
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TURTLEAI: BENCHMARKING VISUAL PROGRAMMING
AND REASONING FOR MULTIMODAL MODELS IN
TURTLE GRAPHICS

Anonymous authors
Paper under double-blind review

ABSTRACT

Multimodal vision-language models (VLMs) have achieved remarkable success
in fundamental visual tasks like image captioning and visual question answering.
However, their performance on complex visual tasks requiring integrated visual rea-
soning and problem-solving capabilities remains underexplored. To bridge this gap,
we introduce TURTLEAI, a multimodal benchmark to evaluate VLMs on visual pro-
gramming and reasoning tasks in the Turtle Graphics domain. Our benchmark con-
tains 823 visual programming tasks that challenge VLMs to generate Python code
to replicate patterns in images. Evaluation of 20 VLMs reveals that state-of-the-art
models like GPT-4o and Qwen2-VL-72B struggle with these tasks, achieving suc-
cess rates of only 26.5% and 11.8% respectively. Our analysis reveals that models
often fail to align their code implementation with visual reasoning. To address this
misalignment, we propose TURTLEAI-Datagen, a data generation framework that
creates large-scale synthetic datasets consisting of task-code pairs. Using just 10
initial samples, TURTLEAI-Datagen generates over 700k samples. Fine-tuning
on this dataset significantly reduces errors arising from the misalignment between
visual reasoning and program synthesis, improving Qwen2-VL-72B’s performance
by over 20%. We will release the benchmark publicly to facilitate future research.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable capabilities across various do-
mains (Bubeck et al., 2023). Recent work has integrated visual modalities into LLMs, leading
to the emergence of multimodal vision-language models (VLMs) like GPT-4o (OpenAI, 2024a)
and Qwen2-VL (Wang et al., 2024). These VLMs extend their versatility to tasks requiring visual
understanding and reasoning, such as image captioning (Ramesh et al., 2021), visual question answer-
ing (Radford et al., 2021; Yue et al., 2024), and visual math reasoning (Lu et al., 2024a), showcasing
capabilities across diverse visual domains.

Despite these advancements, VLM performance on complex tasks requiring integrated visual rea-
soning and problem-solving capabilities remains underexplored. Real-world visual tasks often
necessitate visual reasoning to understand, interpret, and analyze visual information, followed by
problem-solving to devise effective solutions (Lu et al., 2024b; Badue et al., 2021; Billard & Kragic,
2019). For instance, in robotic manipulation, a robot needs to first visually comprehend the spatial
relationships among objects and then plan a sequence of actions to manipulate the object to the
desired location (Billard & Kragic, 2019). While some benchmarks focus on assessing visual rea-
soning capabilities (Hendrycks et al., 2021; Lu et al., 2024a), there remains a gap in evaluating how
well VLMs can solve complex tasks that require integrated visual reasoning and problem-solving
capabilities (e.g., programming).

To bridge this gap, we introduce TURTLEAI, a novel benchmark for assessing VLMs’ capabilities in
visual programming and reasoning within the Turtle Graphics domain. The benchmark comprises
823 visual programming tasks, each requiring VLMs to generate Python code that reproduces a
target image. Figure 1 illustrates example images and corresponding VLM outputs. To solve these
tasks, a model needs to first understand visual patterns and reason about spatial relationships, such
as layout, size, position, and angles. Then, it needs to translate this visual analysis into executable

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Pixtral-12B

Pixtral-12B-TURTLE
(Fine-tuned)

GPT-4o

Qwen2-VL-72B

Qwen2-VL-72B-TURTLE
 (Fine-tuned)

Analyze the provided image of a geometric pattern. Write
Python code to replicate the pattern in the image.

Input Image

 N.A.

(a) VLMs’ outputs for replicating different input images.

def draw(t):
 """
 Draws a flower-like pattern composed of 12 dodecagons.
 Each dodecagon is rotated by 30 degrees relative to
 the previous one, creating a star-like structure.
 """

 def draw_polygon(side_length=50, num_sides=12):
 """
 Draws a single regular polygon with the
 given side length and number of sides.
 """
 angle = 360 / num_sides
 for _ in range(num_sides):
 t.forward(side_length)
 t.left(angle)

 def draw_flower(num_petals, side_length,
 num_sides, angle):
 """
 Draws a flower with the given number of
 petals, side length, number of sides, and angle.
 """
 for _ in range(num_petals):
 draw_polygon(side_length, num_sides)
 t.left(angle)

 # Draws 12 dodecagons, each rotated by 30 degrees
 draw_flower(num_petals=12, side_length=50,
 num_sides=12, angle=30)

(b) Solution code for replicating the image .

Figure 1: Outputs of VLMs on visual-to-code generation tasks and an example solution code. (a)
shows the input images and the visual outputs produced by executing each VLM’s generated Python
code, with success (✓) or failure (×) shown for each output. (b) shows an example solution code for
replicating the image .

Python code. For instance, drawing a flower-like dodecagon pattern () requires understanding the
pattern, decomposing it into basic shapes (i.e., dodecagons), counting repetitions, reasoning about
rotation angles, sequencing steps, and converting these reasoning outcomes into executable Python
code (see Figure 1b). Successfully tackling these tasks requires integrated visual reasoning and
problem-solving capabilities, presenting unique challenges for existing VLMs.

We evaluate various VLMs and find that state-of-the-art VLMs like GPT-4o (OpenAI, 2024a) and
Qwen2-VL-72B (Wang et al., 2024) struggle with these tasks, achieving success rates of only
26.5% and 11.8% on basic programming tasks, respectively. We conduct systematic failure analysis
and find that GPT-4o struggles most with spatial reasoning and accurate visual replication, while
Qwen2-VL-72B struggles most with aligning the code implementation with visual reasoning. To
address these limitations, particularly the code implementation alignment issues, we introduce
TURTLEAI-Datagen, a novel data generation framework that uses large models to generate datasets
consisting of task-code pairs. We leverage TURTLEAI-Datagen to use only 10 seed samples to
generate over 700, 000 synthetic task-code pairs. We fine-tune Qwen2-VL-72B on this synthetic
dataset, achieving a 35.3% success rate, outperforming Qwen2-VL-72B by 23.5% and GPT-4o by
8.8%. Our analysis reveals that fine-tuning significantly reduces programming errors by 23.5%,
leading to better alignment between program synthesis and visual reasoning.

Our contributions are as follows: First, we introduce TURTLEAI, a multimodal benchmark that
evaluates VLMs’ capabilities in program synthesis and visual reasoning, along with an automated
evaluation framework for systematic evaluation. Second, we propose a novel data generation
framework, TURTLEAI-Datagen, that can effectively generate large-scale synthetic datasets from
a small set of seed samples. Third, we conduct comprehensive experiments and analyses on
TURTLEAI, revealing valuable insights into VLMs’ capabilities and limitations.

2 BACKGROUND AND SYNTHESIS OBJECTIVE

In this section, we provide background on Turtle Graphics and introduce the synthesis objective.

Background on Turtle Graphics. Turtle Graphics is a programmable method for creating vector
graphics using a relative cursor (the “turtle”) on a Cartesian plane (Python, 2024). Basic commands
like “forward”, “turn left”, and “pen down” control the turtle’s movement to draw lines and shapes.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Evaluation

TURTLEAI-DSBaisc

TURTLEAI-DSCraft

TURTLEAI-DSSyn

TURTLEAI-Eval

?

TURTLEAI-Datagen

Seed Dataset

Generated Dataset

Handcraft

Synthesize

Datasets Data GenerationBenchmark

TURTLEAI-Eval

TURTLEAI-DS

TURTLEAI-Datagen

Figure 2: Overview of the TURTLEAI benchmark. TURTLEAI comprises three key components: (i)
a collection of datasets TURTLEAI-DS for benchmarking, (ii) an evaluation framework TURTLEAI-
Eval for assessing the correctness of generated code, and (iii) a data generation framework TURTLEAI-
Datagen for generating synthetic datasets.

These commands can be combined with programming constructs such as loops, conditionals, and
functions to generate visually appealing geometric patterns. Turtle Graphics is widely used in K-12
education to teach programming concepts and computational thinking (Staub, 2021; XLogoOnline,
2024; University of Oxford, 2025; CodeHS, 2025; Turtle Academy, 2025).

Task specification. We define a visual programming task in Turtle Graphics as T := (img,ins), a
tuple consisting of a target image img and a text-based instruction ins. The target image specifies
the desired visual output, while the instruction specifies the requirements for generating the code that
will replicate the pattern shown in the target image.

Code specification. The code space for Turtle Graphics tasks is defined using the Python pro-
gramming language. A solution code for a task T is a Python code C that, after being executed, can
accurately replicate the target image img and satisfy the requirements specified by the instruction
ins. For consistent evaluation, the task’s instruction requires the solution code to be synthesized as
a function draw(t), which takes a turtle object t as input. For instance, Figure 1b shows a solution
code that generates the image .

Program synthesis objective. The synthesis objective is to develop a synthesizer function, M :
T → C, which generates a solution code C for a given task T in Turtle Graphics. To evaluate M on
a task T, we first use M to synthesize a code Ĉ which contains a Python function draw(t). To
evaluate the correctness of this Python function, a straightforward way is to compare the images
generated by Ĉ and C pixel-by-pixel. However, this pixel-wise comparison fails to account for
differences in size, position, or line width of patterns being drawn in images (Marbach et al., 2022).
In the next section, as part of our benchmark TURTLEAI, we will address this by introducing an
evaluation framework.

3 THE TURTLEAI BENCHMARK

In this section, we first provide an overview of the benchmark, including its datasets, evaluation,
and data generation, followed by a detailed description of each part.

3.1 OVERVIEW OF TURTLEAI

TURTLEAI is a benchmark within the Turtle Graphics domain. Figure 2 illustrates the key components
of TURTLEAI, which consists of:

1. TURTLEAI-DS: a collection of evaluation datasets including (i) TURTLEAI-DSBasic, which is a
basic dataset curated from the visual programming platform XLogoOnline (XLogoOnline, 2024),
(ii) TURTLEAI-DSCraft, which is a hand-crafted dataset containing human-drawn tasks, and (iii)
TURTLEAI-DSSyn, which is a synthetic dataset of selected high-quality synthesized tasks.

2. TURTLEAI-Eval: an evaluation framework for assessing the correctness of synthesized code.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Composite

Spiral

Scaling

Rotation

Basic
Geometry

Translation

(a) Examples tasks

0 20 40

Basic geometry

Translation

Rotation

Scaling

Spiral

Composite

39

20

16

4

1

22

Easy

Medium

Hard

(b) DSBasic/DSCraft

0 100 200 300

Basic geometry

Translation

Rotation

Scaling

Spiral

Composite

32

106

108

38

11

324

(c) DSSyn

0 200 400

Basic geometry

Translation

Rotation

Scaling

Spiral

Composite

110

146

140

46

13

368

(d) TURTLEAI-DS

Dataset Easy Medium Hard Total

DSBasic 80 22 0 102
DSCraft 80 22 0 102
DSSyn 135 425 59 619

DS 295 469 59 823

(e) Difficulty distributions

Figure 3: Dataset composition and statistics. Tasks are divided into six categories and three difficulty
levels. (a) shows representative examples for each category. (b-d) show the distributions of these
categories in TURTLEAI-DSBasic, TURTLEAI-DSSyn, and TURTLEAI-DS, respectively. Note
that TURTLEAI-DSCraft has the same distribution as TURTLEAI-DSBasic. (e) shows the difficulty
distribution across different datasets. Detailed labeling process for task categories and difficulty levels
are provided in Appendix B.2.

3. TURTLEAI-Datagen: a data generation framework that synthesizes high-quality task-code pairs,
used to generate both the evaluation dataset TURTLEAI-DSSyn and a large-scale training dataset
TURTLEAI-Train.

3.2 EVALUATION DATASETS TURTLEAI-DS

TURTLEAI includes TURTLEAI-DS, a collection of 823 evaluation tasks organized into three distinct
datasets. Figure 3 shows the example tasks and distribution of these datasets.

TURTLEAI-DSBasic (Size 102). This is a basic dataset containing tasks curated from the visual
programming platform XLogoOnline (XLogoOnline, 2024). These tasks are originally designed by
experts to teach the basic programming concepts of Turtle Graphics and have been widely used in the
programming education domain (Staub, 2021).

TURTLEAI-DSCraft (Size 102). This is a hand-crafted dataset containing tasks generated by
hand-drawing each task in TURTLEAI-DSBasic.

TURTLEAI-DSSyn (Size 619). This is a synthetic dataset containing tasks generated using
TURTLEAI-DSBasic as a seed dataset for our data generation framework (see Section 3.4), fol-
lowed by manual selection of high-quality tasks.

More details about the dataset generation process are provided in Appendix B.

3.3 EVALUATION FRAMEWORK TURTLEAI-EVAL

In our benchmark, evaluation checks whether a synthesized code Ĉ produces the semantically same
drawing as the ground-truth code C. As discussed in Section 2, simple pixel-wise comparison fails to
account for differences in size, position, or line width of the drawn pattern (Marbach et al., 2022).
For example, a square with side length 100 would be considered different from a square with side
length 101, even though they are semantically equivalent from a human perspective.

To address this issue, we propose a robust evaluation framework, TURTLEAI-Eval, which compares
drawings in a transformed, normalized (canonical) space that is invariant to size, position, and line
width. Our evaluation framework works as follows: First, we implement a customized Turtle Graphics
emulator to execute C and Ĉ, generating their respective drawings. During execution, the emulator
records all drawing states, such as coordinates and colors for drawing lines, filling polygon, etc.
Second, we normalize the recorded coordinates to a fixed range, center the drawings at the origin,
and standardize line widths to 1. Third, we sequentially render these normalized drawing states into

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

images, producing standardized images img and ˆimg for C and Ĉ, respectively.1 Finally, we provide
the following two metrics to compare these two images:

• Symbolic comparison: This compares the standardized img and ˆimg pixel-by-pixel. If the per-
centage of the same pixels between img and ˆimg is above a predefined threshold, the comparison
result is success; otherwise, the comparison result is fail.

• Embedding-based comparison: This compares the standardized img and ˆimg from the embedding
space. This is achieved by first extracting the image embeddings from img and ˆimg using a
pre-trained image encoder model such as ResNet18 (He et al., 2016). Then a similarity score is
computed between these embeddings using a distance metric and normalized between range [0, 1].
If the similarity score exceeds a predefined threshold, the comparison result is success; otherwise,
the comparison result is fail.2

The two comparison methods address different evaluation needs: symbolic comparison checks exact
pixel-space equivalence, while embedding-based comparison measures semantic similarity, tolerating
minor rotations and scaling that symbolic comparison rejects. We validate the accuracy of both
methods against human evaluation, achieving 99.1% and 98.1% accuracy, respectively. Further
analysis are provided in Appendix D.

3.4 DATA GENERATION FRAMEWORK TURTLEAI-DATAGEN

Code Mutation

 Sampling

 Code Mutation

Elite Selection

 Cluster Algorithm

 Elite Selection

CoT Labeling

 CoT Labeling

Describe the image

Explain the code step-
by-step

Add documentation to
the code

Figure 4: Illustration of the data generation frame-
work TURTLEAI-Datagen, which comprises three
stages: (i) code mutation to create diverse code vari-
ants via reference-guided mutation, (ii) elite selec-
tion to deduplicate and select high-quality samples,
and (iii) CoT labeling to add CoT annotations.

We evaluate various VLMs and find that state-
of-the-art VLMs like GPT-4o (OpenAI, 2024a)
and Qwen2-VL-72B (Wang et al., 2024) strug-
gle with these tasks, achieving success rates
of only 26.5% and 11.8% on TURTLEAI-
DSBasic, respectively. To investigate the rea-
sons, we analyze Qwen2-VL-72B’s failures
and find the most common error (30.4% of
tasks) is failing to implement code consis-
tent with its visual reasoning. This is likely
due to insufficient training data on code-to-
image alignment in Turtle Graphics. To address
this, we propose TURTLEAI-Datagen, a novel
framework that generates high-quality image-
code pairs for supervised training to bridge
the gap between visual reasoning and code im-
plementation. TURTLEAI-Datagen is iterative,
consisting of three stages described below.

Stage 1: code mutation. This stage aims to generate a larger set of codes from the seed dataset
Dt (Xu et al., 2024; Ahmed et al., 2020; Wen et al., 2024). This can be done by pre-defining
instructions for LLMs to mutate the codes (Xu et al., 2024). For example, one can use the instruction
“add a loop to the code” to guide the LLM to mutate an input code Cin:

Cout = LLM(Cin, instruction = “add a loop to the code”). (1)

However, a fixed set of pre-defined instructions limits the diversity of mutated codes by only capturing
explicitly specified mutation patterns. To address this, we propose reference-guided code mutation,
which uses a LLM to infer mutation patterns. In our approach, the LLM is given a pair of reference
codes (Cref1

,Cref2
) and prompted to infer the high-level mutation pattern m(Cref1

,Cref2
). It then

applies this pattern to another input code Cin, producing a new mutated output code:

Cout = LLM
(
Cin, instruction = m(Cref1 ,Cref2)

)
. (2)

We apply this process to extend the seed dataset: for each Cin ∈ Dt, we randomly sample p reference
code pairs from Dt and apply them to generate mutated codes. These codes are then executed to
obtain images, producing a larger dataset of image-code pairs.

1For notational simplicity, we also use img to denote its standardized version when the context is clear.
2The threshold is chosen based on comparison with human-annotated ground truth (see Appendix D).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Stage 2: elite selection. In this stage, we first use a clustering algorithm to remove duplicated
code-image pairs in the dataset. Then we use a VLM to score image quality based on predefined
rubrics. Finally, we select the top k% image-code pairs, which serve as the seed dataset for the next
iteration t+ 1. After n iterations, this produces a large-scale dataset Dt+n.

Stage 3: CoT labeling. The final stage of TURTLEAI-Datagen labels each image-code pair in
Dt+n with Chain-of-Thought (CoT) reasoning for step-by-step code generation (Wei et al., 2022;
Zelikman et al., 2022). For each (img,C) pair, we instruct a VLM to generate CoT reasoning
by first describing the image, then explaining the solution code step by step, and finally adding
documentation. This produces a dataset of image-code pairs with CoT reasoning.

Generating training dataset TURTLEAI-Train. By leveraging TURTLEAI-Datagen, we generate a
large-scale training dataset TURTLEAI-Train with 738, 126 image-code pairs. This is achieved by
starting with a manually curated seed of 10 pairs and applying TURTLEAI-Datagen for 5 iterations.
More details are provided in Appendix B.2.

4 EXPERIMENTAL EVALUATION

In this section, we evaluate VLMs on the TURTLEAI benchmark. We first describe the experimental
setup in Section 4.1, then present the main results in Section 4.2, followed by failure analysis
(Section 4.3), fine-tuning scaling analysis (Section 4.4), and out-of-distribution analysis (Section 4.5).

4.1 EXPERIMENTAL SETUP

Benchmark datasets. We use the four evaluation datasets described in Section 3.2 for evaluation,
including TURTLEAI-DSBasic, TURTLEAI-DSCraft, TURTLEAI-DSSyn, and TURTLEAI-DS.

Evaluation procedure and metrics. Each evaluation dataset consists of (T,C) pairs. For each pair,
we provide the task image img and a fixed prompt instructing the model to generate the code snippet
Ĉ in the desired format. The model may also output explanations, but we only extract Ĉ. We then
evaluate Ĉ against the ground-truth C using our evaluation framework (Section 3.3). The success
rate is the number of successful predictions divided by the total number of samples. We report both
symbolic- and embedding-based success rates. For the main experiments, success rates are based
on greedy decoding; Pass@K results from random sampling are provided in Appendix C.5.

Models evaluated. We compare various VLMs: (i) Reasoning VLMs, including GPT-family models:
GPT-5 (OpenAI, 2025a), o3, and o4-mini (OpenAI, 2025b); (ii) Non-reasoning Base VLMs, covering
model families from GPT (OpenAI, 2024a), Qwen (Wang et al., 2024), Molmo (Deitke et al., 2024),
Llava (Li et al., 2024a), Pixtral (Agrawal et al., 2024), and InternVL (Chen et al., 2023); (iii) Fine-
tuned VLMs, trained on our TURTLEAI-Train dataset with 738k samples, denoted with the TURTLE
suffix. Full model details and fine-tuning are in Appendix E.2.

4.2 MAIN RESULTS

TURTLEAI is challenging for all existing VLMs. As shown in Figure 5, among base models, o3
achieves the highest symbolic success rate of 40.2% on TURTLEAI-DSBasic, while o4-mini achieves
the highest rate of 15.9% on TURTLEAI-DS. Other open-source models perform worse, with success
rates of 11.8% and 6.6% on TURTLEAI-DSBasic and TURTLEAI-DS, respectively.

Fine-tuning helps yet remains limited. Fine-tuned models Pixtral-12B-TURTLE, Qwen2-VL-
7B-TURTLE, and Qwen2-VL-72B-TURTLE reach symbolic-based success rates of around 30% on
TURTLEAI-DSBasic and 15% on TURTLEAI-DS, outperforming their base models by around 20%
and 10%, respectively. This shows that TURTLEAI-Datagen can generate large-scale synthetic
datasets that effectively boost VLM performance on our benchmark. However, given the inherent
challenges of TURTLEAI, fine-tuned performance remains far from satisfactory.

4.3 FAILURE ANALYSIS

To examine VLM limitations, we conduct a systematic failure analysis on three representative
models: GPT-4o, Qwen2-VL-72B, and Qwen2-VL-72B-TURTLE, using the TURTLEAI-DSBasic

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

TURTLEAI-DSBasic TURTLEAI-DSCraft TURTLEAI-DSSyn TURTLEAI-DS

Size Sym. (%) Emb. (%) Sym. (%) Emb. (%) Sym. (%) Emb. (%) Sym. (%) Emb. (%)

Reasoning:
o3 - 40.20 44.12 8.82 9.80 10.18 9.21 13.73 13.61
o4-mini - 36.27 38.24 28.43 29.41 10.50 10.50 15.92 16.28
GPT-5 (medium) - 27.45 29.41 0.98 0.98 7.43 6.79 9.11 8.87

Non-reasoning (≥ 72B):
GPT-4o - 26.47 28.43 12.75 13.73 5.82 5.17 9.23 9.11
GPT-4V - 15.69 17.65 8.82 10.78 3.23 2.75 5.47 5.59
Pixtral-Large 124B 10.78 11.76 13.73 15.69 4.68 3.88 6.56 6.32
Qwen2-VL 72B 11.76 14.71 7.84 8.82 1.45 1.62 3.52 4.13
Llava-OneVision 72B 4.90 3.92 6.86 5.88 0.97 0.97 2.19 1.94
InternVL2 76B 11.76 13.73 7.84 8.82 1.13 0.65 3.28 3.28
Molmo 72B 3.92 4.90 4.90 4.90 1.62 1.45 2.31 2.31
NVLM-1.0-D 72B 0.00 0.00 0.00 0.00 0.16 0.16 0.12 0.12
Qwen2-VL-TURTLE 72B 35.29 39.22 6.86 6.86 19.06 17.12 19.56 18.59

Non-reasoning (≤ 12B):
Pixtral 12B 9.80 9.80 2.94 2.94 0.97 0.97 2.31 2.31
Qwen2-VL 7B 0.98 0.98 0.00 0.00 0.00 0.00 0.12 0.12
Llava-OneVision 7B 3.92 3.92 2.94 2.94 0.32 0.48 1.09 1.22
InternVL2 8B 0.00 0.98 0.98 1.96 0.00 0.00 0.12 0.36
GLM-4V 9B 0.00 0.00 0.00 0.98 0.00 0.00 0.00 0.12
Molmo 7B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Pixtral-TURTLE 12B 27.45 29.41 9.80 9.80 13.41 12.12 14.70 13.97
Qwen2-VL-TURTLE 7B 28.43 30.39 6.86 8.82 11.95 11.15 13.37 13.24

Figure 5: Performance comparison of VLMs on different datasets. We evaluate VLMs using both
symbolic comparison (Sym.) and embedding-based comparison (Emb.), with results shown as success
rates (%). Fine-tuned models are denoted by the suffix TURTLE. The best performance within each
group is shown in bold, and the second-best is underlined.

dataset. We manually review generated images, code, and available explanations to identify root
causes of errors, attributing each case to the failure type that contributes most.3 The distribution
of failure types is shown in Figure 6, with definitions and examples in Appendix B.3.

Models consistently struggle with spatial reasoning. We find that all models struggle with spatial
reasoning, which is the ability to reason about the spatial relationships between different patterns in
the image, such as relative positions, distances, angles, and sizes of patterns. This might be due to the
scarcity of training data that captures spatial relationships when training VLMs.

Models struggle with precise visual details. We find that despite correct visual reasoning, models
still face difficulties in achieving visual precision during replication. For instance, both GPT-4o
and Qwen2-VL-72B can often replicate the intended image from a high-level perspective but fail to
achieve low-level visual accuracy, such as ignoring tiny details like angles and relative positions.

Models often miss crucial details in images. Visual understanding errors remain common between
Qwen2-VL-72B and Qwen2-VL-72B-TURTLE. During review, we found that they often overlook
small but crucial details and describe images using approximate common patterns. For instance, if
an image shows a square with a unique cut-off, the models might just describe and draw a regular
square, ignoring the specific cut-off.

Fine-tuning improves code-reasoning alignment. By comparing Qwen2-VL-72B and Qwen2-VL-
72B-TURTLE, we observe that fine-tuning increases the success rate from 10.8% to 35.3%, mainly
by reducing programming errors (from 30.4% to 6.9%). Visual understanding and spatial reasoning
errors remain largely unchanged, suggesting that fine-tuning primarily improves alignment of code
with visual reasoning rather than the reasoning itself.

4.4 SCALING OF FINE-TUNING PERFORMANCE WITH DATASET SIZE

We study how fine-tuning performance scales with the size of datasets generated by TURTLEAI-
Datagen across different iterations. To this end, we fine-tune Pixtral-12B on datasets from each
iteration and evaluate the resulting models, as shown in Figure 6d. The dataset grows exponentially
with the number of iterations, at a rate of roughly 9.7, meaning each iteration produces a dataset
approximately 9.7 times larger than the previous one. Performance improvements depend on the

3For failure analysis, we apply CoT prompting to Qwen2-VL-72B to elicit image descriptions and reasoning,
yielding a 10.78% success rate on TURTLEAI-DSBasic, close to non-CoT’s 11.76%.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Visual
Understanding

Spatial
Reasoning

Decomposition

Programming

Precision

Success

4.9%
26.5%

9.8%

11.8%
20.6%

26.5%

Visual
Understanding

Spatial
Reasoning

Decomposition

Programming

Precision

Repetition

Success 22.5%

17.6%

6.9%
30.4%

6.9%

4.9%

10.8%

Visual
Understanding

Spatial
Reasoning

Decomposition

Programming

Precision
Evaluation

Error

Success

22.5%

16.7%

4.9%

6.9%11.8%
2.0%

35.3%

(a) GPT-4o

Visual
Understanding

Spatial
Reasoning

Decomposition

Programming

Precision

Success

4.9%
26.5%

9.8%

11.8%
20.6%

26.5%

Visual
Understanding

Spatial
Reasoning

Decomposition

Programming

Precision

Repetition

Success 22.5%

17.6%

6.9%
30.4%

6.9%

4.9%

10.8%

Visual
Understanding

Spatial
Reasoning

Decomposition

Programming

Precision
Evaluation

Error

Success

22.5%

16.7%

4.9%

6.9%11.8%
2.0%

35.3%

(b) Qwen2-VL-72B

Visual
Understanding

Spatial
Reasoning

Decomposition

Programming

Precision

Success

4.9%
26.5%

9.8%

11.8%
20.6%

26.5%

Visual
Understanding

Spatial
Reasoning

Decomposition

Programming

Precision

Repetition

Success 22.5%

17.6%

6.9%
30.4%

6.9%

4.9%

10.8%

Visual
Understanding

Spatial
Reasoning

Decomposition

Programming

Precision
Evaluation

Error

Success

22.5%

16.7%

4.9%

6.9%11.8%
2.0%

35.3%

(c) Qwen2-VL-72B-TURTLE

Ø D1 D2 D3 D4 D5

Dataset

0

5

10

15

20

25

30

S
u

cc
es

s
R

at
e

(%
)

TurtleAI-DSBasic

TurtleAI-DSCraft

TurtleAI-DSSyn

TurtleAI-DS

100

101

102

103

104

105

106

D
at

a
se

t
S

iz
e

(L
o
g

S
ca

le
)

0

84

806

7,836

74,738

738,126

Dataset Size

(d) Performance of fine-tuned Pixtral-12B-TURTLE

Figure 6: Analysis of failure types and scaling of fine-tuning performance. (a-c) show the distribution
of failure types for three VLMs on TURTLEAI-DSBasic. (d) shows the performance of fine-tuned
Pixtral-12B-TURTLE using datasets generated across different iterations.

DSBasic DSCraft

Qwen2-VL-72B 11.76 7.84
Qwen2-VL-72B-TURTLE 35.29 6.86

Qwen2-VL-7B 0.98 0.00
Qwen2-VL-7B-TURTLE 28.43 6.86
Pixtral-12B 9.80 2.94
Pixtral-12B-TURTLE (w/ CoT) 27.45 9.80
Pixtral-12B-TURTLE (w/o CoT) 22.55 0.00

(a) Success rates (%) on in-domain datasets.

HumanEval+ MBPP+

Qwen2-VL-72B 85.4 77.5
Qwen2-VL-72B-TURTLE 67.7 73.5

Qwen2-VL-7B 70.7 55.3
Qwen2-VL-7B-TURTLE 28.0 33.1

(b) Success rates (%) on out-of-domain datasets.

Figure 7: (a) Success rates (%) on in-domain datasets; DSCraft contains hand-drawn OOD tasks from
the same domain. (b) Pass@1 success rates (%) on out-of-domain program synthesis benchmarks;
fine-tuned models are not tuned for these tasks.

dataset: for TURTLEAI-DSBasic, fine-tuning scales linearly with dataset size, while for TURTLEAI-
DSSyn, the improvement is nearly exponential. In contrast, for the out-of-distribution dataset
TURTLEAI-DSCraft, performance saturates after the first iteration and remains stable in subsequent
iterations. These results suggest that exponentially larger datasets generated by TURTLEAI-Datagen
can improve fine-tuning performance, although out-of-distribution datasets like TURTLEAI-DSCraft
do not benefit from the increased data.

4.5 OUT-OF-DISTRIBUTION ANALYSIS OF FINE-TUNED MODELS

We analyze fine-tuned models on both in-domain and out-of-domain out-of-distribution (OOD) tasks,
providing insights into their generalization capabilities. Results are shown in Figure 7.

Fine-tuning can preserve or improve in-domain OOD capability via CoT. We examine whether
fine-tuned models can solve in-domain out-of-distribution tasks by comparing them with their base
models on DSBasic and the hand-drawn OOD dataset DSCraft. DSCraft is created by hand-drawing
images from DSBasic tasks and thus serves as an in-domain OOD dataset. As shown in Figure 7a,
fine-tuning consistently improves performance on DSBasic, but offers little benefit on DSCraft for
moderately performing models (Qwen2-VL-72B) and noticeable gains for weaker ones (Qwen2-VL-
7B, Pixtral-12B). We hypothesize that CoT labeling stage in the data generation process may enhance

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

OOD performance, as it generates image descriptions that help ignore irrelevant variations in hand-
drawn images. To test, we ablate CoT labeling stage in the data generation and fine-tune Pixtral-12B
to obtain Pixtral-12B-TURTLE (w/o CoT). As shown in Figure 7a, this model fails on DSCraft despite
outperforming Pixtral-12B on DSBasic, showing that CoT labeling is useful for OOD generalization.

Fine-tuning leads to forgetting in out-of-domain tasks. We investigate whether fine-tuning affects
performance on out-of-domain tasks. To this end, we test fine-tuned Qwen2-VL models against their
base versions on out-of-domain benchmarks, including HumanEval+ and MBPP+ (Liu et al., 2023).
Pass@1 success rates are shown in Figure 7b. The results show a clear drop in performance after
fine-tuning, consistent with prior work showing that fine-tuning may lead to some degrees of forget-
ting (Zeng et al., 2024a; Li et al., 2024b). This forgetting issue is more pronounced in the 7B model,
suggesting smaller models are more prone to overfitting and losing general capabilities. The 72B
model retains better generality, which might due to the higher capacity in retaining general knowledge.

5 RELATED WORK

Program synthesis benchmarks. Program synthesis aims to generate programs from specifica-
tions (Gulwani et al., 2017). Most benchmarks evaluate LLMs on generating code from natural
language or docstrings (Chen et al., 2021; Rozière et al., 2023; Fried et al., 2023; Nijkamp et al., 2023;
Austin et al., 2021). Recent work has extended this to visual programming, where code is generated
from visual input (Wen et al., 2025; Gupta & Kembhavi, 2023; Padurean & Singla, 2024), though typi-
cally limited to domain-specific programs with simple code spaces. Our benchmark instead targets vi-
sual program synthesis in Python, emphasizing semantically richer and more complex code structures.

Program synthesis for inverse graphics. This task involves generating programs that reconstruct
given graphical images. Prior work has studied it across domains such as SVG (Rodriguez et al.,
2025; Zou et al., 2024), scientific figures (Belouadi et al., 2024), and Turtle Graphics (Ellis et al.,
2021; Li & Ellis, 2024). We benchmark VLMs in Turtle Graphics, the vector graphics widely used
in programming education (XLogoOnline, 2024; University of Oxford, 2025). Earlier work provided
a preliminary evaluation of 3 VLMs on 260 tasks (Rismanchian et al., 2024), whereas our benchmark
delivers a larger-scale, more comprehensive study, covering 20 models on 800+ tasks.

Synthetic dataset generation using large models. Large models are widely used to generate
synthetic datasets across domains, including instruction-following, code, and CoT reasoning (Wang
et al., 2023; Xu et al., 2024; Wei et al., 2024; Zelikman et al., 2022; Haluptzok et al., 2023). Such
generation typically begins with a seed dataset and follows either a specification- or sample-based
approach. The former relies on human-curated specifications to guide LLMs (Xu et al., 2024; Luo
et al., 2024), while the latter draws from the seed dataset to provide context or inspiration (Haluptzok
et al., 2023; Wang et al., 2023; Wei et al., 2024). Our framework adopts the sample-based approach
but leverages samples as references to infer mutation patterns.

6 CONCLUDING DISCUSSIONS

Summary. In this paper, we introduced TURTLEAI, a multimodal benchmark for evaluating VLMs
on visual programming and reasoning tasks. The benchmark comprises 823 tasks, each requiring
the model to generate Python code to replicate given geometric patterns. Our evaluation revealed
that existing VLMs struggle significantly in this domain, particularly in aligning program synthesis
with visual reasoning. To address this challenge, we proposed TURTLEAI-Datagen, a novel data
generation framework that generates high-quality synthetic data for alignment training. By leveraging
this approach to create a 738k dataset and fine-tuning Qwen2-VL-72B, we achieved state-of-the-art
performance with a 35.3% success rate while reducing code-reasoning alignment errors by over 20%.

Limitations and future work. We discuss some limitations of our work and propose ideas for
addressing them in the future. First, our evaluation framework includes a normalization step that
makes drawing comparison invariant to size, position, and line width, which may discard meaningful
geometric variations that are essential in inverse graphics tasks. Future work could explore evaluation
methods that preserve these geometric properties. Second, fine-tuned models struggle with out-of-
distribution tasks. Future work could explore techniques such as random noise injection and domain
mixup to improve generalization.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

For better reproducibility, we provide some references that help with reproducing the results. Specif-
ically, we provide the source code in the supplementary material, including the datasets, dataset
generation scripts, and model evaluation artifacts. In Appendix B, we provide detailed descriptions
of the dataset generation and labeling process. Appendix E contains implementation details for the
data generation, model fine-tuning, model evaluation, and the evaluation framework. The prompts
used in this paper are provided in Appendix G.

REFERENCES

Pravesh Agrawal et al. Pixtral 12B. CoRR, abs/2410.07073, 2024.

Umair Z. Ahmed, Maria Christakis, Aleksandr Efremov, Nigel Fernandez, Ahana Ghosh, Abhik
Roychoudhury, and Adish Singla. Synthesizing Tasks for Block-based Programming. In NeurIPS,
2020.

Jacob Austin, Augustus Odena, Maxwell I. Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and Charles Sutton. Program Synthesis with
Large Language Models. CoRR, abs/2108.07732, 2021.

Claudine Badue, Rânik Guidolini, Raphael Vivacqua Carneiro, Pedro Azevedo, Vinicius B. Cardoso,
Avelino Forechi, Luan F. R. Jesus, Rodrigo Ferreira Berriel, Thiago M. Paixão, Filipe Wall Mutz,
Lucas de Paula Veronese, Thiago Oliveira-Santos, and Alberto F. De Souza. Self-driving cars: A
survey. Expert Syst. Appl., 2021.

Jonas Belouadi, Simone Paolo Ponzetto, and Steffen Eger. DeTikZify: Synthesizing Graphics
Programs for Scientific Figures and Sketches with TikZ. In NeurIPS, 2024.

Aude Billard and Danica Kragic. Trends and challenges in robot manipulation. Science, 2019.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott M. Lundberg, Harsha Nori, Hamid Palangi, Marco Túlio
Ribeiro, and Yi Zhang. Sparks of Artificial General Intelligence: Early experiments with GPT-4.
CoRR, abs/2303.12712, 2023.

Mark Chen et al. Evaluating Large Language Models Trained on Code. CoRR, abs/2107.03374,
2021.

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
Zhang, Xizhou Zhu, Lewei Lu, Bin Li, Ping Luo, Tong Lu, Yu Qiao, and Jifeng Dai. InternVL:
Scaling up Vision Foundation Models and Aligning for Generic Visual-Linguistic Tasks. CoRR,
abs/2312.14238, 2023.

CodeHS. Turtle Graphics with Tracy the Turtle. https://codehs.com/hourofcode/
tracy, 2025. Accessed: 2025-09-01.

Wenliang Dai, Nayeon Lee, Boxin Wang, Zhuoling Yang, Zihan Liu, Jon Barker, Tuomas Rintamaki,
Mohammad Shoeybi, Bryan Catanzaro, and Wei Ping. NVLM: Open Frontier-Class Multimodal
LLMs. CoRR, abs/2409.11402, 2024.

Matt Deitke et al. Molmo and PixMo: Open Weights and Open Data for State-of-the-Art Multimodal
Models. CoRR, abs/2409.17146, 2024.

Kevin Ellis, Catherine Wong, Maxwell I. Nye, Mathias Sablé-Meyer, Lucas Morales, Luke B. Hewitt,
Luc Cary, Armando Solar-Lezama, and Joshua B. Tenenbaum. DreamCoder: bootstrapping
inductive program synthesis with wake-sleep library learning. In PLDI, 2021.

Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise. In KDD, 1996.

10

https://codehs.com/hourofcode/tracy
https://codehs.com/hourofcode/tracy

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi, Ruiqi Zhong, Scott
Yih, Luke Zettlemoyer, and Mike Lewis. InCoder: A Generative Model for Code Infilling and
Synthesis. In ICLR, 2023.

Sumit Gulwani, Alex Polozov, and Rishabh Singh. Program Synthesis. 2017.

Tanmay Gupta and Aniruddha Kembhavi. Visual Programming: Compositional visual reasoning
without training. In CVPR, 2023.

Patrick Haluptzok, Matthew Bowers, and Adam Tauman Kalai. Language Models Can Teach
Themselves to Program Better. In ICLR, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. In CVPR, 2016.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring Massive Multitask Language Understanding. In ICLR, 2021.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-Rank Adaptation of Large Language Models. In ICLR, 2022.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient Memory Management for Large Language Model
Serving with PagedAttention. In SIGOPS, 2023.

Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Yan-
wei Li, Ziwei Liu, and Chunyuan Li. LLaVA-OneVision: Easy Visual Task Transfer. CoRR,
abs/2408.03326, 2024a.

Hongyu Li, Liang Ding, Meng Fang, and Dacheng Tao. Revisiting Catastrophic Forgetting in Large
Language Model Tuning. In EMNLP (Findings), 2024b.

Wen-Ding Li and Kevin Ellis. Is Programming by Example Solved by LLMs? In NeurIPS, 2024.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is Your Code Generated by
ChatGPT Really Correct? Rigorous Evaluation of Large Language Models for Code Generation.
In NeurIPS, 2023.

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng,
Kai-Wei Chang, Michel Galley, and Jianfeng Gao. MathVista: Evaluating Mathematical Reasoning
of Foundation Models in Visual Contexts. In ICLR, 2024a.

Yadong Lu, Jianwei Yang, Yelong Shen, and Ahmed Awadallah. OmniParser for Pure Vision Based
GUI Agent. CoRR, abs/2408.00203, 2024b.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. WizardCoder: Empowering Code Large Language Models with
Evol-Instruct. In ICLR, 2024.

Jeremy Marbach, Alexandra Maximova, and Jacqueline Staub. A Tool to Create and Conduct Custom
Assessments in Turtle Graphics. In ISSEP, 2022.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, and
Caiming Xiong. CodeGen: An Open Large Language Model for Code with Multi-Turn Program
Synthesis. In ICLR, 2023.

OpenAI. GPT-4o. https://openai.com/index/hello-gpt-4o/, 2024a.

OpenAI. GPT-4v. https://openai.com/index/gpt-4v-system-card/, 2024b.

OpenAI. GPT-5. https://openai.com/gpt-5/, 2025a.

OpenAI. o3 and o4-mini. https://openai.com/index/
introducing-o3-and-o4-mini/, 2025b.

11

https://openai.com/index/hello-gpt-4o/
https://openai.com/index/gpt-4v-system-card/
https://openai.com/gpt-5/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Victor-Alexandru Padurean and Adish Singla. Benchmarking Generative Models on Computational
Thinking Tests in Elementary Visual Programming. In NeurIPS Track on Datasets and Benchmarks,
2024.

Python. Python Turtle Graphics. https://docs.python.org/3/library/turtle.
html, 2024.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning Transferable Visual Models From Natural Language Supervision. In ICML, 2021.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-Shot Text-to-Image Generation. In ICML, 2021.

Sina Rismanchian, Yasaman Razeghi, Sameer Singh, and Shayan Doroudi. TurtleBench: A Vi-
sual Programming Benchmark in Turtle Geometry. In NeurIPS’24 Workshop on Mathematical
Reasoning and AI, 2024.

Juan A. Rodriguez, Abhay Puri, Shubham Agarwal, Issam H. Laradji, Sai Rajeswar, David Vázquez,
Christopher Pal, and Marco Pedersoli. StarVector: Generating Scalable Vector Graphics Code
from Images and Text. In AAAI, 2025.

Baptiste Rozière et al. Code Llama: Open Foundation Models for Code. CoRR, abs/2308.12950,
2023.

Jacqueline Staub. Logo Environments in the Focus of Time. Bulletin of EATCS, 2021.

Turtle Academy. Turtle Academy. https://turtleacademy.com/, 2025. Accessed: 2025-
09-01.

University of Oxford. The Turtle System. https://www.turtle.ox.ac.uk/, 2025. Accessed:
2025-09-01.

Peng Wang et al. Qwen2-VL: Enhancing Vision-Language Model’s Perception of the World at Any
Resolution. CoRR, abs/2409.12191, 2024.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-Instruct: Aligning Language Models with Self-Generated Instructions.
In ACL, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-Thought Prompting Elicits Reasoning in Large Language
Models. In NeurIPS, 2022.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and Lingming Zhang. Magicoder: Empowering
Code Generation with OSS-Instruct. In ICML, 2024.

Chao Wen, Ahana Ghosh, Jacqueline Staub, and Adish Singla. Task Synthesis for Elementary Visual
Programming in XLogoOnline Environment. In AIED Track on Late Breaking Results, 2024.

Chao Wen, Jacqueline Staub, and Adish Singla. Program Synthesis Benchmark for Visual Program-
ming in XLogoOnline Environment. In ACL, 2025.

XLogoOnline. XLogoOnline Platform. https://xlogo.inf.ethz.ch/, 2024.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei
Lin, and Daxin Jiang. WizardLM: Empowering Large Pre-Trained Language Models to Follow
Complex Instructions. In ICLR, 2024.

Xiang Yue et al. MMMU: A Massive Multi-Discipline Multimodal Understanding and Reasoning
Benchmark for Expert AGI. In CVPR, 2024.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. STaR: Bootstrapping Reasoning With
Reasoning. In NeurIPS, 2022.

12

https://docs.python.org/3/library/turtle.html
https://docs.python.org/3/library/turtle.html
https://turtleacademy.com/
https://www.turtle.ox.ac.uk/
https://xlogo.inf.ethz.ch/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Aohan Zeng, Mingdao Liu, Rui Lu, Bowen Wang, Xiao Liu, Yuxiao Dong, and Jie Tang. AgentTuning:
Enabling Generalized Agent Abilities for LLMs. In ACL (Findings), 2024a.

Aohan Zeng et al. ChatGLM: A Family of Large Language Models from GLM-130B to GLM-4 All
Tools. CoRR, abs/2406.12793, 2024b.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, and Zheyan Luo. LlamaFactory: Unified
Efficient Fine-Tuning of 100+ Language Models. In ACL, 2024.

Terry Yue Zhuo et al. BigCodeBench: Benchmarking Code Generation with Diverse Function Calls
and Complex Instructions. In ICLR, 2025.

Bocheng Zou, Mu Cai, Jianrui Zhang, and Yong Jae Lee. VGBench: Evaluating Large Language
Models on Vector Graphics Understanding and Generation. In EMNLP, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

APPENDIX

Table of Contents

A Broader Impacts and Declaration of LLM Usage 15

A.1 Broader Impacts 15

A.2 Declaration of LLM Usage 15

B Additional Details About the Dataset Generation and Labeling Process 16

B.1 Dataset License 16

B.2 Dataset Generation Process 16

B.3 Labeling Process 20

C Additional Experiments and Analysis 22

C.1 Analysis of the Size of the Dataset Generated by TURTLEAI-Datagen 22

C.2 Analysis of Model Performance Across Different Dimensions 22

C.3 Influence of the CoT Prompting on Model Performance 23

C.4 Influence of LoRA Rank and Vision Tower for Fine-tuning Performance 23

C.5 Performance of VLMs Using Pass@K Metrics 24

D Reliability of the Evaluation Framework 25

E Implementation Details 26

E.1 Implementation Details of TURTLEAI-Datagen 26

E.2 Implementation Details of Fine-tuning 26

E.3 Implementation Details of Evaluation 27

E.4 Implementation Details of the Evaluation Framework 28

F Case Study of Failures 30

G Prompts 31

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A BROADER IMPACTS AND DECLARATION OF LLM USAGE

A.1 BROADER IMPACTS

This work introduces a benchmark for evaluating the performance of existing vision language models
(VLMs) in solving complex visual programming and reasoning tasks in the Turtle Graphics domain.
In addition, we propose a novel data generation framework, TURTLEAI-Datagen, for generating
large-scale synthetic data to train VLMs.

Our benchmark and data generation framework have several positive broader impacts: (i) our work
can facilitate programming education, especially in K-12 settings where turtle graphics is commonly
used, by enabling enhanced VLMs that power educational tools with real-time hints and feedback; (ii)
our work can help track and improve VLMs’ ability to understand and generate turtle graphics code,
making it easier for both beginners and experts to create vector graphics and complex geometric art;
and (iii) our data generation framework can advance synthetic data generation in fields where real
data is scarce or difficult to collect, potentially helping researchers and developers build better models
in a variety of domains beyond turtle graphics.

However, it is essential to acknowledge the potential risks associated with synthetic data generation.
For instance, our framework could be misused to generate images with political or sensitive content.
We emphasize the need for careful oversight and ethical considerations in the application of our
framework to ensure that it is used responsibly and for the benefit of society.

A.2 DECLARATION OF LLM USAGE

We declare that large language models (LLMs) were used only to assist with writing and formatting
the manuscript. LLMs were not involved in the design of experiments, analysis of results, or any
other important aspects in this paper.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B ADDITIONAL DETAILS ABOUT THE DATASET GENERATION AND LABELING
PROCESS

In this section, we provide detailed information and generation processes about datasets used in this
paper. After that, we describe our labeling process for image categories, difficulty levels, and failure
types.

Dataset # Samples Purpose Seed Dataset Seed Size

TURTLEAI-DS 823 Evaluation - -
TURTLEAI-DSBasic 102 Evaluation - -
TURTLEAI-DSCraft 102 Evaluation TURTLEAI-DSBasic 102
TURTLEAI-DSSyn 619 Evaluation TURTLEAI-DSBasic 102
TURTLEAI-Train 738,126 Train & Validation Manually curated 10

Figure 8: A summary of the datasets used in this paper.

B.1 DATASET LICENSE

The TURTLEAI-DSBasic dataset is collected from the visual programming platform XLogoOnline
and is licensed under CC BY-NC 4.0.4.

The datasets TURTLEAI-Train and TURTLEAI-DSSyn were generated with vision–language models.
The used models and their licenses are listed below:

• Qwen2-VL-72B-Instruct uses Qwen License Agreement.5

• Pixtral-Large uses Mistral Research License (MRL) for research/educational use.6

• Llama 3.1-70B-Instruct uses Llama 3.1 Community License Agreement.7

B.2 DATASET GENERATION PROCESS

In this subsection, we provide more details about the generation process of different datasets used
in this paper, including the evaluation datasets TURTLEAI-DSBasic, TURTLEAI-DSCraft, and
TURTLEAI-DSSyn, and the training dataset TURTLEAI-Train. Figure 8 gives a summary of the
datasets used in this paper.

TURTLEAI-DSBasic. This dataset is curated from the visual programming platform XLogoOnline.
The tasks in this platform are carefully designed by domain experts has been used by tens of thousands
of students for learning programming every year (Staub, 2021). The involvement of domain experts
ensures that this dataset includes a diverse range of high-quality tasks, reflecting real-world learning
scenarios.

TURTLEAI-DSCraft.

This dataset is generated by manually drawing the task images from TURTLEAI-DSBasic using a
drawing tool. Specifically, we use each task image in TURTLEAI-DSBasic as the reference image
and ask a human without any prior knowledge of Turtle Graphics or professional drawing skills to
manually draw the task image using a digital drawing tool (i.e., an iPad). Finally, we replace each
task image in TURTLEAI-DSBasic with the corresponding hand-drawn image, resulting in the dataset
TURTLEAI-DSCraft. Figure 9 shows some examples of the reference images and the corresponding
hand-drawn images in the dataset TURTLEAI-DSCraft. This dataset can be used to evaluate the
generalization capabilities of the model to real-world drawing tasks.

4https://xlogo.inf.ethz.ch/terms.html
5https://huggingface.co/Qwen/Qwen2-VL-72B-Instruct/blob/main/LICENSE
6https://mistral.ai/news/pixtral-large
7https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/

LICENSE

16

https://xlogo.inf.ethz.ch/terms.html
https://huggingface.co/Qwen/Qwen2-VL-72B-Instruct/blob/main/LICENSE
https://mistral.ai/news/pixtral-large
https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/LICENSE
https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/LICENSE

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

(a) Basic geometry (b) Rotation (c) Translation

(d) Scaling (e) Spiral (f) Composite

Figure 9: Examples of the reference images and the corresponding hand-drawn images in the dataset
TURTLEAI-DSCraft. The reference images are shown on the left, and the corresponding hand-drawn
images are shown on the right. One example is shown for each task category.

TURTLEAI-DSSyn. The dataset TURTLEAI-DSSyn is generated by our proposed data synthesis
framework TURTLEAI-Datagen. Specifically, we use TURTLEAI-DSBasic (Size 102) as the seed
dataset for TURTLEAI-Datagen. We iterate our TURTLEAI-Datagen over 3 iterations, each iteration
we keep the top 30% of the generated samples for the next iteration of TURTLEAI-Datagen, resulting
in a synthetic dataset with 8, 214 image-code pairs. To further ensure the quality, we manually select
from this dataset using the rubrics defined in the elite selection stage and make a binary decision to
decide whether to keep an image-code pair. When making the decision, we adopt the rubrics used in
the elite selection stage of TURTLEAI-Datagen, including (i) geometric structure and symmetry, (ii)
visual appeal, clarity, and simplicity, (iii) structural coherence, (iv) alignment and positioning, (v)
educational value and solvability, and (vi) color usage and necessity. When evaluating the quality of
each sample, we make a binary decision (i.e., “good” or “bad”) for each dimension, and only keep
the sample if all dimensions are evaluated as “good”. After this process, we obtain the final dataset
TURTLEAI-DSSyn with 619 high-quality samples. Note that we don’t apply the CoT labeling stage
for generating TURTLEAI-DSSyn since this dataset is not used for training. The implementation
details of TURTLEAI-Datagen are provided in Appendix E.1.

TURTLEAI-DS. The dataset TURTLEAI-DS is a union of TURTLEAI-DSBasic, TURTLEAI-DSCraft,
and TURTLEAI-DSSyn datasets, including a total of 102 + 102 + 619 = 823 samples.

TURTLEAI-Train. The dataset TURTLEAI-Train is a large-scale training dataset containing 738, 126
samples. This dataset is generated by using only a seed dataset with only 10 seed examples. These
seed examples are provided in Figure 10a. These seed examples are selected based on the following
three principles:

• Minimal manual effort: The set should be as small as possible to reduce manual effort.

• Simplicity: The pairs should be easy to design and understand.

• Conceptual diversity: The set should cover a broad range of geometric transformation
concepts.

By following these principles, we arrived at a set of 10 pairs that is both minimal and simple, while
remaining diverse. These pairs capture a range of geometric transformation types observed in our
domain, including:

• Adding or removing edges (e.g., transforming a triangle into a square or vice versa)

• Rotating shapes (e.g., turning a square into a diamond)

• Translating shapes (e.g., placing two squares side by side)

• Scaling (e.g., comparing a large square with a smaller one)

• Changing edge color (e.g., a square with red edges)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

• Changing fill color (e.g., a red-filled square)
• Combining shapes (e.g., combining a square and a triangle)

After preparing for the seed examples, we generate the training dataset using the same settings as
generating TURTLEAI-DSSyn, except that (i) we use a different seed dataset with only 10 manually
designed examples; (ii) we iterate 5 times over the TURTLEAI-Datagen; (iii) we use k = 70% for the
elite selection stage; (ii) we apply the CoT labeling after iterating 5 times. Examples of generated
sampled and the generated CoT label are shown in Figure 10.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

(a) All the 10 task images in the seed dataset.

(b) Generated images in TURTLEAI-Train.

Image Description

The image displays a vibrant, symmetrical spiral pattern
composed of nested heptagons (seven-sided polygons). The
heptagons decrease in size as they spiral inward, creating
a dynamic and visually appealing effect. The colors
transition smoothly from green on the outer edges to red at
the center, enhancing the depth and dimensionality of the
spiral. The overall structure is highly symmetrical, with
each heptagon rotated slightly relative to the previous
one, contributing to the spiral effect.

Analysis & Solution Code

To create the pattern shown in the image using Turtle
Graphics,
we need to follow these steps:

1. Initialize the Turtle: Set up the turtle graphics
environment and configure the drawing speed.
2. Define the Heptagon: Create a function to draw a
heptagon with a specified size.
3. Draw the Spiral: Use a loop to draw a series of
heptagons, decreasing their size and adjusting their
position and rotation with each iteration to form a spiral.
4. Color Gradient: Apply a color gradient to the heptagons,
transitioning from green to red as the size decreases.

Here is the code with comprehensive docstrings and comments
to
create the pattern:

‘‘‘python
def draw(t):

"""
Draws a spiral pattern of nested heptagons with a color
gradient from green to red.
"""
t.speed(0) # Set the drawing speed to the maximum
angle = 10 # Initial angle for the spiral rotation
size = 100 # Initial size for the heptagons

def draw_heptagon(size):
"""
Draws a heptagon with the given size.
"""
for _ in range(7):

t.forward(size) # Draw each side of the heptagon
t.left(360 / 7) # Turn to the next side

Draw the spiral pattern of heptagons
while size > 10:

Set the fill color with a gradient from green to red
t.fillcolor((1 - size / 100, size / 100, 0))
t.begin_fill() # Start filling the shape
draw_heptagon(size) # Draw the heptagon
t.end_fill() # End filling the shape
t.right(angle) # Rotate right to create the spiral
effect
size -= 5 # Decrease the size of the heptagon for the
next iteration
t.left(10) # Adjust the rotation slightly to maintain
the spiral pattern

‘‘‘

(c) Generated CoT label for the first image in Figure 10b.

Figure 10: Examples of images in the seed dataset and the TURTLEAI-Train dataset. The seed dataset
include 10 task images and their corresponding solution codes. The TURTLEAI-Train include 738k
images generated from the seed dataset using our data generation framework TURTLEAI-Datagen.
TURTLEAI-Datagen can generate diverse and high-quality images by evolving from a small seed
dataset.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

(a) Easy (b) Medium (c) Hard

Figure 11: Examples showing images of different difficulty levels from the TURTLEAI-DS dataset.

B.3 LABELING PROCESS

We describe the dataset labeling process for the task categories and difficulty levels in the evaluation
datasets.

Labeling process of task categories. We identify 6 different geometric categories of task images
based on the visual patterns and transformations in the evaluation datasets. The definitions of these
categories are as follows:

• Basic geometry: simple and basic shapes like squares, circles, triangles, and lines without
complex patterns or arrangements. Tasks in this category require understanding of basic
geometry.

• Rotation: patterns formed by rotating basic geometric shapes around a central point to create
symmetrical designs, such as a spirograph. These tasks require reasoning about rotation
angles and the numbers of repetitions.

• Translation: patterns formed by translating a basic pattern to different positions, forming
tiling or grid structures. Tasks in this category require reasoning about translation distance
and the numbers of basic patterns.

• Scaling: patterns formed by scaling basic geometric shapes, creating nested or expanding
structures. Tasks in this category require reasoning about scaling factors and the numbers of
repetitions.

• Spiral: sequential shapes arranged in spiraling paths, creating dynamic patterns with radial
symmetry, like an Archimedean spiral. Tasks in this category require reasoning about the
spiral pattern, the numbers of repetitions, the degrees of rotation, and scaling factors.

• Composite: complex arrangements combining different transformations (scaling, rotation,
spiral, and translation) with varied shapes or colors.

Given above definitions, we manually label each task-code pair in the dataset TURTLEAI-DS into
one of the 6 categories. Note that an image may involve multiple transformations, we categorize each
image based on its predominant geometric characteristic.

Labeling process of difficulty levels. We assigned a difficulty level for each task-code pair in the
dataset TURTLEAI-DS. The assigned difficulty level is based on the complexity of the visual patterns,
and difficulty of drawing the image using Turtle Graphics. We define 3 difficulty levels as follows:

• Easy: basic patterns consisting of single geometric shapes like squares, circles, or lines with-
out complex combinations. Tasks in this category require entry-level visual understanding
of geometry, basic math reasoning about transformation parameters (e.g., length, angles),
and fundamental programming skills to implement simple geometric shapes.

• Medium: patterns involving combinations of basic shapes with one or more transformations.
Tasks in this category require the ability to decompose patterns into simpler components,
understand relationships between different transformations, and programming skills to
implement multiple transformation steps.

• Hard: sophisticated patterns featuring multiple complex transformations. Tasks in this
category require high-level visual understanding, reasoning about spatial and temporal
relationships between components, mathematical reasoning about transformation parameters

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

(e.g., length, angles, scaling factors), and programming skills to convert complex reasoning
into executable programs.

Given above definitions, we manually label each image in the dataset TURTLEAI-DS into one of the
3 difficulty levels.

Labeling process of failure types. We identify 7 different failure types based on the failure cases of
different models on the TURTLEAI-DSBasic dataset. The definitions of these failure types are as
follows:

• Visual understanding: This involves misinterpreting the image’s overall design, layout, or
composition, leading to code generation that does not match the target image. For instance,
the image shows a square, but the model describes it as a circle and generates the code for a
circle.

• Decomposition: This involves errors in decomposing the image into feasible drawing steps
or errors in decomposing a complex pattern into its constituent parts (shapes, patterns,
elements). For example, when a complex pattern results from repeated rotations of a simple
shape. The model may fail to decompose it into the base shape and its transformations,
instead treating the entire pattern as an indivisible unit. This leads to either an attempt to
generate code that represents the entire complex pattern directly or a failure to plan a feasible
sequence of steps to generate the pattern.

• Spatial reasoning: This involves errors in understanding relative positions, distances, angles,
and sizes of patterns within the image. For instance, the model misinterprets the relative
positioning of two shapes, placing one above the other when they are actually side-by-side.

• Programming: This involves the model having correct visual understanding and reasoning
but the code implementation is not consistent with the visual reasoning results or the code
implementation contains syntax or logical errors. For instance, the model understands
correctly that the image show a square, but implements the code for a circle instead.

• Visual precision: This involves the model having correct visual understanding and reasoning,
but failing to achieve very precise details during the code implementation. For instance, the
model generates code that captures the overall structure but deviates in specifics, such as
lines being slightly too long, angles that are a few degrees off.

• Repetition: This involves unnecessary or incorrect repetition of code blocks. For instance,
the model keeps generating the same redundant code repeatedly without stopping.

• Evaluation error: This is due to the evaluation framework’s incorrect evaluation results that
are not consistent with the manual evaluation results. For instance, the symbolic comparison
incorrectly identifies the generated image as a success, but it’s actually a fail from the manual
evaluation.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

C ADDITIONAL EXPERIMENTS AND ANALYSIS

In this section, we provide additional experiments and analysis of our synthetic data generation
framework TURTLEAI-Datagen and the model performance on TURTLEAI.

C.1 ANALYSIS OF THE SIZE OF THE DATASET GENERATED BY TURTLEAI-DATAGEN

We analyze the exponential growth rate of datasets generated by the TURTLEAI-Datagen framework.
Specifically, we derive a mathematical formulation that describes how the dataset size expands
iteratively, starting from an initial seed dataset and growing with each iteration. Formally, assume
that we have an initial seed dataset D0 containing |D0| samples. Starting from D0, the framework
generates a dataset Dt after t iterations, where the size |Dt| can be expressed as:

|Dt| = |Dt−1| · p · k · (1− dt−1) (3)

= |D0| · (pk)t ·
t∏

i=1

(1− di−1), (4)

where p ≥ 1 is the number of pairs of codes sampled from the dataset in each iteration as the
reference-guided code-to-code mutation example (e.g., p = 4, 8, 16), di ∈ [0, 1] is the duplicate rate
in the i-th iteration, and k ∈ [0, 1] is the top percentage of samples selected from the dataset in the
elite selection stage. If we assume that the duplicate rate is the same for all iterations (i.e., di = d),
then the size of the dataset |Dt| can be simplified as:

|Dt| = |D0| ·
(
pk(1− d)

)t
, (5)

where the size of the dataset |Dt| grows exponentially with the number of iterations t with a growth
rate of pk(1−d). In our implementation, we set p = 16 and k = 0.7 for generating TURTLEAI-Train,
resulting in a growth rate of around 9.7 at each iteration.

Basic Geometry

Rotation

Translation

Scaling

Spiral

Composite

0

10

20

30

40

Easy

MediumHard

0
10

20
30

TurtleAI-
DSBasic

TurtleAI-
DSCraft

TurtleAI-
DSSyn

0
10

20
30

40

GPT-4o Pixtral-12B Pixtral-12B-Turtle Qwen2-VL-72B Qwen2-VL-72B-Turtle

(a) Task Categories (b) Difficulty levels (c) Dataset

Figure 12: Performance comparison of VLMs across different task categories, difficulty levels, and
datasets. We use symbolic-based success rate as the metric. Evaluated VLMs struggle most in
categories requiring spatial transformations and their performance decreases as the difficulty level
increases.

C.2 ANALYSIS OF MODEL PERFORMANCE ACROSS DIFFERENT DIMENSIONS

To identify strengths and weaknesses, we compare the performance of several representative VLMs
across different task categories, difficulty levels, and datasets, providing a more nuanced analysis.
The performance comparison is shown in Figure 12.

In Figure 12a, we compare the performance of different models across different task categories. Our
results show that existing models perform relatively better on Basic geometry tasks but struggle
with categories that require spatial transformations, such as Translation, Scaling, and Rotation.
Performance deteriorates further for Spiral and Composite tasks, which necessitate combinations
of multiple transformations and complex color usage, making them particularly challenging for
existing models. In Figure 12b, we compare the performance of different models across different

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

TURTLEAI-DSBasic TURTLEAI-DS

CoT Non-CoT CoT Non-CoT

Pixtral-Large 11.76 10.78 4.74 6.56
Qwen2-VL-72B 10.78 11.76 4.13 3.52
Llava-OneVision-72B 8.82 4.90 2.19 2.19
InternVL2-76B 8.82 11.76 2.79 3.28
Molmo-72B 9.80 3.92 2.92 2.31

Pixtral-12B 1.96 9.80 1.09 2.31
Llava-OneVision-7B 3.92 3.92 0.97 1.09
Qwen2-VL-7B 4.90 0.98 1.09 0.12
Molmo-7B 0.00 0.00 0.12 0.00
InternVL2-8B 2.94 0.00 0.73 0.12

Figure 13: Symbolic success rates of different base VLMs on TURTLEAI-DSBasic and TURTLEAI-
DS with and without CoT prompting. The best performance is highlighted in bold for each model.

difficulty levels. Our results show that model performance consistently decreases as the difficulty
level increases. Figure 12c shows the performance of different models across different datasets. We
find that models generally perform better on TURTLEAI-DSBasic than TURTLEAI-DSSyn due to the
higher difficulty of the TURTLEAI-DSSyn dataset. When comparing the TURTLEAI-DSBasic and
the TURTLEAI-DSCraft, we find that models generally perform better on the TURTLEAI-DSBasic
dataset due to the introduced variations in the hand-drawn dataset TURTLEAI-DSCraft. Interestingly,
our fine-tuned models are also comparable or even perform better than the corresponding base models
on TURTLEAI-DSCraft. For instance, Pixtral-12B-TURTLE performs better than Pixtral-12B on
TURTLEAI-DSCraft.

C.3 INFLUENCE OF THE COT PROMPTING ON MODEL PERFORMANCE

We investigate the influence of the CoT prompting on base models’ performance. We experiment
with various open-source VLMs, with and without CoT prompting. For CoT prompting, we require
the model to generate the solution code in the following step-by-step manner: (i) describe the image
in detail, (ii) analyze the image and propose steps to create the pattern, and (iii) generate the solution
code with comprehensive docstrings and comments. For non-CoT prompting, we only require the
model to generate the code, without the above steps explicitly mentioned. The comparison results
are shown in Figure 13. The results indicate that the effectiveness of CoT prompting varies across
different models and datasets, and there is no clear indication that CoT prompting can improve
performance in our domain. For instance, Qwen2-VL-7B shows improved performance with CoT
prompting on both datasets, whereas InternVL2-76B performs better without CoT prompting on
both datasets. This inconsistency may stem from the reasoning-intensive nature of our tasks, where
each type of task demands different reasoning steps, making it challenging to devise a consistent
CoT prompting strategy applicable to all tasks. Furthermore, models trained on different datasets
may develop distinct reasoning preferences, causing the same CoT strategy to enhance performance
in some models while potentially confusing others, resulting in inconsistent performance of CoT
prompting in our domain.

C.4 INFLUENCE OF LORA RANK AND VISION TOWER FOR FINE-TUNING PERFORMANCE

We investigate the influence of LoRA rank and vision tower fine-tuning on model performance. To do
this, we conduct fine-tuning experiments on Pixtral-12B with LoRA ranks of 64, 128, and 256 using
the 738k TURTLEAI-Train dataset (without CoT labeling), training each configuration for 1 epoch.
For each LoRA rank, we set the LoRA alpha parameter to twice the rank value. Additionally, we
examine the impact of freezing versus unfreezing the vision tower during fine-tuning. By unfreezing
the vision tower, we enable parameter tuning of the visual encoder component of the VLM, allowing
the model to adapt its visual representations during fine-tuning. The results are shown in Figure 14.
We find that unfreezing the vision tower can enhance performance. Specifically, in our experiments
with LoRA rank 64, unfreezing the vision tower increases the success rate from 10.78% to 17.65%

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Fine-tuning Parameters Success Rate (%)

Vision Tower LoRA rank TURTLEAI-DSBasic TURTLEAI-DS

Pixtral-12B-TURTLE Freeze 64 10.78 8.38
Pixtral-12B-TURTLE Unfreeze 64 17.65 9.96
Pixtral-12B-TURTLE Unfreeze 128 22.55 12.67
Pixtral-12B-TURTLE Unfreeze 256 15.69 10.81

Figure 14: Influence of LoRA rank and vision tower on the performance of fine-tuning. We experiment
with LoRA ranks of 64, 128, and 256, freezing and unfreezing the vision tower to fine-tune Pixtral-
12B model using the 738k TURTLEAI-Train dataset (without CoT labeling), with each setting trained
for 1 epoch. Unfreezing the vision tower and using LoRA rank 128 yields the best performance.

on TURTLEAI-DSBasic and from 8.38% to 9.96% on TURTLEAI-DS. Additionally, the choice of
LoRA rank also affects the performance, with rank 128 achieving the best results in our case.

C.5 PERFORMANCE OF VLMS USING PASS@K METRICS

Greedy Decoding Random Sampling

Size Pass@1 Pass@1 Pass@3 Pass@5

InternVL2 76B 3.28 2.72 4.79 5.83
Llava-OneVision 72B 2.19 2.09 4.02 5.35
Qwen2-VL 72B 3.52 3.18 5.53 6.93
Qwen2-VL-TURTLE 72B 19.56 16.79 25.65 29.77

InternVL2 8B 0.12 0.19 0.51 0.73
Llava-OneVision 7B 1.09 0.83 1.65 2.19
Qwen2-VL 7B 0.12 0.10 0.29 0.49
Qwen2-VL-TURTLE 7B 13.37 11.96 19.77 23.69
Pixtral 12B 2.31 1.48 3.23 4.25
Pixtral-TURTLE 12B 14.70 10.28 17.36 20.66

Figure 15: Symbolic success rates (%) of VLMs on the dataset TURTLEAI-DS with greedy decoding
and random sampling. For greedy decoding, we report Pass@1 using temperature = 0. For
random sampling, we use temperature = 0.8 and top_p = 0.95, where for each Pass@K
metric, we generate N = 5 samples.

In the main paper, we report the evaluation results of different VLMs on our benchmark using a
greedy decoding strategy (i.e., temperature=0). To provide a more comprehensive evaluation,
we also experiment with a random sampling strategy by randomly sampling N samples from the
model and then calculating the Pass@K results. Following previous works (Rozière et al., 2023; Zhuo
et al., 2025), we compute Pass@K results with random sampling by generating N = 5 samples with
top_p=0.95 and temperature = 0.8. Then we calculate Pass@1, Pass@3, and Pass@5,
respectively. Although generating many more samples (N ≥ K) is recommended to reduce bias, we
adopt the lower bound due to limited computational resources. The results are provided in Figure 15.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

D RELIABILITY OF THE EVALUATION FRAMEWORK

Positive (Symbolic) Negative (Symbolic)

Positive (Manual) 74 5
Negative (Manual) 2 742

Precision = 0.974 Recall = 0.937 F1 = 0.955 Accuracy = 0.991

(a) Confusion matrix for the symbolic comparison.

Positive (Embedding) Negative (Embedding)

Positive (Manual) 69 10
Negative (Manual) 6 738

Precision = 0.873 Recall = 0.920 F1 = 0.896 Accuracy = 0.981

(b) Confusion matrix for the embedding-based comparison.

Figure 16: Confusion matrices illustrating the accuracy of our evaluation framework by comparing
the results of the symbolic and embedding-based comparisons against the manual comparison. The
evaluation is conducted by manually annotating GPT-4o’s results on the TURTLEAI-DS dataset. (a)
shows the confusion matrix for the symbolic comparison, which demonstrates high accuracy with an
F1 score of 0.955 when compared against manual evaluation. (b) shows the confusion matrix for the
embedding-based comparison, achieving an F1 score of 0.896 at a threshold value of 0.95.

To assess the reliability of our evaluation framework, we perform manual evaluation and compare it
with the accuracies of both symbolic and embedding-based comparisons. To do this, we first perform
a manual evaluation of all generated images in the TURTLEAI-DS dataset from GPT-4o. This involves
comparing the ground-truth image with the corresponding image produced by executing the generated
code from GPT-4o, and manually verifying whether the each generated image is visually identical to
the ground-truth image. This manual evaluation involves a total of 823 image-code pairs. After this
manual evaluation, we compare our results with both symbolic and embedding-based comparisons to
evaluate the accuracy of our evaluation framework.

Accuracy of the symbolic comparison. After manual evaluation, we use our manual evaluation
results as ground truth and calculate the precision, recall, F1 score, and accuracy for the results of
the symbolic comparison. The results are shown in Figure 16a. Our symbolic comparison achieves
a precision of 0.974, recall of 0.937, F1 score of 0.955, and accuracy of 0.991, showing that the
symbolic comparison can correctly identify almost all of the generated images compared against the
manual evaluation.

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

0.0

0.2

0.4

0.6

0.8

1.0

S
co

re

T
h

re
sh

ol
d

=
0.

95

Precision

Recall

F1 Score

Figure 17: The relationship between precision,
recall, and F1 score at different thresholds used
in the embedding-based comparison. The best F1
score is achieved at a threshold of 0.95, with F1
score of 0.896.

Accuracy of the embedding-based comparison.
The embedding-based comparison first calculates
a similarity score and then determines success or
fail by comparing the similarity score against a
threshold value. To determine the optimal thresh-
old value, we plot how different threshold values
affect the precision, recall, and F1 score, and then
we select the threshold value that maximizes the
F1 score. Figure 17 shows the precision, recall,
and F1 score at different threshold values. We
find that using a threshold of 0.95 achieves the
highest F1 score of 0.896. Therefore, we use a
threshold of 0.95 for the embedding-based com-
parison, i.e., if the embedding score is greater
than 0.95, we consider the generated image as a
success. Figure 16b shows detailed statistics of
the precision, recall, F1 score, and accuracy for
the embedding-based comparison with a thresh-
old of 0.95.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

E IMPLEMENTATION DETAILS

In this section, we detail the implementation of our dataset generation framework TURTLEAI-Datagen,
model fine-tuning process, evaluation process, and the evaluation framework TURTLEAI-Eval.

E.1 IMPLEMENTATION DETAILS OF TURTLEAI-DATAGEN

We describe the implementation details of the dataset generation framework TURTLEAI-Datagen.

(a) Images for Cref1 and Cref2

(b) Images for Cin and Cout

- Introduce a loop: Add a loop to create
multiple instances of a shape with changing
parameters.
- Parameterize shape attributes:
Parameterize attributes such as size,
angle, or color to create a dynamic and
changing pattern.
- Focus on the pattern: Remove or modify
existing features to focus on the new
pattern created by the loop.

(c) Inferred mutation pattern m(Cref1 ,Cref2)

Figure 18: An illustrative example
for the reference-guided code mutation.
(a) shows the corresponding images
for a pair of sampled reference codes
(Cref1 ,Cref2). (b) shows the correspond-
ing images for Cin and the corresponding
mutated code Cout by the LLM’s inferred
mutation pattern in (c).

Stage 1: code mutation. We use the Llama3.1-70B-
Instruct model for code mutation. The model is queried
with temperature = 0.5 and top_p = 1. We
use higher temperature and top_p values to encourage
the model to generate more diverse and creative code.
During code mutation, we randomly sample 16 pairs of
(Cref1 ,Cref2) from the seed dataset for each input code Cin.
This results in 16 possible mutated codes for Cin after
applying the mutation for each pair of (Cref1 ,Cref2). An
illustrative example of the code mutation process is pro-
vided in Figure 18.

Stage 2: elite selection. The elite selection stage consists
of two steps: deduplication and selection of elite samples.
Given a dataset consisting of image-code pairs, we first
perform deduplication to remove duplicate images. Specif-
ically, we use a pre-trained ResNet18 (He et al., 2016)
image encoder to obtain the embedding for each image.
Then we use the DBSCAN clustering algorithm (Ester
et al., 1996) to cluster these image embeddings, resulting
in a set of clusters, where each cluster consists of similar
images. For each cluster, we only preserve one sample
and remove the rest. We use DBSCAN clustering algo-
rithm with parameters ϵ = 0.2, min_samples = 2, and
the euclidean distance. After deduplication, we select
the elite samples from the deduplicated dataset. To do
this, we use Qwen2-VL-72B as the model for selecting
elite samples. We use top k = 30% for generating the
TURTLEAI-DSSyn dataset and k = 70% for generating
the TURTLEAI-Train dataset.

Stage 3: CoT labeling. We use Pixtral-Large as the
model for CoT labeling stage. The model is queried with temperature = 0.1 and top_p = 0.001.
Note that this stage is only used to generate the TURTLEAI-Train dataset for fine-tuning.

For querying above models in different stages, we consistently use the vLLM inference engine to speed
up the inference. During the inference, we use 8 × H100 GPUs, with tensor_parallel_size
set to 8, and the max_num_seqs set to 64. For every 100k samples generated during the elite
selection (using Qwen2VL-72B-Instruct) or code mutation stage (using Llama3.1-70B-Instruct), the
process takes approximately 8 hours. For the CoT labeling (using Pixtral-Large), it takes around 13
hours to process every 100k samples.

E.2 IMPLEMENTATION DETAILS OF FINE-TUNING

We conduct fine-tuning experiments on three models: Qwen2-VL-7B (Wang et al., 2024), Qwen2-
VL-72B (Wang et al., 2024), and Pixtral-12B (Agrawal et al., 2024). In our fine-tuning experiments,
we use LoRA (Hu et al., 2022) for parameter-efficient fine-tuning. To determine the best LoRA rank
and scaling factor, we experimented with LoRA ranks of 64, 128, and 256, using a scaling factor
two times the LoRA rank in each case. We found that a rank of 128 provides the best performance.
Consequently, we use a LoRA rank of 128 and a scaling factor of 256 for all fine-tuning experiments.
We also experimented with freezing and unfreezing the vision tower during fine-tuning and found that

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Model Version
o3 o3-2025-04-16 (reasoning_effort=medium) (OpenAI, 2025b)
o4-mini o4-mini-2025-04-16 (reasoning_effort=medium) (OpenAI, 2025b)
GPT-5 (medium) gpt-5-2025-08-07 (reasoning_effort=medium) (OpenAI, 2025a)

GPT-4o gpt-4o-2024-11-20 (OpenAI, 2024a)
GPT-4V gpt-4-turbo-2024-04-09 (OpenAI, 2024b)

Qwen2-VL-72B Qwen/Qwen2-VL-72B-Instruct (Wang et al., 2024)
Qwen2-VL-7B Qwen/Qwen2-VL-7B-Instruct (Wang et al., 2024)
Qwen2-VL-72B-TURTLE Qwen2-VL-72B-Instruct (fine-tuned on TURTLEAI-Train)
Qwen2-VL-7B-TURTLE Qwen2-VL-7B-Instruct (fine-tuned on TURTLEAI-Train)

Molmo-72B allenai/Molmo-72B-0924 (Deitke et al., 2024)
Molmo-7B allenai/Molmo-7B-D-0924 (Deitke et al., 2024)

Llava-OneVision-72B llava-hf/llava-onevision-qwen2-72b-ov-chat-hf (Li et al., 2024a)
Llava-OneVision-7B llava-hf/llava-onevision-qwen2-7b-ov-chat-hf (Li et al., 2024a)

NVLM-1.0-D nvidia/NVLM-D-72B (Dai et al., 2024)

Pixtral-Large mistralai/Pixtral-Large-Instruct-2411 (Agrawal et al., 2024)
Pixtral-12B mistral-community/pixtral-12b (Agrawal et al., 2024)
Pixtral-12B-TURTLE Pixtral-12B (fine-tuned on TURTLEAI-Train)

InternVL2-76B OpenGVLab/InternVL2-Llama3-76B (Chen et al., 2023)
InternVL2-8B OpenGVLab/InternVL2-8B (Chen et al., 2023)

GLM-4V-9B THUDM/glm-4v-9b (Zeng et al., 2024b)

Figure 19: Evaluated models and their versions. Highlighted models are our fine-tuned models using
TURTLEAI-Train.

unfreezing the vision tower provides better performance. Therefore, we unfreeze the vision tower
during fine-tuning for all fine-tuning experiments.

During fine-tuning, we use a learning rate schedule that combines a 10% warmup phase where the
learning rate linearly increases to 1e− 4, followed by cosine annealing which gradually reduces the
learning rate to 0, ensuring stable training and smooth convergence (Zheng et al., 2024). We also
reserve 1% of the 738k training dataset for validation. For our fine-tuning experiments on Qwen2-
VL-7B and Pixtral-12B models, we observed that validation loss increases after the first epoch, so
we stopped the fine-tuning after one epoch and report their performance at epoch 1 accordingly.
Conversely, the Qwen2-VL-72B model’s performance continued to improve after the first epoch, so
we fine-tuned it for two epochs in total.

All fine-tuning experiments are conducted on an internal cluster using 8 × H100 GPUs, with each
epoch taking approximately 15 hours for Qwen2-VL-7B, 112 hours for Qwen2-VL-72B, and 22
hours for Pixtral-12B.

E.3 IMPLEMENTATION DETAILS OF EVALUATION

Inference details of VLMs. For open-source VLMs, we download their pre-trained weights and
perform inference locally. We use the vLLM (Kwon et al., 2023) engine for VLM inference to
obtain the outputs of the evaluated open-source VLMs. During inference, we set the temperature
to 0 and use different numbers of GPUs for different models depending on their parameter sizes:
(i) 1 × A100 GPU for models with parameter sizes less than 7B, (ii) 2 × A100 GPUs for models
with parameter sizes between 7B and 70B, and (iii) 8 × A100 GPUs for models with parameter
sizes larger than 70B. We set the vLLM parameter tensor_parallel_size to 1, 2, and 8 for
the three cases, respectively, and set max_num_seqs to tensor_parallel_size × 8. We
use the OpenAI API to evaluate proprietary models from OpenAI. For reasoning models, we set
reasoning_effort to medium and max_completion_tokens to 8192.

Details of the evaluation procedure. For each task in our evaluation datasets, we provide the task
image along with a fixed prompt template (see Figure 29) to guide the VLMs in generating Turtle
Graphics Python code. The model’s output often includes an explanation along with the predicted

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

code. We extract only the code snippet and disregard the rest. If multiple code snippets are present,
we handle them differently based on the comparison method:

• Symbolic comparison: we evaluate all the code snippets and consider the result a success if
any code snippet is successful.

• Embedding-based comparison: we evaluate only the longest code snippet. This is because
embedding-based comparison involves batch processing when extracting image embeddings,
making it inefficient to consider multiple code snippets.

E.4 IMPLEMENTATION DETAILS OF THE EVALUATION FRAMEWORK

We describe the implementation details of our evaluation framework. Given a task image img, the
predicted code snippet Ĉ, and the solution code C, our evaluation framework works as follows to
evaluate the correctness of the predicted code Ĉ. First, we execute both the solution code C and the
predicted code Ĉ using a customized Turtle Graphics emulator. This emulator inherits the built-in
Turtle Graphics module and enables us to record all the drawing states, including the coordinates and
the colors when drawing a line, filling a polygon, etc. Second, we transform the recorded drawing
states for C and Ĉ into the same space to ensure the invariance to size, position, and line width of the
drawing. Specifically, we perform the following three steps:

• Normalizing length of lines: We rescale all recorded coordinates such that the maximum
dimension of the entire pattern’s bounding box is set to 300. This ensures that the drawings
are uniformly scaled regardless of their original size, making our comparison invariant to
the size of the drawing.

• Centering around the origin: We translate all recorded lines so that they are centered
around the origin. This involves calculating the center of the bounding box and shifting all
coordinates accordingly. This ensures that the comparison is invariant to the position of the
drawing.

• Standardizing pen size: We standardize the pen size of all lines to 1. This ensures that
drawing line width does not affect the comparison of drawings, making our comparison
invariant to the line width.

Third, we render these normalized drawing states into images in the sequence as they are recorded,
resulting in standardized images img and ˆimg for C and Ĉ, respectively. Finally, our evaluation
framework provides two comparison methods to compare these two images, which are described in
detail as follows.

Symbolic comparison. This compares the standardized images img and ˆimg pixel-by-pixel. The
high-level idea is to first count non-white pixels in both images and calculate the percentage of
differing pixels among them. If this percentage is below a predefined value, the comparison result is
success; otherwise, the comparison result is fail. More specifically, assume the images img and ˆimg
are of dimensions H ×W and imgi,j and ˆimgi,j are the pixels at position (i, j), respectively. We
define a candidate set of pixels P that are considered for symbolic comparison:

P =
{
(i, j) | imgi,j ̸= white ∨ ˆimgi,j ̸= white, (6)

∀ i ∈ {1, . . . ,H}, j ∈ {1, . . . ,W}
}
. (7)

The pixel-wise difference between img and ˆimg is computed as:

pixel_diff(img, ˆimg) =

∑
(i,j)∈P I(imgi,j ̸= ˆimgi,j)

|P|
, (8)

where I(imgi,j ̸= ˆimgi,j) is the indicator function that returns 1 if imgi,j ̸= ˆimgi,j and 0 otherwise.
We establish a threshold for pixel-wise differences to determine whether the image ˆimg is a success
to match img or not. If pixel_diff(img, ˆimg) < 1 − threshold, the image ˆimg is considered a
success to match img; otherwise, it is considered a fail. For our symbolic evaluation, we use a
threshold = 0.95 for drawings with fill colors and 0.92 for those without fill colors. The lower
threshold for filled drawings (i.e., using begin_fill() and end_fill() in the code) is due to

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

the typically larger candidate set P for these drawings. The pixel-wise similarity in filled areas can
overshadow differences in non-filled areas, making them harder to detect. Thus, we set a stricter
threshold for filled drawings.

Embedding-based comparison. This method compares the standardized images img and ˆimg
within the embedding space. This is achieved by extracting image embeddings from both img and
ˆimg using a pre-trained image encoder model and then calculating a similarity score between these

embeddings using a distance metric. During implementation, when comparing two standardized
images img and ˆimg, we first resize them to 256x256 pixels, apply a center crop to 224x224 pixels,
convert them to tensors, and normalize them using standard ImageNet statistics to ensure consistency
and accuracy. Then we extract 512-dimensional feature vectors from these images using the ResNet18
model pre-trained on ImageNet (He et al., 2016).8 The similarity score between these embeddings is
computed using the Euclidean distance, normalized to the range [0, 1], where a higher score indicates
higher similarity in the embedding space. Images are processed in batches of 128 for efficient
computation. Any pairs where image processing fails (e.g., empty images or images that are too
large) are assigned a similarity score of 0. Finally, we search the optimal threshold = 0.95 because it
achieves the best F1 score (see Figure 17). If the similarity score exceeds 0.95, the image ˆimg is
considered a success in matching img; otherwise, it is considered a fail.

8We use ResNet-18 primarily because it is a widely adopted, well-performing, and lightweight model (with
only 11.7 million parameters) that offers a reasonable trade-off between performance and speed.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

GPT-4o Pixtral-12B
Qwen2-VL-72B

Pixtral-12B-TURTLE
Qwen2-VL-72B-TURTLE

Cases Percentage

Figure 21 ✓ ✓ ✓ 6 0.73%

N.A. × ✓ ✓ 0 0.00%
Figure 22 ✓ × ✓ 17 2.06%
Figure 23 ✓ ✓ × 3 0.36%

Figure 24 ✓ × × 23 2.79%
N.A. × ✓ × 0 0.00%
Figure 25 × × ✓ 54 6.56%

Figure 26 × × × 591 71.81%

Figure 20: Summary of different possible failure cases across different types of models on our
benchmark tasks. We identify eight possible failure cases for the GPT-4o, open-source base models
(Pixtral-12B and Qwen2-VL-72B), and fine-tuned models (Pixtral-12B-TURTLE and Qwen2-VL-72B-
TURTLE). For each possible failure case, we provide the number of occurrences and the corresponding
percentage, with references to detailed examples in corresponding figures. Success and failure are
indicated by ✓ and × , respectively.

F CASE STUDY OF FAILURES

We provide a case study of different models’ outputs on tasks in the TURTLEAI-DS dataset. We
select five representative VLMs: GPT-4o, Pixtral-12B, Qwen2-VL-72B, Pixtral-12B-TURTLE, and
Qwen2-VL-72B-TURTLE. To systematically analyze the failure cases, we enumerate all possible
failure cases across different types of models and provide examples for each type.

Specifically, we categorize these 5 models into 3 types: proprietary model (GPT-4o), open-source base
models (i.e., Pixtral-12B, Qwen2-VL-72B), and fine-tuned models (Pixtral-12B-TURTLE, Qwen2-
VL-72B-TURTLE). Then we categorize the failure cases into 8 different possibilities and show
examples for each possibility. These possibilities are summarized in Figure 20. Figure 27 and
Figure 28 show example model responses.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Input Image GPT-4o Pixtral-12B Qwen2-VL-72B Pixtral-12B-TURTLE Qwen2-VL-72B-TURTLE

✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓

Figure 21: Tasks that are successfully solved by base models (i.e., GPT-4o, Pixtral-12B, Qwen2-
VL-72B) and our fine-tuned models (i.e., Pixtral-12B-TURTLE, Qwen2-VL-72B-TURTLE) in the
TURTLEAI-DS dataset with 823 tasks. A total of 6 tasks (0.73%) match this criteria. Each row shows
a ground truth image (leftmost) followed by the corresponding images generated by executing the
each model’s generated Python code. Success (✓) and failure (×) are determined by our evaluation
framework using symbolic comparison.

G PROMPTS

In this section, we provide the prompts used in the TURTLEAI as follows:

• Figure 29 shows the prompt used for guiding VLMs in synthesizing code from a given
image input.

• Figure 30 shows the prompt for the reference-guided code generation stage in our data
synthesis framework TURTLEAI-Datagen.

• Figure 31 provides the prompt used for the elite selection stage in TURTLEAI-Datagen for
scoring the quality of the generated geometric image.

• Figure 32 provides the prompt for the CoT labeling stage in TURTLEAI-Datagen.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Input Image GPT-4o Pixtral-12B Qwen2-VL-72B Pixtral-12B-TURTLE Qwen2-VL-72B-TURTLE

✓ × × ✓ ✓

✓ × × ✓ ✓

✓ × × ✓ ✓

✓ × × ✓ ✓

✓ × × ✓ ✓

✓ × × ✓ ✓

✓ × × ✓ ✓

✓ × × ✓ ✓

✓ × × ✓ ✓

Figure 22: Example tasks that are successfully solved by GPT-4o and our fine-tuned models (i.e.,
Pixtral-12B-TURTLE, Qwen2-VL-72B-TURTLE), but not solved by the base models (Pixtral-12B,
Qwen2-VL-72B) in the TURTLEAI-DS dataset. A total of 17 tasks (2.06%) match this criteria. Each
row shows a ground truth image (leftmost) followed by the corresponding images generated by
executing the each model’s generated Python code. Success (✓) and failure (×) are determined by
our evaluation framework using symbolic comparison.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Input Image GPT-4o Pixtral-12B Qwen2-VL-72B Pixtral-12B-TURTLE Qwen2-VL-72B-TURTLE

✓ ✓ ✓ × ×

✓ ✓ ✓ × ×

✓ ✓ ✓ × ×

Figure 23: Tasks that are successfully solved by base models (i.e., GPT-4o, Pixtral-12B, Qwen2-VL-
72B), but not solved by our fine-tuned models (i.e., Pixtral-12B-TURTLE, Qwen2-VL-72B-TURTLE)
in the TURTLEAI-DS dataset. A total of 3 tasks (0.36%) match this criteria. Each row shows a
ground truth image (leftmost) followed by the corresponding images generated by executing the
each model’s generated Python code. Success (✓) and failure (×) are determined by our evaluation
framework using symbolic comparison.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Input Image GPT-4o Pixtral-12B Qwen2-VL-72B Pixtral-12B-TURTLE Qwen2-VL-72B-TURTLE

✓ × × × ×

✓ × × × ×

✓ × × × ×

✓ × × × ×

✓ × × × ×

✓ × × × ×

✓ × × × ×

✓ × × × ×

✓ × × × ×

✓ × × × ×

Figure 24: Example tasks that are only successfully solved by GPT-4o and not by Pixtral-12B,
Qwen2-VL-72B, Pixtral-12B-TURTLE, or Qwen2-VL-72B-TURTLE models in the TURTLEAI-DS
dataset. A total of 23 tasks (2.79%) match this criterion. Each row shows a ground truth image
(leftmost) followed by the corresponding images generated by executing the each model’s generated
Python code. Success (✓) and failure (×) are determined by our evaluation framework using symbolic
comparison.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Input Image GPT-4o Pixtral-12B Qwen2-VL-72B Pixtral-12B-TURTLE Qwen2-VL-72B-TURTLE

× × × ✓ ✓

× × × ✓ ✓

× × × ✓ ✓

× × × ✓ ✓

× ×

N.A.

× ✓ ✓

×

N.A.

×

N.A.

× ✓ ✓

× × × ✓ ✓

×

N.A.

×

N.A.

× ✓ ✓

× × × ✓ ✓

× × × ✓ ✓

Figure 25: Example tasks that are only successfully solved by our fine-tuned models (i.e., Pixtral-12B-
TURTLE, Qwen2-VL-72B-TURTLE) and not by Pixtral-12B, Qwen2-VL-72B, or GPT-4o models
in the TURTLEAI-DS dataset. A total of 54 tasks (6.56%) match this criterion. Each row shows
a ground truth image (leftmost) followed by the corresponding images generated by executing the
each model’s generated Python code. Success (✓) and failure (×) are determined by our evaluation
framework using symbolic comparison.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Input Image GPT-4o Pixtral-12B Qwen2-VL-72B Pixtral-12B-TURTLE Qwen2-VL-72B-TURTLE

× × × × ×

× ×

N.A.

× × ×

× × × × ×

× × × × ×

× × × × ×

× × × × ×

× × × × ×

×

N.A.

× × × ×

× × × × ×

× × × × ×

Figure 26: Tasks that are not solved by any of the models (i.e., GPT-4o, Pixtral-12B, Qwen2-VL-72B,
Pixtral-12B-TURTLE, Qwen2-VL-72B-TURTLE) in the TURTLEAI-DS dataset. A total of 591 tasks
(71.81%) match this criteria. Each row shows a ground truth image (leftmost) followed by the
corresponding images generated by executing the each model’s generated Python code. Success (✓)
and failure (×) are determined by our evaluation framework using symbolic comparison.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Input Image GPT-4o Qwen2-VL-72B Qwen2-VL-72B-TURTLE

× × ✓

(a) Input images and the generated images by different models.

Here is the Python code to
replicate the given geometric
pattern using the Turtle
Graphics library. The pattern
consists of two overlapping
squares.

‘‘‘python
def draw(t):

"""Draw two overlapping
squares."""
def draw_square(t, size):

"""Helper function to draw
a square of a given
size."""
for _ in range(4):

t.forward(size)
t.right(90)

Set up the turtle
t.penup()
t.goto(-50, 50) # Move to the
starting position for the
first square
t.pendown()

Draw the first square
draw_square(t, 100)

Move to the starting
position for the second square
t.penup()
t.goto(0, 0)
t.pendown()
Draw the second square
draw_square(t, 100)

‘‘‘

Explanation:
1. **‘draw_square‘ Function**:

- A helper function to draw a
square of a given size.
- The turtle moves forward by
the specified size and turns
90 degrees to the right four
times to complete the square.

2. **Positioning**:
- The turtle starts at ‘(-50,
50)‘ to draw the first square.
- After completing the first
square, the turtle moves to
‘(0, 0)‘ to draw the second
square, ensuring the overlap.

3. **Overlapping**:
- The two squares overlap at
their bottom-left and
top-right corners, as shown
in the image.

Usage:
To execute the code, use the
following:
‘‘‘python
import turtle
Create a turtle object
t = turtle.Turtle()
Call the draw function
draw(t)
Keep the window open
turtle.done()
‘‘‘

(b) GPT-4o

‘‘‘python
import turtle

def draw(t):
"""Draw the specified geometric
pattern."""
Set the turtle’s speed
t.speed(0)

Define the side length of the
squares
side_length = 100

Draw the first square
t.penup()
t.goto(-side_length / 2,
-side_length / 2)
t.pendown()
for _ in range(4):

t.forward(side_length)
t.right(90)

Draw the second square
t.penup()
t.goto(side_length / 2,
-side_length / 2)
t.pendown()
for _ in range(4):

t.forward(side_length)
t.right(90)

Create a turtle object
t = turtle.Turtle()
draw(t)

Keep the window open
turtle.done()
‘‘‘

This code defines a function
‘draw(t)‘ that uses a turtle
object ‘t‘ to draw the specified
geometric pattern. The pattern
consists of two overlapping
squares, each with a side length
of 100 units. The turtle starts at
the center of the screen and moves
to the starting position of each
square before drawing it. The
‘turtle.done()‘ function is used
to keep the window open after the
drawing is complete.

(c) Qwen2-VL-72B

Image Description

The image displays two overlapping
squares. The squares are of equal
size and are positioned such that one
square is shifted diagonally relative
to the other. The overlapping area
forms a smaller square in the center,
while the non-overlapping parts of
each square extend outward, creating
a visually symmetrical pattern. The
lines are black, and the background
is white.

Analysis & Solution Code

To create the pattern shown in the
image using Turtle Graphics, we need
to draw two squares of the same size.
The first square is drawn starting
from the initial position. After
completing the first square, the
turtle is moved diagonally to a new
position to draw the second square.
This diagonal movement ensures that
the two squares overlap, creating the
desired pattern.

Here is the code with comprehensive
docstrings and comments to create the
pattern:

‘‘‘python
def draw(t):

"""
Draws two overlapping squares of
the same size (200 units) with a
diagonal offset.

Args:
t: Turtle graphics object

"""
def draw_square(size):

"""
Draws a square with the given
side length.

Args:
size: The length of each
side of the square.

"""
for _ in range(4):

t.forward(size) # Move the
turtle forward by the side
length
t.left(90) # Turn the turtle
left by 90 degrees to form a
corner

Draw the first square
draw_square(200)
Move the turtle diagonally to
the starting position of the
second square
t.penup() # Lift the pen to move
without drawing
t.goto(100, 100) # Move to the new
starting position
t.pendown() # Put the pen down to
start drawing again
Draw the second square
draw_square(200)

‘‘‘

(d) Qwen2-VL-72B-TURTLE

Figure 27: Example outputs generated by GPT-4o, Qwen2-VL-72B, and Qwen2-VL-72B-TURTLE.
(a) shows the input image and the generated images by executing the code generated by models. (b-d)
show the outputs generated by different models.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Input Image GPT-4o Qwen2-VL-72B Qwen2-VL-72B-TURTLE

×

N.A.

× ✓

(a) Input images and the generated images by different models.
To replicate the geometric pattern shown in the image
using Python’s Turtle Graphics library, we need to
break the pattern into smaller components. The
pattern consists of a circular arrangement of blue
and white diamond shapes, forming a star-like
structure.

Here is the Python code to recreate the pattern:

‘‘‘python
def draw(t):

import turtle
import math

Helper function to draw a diamond shape
def draw_diamond(t, size, color):

t.fillcolor(color)
t.begin_fill()
for _ in range(2):

t.forward(size)
t.left(60)
t.forward(size)
t.left(120)

t.end_fill()

Helper function to draw a single segment of the
pattern
def draw_segment(t, size):

Draw the blue diamond
draw_diamond(t, size, "blue")
Position for the white diamond
t.forward(size)
t.left(60)
Draw the white diamond
draw_diamond(t, size, "white")
Return to the center
t.right(60)
t.backward(size)

Main function to draw the full pattern
def draw_pattern(t, size, segments):

for _ in range(segments):
draw_segment(t, size)
t.right(360 / segments)

Set up the turtle
t.speed(0)
t.penup()
t.goto(0, 0)
t.pendown()

Draw the pattern
draw_pattern(t, 50, 12) # Adjust size and number
of segments as needed

Hide the turtle
t.hideturtle()

‘‘‘

Explanation:

<some text is omitted here to save space>

Usage:

<some text is omitted here to save space>

This code will produce the desired geometric pattern.
Adjust the ‘size‘ and ‘segments‘ parameters in the
‘draw_pattern‘ function to modify the pattern’s
appearance.

(b) GPT-4o

Image Description

The image displays a symmetrical, flower-like pattern
composed of geometric shapes. The primary shape is a
dodecagon (a 12-sided polygon) repeated in a circular
arrangement. Each dodecagon is filled with a blue
color, and the spaces between the dodecagons are
white, creating a checkerboard-like effect. The
pattern exhibits rotational symmetry, with each
dodecagon rotated slightly relative to its neighbors,
forming a visually appealing star-like structure at
the center. The overall design is intricate yet
balanced, with the blue and white sections
contrasting sharply against each other.

Analysis & Solution Code

To create the pattern shown in the image using Turtle
Graphics, we need to follow these steps:

1. **Set Up the Turtle**: Initialize the turtle
graphics and set the fill color to blue.
2. **Define the Dodecagon**: Create a function to
draw a single dodecagon. A dodecagon has 12 sides,
and each internal angle is 150 degrees (calculated as
\(\frac{180 \times (12-2)}{12} \)).
3. **Draw the Pattern**: Use a loop to draw 12
dodecagons, each rotated by 30 degrees (360 degrees /
12) relative to the previous one. This rotation
ensures the symmetrical arrangement of the dodecagons.
4. **Fill the Shape**: Use the ‘begin_fill‘ and
‘end_fill‘ methods to fill the dodecagons with the
specified color.

Here is the code with comprehensive docstrings and
comments to create the pattern:

‘‘‘python
def draw(t):

"""
Draws a symmetrical, flower-like pattern composed
of 12 blue-filled dodecagons.
Each dodecagon is rotated by 30 degrees relative
to the previous one, creating a
visually appealing star-like structure at the
center.

Args:
t: Turtle graphics object

"""
t.fillcolor(’blue’) # Set the fill color to blue

def draw_dodecagon():
"""
Draws a single dodecagon with 12 sides.
Each side is 50 units long, and the internal
angle is 150 degrees.
"""
for _ in range(12):

t.forward(50) # Move the turtle forward by
50 units
t.left(30) # Turn the turtle left by 30
degrees

t.begin_fill() # Start filling the shape
for _ in range(12):

draw_dodecagon() # Draw a dodecagon
t.left(30) # Rotate the turtle by 30 degrees
for the next dodecagon

t.end_fill() # End filling the shape
‘‘‘

(c) Qwen2-VL-72B-TURTLE

Figure 28: Example outputs generated by GPT-4o and Qwen2-VL-72B-TURTLE. (a) shows the input
image and the generated images by executing the code generated by models. (b) and (c) show the
outputs generated by different models. Qwen2-VL-72B’s output is not shown since it generates
repetitive text.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Prompt for Generating Code from Image
<image> You are a Turtle Graphics programmer tasked with creating Python code to replicate a specified geometric
pattern using the Turtle Graphics library.

Task Overview:

Analyze the provided image of a geometric pattern. Carefully break down the pattern into individual shapes, colors,
angles, and layout components. Using this information, write Python code within a function called ‘draw(t)‘,
where ‘t‘ is a Turtle object. Assume:
- The turtle starts at the center of the screen at coordinates ‘(0, 0)‘.
- The turtle initially faces east (to the right).

The goal is for your ‘draw(t)‘ function to accurately recreate the pattern shown in the image, including its positioning,
angles, colors, and details.

Requirements:

1. Code Structure:
- Place all code inside the ‘draw(t)‘ function.
- The function takes a turtle object ‘t‘ as input.
- Format your code using triple backticks with the ’python’ language specifier, i.e., ‘‘‘python‘‘‘.

Example format:
‘‘‘python
def draw(t):

Your code here
‘‘‘

2. Color Accuracy:
- Match colors in the image exactly, both for fills and outlines.

3. Pattern Precision:
- Reproduce the pattern as accurately as possible, maintaining symmetry, shapes, and angles.

4. Self-Contained:
- Do not include code outside the ‘draw(t)‘ function.
- All necessary imports, variables, and helper functions should be inside ‘draw(t)‘.

Execution Context:

Your ‘draw(t)‘ function will be called in the following manner:

‘‘‘python
import turtle

def draw(t):
Describe the drawing steps here
pass

t = turtle.Turtle()
draw(t)
‘‘‘

Example Outputs:

- Example 1 - Drawing a Rectangle:
‘‘‘python
def draw(t):

"""Draw a rectangle."""
def draw_rectangle(t):

Draw a rectangle with side length 10
for _ in range(4):

t.forward(10)
t.right(90)

draw_rectangle(t)
‘‘‘

- Example 2 - Drawing a circle:
‘‘‘python
def draw(t):

"""Draw a circle."""
import math

def draw_circle(t, radius):
circumference = 2 * math.pi * radius
step_length = circumference / 360
step_angle = 1

for _ in range(360):
t.forward(step_length)
t.left(step_angle)

draw_circle(t, 50)
‘‘‘

Note: The examples are simplified. Your final code may require nested loops or additional logic to fully replicate
complex patterns.

Now, write the code for the ‘draw(t)‘ function to recreate the pattern shown in the image as closely as possible in terms
of shape, color, and structure.

Figure 29: Prompt template for code synthesis from visual input.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Prompt for the Reference-guided Code Mutation Stage of TURTLEAI-Datagen
You are a turtle graphics programmer tasked with analyzing and applying code adaptations in Python using the Turtle
Graphics library. You are given two reference codes that perform a certain drawing task. Your mission is to:

1. Identify how the adaptation is done from the first code to the second code.
2. Summarize the adaptation in a high-level way, so it can be applied to any other code.
3. Apply the core idea of the adaptation to a new piece of code provided.

Key Requirements for Code Adaptation:

1. Syntactic Correctness:
- The adapted code must be syntactically correct and free of errors.

2. Structural and Logical Consistency:
- Maintain the structural integrity and logical flow of the original code.
- Ensure that no unintended behavior is introduced by the adaptation.

3. Geometric Structure & Symmetry (if applicable):
- Ensure that all drawings consist of clear geometric shapes with symmetry and geometric accuracy.

4. Visual Clarity & Simplicity:
- The output should be visually clear and simple.
- Avoid overly complex designs that may confuse or clutter the output.

5. Function and Code Requirements:
- Define the function ‘draw(t)‘ that contains all the drawing code.
- Use appropriate Turtle Graphics library commands within the ‘draw(t)‘ function.
- Only provide the ‘draw(t)‘ function. Do not include import statements or other code outside of the ‘draw()‘ function.

6. Different Output:
- The adapted code must generate a different drawing compared to the original new code.
- The drawing must be a different shape or have a distinct pattern to clearly show the adaptation’s impact.

Your Task:

Reference Code 1:
‘‘‘python
{reference_code_1}
‘‘‘

Reference Code 2:
‘‘‘python
{reference_code_2}
‘‘‘

New Code to Adapt:
‘‘‘python
{code_to_adapt}
‘‘‘

Now, follow these steps:

1. Analyze the Adaptation:
- Examine how Reference Code 1 is adapted into Reference Code 2.
- Summarize the adaptation in a high-level way that can be applied to other codes.

2. Apply the Adaptation:
- Apply the core idea of the adaptation to the New Code to Adapt.
- Provide the Adapted Code that reflects this adaptation.
- Ensure the adapted code is syntactically correct and that the resulting drawing after execution meets all the
specified requirements (geometric structure, symmetry, visual clarity, simplicity, etc.).

Adapted Code:

Provide your adapted code here. Ensure it meets all the specified requirements, especially that it must generate a
different drawing compared to the original new code. Use the following Python code block format:

‘‘‘python
def draw(t):

Your adapted code here
‘‘‘

Figure 30: Prompt template for reference-guided code generation.

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

Prompt for the Elite Selection Stage of TURTLEAI-Datagen
<image> You are an evaluator responsible for automatically assessing the quality of a turtle graphics programming task
using the following rubrics. Each rubric evaluates different aspects of the task, including its clarity, difficulty,
alignment with programming concepts, and creativity. Please assign a score from 0 to 10 for each rubric and provide an
explanation for your scoring. Each rubric has equal weight, and the rubrics are as follows:

Rubrics Breakdown:

1. Geometric Structure & Symmetry
- Score Breakdown (0-10):
- 9-10: Perfect geometric accuracy and symmetry - all elements are precisely aligned and balanced.
- 6-8: Mostly symmetric with minor imperfections - slight deviations that do not detract from overall symmetry.
- 3-5: Some geometric or symmetry issues - noticeable asymmetries or inaccuracies in shape.
- 0-2: Significant asymmetry and inaccuracies - major deviations from expected geometric forms.

2. Visual Appeal, Clarity & Simplicity
- Score Breakdown (0-10):
- 9-10: Clear, simple design with purposeful aesthetics - easily understood and visually harmonious. No unnecessary
complexity.
- 6-8: Generally clear design with good balance, but has minor complexity or visual elements that could be simplified.
- 3-5: Either overly complex, lacks visual harmony, or has clarity issues - may have unnecessary elements or
confusing design choices.
- 0-2: Significant issues with clarity or complexity - cluttered, difficult to interpret, or contains many
unnecessary elements.

3. Structural Coherence
- Score Breakdown (0-10):
- 9-10: Strong structural integrity - design is cohesive, whether through repeated patterns, basic geometric
shapes, or a purposeful unique design.
- 6-8: Good structure with minor imperfections - mostly coherent with slight inconsistencies.
- 3-5: Basic structure present but with noticeable flaws - some elements may seem out of place or poorly integrated.
- 0-2: Weak or unclear structure - lacks a clear organizational pattern or design logic.

4. Alignment & Positioning
- Score Breakdown (0-10):
- 9-10: Excellent alignment and positioning - all elements are precisely placed and aligned.
- 6-8: Good alignment with minor issues - generally well-positioned with slight misalignments.
- 3-5: Some misalignment - noticeable but not critical positioning errors.
- 0-2: Noticeable misalignment - significant positioning errors that affect the overall design.

5. Educational Value & Solvability
- Score Breakdown (0-10):
- 9-10: Excellent educational value - pattern complexity is appropriate for learning, clear objectives, and perfectly
balanced difficulty that students can reasonably solve.
- 6-8: Strong educational value - complexity is manageable for students with some guidance, mostly clear and
appropriately challenging without being overwhelming.
- 3-5: Moderate educational value - either too simple to be educational or too complex for students to reasonably
solve. Would require significant modifications to be classroom-ready.
- 0-2: Poor educational value - not suitable for classroom use due to excessive complexity, confusing structure,
or contains sensitive/inappropriate imagery (e.g., Swastika, Confederate flag, etc.).

6. Color Usage & Necessity
- Score Breakdown (0-10):
- 9-10: Excellent use of minimal colors - either black & white only, or uses very few colors (<5) with clear purpose
that enhances understanding.
- 6-8: Acceptable color usage - slightly more colors than necessary but not distracting. Could be simplified without
losing meaning.
- 3-5: Problematic color usage - too many colors or colors used without clear purpose. Would be clearer with fewer colors.
- 0-2: Poor color usage - excessive number of colors, random color choices, or colors that make the pattern harder
to understand.

Final Evaluation Instructions:

Once you have evaluated each category and assigned scores, sum up all the individual rubric scores. Since each rubric
has equal weight, no additional multiplication is needed. The final score is simply the sum of all rubric scores.
Summarize the individual scores and explanations, then provide the final score (out of 60).

Expected JSON Output:

Please format the final evaluation as a JSON object using the following short keys:
- geometry: Geometric Structure & Symmetry
- visual: Visual Appeal & Clarity
- structure: Structural Coherence
- alignment: Alignment & Positioning
- education: Educational Value & Solvability
- color: Color Usage & Necessity
- final_score: Final score out of 60

Example JSON Output:
‘‘‘json
{
"geometry": {"score": "<score>", "explanation": "<explanation>"},
"visual": {"score": "<score>", "explanation": "<explanation>"},
"structure": {"score": "<score>", "explanation": "<explanation>"},
"alignment": {"score": "<score>", "explanation": "<explanation>"},
"education": {"score": "<score>", "explanation": "<explanation>"},
"color": {"score": "<score>", "explanation": "<explanation>"},
"final_score": "<final_score>"

}
‘‘‘
Now, evaluate the turtle graphics task based on the provided image. This image was created using turtle graphics. Please
assess its quality using the rubrics outlined above, and provide the final evaluation in the JSON format shown in the
example.

Figure 31: Prompt template for the elite selection stage in TURTLEAI-Datagen.
41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

Prompt for the CoT Labeling Stage of TURTLEAI-Datagen
<image> Your task is to optimize a provided Python code snippet that uses Turtle Graphics, ensuring it is minimal,
cleanly documented, and fully aligned with the generated image output. You will be provided with:

1. A Python code snippet using Turtle Graphics.
2. The actual image output generated by this code.

Your Responsibilities:

1. Describe the Image
- Provide a detailed description of the visual pattern in the image without referencing the code, focusing on
geometric shapes, symmetry, colors, and overall structure.

2. Optimize the Code
- Identify and remove redundant code segments that do not contribute to the visual output, and simplify the logic to
enhance readability, ensuring the
final output remains visually identical.
- After optimizing the code, provide a detailed step-by-step explanation of how the code generates the image, linking
visual features to the corresponding steps.

3. Add Documentation and Comments
- Add a descriptive docstring for the provided code snippet, explaining its purpose, parameters, and any outputs.
Include clear and concise inline comments to make the code understandable.

Formatting Instructions:
- Markdown-Only Response: Format your entire response in markdown, enclosed in a single markdown block.
- Output Focus: Provide only the optimized ‘draw(t)‘ function within the markdown block, excluding any setup or
unrelated code.

Provided Code Snippet

Below is the code snippet that generates the image you are analyzing:

‘‘‘python
{code}
‘‘‘

Please provide your response in the following markdown format:

‘‘‘markdown
Image Description

The image displays...

[Provide a detailed description of the visual pattern]

Analysis & Solution Code

To create the pattern shown in the image using Turtle Graphics, we need to...
[Explain how to create this pattern using Turtle Graphics, describing the logical steps needed to reproduce the image]

Here is the code with comprehensive docstrings and comments to create the pattern:
‘‘‘python
def draw(t):

"""
[Function description]

Args:
t: Turtle graphics object

"""
Your simplified code with comments

‘‘‘
‘‘‘

Important: Write your response as if you are only looking at the image, without referencing any provided code (e.g., do
not mention ‘modified code‘, ‘optimized code‘, or ‘provided code‘ in your response inside the markdown block).

Figure 32: Prompt template for the CoT labeling stage in TURTLEAI-Datagen.

42

	Introduction
	Background and Synthesis Objective
	The TurtleAI Benchmark
	Overview of TurtleAI
	Evaluation Datasets TurtleAI-DS
	Evaluation Framework TurtleAI-Eval
	Data Generation Framework TurtleAI-Datagen

	Experimental Evaluation
	Experimental Setup
	Main Results
	Failure Analysis
	Scaling of Fine-tuning Performance with Dataset Size
	Out-of-distribution Analysis of Fine-tuned Models

	Related Work
	Concluding Discussions
	Broader Impacts and Declaration of LLM Usage
	Broader Impacts
	Declaration of LLM Usage

	Additional Details About the Dataset Generation and Labeling Process
	Dataset License
	Dataset Generation Process
	Labeling Process

	Additional Experiments and Analysis
	Analysis of the Size of the Dataset Generated by TurtleAI-Datagen
	Analysis of Model Performance Across Different Dimensions
	Influence of the CoT Prompting on Model Performance
	Influence of LoRA Rank and Vision Tower for Fine-tuning Performance
	Performance of VLMs Using Pass@K Metrics

	Reliability of the Evaluation Framework
	Implementation Details
	Implementation Details of TurtleAI-Datagen
	Implementation Details of Fine-tuning
	Implementation Details of Evaluation
	Implementation Details of the Evaluation Framework

	Case Study of Failures
	Prompts

