > 20,
the traditional FCGR and Spike2CGR methods fail to run on such datasets. In general, although
the RandomCGR method performs better using classical vision models, the performance drastically
reduces compared to the proposed method on the pre-trained vision models (e.g. see results for
VGG-19 results in Table 7). Such behavior supports our argument that in general, the proposed
method improves the performance of the pre-trained models in terms of sequence classification.
Moreover, the image-based methods are clearly outperforming the feature-engineering and String-
kernel baselines, hence image representations are more promising for doing classification than the
tabular ones.

Table 7: Classification results for different models and algorithms for Music Genre dataset. The
top 5% values for each metric are underlined.

Category DL Model Method Acc. ↑ Prec. ↑ Recall ↑ F1
(Weig.)
↑

F1
(Macro)
↑

ROC
AUC ↑

Train
Time
(hrs.) ↓

Tabular Models

3-Layer
Tab CNN

OHE 0.515 0.682 0.515 0.611 0.451 0.652 0.003
WDGRL 0.599 0.600 0.599 0.565 0.515 0.659 0.001

4-Layer
Tab CNN

OHE 0.516 0.555 0.516 0.511 0.451 0.652 0.003
WDGRL 0.612 0.588 0.612 0.588 0.530 0.670 0.001

String
Kernel

- SVM 0.301 0.322 0.301 0.294 0.294 0.615 0.886
- NB 0.369 0.376 0.369 0.357 0.352 0.649 0.039
- MLP 0.219 0.231 0.219 0.212 0.211 0.568 3.476
- KNN 0.400 0.409 0.400 0.388 0.387 0.669 0.169
- RF 0.341 0.354 0.341 0.334 0.333 0.638 1.478
- LR 0.397 0.397 0.397 0.389 0.386 0.666 21.209
- DT 0.283 0.290 0.283 0.282 0.281 0.603 0.392

Custom CNN Models

1-Layer RandmCGR 0.989 0.989 0.989 0.989 0.989 0.989 0.400
Bézier 0.957 0.953 0.957 0.953 0.844 0.919 0.312

% improv. of Bézier from
RandomCGR

-3.2 -3.6 -3.2 -3.6 -14.5 -7 22

2-Layer RandmCGR 0.985 0.985 0.985 0.985 0.985 0.992 0.4121
Bézier 0.943 0.941 0.943 0.939 0.827 0.911 0.345

% improv. of Bézier from
RandomCGR

-4.2 -4.3 -4.2 -4.6 -15.8 -1.1 16.2

3-Layer RandmCGR 0.085 0.007 0.085 0.013 0.015 0.500 0.541
Bézier 0.886 0.893 0.886 0.882 0.789 0.887 0.453

% improv. of Bézier from
RandomCGR

80.1 88.6 80.1 86.9 77.4 38.7 16.2

4-Layer RandmCGR 0.155 0.044 0.155 0.063 0.074 0.545 0.554
Bézier 0.900 0.908 0.900 0.897 0.802 0.895 0.438

% improv. of Bézier from
RandomCGR

74.5 86.4 74.5 83.4 72.8 35 20.9

Vision Transformer

ViT RandmCGR 0.110 0.012 0.110 0.021 0.019 0.500 0.807
Bézier 0.099 0.009 0.099 0.017 0.022 0.500 1.090

% improv. of Bézier from
RandomCGR

-1.1 -0.3 -1.1 -0.4 -0.3 0 -23.9

Pretrained Vision Models

ResNet-
50

RandmCGR 0.525 0.608 0.525 0.485 0.496 0.740 0.653
Bézier 0.546 0.545 0.546 0.479 0.457 0.728 0.543

% improv. of Bézier from
RandomCGR

2.1 -6.3 2.1 0.6 -3.9 -1.2 16.8

VGG-19 RandmCGR 0.410 0.421 0.410 0.334 0.410 0.673 1.220
Bézier 0.843 0.867 0.843 0.838 0.741 0.856 1.421

% improv. of Bézier from
RandomCGR

43.3 44.6 43.3 50.4 33.1 18.3 -16.47

DenseNet RandmCGR 0.080 0.056 0.080 0.052 0.053 0.489 2.118
Bézier 0.113 0.130 0.113 0.043 0.049 0.508 2.332

% improv. of Bézier from
RandomCGR

3.3 7.4 3.3 -0.9 -0.4 1.9 -10.10

EfficientNet RandmCGR 0.735 0.719 0.735 0.697 0.689 0.851 1.011
Bézier 0.929 0.928 0.929 0.924 0.808 0.898 0.889

% improv. of Bézier from
RandomCGR

19.4 20.9 19.4 22.7 11.9 4.7 12.06

5.7 T-SNE DATA VISUALIZATION

We visualized the feature vectors using the t-SNE (t-distributed stochastic neighbor embed-
ding) (Van der Maaten & Hinton, 2008) approach extracted from the last hidden layer of the 2-layer

12



CNN model for each of our datasets. The plots are computed for the images generated by the FCGR
baseline and our proposed Bézier method.

The t-SNE visualization of FCGR and Bézier images of the protein subcellular localization dataset
is illustrated in Figure 2. We can clearly observe that the clusters generated corresponding to the
Bézier data are very defined and visible. It indicates that the data structure is highly preserved even
in 2D space due to the high quality of the respective embeddings used. As these embeddings are
acquired from the images generated by our Bézier method, it implies that the images constructed
by our method are of high quality and contain the sequence information efficiently and effectively.
However, the t-SNE plot against the FCGR method consists of very overlapping and non-definite
clusters, which indicates that the FCGR-based embeddings are unable to retain a good cluster struc-
ture in a low dimensional space, hence they are suboptimal. Moreover, the t-SNE plots of the
Coronavirus host dataset and ACP dataset are given in Appendix F.3 along with their respective
discussions.

(a) FCGR (b) Bézier

Figure 2: The t-SNE plots of Protein Subcellular Localization dataset embeddings extracted from
the last layer of 2layer CNN classifier using the FCGR- and Bézier-based images respectively. The
figure is best seen in color.

5.8 CONFUSION MATRIX RESULTS AND DISCUSSION

We investigated the confusion matrices obtained from the respective test sets of our host and protein
subcellular datasets corresponding to the 2-layer CNN model for the FCGR baseline method and
our proposed Bézier technique. We chose the 2-layer CNN classifier because it contains mostly the
optimal predictive performance values for every dataset.

The confusion matrices corresponding to the protein subcellular localization dataset are illustrated
in Figure 3. We can observe that our method is tremendously outperforming the FCGR baseline
strategy as it has optimal true positive counts. Moreover, Bézier is also able to attain high perfor-
mance for each category of the dataset. Overall, we can witness that our method has almost perfect
performance for the protein subcellular localization classification task. Furthermore, the confusion
matrices for the host dataset are given in Appendix F.6 Figure 20.

6 CONCLUSION

In this work, we proposed a novel technique to convert biological sequences into images using the
Bézier curve. It enables us to apply the sophisticated DL vision classifiers in the analysis of bi-
ological sequences. We validated our idea using three distinct protein datasets, and our method
tremendously outperforms the baselines for protein subcellular localization classification and shows
good performance on other dataset classifications. In the future, we want to explore the scalabil-
ity of our technique by applying it to larger datasets. Moreover, we also want to investigate the
generalizability of our method by using it on nucleotide-based datasets in future.

REFERENCES

Sarwan Ali and Murray Patterson. Spike2vec: An efficient and scalable embedding approach for
covid-19 spike sequences. In International Conference on Big Data (Big Data), pp. 1533–1540,

13



(a) FCGR (b) Bézier

Figure 3: Confusion matrices of Protein Subcellular Localization dataset for 2layer CNN classi-
fier using the FCGR and Bézier image generation methods.

2021.

Sarwan Ali, Bikram Sahoo, Muhammad Asad Khan, Alexander Zelikovsky, Imdad Ullah Khan, and
Murray Patterson. Efficient approximate kernel based spike sequence classification. IEEE/ACM
Transactions on Computational Biology and Bioinformatics, 2022.

Senay Baydas and Bulent Karakas. Defining a curve as a bezier curve. Journal of Taibah University
for Science, 13(1):522–528, 2019.

Nadav Brandes, Dan Ofer, Yam Peleg, Nadav Rappoport, and Michal Linial. ProteinBERT: a uni-
versal deep-learning model of protein sequence and function. Bioinformatics, 38(8):2102–2110,
02 2022. ISSN 1367-4803. doi: 10.1093/bioinformatics/btac020. URL https://doi.org/
10.1093/bioinformatics/btac020.

M. Farhan, J. Tariq, A. Zaman, M. Shabbir, and I. Khan. Efficient approximation algorithms for
strings kernel based sequence classification. In Advances in neural information processing sys-
tems (NeurIPS), pp. 6935–6945. ., 2017.

GISAID Website. https://www.gisaid.org/, 2021. [Online; accessed 29-December-2021].

Grisoni et al. ’de novo design of anticancer peptides by ensemble artificial neural networks’.
’Journal of Molecular Modeling’, ’25’(’5’):’112’, ’Apr’ ’2019’. ISSN ’0948-5023’. doi:
’10.1007/s00894-019-4007-6’. URL ’[WebLink]’.

J. Hadfield, C. Megill, S.M. Bell, J. Huddleston, B. Potter, C. Callender, P. Sagulenko, T. Bedford,
and R.A. Neher. Nextstrain: real-time tracking of pathogen evolution. Bioinformatics, 34:4121–
4123, 2018.

Xi-An Han, YiChen Ma, and XiLi Huang. A novel generalization of bézier curve and surface.
Journal of Computational and Applied Mathematics, 217(1):180–193, 2008.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

Michael Heinzinger, Ahmed Elnaggar, Yu Wang, Christian Dallago, Dmitrii Nechaev, Florian
Matthes, and Burkhard Rost. Modeling aspects of the language of life through transfer-learning
protein sequences. BMC bioinformatics, 20(1):1–17, 2019.

Takatsug Hirokawa, Seah Boon-Chieng, and Shigeki Mitaku. Sosui: classification and secondary
structure prediction system for membrane proteins. Bioinformatics (Oxford, England), 14(4):
378–379, 1998.

14

https://doi.org/10.1093/bioinformatics/btac020
https://doi.org/10.1093/bioinformatics/btac020
https://www.gisaid.org/
'[Web Link]'


Ronny Hug, Wolfgang Hübner, and Michael Arens. Introducing probabilistic bézier curves for
n-step sequence prediction. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pp. 10162–10169, 2020.

Human DNA. https://www.kaggle.com/code/nageshsingh/
demystify-dna-sequencing-with-machine-learning/data. [Online; ac-
cessed 10-October-2022].

Forrest Iandola, Matt Moskewicz, Sergey Karayev, Ross Girshick, Trevor Darrell, and Kurt Keutzer.
Densenet: Implementing efficient convnet descriptor pyramids. arXiv preprint arXiv:1404.1869,
2014.

H Joel Jeffrey. Chaos game representation of gene structure. Nucleic acids research, 18(8):2163–
2170, 1990.

Kiril Kuzmin et al. Machine learning methods accurately predict host specificity of coronaviruses
based on spike sequences alone. Biochemical and Biophysical Research Communications, 533
(3):553–558, 2020.

Tao Li, Mitsunori Ogihara, and Qi Li. A comparative study on content-based music genre classifi-
cation. In Proceedings of the 26th annual international ACM SIGIR conference on Research and
development in informaion retrieval, pp. 282–289, 2003.

Yuliang Liu, Chunhua Shen, Lianwen Jin, Tong He, Peng Chen, Chongyu Liu, and Hao Chen. Abc-
net v2: Adaptive bezier-curve network for real-time end-to-end text spotting. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 44(11):8048–8064, 2021.

Hannah F Löchel, Dominic Eger, Theodor Sperlea, and Dominik Heider. Deep learning on chaos
game representation for proteins. Bioinformatics, 36(1):272–279, 2020.

Yuanlin Ma, Zuguo Yu, Runbin Tang, Xianhua Xie, Guosheng Han, and Vo V Anh. Phylogenetic
analysis of hiv-1 genomes based on the position-weighted k-mers method. Entropy, 22(2):255,
2020.

B. Q. Minh et al. Iq-tree 2: New models and efficient methods for phylogenetic inference in the
genomic era. Molecular Biology and Evolution, 37(5):1530–1534, 2020.

Taslim Murad, Sarwan Ali, and Murray Patterson. A new direction in membranolytic anticancer
peptides classification: Combining spaced k-mers with chaos game representation.

Taslim Murad, Sarwan Ali, Imdadullah Khan, and Murray Patterson. Spike2cgr: an efficient method
for spike sequence classification using chaos game representation. Machine Learning, pp. 1–26,
2023.

Brett E Pickett, Eva L Sadat, Yun Zhang, Jyothi M Noronha, R Burke Squires, Victoria Hunt,
Mengya Liu, Sanjeev Kumar, Sam Zaremba, Zhiping Gu, et al. Vipr: an open bioinformatics
database and analysis resource for virology research. Nucleic acids research, 40(D1):D593–
D598, 2012.

Protein Subcellular Localization. https://www.kaggle.com/datasets/lzyacht/
proteinsubcellularlocalization, 2022. [Online; accessed 10-October-2022].

Limeng Qiao, Wenjie Ding, Xi Qiu, and Chi Zhang. End-to-end vectorized hd-map construction
with piecewise bezier curve. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 13218–13228, 2023.

Didier Rognan. Chemogenomic approaches to rational drug design. British journal of pharmacol-
ogy, 152(1):38–52, 2007.

Yosi Shamay, Janki Shah, Mehtap Işık, Aviram Mizrachi, Josef Leibold, Darjus F Tschaharganeh,
Daniel Roxbury, Januka Budhathoki-Uprety, Karla Nawaly, James L Sugarman, et al. Quantitative
self-assembly prediction yields targeted nanomedicines. Nature materials, 17(4):361–368, 2018.

15

https://www.kaggle.com/code/nageshsingh/demystify-dna-sequencing-with-machine-learning/data
https://www.kaggle.com/code/nageshsingh/demystify-dna-sequencing-with-machine-learning/data
https://www.kaggle.com/datasets/lzyacht/proteinsubcellularlocalization
https://www.kaggle.com/datasets/lzyacht/proteinsubcellularlocalization


Jian Shen, Yanru Qu, Weinan Zhang, and Yong Yu. Wasserstein distance guided representation
learning for domain adaptation. In AAAI conference on artificial intelligence, 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In International Conference on Learning Representations, 2015.

Nils Strodthoff, Patrick Wagner, Markus Wenzel, and Wojciech Samek. Udsmprot: universal deep
sequence models for protein classification. Bioinformatics, 36(8):2401–2409, 2020.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural net-
works. In International conference on machine learning, pp. 6105–6114. PMLR, 2019.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

James C Whisstock and Arthur M Lesk. Prediction of protein function from protein sequence and
structure. Quarterly reviews of biophysics, 36(3):307–340, 2003.

Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised deep embedding for clustering analysis.
In International conference on machine learning, pp. 478–487, 2016.

Yao et al. Negative log likelihood ratio loss for deep neural network classification. In Proceedings
of the Future Technologies Conference, pp. 276–282. Springer, 2019.

Michaela Areti Zervou, Effrosyni Doutsi, Pavlos Pavlidis, and Panagiotis Tsakalides. Structural
classification of proteins based on the computationally efficient recurrence quantification analysis
and horizontal visibility graphs. Bioinformatics, 37(13):1796–1804, 2021.

16



APPENDIX

A INTRODUCTION

Figure 4 demonstrates the recursive procedures followed by CGR (Jeffrey, 1990), FCGR (Löchel
et al., 2020), and protein secondary structure prediction (Zervou et al., 2021) to allocate a location
to nucleotides/amino acids in the corresponding generated images respectively.

(a) Nucleotides based CGR. (b) FCGR for amino acids (c) CGR for secondary structure.

Figure 4: Figure (a) shows the CGR (Jeffrey, 1990) based determination of location for the ”ATT”
nucleotide sequence in the respective image. Figure (b) illustrates the 20-flakes-based image created
using the FCGR (Löchel et al., 2020) method for a sequence of amino acids. (c) shows the CGR
representation for the secondary protein structure (Zervou et al., 2021).

B PROPOSED APPROACH

Two example images generated by the Bézier curve-based method for two sequences (one from the
active class and the other from the inactive class) from the ACP dataset are illustrated in Figure 5. We
can observe that the created images are different from each other, which indicates that our method is
able to preserve the information possessed by the sequences differently in the respective generated
images.

(a) Active ACP (b) Inactive ACP

Figure 5: The Bézier curve method-based images created for two sequences from the ACP dataset.
One sequence belongs to the active class of the dataset, while the other is from the inactive class.

C DATA STATISTICS

We have used 3 distinct protein sequence datasets to evaluate our proposed system. The details of
each one are given as follows,

C.1 PROTEIN SUBCELLULAR LOCALIZATION DATASET

This dataset (Protein Subcellular Localization, 2022) has 5959 unaligned protein sequences dis-
tributed among 11 unique subcellular locations. The associated subcellular location is predicted for
a given protein sequence as input. The statistical details of the data are illustrated in Table 8.

17



Table 8: The protein subcellular localization dataset distribution with respect to the subcellular
locations. The minimum, maximum, and average lengths of sequences belonging to each subcellular
location are also mentioned.

Protein Subcellular Sequence Length

Subcellular Locations Count Min. Max. Average

Cytoplasm 1411 9 3227 337.32
Plasma Membrane 1238 47 3678 462.21
Extracellular Space 843 22 2820 194.01
Nucleus 837 16 1975 341.35
Mitochondrion 510 21 991 255.78
Chloroplast 449 71 1265 242.03
Endoplasmic Reticulum 198 79 988 314.64
Peroxisome 157 21 906 310.75
Golgi Apparatus 150 116 1060 300.70
Lysosomal 103 101 1744 317.81
Vacuole 63 60 607 297.95

Total 5959 - - -

C.2 CORONAVIRUS HOST DATASET

The unaligned spike protein sequences from various clades of the Coronaviridae family are collected
to form this dataset. It contains 5558 spike sequences, which are extracted from GISAID (GISAID
Website, 2021) and ViPR (Pickett et al., 2012), accompanied with their respective infected host
information. The sequences are distributed among 21 unique hosts. For the classification task, the
infected host’s name is determined based on a given spike sequence as an input. The statistical detail
of this data is shown in Table 9. This data consists of spike protein sequences of the coronavirus and
the reason for using only the spike protein region of the virus (rather than the full genome) is because
it’s well-known that major mutations happen in this region (Kuzmin et al., 2020), possibly due to its
ability to attach the virus to the host cell membrane. Figure 6 shows the full genome structure of the
SARS-CoV-2 virus and ”S” indicates the spike protein region.

Figure 6: The genome structure of SARS-CoV-2 virus.

Table 9: The distribution of spike protein sequences among the infected hosts. The minimum,
maximum, and average lengths of sequences belonging to each host are also mentioned.

Host Sequence Length

Host Count Min. Max. Average

Humans 1813 1154 1363 1273.63
Environment 1034 19 1276 1267.56
Weasel 994 9 1454 1270.69
Swines 558 1130 1573 1321.34
Birds 374 1153 1254 1166.93
Camels 297 1169 1366 1336.39
Bats 153 12 1399 1292.41
Cats 123 23 1467 1241.43
Bovines 88 1361 1584 1375.55
Canis 40 57 1473 1181.7
Rats 26 1126 1378 1314.42
Pangolins 21 10 1269 792.47
Hedgehog 15 1327 1363 1336.26
Dolphins 7 1482 1495 1486.85
Equine 5 1363 1363 1363.00
Fish 2 1190 1220 1205.0
Python 2 959 959 959.0
Monkey 2 1273 1273 1273.0
Unknown 2 1255 1271 1263.0
Turtle 1 922 922 922.0
Cattle 1 1169 1169 1169

Total 5558 - - -

18



C.3 ANTICANCER PEPTIDES (ACPS) DATASET

This dataset (Grisoni et al., ’2019’) consists of unaligned peptide-protein sequences along with their
respective anticancer activity on the breast cancer cell lines. We utilize the sequences as inputs and
their corresponding anticancer activity as target labels for classification. This data has 949 sequences
distributed among the four unique target labels. The statistical detail of this data is given in Table 10.

Table 10: ACPs dataset distribution based on their respective activity on the breast cancer cell line.
The minimum, maximum, and average lengths of sequences belonging to each class are also men-
tioned.

Peptide Sequence Length

ACPs Class Count Min. Max. Average

Inactive-Virtual 750 8 30 16.64
Moderate Active 98 10 38 18.44
Inactive-Experimental 83 5 38 15.02
Very Active 18 13 28 19.33

Total 949 - - -

C.4 HUMAN DNA DATASET

It consists of 2, 000 unaligned Human DNA nucleotide sequences which are distributed among seven
unique gene families. These gene families are used as labels for classification. The gene families
are G Protein Coupled, Tyrosine Kinase, Tyrosine Phosphatase, Synthetase, Synthase, Ion Channel,
and Transcription Factor containing 215, 299, 127, 347, 319, 94, & 599 instances respectively. The
statistical detail of this data is given in Table 11.

Table 11: Human DNA dataset distribution based on their gene family type. The minimum, maxi-
mum, and average lengths of sequences belonging to each class are also mentioned.

DNA Sequence Length

Gene Family Count Min. Max. Average

G Protein Coupled 215 30 18921 1859.04
Tyrosine Kinase 299 24 4863 1509.64
Tyrosine Phosphatase 127 135 7473 2486.14
Synthetase 347 8 3795 965.30
Synthase 319 31 7536 899.63
Ion Channel 94 42 5598 1949.809
Transcription Factor 599 9 9141 1152.85

Total 2000 - - -

C.5 SMILES STRING (SHAMAY ET AL., 2018)

It has 6, 568 SMILES strings distributed among ten unique drug subtypes extracted from the Drug-
Bank dataset. We employ the drug subtypes as a label for classification. The drug subtypes are Bar-
biturate [EPC], Amide Local Anesthetic [EPC], Non-Standardized Plant Allergenic Extract [EPC],
Sulfonylurea [EPC], Corticosteroid [EPC], Nonsteroidal Anti-inflammatory Drug [EPC], Nucleo-
side Metabolic Inhibitor [EPC], Nitroimidazole Antimicrobial [EPC], Muscle Relaxant [EPC], and
Others with 54, 53, 30, 17, 16, 15, 11, 10, 10, & 6, 352 instances respectively. The statistical detail
of this data is given in Table 12.

C.6 MUSIC DATASET (LI ET AL., 2003)

This data has 1, 000 audio sequences belonging to 10 unique music genres, where each genre con-
tains 100 sequences. We perform music genre classification task using this dataset. The genres are

19



Table 12: SMILES String dataset distribution based on their drug subtype. The minimum, maxi-
mum, and average lengths of sequences belonging to each class are also mentioned.

DNA Sequence Length

Gene Family Count Min. Max. Average

Barbiturate [EPC] 54 16 136 51.24
Amide Local Anesthetic [EPC] 53 9 149 39.18
Non-Standardized Plant Allergenic Extract [EPC] 30 10 255 66.89
Sulfonylurea [EPC] 17 22 148 59.76
Corticosteroid [EPC] 16 57 123 95.43
Nonsteroidal Anti-inflammatory Drug [EPC] 15 29 169 53.6
Nucleoside Metabolic Inhibitor [EPC] 11 16 145 59.90
Nitroimidazole Antimicrobial [EPC] 10 27 147 103.8
Muscle Relaxant [EPC] 10 9 82 49.8
Others 6352 2 569 55.44

Total 6568 - - -

Blues, Classical, Country, Disco, Hiphop, Jazz, Metal, Pop, Reggae, and Rock. The statistical detail
of this data is given in Table 13

Table 13: Music dataset distribution based on their genre. The minimum, maximum, and average
lengths of sequences belonging to each class are also mentioned.

Music Sequence Length

Genre Count Min. Max. Average

Blues 100 6892 6892 6892.00
Classical 100 6887 7001 6895.36
Country 100 6885 6974 6894.44
Disco 100 6887 6958 6893.49
Hiphop 100 6889 6889 6889.00
Jazz 100 6873 7038 6909.45
Metal 100 6891 6999 6896.57
Pop 100 6889 6892 6889.96
Reggae 100 6889 6892 6890.23
Rock 100 6888 6981 6894.26

Total 1000 - - -

D BASELINE MODELS

The details of each of the baseline methods used to perform the evaluation are as follows,

D.1 ONE-HOT ENCODING (OHE) (KUZMIN ET AL., 2020)

This technique is employed to convert the sequential data into numerical format. For each character
within the sequence, a binary vector is associated with it and then all these vectors are combined
to form a comprehensive representation of the entire sequence. While OHE is a straightforward
approach, it yields vectors that are notably sparse, where most of the elements are zero. This phe-
nomenon is commonly called the ”curse of dimensionality,” which presents challenges due to the
substantial increase in dimensions relative to the available data points.

D.2 WASSERSTEIN DISTANCE GUIDED REPRESENTATION LEARNING (WDGRL) (SHEN
ET AL., 2018)

This domain adaption method is used for adapting data from one domain to another. Its core focus
is evaluating the Wasserstein distance (WD) between the encoded distributions of the source and
target domains. To achieve it, a neural network is employed. It transforms high-dimensional data
into low dimensions. It’s worth noting that WDGRL builds upon the feature vectors that are initially
generated using the One-Hot Encoding (OHE) technique. However, as it needs large training data
to obtain optimal features, therefore it’s an expensive mechanism.

20



D.3 FREQUENCY CHAOS GAME REPRESENTATION (FCGR) (LÖCHEL ET AL., 2020)

FCGR is specifically designed to map protein sequences into images based on the concept of Chaos
Game Representation (CGR) (Jeffrey, 1990). For a given protein sequence, it constructs an n-flakes-
based image, which consists of multiple icosagons, and n represents the number of amino acids
in the sequence. For an amino acid, the corresponding pixel coordinates are determined using the
following equations,

x = r · sin(2πi
n

+ θ) (3)

y = r · cos(2πi
n

+ θ) (4)

where r contraction ratio between the outer and inner polygons.

D.4 RANDOM CHAOS GAME REPRESENTATION (RANDOMCGR) (MURAD ET AL.)

This method follows a random function to determine the pixel coordinates for an amino acid in the
corresponding image representation. These coordinates are further connected with the location axis
of the previous amino acid to represent the existing amino acid in the image.

Furthermore, an example of images generated for a sequence taken from the Coronavirus host
dataset’s bat class against our proposed method and the image-based baseline models is shown in
Figure 7. Moreover, the sample images from other datasets are given in Figure 8 Figure 9 Figure 10.
We can observe that the constructed images are distinct for each method, which indicates that ev-
ery image-creating method is able to have different modeling of the information from the sequence
in the respective visual form. Hence, every method will achieve different performance in terms of
classification.

(a) FCGR (b) RandomCGR (c) Spike2CGR (d) Bezier

Figure 7: The example of images created by our proposed Bézier curve-based method and the image-
based baselines methods (FCGR, RandomCGR & Spike2CGR) for a randomly selected sequence
from the Coronavirus host dataset.

(a) FCGR (b) RandomCGR (c) Spike2CGR (d) Bezier

Figure 8: The example of images created by our proposed Bézier curve-based method and the image-
based baselines methods (FCGR, RandomCGR & Spike2CGR) for a randomly selected sequence
from the Human DNA dataset.

E EXPERIMENTAL EVALUATION

E.1 EVALUATION METRICS

Various evaluation metrics are employed by us to analyze the performance of the classification
models. Those metrics are average accuracy, precision, recall, F1 (weighted), F1 (macro), and ROC

21



(a) RandomCGR (b) Bezier

Figure 9: The example of images created by our proposed Bézier curve-based method and the image-
based baselines methods (FCGR, RandomCGR & Spike2CGR) for a randomly selected sequence
from the Music dataset.

(a) RandomCGR (b) Bezier

Figure 10: The example of images created by our proposed Bézier curve-based method and the
image-based baselines methods (FCGR, RandomCGR & Spike2CGR) for a randomly selected se-
quence from the SMILES String dataset.

AUC. As our classification problems are multi-class, therefore we utilized the one-vs-rest approach
for computing the ROC AUC score. The reported values for any metric are an average of 5 runs.
Moreover, several metrics are used to obtain deeper insights into the performance of the classifiers,
especially because our datasets are undergoing the data imbalance challenge.

E.1.1 IMAGE MODELS

These models are used for image-based classification. We construct four custom convolutional
neural networks (CNNs) classifiers with varying numbers of hidden layers to do the classification
tasks. These models are referred to as 1-layer, 2-layer, 3-layer & 4-layer CNN classifiers, and
they consist of 1, 2, 3, & 4 hidden block A modules respectively. A block A module contains a
convolution layer followed by a ReLu activation function and a max-pool layer. Each convolution
layer uses kernel and stride filters of size 5x5 & 2x2, respectively. The max-pooling layer is also
accompanied by the kernel and stride filters of 2x2 sizes for both. For each classifier, the block
A modules are followed by two fully connected layers and a Softmax classification layer. The
architecture of the 1-layer CNN model is illustrated in Figure 11. These custom CNN networks are
employed to investigate the impact of increasing the number of hidden layers on the final predictive
performance.

Moreover, a vision transformer model (ViT) is also used by us for performing the classification
tasks. As ViT is known to utilize the power of transformer architecture, we want to see its impact on
our bio-sequence datasets classifications. In ViT the input image is partitioned into patches, which
are then linearly transformed into vectors by a linear embedding module. Note that we used patch
size 20 & 8 vector dimensions in our experiments. Then positional embeddings are added to the
vectors and they are subsequently processed by two Transformer encoder blocks. Each encoder
block consists of a normalization layer, a multi-head self-attention layer with residual connections,
a second normalization layer, and a multi-layer perceptron with another residual connection. The
final output is directed to a softmax classification module for image label prediction. This design
capitalizes on self-attention mechanisms for efficient image classification.

Furthermore, we also examine the consequences of using pre-trained vision models for classifying
our datasets, and for that, we used pre-trained ResNet-50 (He et al., 2016), EfficientNet (Tan & Le,
2019), DenseNet (Iandola et al., 2014) and VGG19 (Simonyan & Zisserman, 2015) models. More-
over, all the generated images for any dataset are of dimensions 720x480, and they are given as
input to the image-based classifiers. The hyperparameters decided after fine-tuning are 0.003 learn-

22



ing rate, ADAM optimizer, 64 batch size, and 10 training epochs for all the models. Additionally,
the negative log-likelihood (NLL) (Yao et al., 2019) loss function is employed for training, as it’s
known to be a cross-entropy loss function for multi-class problems.

Figure 11: The architecture of 1-layer CNN model. For a given input image, it yields the K classifi-
cation classes as output.

F RESULTS AND DISCUSSION

F.1 CORONAVIRUS HOST DATASET’S PERFORMANCE

The Coronavirus host dataset-based classification performance via various evaluation metrics is re-
ported in Table 14.

The results demonstrate that overall the Bezier-based images are showing promising performance
for the host classification task. Among the image-based baselines, it portrays a very comparable
performance with the FCGR baseline and has outperformed the RandomCGR method. Moreover,
the image representations are clearly performing better than the tabular ones (feature-engineering
methods based). Hence converting the spike protein sequences of the Coronavirus into images
is more effective for performing classification as compared to transforming them into numerical
vectors (tabular form).

F.2 ACP DATASET’S PERFORMANCE

The classification performance achieved using the ACP dataset for various evaluation metrics is
summarized in Table 15.

We can observe that, among the image-based baseline approaches Bezier is showcasing very com-
parable performance as the FCGR because most of the top 5% scores corresponding to various
evaluation metrics are falling against these methods. Moreover, Bezier is clearly outperforming the
RandomCGR baseline. Although the OHE method exhibits high performance for some of the eval-
uation metrics, generally the feature engineering methods have lower predictive performance than
the image-based ones. Overall, we can say that the Bezier method portrays promising results for
the ACP classification task, which implies that converting the ACP sequences into images using the
Bezier method is effective in terms of classification performance.

F.3 T-SNE DATA VISUALIZATION

The t-SNE plots for the Coronavirus host dataset are shown in Figure 12. We can observe that,
the clusters generated by both FCGR and Bézier are very scattered and overlapping. This is an
implication that the embeddings created by both these methods are almost similar in quality as they
possess somehow similar data preservation patterns in a low-dimensional space.

Furthermore, the t-SNE visualization of the ACP dataset is given in Figure 13. It also portrays a
very similar cluster structure for both FCGR and Bézier methods. The clusters are very scattered,
non-definite, and overlapping, which indicates that the respective embeddings are unable to preserve
the data structure in 2D space.

The t-SNE plots of the Human DNA dataset are given in Figure 14. We can observe that the Bezier-
based clusters are more compact while FCGR ones are very scattered.

23



Table 14: Classification results for different models and algorithms for Coronavirus Host dataset.
The top 5% values for each metric are underlined.

Category DL Model Method Acc. ↑ Prec. ↑ Recall ↑ F1
(Weig.)
↑

F1
(Macro)
↑

ROC
AUC ↑

Train
Time
(hrs.) ↓

Tabular Models

3-Layer
Tab CNN

OHE 0.625 0.626 0.625 0.566 0.335 0.663 0.032
WDGRL 0.304 0.137 0.304 0.182 0.041 0.499 0.029

4-Layer
Tab CNN

OHE 0.613 0.478 0.613 0.534 0.323 0.662 0.067
WDGRL 0.312 0.130 0.312 0.167 0.035 0.498 0.054

String
Kernel

- SVM 0.601 0.673 0.601 0.602 0.325 0.624 5.198
- NB 0.230 0.665 0.230 0.295 0.162 0.625 0.131
- MLP 0.647 0.696 0.647 0.641 0.302 0.628 42.322
- KNN 0.613 0.623 0.613 0.612 0.310 0.629 0.434
- RF 0.668 0.692 0.668 0.663 0.360 0.658 4.541
- LR 0.554 0.724 0.554 0.505 0.193 0.568 5.096
- DT 0.646 0.674 0.646 0.643 0.345 0.653 1.561

Custom CNN Models

1-Layer

FCGR 0.680 0.707 0.680 0.670 0.517 0.761 0.984
Spike2CGR 0.743 0.745 0.743 0.739 0.569 0.797 0.711
RandomCGR 0.262 0.193 0.262 0.210 0.051 0.500 8.695
Bézier 0.652 0.652 0.652 0.644 0.592 0.766 2.698

% improv. of Bézier from
FCGR

-2.8 -5.5 -2.8 -2.6 7.5 0.5 -174.18

2-Layer

FCGR 0.668 0.684 0.668 0.655 0.410 0.710 1.046
Spike2CGR 0.740 0.734 0.740 0.726 0.428 0.716 0.688
RandomCGR 0.293 0.235 0.293 0.246 0.093 0.521 8.839
Bézier 0.656 0.669 0.656 0.644 0.610 0.778 2.976

% improv. of Bézier from
FCGR

-1.2 -1.5 -1.2 -1.1 20 6.8 -184.51

3-Layer

FCGR 0.681 0.677 0.681 0.672 0.470 0.740 5.681
Spike2CGR 0.729 0.729 0.729 0.715 0.354 0.677 0.831
RandomCGR 0.320 0.102 0.320 0.155 0.028 0.500 9.440
Bézier 0.611 0.652 0.611 0.612 0.623 0.793 4.660

% improv. of Bézier from
FCGR

-7 -2.5 -7 -6 15.3 5.3 17.97

4-Layer

FCGR 0.624 0.617 0.624 0.606 0.262 0.623 8.991
Spike2CGR 0.686 0.668 0.686 0.672 0.283 0.632 0.684
RandomCGR 0.320 0.102 0.320 0.155 0.028 0.500 10.778
Bézier 0.640 0.643 0.640 0.575 0.594 0.782 5.102

% improv. of Bézier from
FCGR

1.6 2.6 1.6 -3.1 33.2 15.9 43.25

Vision Transformer ViT

FCGR 0.322 0.104 0.322 0.157 0.023 0.500 0.188
Spike2CGR 0.332 0.323 0.332 0.333 0.213 0.500 0.877
RandomCGR 0.320 0.102 0.320 0.155 0.028 0.500 0.173
Bézier 0.316 0.100 0.316 0.152 0.022 0.500 0.183

% improv. of Bézier from
FCGR

-0.6 -0.4 -0.6 -0.5 -0.1 0 2.65

Pretrained Vision Models

ResNet-
50

FCGR 0.662 0.665 0.662 0.639 0.267 0.621 8.840
Spike2CGR 0.691 0.683 0.691 0.663 0.270 0.624 0.786
RandomCGR 0.319 0.113 0.319 0.159 0.030 0.500 13.488
Bézier 0.571 0.473 0.571 0.504 0.335 0.564 6.411

% improv. of Bézier from
FCGR

-9.1 -19.2 -9.1 -13.5 6.8 -5.7 27.47

VGG-19

FCGR 0.519 0.475 0.519 0.442 0.158 0.572 3.738
Spike2CGR 0.458 0.409 0.458 0.363 0.129 0.559 3.409
RandomCGR 0.320 0.102 0.320 0.155 0.028 0.500 21.474
Bézier 0.521 0.421 0.521 0.448 0.222 0.500 3.200

% improv. of Bézier from
FCGR

0.2 -5.4 0.2 0.6 6.4 -7.2 14.39

DenseNet

FCGR 0.018 0.000 0.018 0.001 0.018 0.500 2.566
Spike2CGR 0.017 0.000 0.017 0.000 0.001 0.500 2.675
RandomCGR 0.015 0.000 0.015 0.000 0.001 0.500 2.123
Bézier 0.011 0.000 0.011 0.001 0.011 0.500 2.332

% improv. of Bézier from
FCGR

-0.8 0 -0.8 0 -0.8 0 9.11

EfficientNet

FCGR 0.169 0.028 0.169 0.049 0.013 0.500 34.443
Spike2CGR 0.169 0.031 0.169 0.053 0.015 0.500 31.229
RandomCGR 0.317 0.108 0.317 0.162 0.032 0.529 37.334
Bézier 0.465 0.427 0.465 0.394 0.157 0.577 35.768

% improv. of Bézier from
FCGR

29.6 39.9 29.6 34.5 14.4 7.7 -3.84

F.4 INTER-CLASS CORRELATION

To analyze the correlation between different classes of our respective datasets we utilized the heat
maps. These maps are generated from the embeddings extracted from the last layer of the 2-layer
CNN classifier corresponding to FCGR and Bézier based images respectively. To construct the
maps, first pairwise cosine similarity scores are computed between embeddings of different classes

24



Table 15: Classification results for different models and algorithms for ACPs (Breast Cancer)
dataset. The top 5% values for each metric are underlined.

Category DL Model Method Acc. ↑ Prec. ↑ Recall ↑ F1
(Weig.)
↑

F1
(Macro)
↑

ROC
AUC ↑

Train
Time
(hrs.) ↓

Tabular Models

3-Layer
Tab CNN

OHE 0.768 0.839 0.768 0.790 0.452 0.719 0.042
WDGRL 0.615 0.740 0.615 0.660 0.326 0.603 0.0001

4-Layer
Tab CNN

OHE 0.796 0.843 0.796 0.807 0.474 0.736 0.056
WDGRL 0.631 0.754 0.631 0.673 0.346 0.623 0.0002

String
Kernel

- SVM 0.802 0.836 0.802 0.813 0.454 0.692 0.789
- NB 0.872 0.869 0.872 0.864 0.523 0.732 0.018
- MLP 0.611 0.771 0.611 0.666 0.348 0.626 2.478
- KNN 0.871 0.849 0.871 0.853 0.482 0.694 0.286
- RF 0.866 0.837 0.866 0.847 0.470 0.681 1.029
- LR 0.881 0.872 0.881 0.870 0.536 0.720 0.254
- DT 0.835 0.843 0.835 0.838 0.465 0.702 0.338

Custom CNN Models

1-Layer

FCGR 0.863 0.831 0.863 0.844 0.490 0.677 0.357
Spike2CGR 0.783 0.613 0.783 0.687 0.219 0.500 0.999
RandomCGR 0.792 0.638 0.792 0.707 0.221 0.497 0.404
Bézier 0.835 0.779 0.835 0.781 0.314 0.548 0.805

% improv. of Bézier from
FCGR

-2.8 -5.2 -2.8 -6.3 -17.6 -12.9 -125.49

2-Layer

FCGR 0.852 0.833 0.852 0.837 0.489 0.676 0.419
Spike2CGR 0.783 0.613 0.783 0.687 0.219 0.500 1.196
RandomCGR 0.800 0.640 0.800 0.711 0.222 0.500 0.389
Bézier 0.814 0.795 0.814 0.803 0.419 0.633 0.626

% improv. of Bézier from
FCGR

-3.8 -3.8 -3.8 -3.4 -7 -4.3 -49.40

3-Layer

FCGR 0.800 0.640 0.800 0.711 0.222 0.500 0.490
Spike2CGR 0.783 0.612 0.783 0.687 0.219 0.500 1.456
RandomCGR 0.800 0.640 0.800 0.711 0.222 0.500 0.391
Bézier 0.830 0.748 0.830 0.780 0.296 0.541 0.637

% improv. of Bézier from
FCGR

3 10.8 3 6.9 7.4 4.1 -30

4-Layer

FCGR 0.831 0.735 0.831 0.779 0.329 0.586 0.498
Spike2CGR 0.783 0.612 0.783 0.687 0.219 0.500 1.776
RandomCGR 0.800 0.640 0.800 0.711 0.222 0.500 0.435
Bézier 0.825 0.681 0.825 0.746 0.226 0.500 0.668

% improv. of Bézier from
FCGR

-0.6 -5.4 -0.6 -3.3 -10.3 -8.6 -34.13

Vision Transformer ViT

FCGR 0.767 0.588 0.767 0.666 0.217 0.500 0.031
Spike2CGR 0.754 0.487 0.74 0.565 0.211 0.500 0.650
RandomCGR 0.756 0.512 0.756 0.632 0.201 0.500 0.032
Bézier 0.825 0.681 0.825 0.746 0.226 0.500 0.027

% improv. of Bézier from
FCGR

5.8 9.3 5.8 8 0.9 0 12.90

Pretrained Vision Models

ResNet-
50

FCGR 0.800 0.642 0.800 0.712 0.222 0.501 1.317
Spike2CGR 0.770 0.559 0.770 0.654 0.198 0.500 2.290
RandomCGR 0.800 0.640 0.800 0.711 0.222 0.500 1.387
Bézier 0.835 0.780 0.835 0.796 0.334 0.601 0.175

% improv. of Bézier from
FCGR

3.5 13.8 3.5 8.4 11.2 10 86.71

VGG-19

FCGR 0.803 0.684 0.803 0.720 0.243 0.509 1.189
Spike2CGR 0.765 0.650 0.765 0.650 0.200 0.500 2.111
RandomCGR 0.800 0.640 0.800 0.711 0.222 0.500 1.054
Bézier 0.825 0.681 0.825 0.746 0.226 0.500 2.144

% improv. of Bézier from
FCGR

2.2 -0.3 2.2 2.6 -1.7 -0.9 -80.31

DenseNet

FCGR 0.116 0.013 0.116 0.024 0.052 0.500 0.987
Spike2CGR 0.116 0.011 0.116 0.022 0.050 0.500 1.767
RandomCGR 0.095 0.011 0.095 0.010 0.095 0.500 1.381
Bézier 0.105 0.011 0.105 0.020 0.105 0.500 1.211

% improv. of Bézier from
FCGR

-1.1 -0.2 -1.1 -0.4 5.3 0 -22.69

EfficientNet

FCGR 0.089 0.008 0.089 0.014 0.041 0.500 1.622
Spike2CGR 0.085 0.005 0.085 0.009 0.008 0.500 2.221
RandomCGR 0.028 0.002 0.028 0.004 0.027 0.500 1.988
Bézier 0.058 0.003 0.058 0.006 0.027 0.500 1.566

% improv. of Bézier from
FCGR

-3.1 -0.5 -3.1 -0.8 -1.4 0 3.45

and then an average value is calculated to get a score for a class. Note that the maps are normalized
between [0-1] to the identity pattern.

The heat maps of the protein subcellular dataset corresponding to FCGR and our proposed method
are demonstrated in Figure 15. We can observe that in the case of FCGR, although each class has
a maximum correlation with itself, some of them also portray a high correlation with each other
as well. For instance, the ”Golgi” class shows a high similarity to ”ER” and ”Pero” etc. This

25



(a) FCGR (b) Bézier

Figure 12: The t-SNE plots of Coronavirus Host dataset embeddings extracted from the last layer
of 2layer CNN classifier using the FCGR- and Bézier-based images respectively. The figure is best
seen in color.

(a) FCGR (b) Bézier

Figure 13: The t-SNE plots of ACP dataset embeddings extracted from the last layer of 2layer
CNN classifier using the FCGR- and Bézier-based images respectively. The figure is best seen in
color.

(a) FCGR (b) Bézier

Figure 14: The t-SNE plots of Human dataset embeddings extracted from the last layer of 2layer
CNN classifier using the FCGR- and Bézier-based images respectively. The figure is best seen in
color.

indicates that distinguishing different classes is hard using the embeddings generated by FCGR,
hence the FCGR images are suboptimal representations. However, the heat map constructed from

26



the Bézier images shows that each class has maximum similarity to itself only and holds almost no
correlation with other classes. It is an implication that the embeddings generated from the Bézier
method belonging to the same class are very similar to each other, while highly distinct from the
embeddings of other classes. Hence, the Bézier-based images are optimal and it can also be proven
by the classification performance achieved by them for our respective dataset.

(a) FCGR (b) Bézier

Figure 15: Heatmap for cosine similarity between different Protein Subcellular Localization pairs
for FCGR and Bézier-based image generation methods corresponding to 2layer CNN classifier.

Similarly, the heat maps for cosine similarity of the Coronavirus host dataset corresponding to FCGR
and Bézier encoding methods are shown in Figure 16. We can observe that for both methods, each
class has maximum similarity to itself. However, some of the classes also portray a correlation
with other classes, like ”Weasel” is highly correlated to ”cat” & ”can” classes, etc. This means that
although the embeddings generated by both FCGR and Bézier which belong to the same class are
very similar to each other, they can also be similar to embeddings from some of the other classes.

(a) FCGR (b) Bézier

Figure 16: Heatmap for cosine similarity between different Coronavirus Host pairs for FCGR and
Bézier-based image generation methods corresponding to 2layer CNN classifier.

Furthermore, the heat maps corresponding to the Human DNA dataset are given in Figure 17. We
can observe that, in all the maps each class shows maximum similarity to itself.

27



(a) FCGR (b) Bézier

Figure 17: Heatmap for cosine similarity between different Human DNA pairs for FCGR and
Bézier-based image generation methods corresponding to 2layer CNN classifier.

F.5 INTERPRETABLITY

To further evaluate the effectiveness of the created images by FCGR and Bézier methods, we plotted
the histograms of the respective embeddings extracted from the last layer of the 2-layer CNN model
against the protein subcellular dataset. We employ the 2-layer CNN model because it demonstrates
good classification performance for both FCGR and Bézier methods.

The Bézier images-based histograms of the protein subcellular dataset are shown in Figure 18. We
can observe that, although the embeddings of (a) & (b) belong to the same label Lysosomal, they
yield different histograms which indicate that the information in the respective images is captured
differently for different sequences by our Bézier method. Moreover, as they belong to the same
category, the Euclidean distance between them is small (0.17), while the distance for embeddings
from different categories is large as shown in (c) & (d) which is 0.87. This implies that our method
is effective as it keeps similar instances close to each other while the different ones are far from each
other.

Similarly, the histograms for FCGR images-based embeddings are illustrated in Figure 19. We can
see that the Euclidean distance between the embeddings from the same Lysosomal category ((a) &
(b)) is very large (0.88) and it’s not a desirable behavior. This indicates that the images generated by
FCGR are suboptimal representations of the sequences.

F.6 CONFUSION MATRIX RESULTS AND DISCUSSION

The confusion matrices for the host dataset are given in Figure 20. We can observe that although
FCGR has a high number of true positive values for most of the classes, our method also portrays
comparable results. Note that our technique has a high true positive count for the human class, which
is the most frequent class in the dataset, as compared to the FCGR method.

Similarly, the confusion matrices for the Human DNA dataset are illustrated in Figure 21, and they
portray similar patterns as the host dataset’s matrices.

28



(a) Lysosomal (b) Lysosomal

(c) Cytoplasmic (d) Plasma Membrane

Figure 18: The histogram of embeddings extracted from the last layer of the 2-layer CNN model for
the Bézier-based images of Protein Subcellular dataset. (a) & (b) shows the plots for two different
embeddings belonging to the Lysosomal class and they have a 0.17 Euclidean distance. (c) & (d)
contain the histograms of embeddings belonging to Cytoplasmic and Plasma Membrane classes
respectively, and they have an Euclidean distance of 0.87.

29



(a) Lysosomal (b) Lysosomal

(c) Cytoplasmic (d) Plasma Membrane

Figure 19: The histogram of embeddings extracted from the last layer of the 2-layer CNN model for
the FCGR-based images of Protein Subcellular dataset. (a) & (b) shows the plots for two different
embeddings belonging to the Lysosomal class and they have a 0.88 Euclidean distance. (c) & (d)
contain the histograms of embeddings belonging to Cytoplasmic and Plasma Membrane classes
respectively, and they have an Euclidean distance of 1.30.

(a) FCGR (b) Bézier

Figure 20: Confusion matrices of Coronavirus host dataset for 2layer CNN classifier using the
FCGR- and Bézier-based image generation methods.

30



(a) FCGR (b) Bézier

Figure 21: Confusion matrices of Human DNA dataset for 2layer CNN classifier using the FCGR-
and Bézier-based image generation methods.

31


	Introduction
	Literature Review
	Proposed Approach
	Experimental Evaluation
	Data Statistics
	Baseline Models
	Classification Models
	Image Models
	Tabular Models


	Results and Discussion
	Protein Subcellular Dataset's Performence
	Coronavirus Host Dataset's Performance
	ACP Dataset's Performance
	Human DNA Dataset Performance
	SMILES String Dataset Performance
	Music Genre Dataset Performance
	t-SNE Data Visualization
	Confusion Matrix Results And Discussion

	Conclusion
	Introduction
	Proposed Approach
	Data Statistics
	Protein Subcellular Localization Dataset
	Coronavirus Host Dataset
	Anticancer Peptides (ACPs) Dataset
	Human DNA Dataset
	SMILES String shamay2018quantitative
	Music Dataset li2003comparative

	Baseline Models
	One-Hot Encoding (OHE) kuzmin2020machine
	Wasserstein Distance Guided Representation Learning (WDGRL) shen2018wasserstein
	Frequency Chaos Game Representation (FCGR) lochel2020deep
	Random Chaos Game Representation (RandomCGR) muradnew

	Experimental Evaluation
	Evaluation Metrics
	Image Models


	Results and Discussion
	Coronavirus Host Dataset's Performance
	ACP Dataset's Performance
	t-SNE Data Visualization
	Inter-Class Correlation
	Interpretablity
	Confusion Matrix Results And Discussion


