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Abstract
Neural Ordinary Differential Equations (ODEs)
have shown promise in learning continuous dy-
namics. However, their slow training and infer-
ence speed hinder wider applications. In this
paper, we propose to optimize Neural ODEs from
a spatial and temporal perspective, drawing in-
spiration from control theory. We aim to find a
reasonable depth of the network, accelerating both
training and inference while maintaining network
performance. Two approaches are proposed. One
reformulates training as a minimum-time optimal
control problem directly in a single stage to search
for the terminal time and network weights. The
second approach uses pre-training coupled with a
Lyapunov method in an initial stage, and then at
a secondary stage introduces a safe terminal time
updating mechanism in the forward direction. Ex-
perimental results demonstrate the effectiveness
of speeding up Neural ODEs.

1. Introduction
Deep Neural Networks (DNNs) have transformed AI and
achieved remarkable success in complex tasks (LeCun et al.,
2015; Krizhevsky et al., 2012). Increasing depth has been
a common strategy for enhancing capabilities, yet this is
not always reliable and may lead to diminishing returns or
adverse effects. Challenges such as gradient vanishing and
exploding arise in deeper architectures, causing instability
(Bengio et al., 1994). These networks also incur a higher
computational cost, slowing training and inference. More-
over, excessively complex models can suffer from overfitting
and poor robustness (Sun et al., 2016; Huang et al., 2021;
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Figure 1. Performance of Neural ODEs on Concentric Annuli
problem: (a) Prediction loss vs. time on 20 correctly classified
examples by Vanilla and Minimum-time Neural ODEs; (b) State
trajectories of 20 examples by Vanilla Neural ODEs

Zhu et al., 2022; Hassani & Javanmard, 2024).
To address this, Residual Networks (ResNets) (He et al.,
2016) emerged as a breakthrough. ResNets introduced skip
connections that bypass certain layers, alleviating gradient
issues and enhancing training of deeper models. Building
upon the success of ResNets, the exploration of Neural
Ordinary Differential Equations (Neural ODEs) (Chen et al.,
2018) has gained prominence. These models treat networks
as dynamic systems governed by differential equations, of-
fering adaptability and flexibility (Weinan, 2017; Ee et al.,
2018; Li et al., 2017).
Neural ODEs have recently seen diverse applications in clas-
sical machine learning, enhancing tasks like image classifica-
tion, generative models and time-series problems (Grathwohl
et al., 2018; Rubanova et al., 2019; Kidger, 2022). In control
systems, Neural ODEs offer a natural approach for modeling
and optimizing dynamic behaviors. Their ability to handle
continuous-time dynamics has implications in trajectory
planning, state observer design, and system identification
(Liang et al., 2021; Miao & Gatsis, 2023; Djeumou et al.,
2022; Zhao et al., 2024).

1.1. Challenges / Motivations

Despite the rapid progress and promising results, challenges
remain in understanding the full potential of Neural ODEs.
Researchers are actively investigating ways to improve their
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stability, expressivity, robustness and convergence during
training (Kang et al., 2021; Dupont et al., 2019; Massaroli
et al., 2020; Yan et al., 2019; Huang et al., 2022; Liu et al.,
2020; 2021). However, the training and inference of Neu-
ral ODEs can be prohibitively computationally expensive,
which limits their broader applicability. This is attributed to
the slow and computationally expensive ODE solver within
the Neural ODEs architecture. The uncertainty about the
necessary depth of the underlying neural network, linked to
the number of solver evaluations in Neural ODEs, results in
dynamic changes comparable to numerous layers.
In some cases, the computational costs are necessary, while
overly deep networks are often unnecessary and can even
lead to overfitting issues. Taking the 2-D Concentric Annuli
problem as an example, it can be observed from Figure 1(a)
that the system learned by Vanilla Neural ODEs trained
within [0, 1], achieves the desired state within 0.6 time units,
rendering subsequent computations redundant. Furthermore,
Figure 1(a) and Figure 1(b) reveal an initial error increase
and trajectory divergence from the optimal direction within
the first 0.2 units. An overly deep network contains more
complex dynamics, which makes the state trajectory become
more convoluted. In Figure 1(b), some points corresponding
to the final target in the lower right direction will flow in the
exact opposite direction (upper left) at the beginning.This
suggests that Vanilla Neural ODEs may follow convoluted
paths, incurring needless computational and temporal ex-
penses. This behavior aligns with the training process
focusing solely on terminal state requirements.

1.2. Related Works

Numerous research efforts have been devoted to reducing the
computational cost of Neural ODEs. Most of them focus on
encouraging Neural ODEs to learn relatively simple dynam-
ics and accelerate computation from the spatial perspective
of dynamics. For instance, some studies proposed additional
regularization terms (Kelly et al., 2020; Finlay et al., 2020;
Pal et al., 2021) to facilitate learning of Neural ODEs that
are easier to integrate. Research efforts adopt a temporal
standpoint: certain studies delve into the optimization of
numerical solvers, for instance, Poli et al. (2020) advocates
augmenting training with an extra neural network to capture
the higher-order components of the numerical solver, leading
to reduced computation time; while the STEER technique
introduced by Ghosh et al. (2020) imparts regularization
to Neural ODEs by employing stochastic sampling of the
ODE’s terminal time during the training process. Neverthe-
less, these techniques predominantly expedite the inference
phase, with their influence on expediting training being
minor or, in some cases, resulting in supplementary training
expenditures. Notably, the STEER approach demonstrates
limited enhancement in both domains. Some work proposed
to optimize the network structure within the framework of

second-order optimization by optimizing the integration
terminal time (Liu et al., 2021), but exclusively based on the
adjoint sensitivity method, which is a speed-up for training
under limited conditions, as the adjoint method is inherently
slower because it has to solve additional ODEs. Further-
more, there is research focusing on determining explicit
depth bounds for deep neural networks by exploring the
turnpike property (Faulwasser et al., 2021), however, it relies
on a posteriori computation based on trained deep neural
networks instead of a priori estimation.

1.3. Our Contributions

In contrast to conventional techniques like pruning and
early exit (Han et al., 2015; Teerapittayanon et al., 2016)
in standard deep neural networks, which aim to enhance
network efficiency, we address the issue of network depth in
deep learning by leveraging Neural ODEs. Our approach is
to learn an efficient model by design, as opposed to making a
network more efficient after learning which is often followed
in the above works. Our approaches involve adjusting the
integral time span to modify the network’s depth, thereby
refining its architecture as Figure 2 shows and facilitating
acceleration from temporal and spatial perspectives. From
the spatial angle, we strive for Neural ODEs to acquire more
direct trajectories, leading to swift and straightforward state
elevation towards the target. From the temporal perspective,
our objective is to determine an appropriate terminal time
of Neural ODEs that minimizes superfluous computational
resources and time consumption and also upholds network
performance. In summary, our contributions are as follows:

• Extending the framework of Neural ODEs, we propose
a novel concept to address the depth complexity of
DNN by by formulating it as the problem of adjusting
the interval of ODE integration, primarily focusing
on optimal terminal time to enhance the efficiency of
Neural ODEs;

• Our first approach addresses this challenge by framing
depth complexity as a Minimum-time Optimal Control
problem. This allows us to directly optimize the termi-
nal time in a single stage for acceleration, while still
maintaining network performance;

• Our second method employs the Lyapunov approach
from control theory during pre-training. This ensures
dynamic convergence with guaranteed speed, followed
by an iterative process to refine the terminal time for
optimized performance;

• Experiments on supervised learning problems and gen-
erative models demonstrate that our approaches achieve
an order of magnitude faster training and inference com-
pared to the baseline of Vanilla Neural ODEs, optimiz-
ing both dynamics spatial and temporal performance.
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Figure 2. Depth Problem of Neural ODEs

2. Preliminaries
2.1. Optimal Control

Optimal control is a significant branch of modern control
theory, encompassing various approaches such as calculus of
variations, the Pontryagin maximum principle (PMP) (Pon-
tryagin, 1987), and dynamic programming (DP) (Bellman,
1957). When dealing with unconstrained control vectors, the
application of calculus of variations becomes relevant. How-
ever, in the presence of constraints, Pontryagin introduced
and proved the maximum principle, a fundamental result
in optimal control theory and calculus of variations. The
maximum principle yields an open-loop control solution.
At its core, the PMP introduces the Hamiltonian function,
which combines the system dynamics and the performance
criterion. The Hamiltonian function captures the total instan-
taneous cost associated with the system’s state and control
inputs. By optimizing the Hamiltonian with respect to the
control inputs, the PMP helps identify the control strategy
that yields the best performance.
Mathematically, the PMP establishes a set of necessary
conditions for an optimal control trajectory. For a sys-
tem governed by the state equations ¤𝑧 = 𝑓 (𝑧, 𝜃) where
𝜃 represents control variable, and the Hamiltonian func-
tion 𝐻 (𝑧, 𝜃, 𝑝), where 𝑝 represents the adjoint state (La-
grange multiplier) associated with the state variable 𝑧,
the PMP states that an optimal control trajectory (𝑧∗, 𝜃∗)
must satisfy the following conditions: state dynamics
¤𝑧∗ =

𝜕𝐻 (𝑧∗ , 𝜃∗ , 𝑝∗ )
𝜕𝑝

; adjoint dynamics ¤𝑝∗ = − 𝜕𝐻 (𝑧∗ , 𝜃∗ , 𝑝∗ )
𝜕𝑧

;

transversality condition 𝑝∗ (𝑡 𝑓 ) =
𝜕Φ(𝑧 (𝑡 𝑓 ) )
𝜕𝑧(𝑡 𝑓 ) where Φ rep-

resents the terminal cost; optimization of the Hamiltonian
condition min 𝐻 (𝑧∗, 𝜃, 𝑝∗) = 𝐻 (𝑧∗, 𝜃∗, 𝑝∗). The PMP can
be effectively applied to address a variety of optimal control
problems, encompassing scenarios such as minimum fuel
consumption and minimum time problems. Of particular
focus in this study is the latter category, which pertains to the
minimization of time required to accomplish certain tasks.
Complementing optimal control, turnpike theory explores
the long-term behavior of dynamic systems over extended
periods. It investigates the phenomenon where the system,

despite having various feasible control inputs, tends to con-
verge and remain close to a specific optimal trajectory known
as the turnpike. The turnpike phenomenon offers valuable
insights into system behavior, stability, and performance
over prolonged time intervals.

2.2. Neural ODEs

DNNs have demonstrated their capability to learn nonlinear
mappings and generalize effectively to unseen data under
specific conditions across a wide range of problems. How-
ever, the depth problem once posed significant challenges
for neural networks. The breakthrough came with the in-
troduction of ResNet. By incorporating skip connections,
ResNet achieved a remarkable performance boost. Recently,
its universal approximation power has been explained from
a non-linear control perspective (Tabuada & Gharesifard,
2020). Coinciding with ResNet’s emergence, the idea of
treating the hidden layers of neural networks as states of a
dynamical system gained popularity. Building upon this con-
cept, Chen (Chen et al., 2018) proposed an ODE specified
by the neural network to parameterize continuous dynamics:
Definition 2.1 (Neural ODEs). With ℎ𝑥 : R𝑛𝑥 → R𝑛𝑧 ,
ℎ𝑦 : R𝑛𝑧 → R𝑛𝑦 representing the input network and output
network respectively, a Neural ODE is a system of the form

¤𝑧 (𝑡) = 𝑓 (𝑡, 𝑧 (𝑡) , 𝜃)
𝑧 (𝑡0) = ℎ𝑥 (𝑥) 𝑡 ∈ S
�̂� (𝑡) = ℎ𝑦 (𝑧 (𝑡))

(1)

where S :=
[
𝑡0, 𝑡 𝑓

]
(𝑡0, 𝑡 𝑓 ∈ R+) is the depth domain and 𝑓

is a neural network called ODENet which is chosen as part
of the machine learning model with parameter 𝜃.

The solution of this ODE at some time 𝑡 𝑓 from an initial
value 𝑧 (𝑡0) is 𝑧

(
𝑡 𝑓
)
, obtained with a differential equation

solver by means of a specific solution scheme according
to desired accuracy. The number of times the ODE solver
evaluates the function in one forward pass can be interpreted
as the number of hidden layers of the neural network, i.e.,
the depth. Now ResNet can be seen a special case of Neural
ODEs using Euler discretization.
For common machine learning scenarios, such as image
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classification, an input data point 𝑥 is mapped by Neural
ODEs to �̂�, e.g., a label, and 𝑦 represents the true label. In
other words, the inference of Neural ODEs is carried out by
solving the initial value problem (IVP):

�̂� = ℎ𝑦

(
ℎ𝑥 (𝑥) +

∫ 𝑡 𝑓

𝑡0

𝑓 (𝑡, 𝑧 (𝑡) , 𝜃) 𝑑𝑡
)

(2)

The training of the Neural ODEs with parameters 𝜃 proposed
in (Chen et al., 2018) considers only a loss functionΦ

(
𝑧
(
𝑡 𝑓
) )

that depends on the terminal state 𝑧(𝑡 𝑓 ), which is also the
common scenario for supervised learning problems where
the terminal state is compared to a true label. In this case, the
training can be cast into a Mayer optimal control problem
where only terminal cost is considered. However, for the
purpose of our paper, it is valuable to introduce an additional
integral term over the latent state trajectories measured by a
function 𝐿 (·) as

ℓ B Φ
(
𝑧
(
𝑡 𝑓
) )
+
∫ 𝑡 𝑓

𝑡0

𝐿 (𝑧 (𝑡) , 𝜃, 𝑡) 𝑑𝑡 (3)

since in the framework of Neural ODEs, the latent states
evolve through layers, and then generate outputs. Also, the
comprehensive evaluation of the entire trajectory’s perfor-
mance plays a pivotal role in facilitating the acquisition of
more efficient dynamics.
With such a loss function, the training can be cast into an op-
timization problem of the following form where 𝑥 represents
training data:

min
𝜃∈𝑈

ℓ

𝑠.𝑡. ¤𝑧 (𝑡) = 𝑓 (𝑡, 𝑧 (𝑡) , 𝜃) , 𝑡 ∈ S
𝑧 (𝑡0) = ℎ𝑥 (𝑥)

(4)

which is a Bolza optimal control problem, and 𝜃 is the
control variable here. The problem can be solved recursively
by gradient descent (GD) and then optimal control theory
comes in handy to provide formulas for computing these
gradients.

Supervised Learning problem In the context of super-
vised learning problems, particularly exemplified by image
recognition tasks in machine learning, it is noted, as previ-
ously mentioned, that for common scenarios such as image
classification, an input data point 𝑥 is transformed by Neural
ODEs into an output �̂�, typically representing a classification
label. Generally, the terminal loss Φ shown in loss function
(3) is usually designed as the cross-entropy between the
predicted label �̂� and the true label 𝑦.

Generative Models Neural ODEs have proven their ver-
satility not only in supervised learning but also in the field
of generative models. Chen et al. (2018) pioneered the
concept of Continuous Normalizing Flows (CNF), utilizing

the formula for the instantaneous change of variables to
tackle specific challenges in this domain. Essentially, CNF
seeks to create complex distributions from simpler ones by
dynamically evolving the data points according to the ODE,
thus facilitating the generation of target distribution. The
central process of CNF involves generating data points 𝑥

that conform to a target distribution 𝑝(𝑥). This is achieved
by transforming data from a basic distribution, typically
a Gaussian distribution, through a parametrically defined
ODE, expressed as 𝑓 = (𝑡, 𝑧(𝑡), 𝜃). The IVP is:

𝜕𝑡

[
𝑧(𝑡)

log 𝑝(𝑧(𝑡))

]
=

[
𝑓 (𝑡, 𝑧(𝑡), 𝜃)
−Tr

(
𝜕 𝑓

𝜕𝑧 (𝑡 )

) ]
[

𝑧(𝑡0)
log 𝑝(𝑧(𝑡0)) − log 𝑝(𝑥)

]
=

[
𝑥

0

] (5)

where 𝑡 ∈
[
𝑡0, 𝑡 𝑓

]
. Then 𝑧(𝑡 𝑓 ) and log 𝑝(𝑧(𝑡 𝑓 )) − log 𝑝(𝑥)

can be obtained by solving the IVP. Finally, the target
distribution can be computed as log 𝑝(𝑥) = log 𝑝(𝑧(𝑡 𝑓 )) −∫ 𝑡 𝑓

𝑡0

(
−Tr 𝜕 𝑓

𝜕𝑧 (𝑡 )

)
𝑑𝑡 where 𝑧(𝑡 𝑓 ) should follow a foundational

distribution. The terminal loss can be designed as negative
log-likelihood:

Φ = −𝔼𝑝𝑥

{
log 𝑝(𝑧(𝑡 𝑓 )) −

∫ 𝑡 𝑓

𝑡0

(
−Tr

𝜕 𝑓

𝜕𝑧(𝑡)

)
𝑑𝑡

}
(6)

2.3. Lyapunov Conditions for Convergence Rate

When considering the stability and convergence properties of
dynamic systems, the application of Lyapunov methods be-
comes indispensable. Lyapunov methods are mathematical
techniques employed to analyze the stability and evolution
characteristics of dynamic systems. These methods involve
the construction of an energy function (Lyapunov function)
to monitor the system’s evolution, thereby guaranteeing that
the system tends towards a stable state. In control theory,
the concept of a stable dynamical system indicates that all
solutions within a certain region around an equilibrium tend
to converge towards that point. Lyapunov theory (Ames
et al., 2014) extends this idea by considering the convergence
of solutions to states that minimize a potential function 𝑉 .
Theorem 1. For the ODE described in (1), a continuously
differentiable function 𝑉 that is also positive except for
the equilibrium and is radially unbounded, then it is an
exponentially stabilizing Lyapunov function if there exits a
constant 𝜅 > 0 such that:

min
𝜃

[
𝜕𝑉

𝜕𝑧

����
𝑧

𝑓 (𝑡, 𝑧, 𝜃) + 𝜅𝑉 (𝑧)
]
≤ 0 (7)

holds for all 𝑧 and 𝑡 ∈
[
𝑡0, 𝑡 𝑓

]
. The existence of this

Lyapunov function implies that there is a 𝜃 irrespective of 𝑧
that can achieve

𝜕𝑉

𝜕𝑧

����
𝑧

𝑓 (𝑡, 𝑧, 𝜃) + 𝜅𝑉 (𝑧) ≤ 0 (8)
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and the ODE using 𝜃 is exponentially stable with respect to
𝑉 and constant 𝜅:

𝑉 (𝑧 (𝑡)) ≤ 𝑉 (𝑧 (𝑡0)) 𝑒−𝜅𝑡 (9)

The importance of exponential stability in a system lies in its
ability to guarantee that the system can rapidly converge to
the desired state which is defined by 𝑉 within a finite time.
Recently, Lyapunov theory has gained considerable attention
in the field of machine learning. For instance, Kang (Kang
et al., 2021) utilized Lyapunov stability to enhance the
robustness of Neural ODEs. Additionally, this approach
provides a safeguard for ensuring the convergence rate of
the system, offering a novel perspective for enhancing the
training of neural networks (Rodriguez et al., 2022; Zhao
et al., 2023).

3. Methods
The theoretical insights from the field of control theory men-
tioned above provide perspectives and tools for addressing
the structural challenges of Neural ODEs. In this section, we
present our approaches to determine an appropriate network
depth, focusing on optimizing from the perspective of time
span. We propose two methods: the first involves directly
transforming the problem into a minimum-time optimal
control problem, which we refer to as Minimum-time Neural
ODEs, where the terminal time is treated as a learnable
parameter for training; the second approach, as mentioned in
the preceding section, focuses on evaluating the performance
of the entire trajectory of the system dynamics, which we
refer to as a pre-training approach based on convergence
guarantee, grounded in control theory perspectives.
First, as mentioned in the previous section, for the sys-
tem (1), and the objective function ℓ B Φ

(
𝑧
(
𝑡 𝑓
) )
+∫ 𝑡 𝑓

𝑡0
𝐿 (𝑧 (𝑡) , 𝜃, 𝑡) 𝑑𝑡, the optimal control problem we re-

cast is as (4) shown where the design of running cost 𝐿 will
be discussed later. The ODE that describes the dynamics of
latent state 𝑧 (𝑡) is represented by a neural network 𝑓 whose
parameters are 𝜃, taking 𝑧 (𝑡) as input.
Gradients of ℓ with respect to parameter 𝜃 can be computed
via automatic differentiation (Paszke et al., 2017), or via
adjoint sensitivity analysis as in the following proposition
which has onlyO(𝑁 𝑓 ) memory cost during training (Zhuang
et al., 2020) where 𝑁 𝑓 denotes the number of layers of 𝑓 .

Proposition 3.1. Consider Problem (1)-(4). The gradient
of loss ℓ with respect to parameter 𝜃 is

∇𝜃ℓ = 𝜇 (𝑡0) (10)

where 𝑧 (𝑡), 𝑝 (𝑡) and 𝜇 (𝑡) satisfy the boundary value prob-

Algorithm 1 Minimum-Time Neural ODEs
Input: Initial time 𝑡0 > 0, number of iterations 𝑛 > 0
Result: 𝑡∗

𝑓
, 𝜃∗

1: Initialize 𝑡 𝑓 , 𝜃
2: for 𝑖 < 𝑛 do
3: z← 𝑂𝐷𝐸𝑆𝑜𝑙𝑣𝑒𝑟 ( 𝑓 (𝑡, 𝑧, 𝜃), 𝑧(𝑡0), 𝑡0, 𝑡 𝑓 )
4: 𝜃 ← 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 (∇𝜃ℓ, 𝜃) ⊲ Update neural network

parameters
5: 𝑡 𝑓 ← 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 (∇𝑡 𝑓 ℓ, 𝑡 𝑓 ) ⊲ Update terminal time
6: end for

lem:

¤𝑧 (𝑡) = 𝑓 , 𝑧 (𝑡0) = 𝑧0

¤𝑝 (𝑡) = −𝑝 (𝑡) 𝜕 𝑓
𝜕𝑧
− 𝜕𝐿

𝜕𝑧
, 𝑝

(
𝑡 𝑓
)
=

𝜕Φ

𝜕𝑧
(
𝑡 𝑓
)

¤𝜇 (𝑡) = −𝑝 (𝑡) 𝜕 𝑓
𝜕𝜃
− 𝜕𝐿

𝜕𝜃
, 𝜇

(
𝑡 𝑓
)
= 𝟘𝑛𝜃

(11)

The proof is provided in the supplementary material.

3.1. Approach 1: Minimum-time Neural ODEs

We propose the general framework of Minimum-time Neural
ODEs. In our setting, it is noteworthy that the terminal
time, denoted as 𝑡 𝑓 , is a learnable parameter rather than a
fixed value. Specifically, after each back-propagation, 𝑡 𝑓 is
updated which is utilized in the subsequent forward pass.
As to the gradient of ℓ with respect to 𝑡 𝑓 , the computation
is related to taking the derivative with respect to the upper
limit of a variable integral:
Proposition 3.2. Consider Problem (1)-(4). The gradient
of loss ℓ with respect to terminal time 𝑡 𝑓 is

𝑑ℓ

𝑑𝑡 𝑓
=

𝜕Φ

𝜕𝑧
(
𝑡 𝑓
) 𝑑𝑧(𝑡 𝑓 )

𝑑𝑡 𝑓
+ 𝑑

𝑑𝑡 𝑓

∫ 𝑡 𝑓

𝑡0

𝐿 (𝑧 (𝑡) , 𝜃, 𝑡)

=
𝜕Φ

𝜕𝑧
(
𝑡 𝑓
) 𝑓 (𝑧 (𝑡 𝑓 ) ) + 𝐿 (

𝑡 𝑓
) (12)

As to CNF problems whose terminal function is de-
signed as (6), the first term on the right side of (12) is
−𝔼𝑝𝑥

{
𝜕 log 𝑝 (𝑧 (𝑡 𝑓 ) )

𝜕𝑧 (𝑡 𝑓 ) 𝑓 (𝑧(𝑡 𝑓 ))
}
+ 𝔼𝑝𝑥

{
−Tr 𝜕 𝑓

𝜕𝑧 (𝑡 𝑓 )

}
.

In our experiments, we jointly update the network parameters
and terminal time. However, for finer adjustments, it is
advisable to consider employing different optimizers and
learning rates for updates and coordinate descent methods
could be used for optimization as in Algorithm 1.

Temporal Regularization In order to find the minimum-
time optimal control strategy, the loss function is designed
as

ℓ B Φ
(
𝑧
(
𝑡 𝑓
) )
+ 𝜆

∫ 𝑡 𝑓

𝑡0

1𝑑𝑡 (13)
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which can be seen as 𝐿 = 𝜆. In this case, ∇𝑡 𝑓 ℓ =
𝜕Φ

𝜕𝑧(𝑡 𝑓 ) 𝑓
(
𝑧
(
𝑡 𝑓
) )
+ 𝜆. This is equivalent to the method of

adding a regularization term 𝜆
��𝑡 𝑓 − 𝑡0�� directly to the loss

function, where 𝜆 denotes the power of regularization on the
training process and can be seen as the trade-off between
final performance and integral time span.
In addition, to ensure the safety of terminal time updates and
prevent overly abrupt changes, we propose to apply clipping
to the updates:

𝑡 𝑓 =


𝑇, 𝑡 𝑓 > 𝑇

𝑡0 + 𝜖, 𝑡 𝑓 < 𝑡0 + 𝜖
𝑡 𝑓 , else

(14)

where 𝜖 denotes the step size used when using a fixed-step
ODE solver, and in other cases, it can be chosen as a small
value. When the initial upper bound of integration is chosen
to be sufficiently large, 𝑇 can be set as the initial upper bound
𝑇 𝑓 , otherwise alternative values may be considered.
Since we simultaneously train both neural network param-
eters and terminal time, the training process, especially in
its initial stages, may exhibit instability, and the choice of
multipliers could have a significant impact. In our approach,
we suggest starting with a relatively large initial terminal
time and optimize it in a backward manner. In this setting,
even when we consider only terminal loss in addition to
time regularization, after each step of backward updating 𝑡 𝑓 ,
the terminal state is also pushed backward. As a result, it
gradually demands the learned dynamics to reach the target
state earlier and thus requires the learning of more direct
and faster dynamics in the spatial perspective.
Besides, it is possible that dynamics learned in this manner
become very fast. If there is a limitation on the speed of
dynamics for the sake of stability, specifically the magnitude
of ¤𝑧, it can be enforced through clipping within the network.

3.2. Approach 2: Convergence-rate-based Neural ODEs

The loss function employed in the aforementioned approach
in (13), apart from incorporating an explicit penalty on
time, solely takes into account considerations related to
the terminal state. Although it is demonstrating promising
performance, including learning more direct and faster dy-
namics, convergence guarantees are lacking. To overcome
this limitation, we propose to first pre-train a dynamics model
with guaranteed convergence speed by including trajectory
tracking in the loss function via Lyapunov method from the
spatial perspective on a small time interval, and then search
for the minimum terminal time satisfying the terminal state
requirements in the forward direction. This is because, as
observed in Figure 1(a), in the context of learning problems,
the temporal extent (or number of layers) does not need to
be excessively large to achieve a small error under control.
In other words, the guaranteed rate of convergence implies

Algorithm 2 Convergence-rate-based Pre-training algorithm
Input: Initial time 𝑡0 > 0, number of iterations 𝑛 > 0,
threshold 𝜀 > 0, update step size for terminal time 𝛾 > 0
Result: 𝑡∗

𝑓
, 𝜃∗

1: Initialize 𝑡 𝑓 , 𝜃
2: for 𝑖 < 𝑛 do
3: z← 𝑂𝐷𝐸𝑆𝑜𝑙𝑣𝑒𝑟 ( 𝑓 (𝑡, 𝑧, 𝜃), 𝑧(𝑡0), 𝑡0, 𝑡 𝑓 )
4: 𝜃 ← 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 (∇𝜃ℓ, 𝜃) ⊲ Update neural network

parameters
5: end for
6: while Φ(𝑡 𝑓 ) > 𝜀 do
7: 𝑡 𝑓 ← 𝑡 𝑓 + 𝛾 ⊲ Update terminal time
8: z← 𝑂𝐷𝐸𝑆𝑜𝑙𝑣𝑒𝑟 ( 𝑓 (𝑡, 𝑧, 𝜃), 𝑧(𝑡0), 𝑡0, 𝑡 𝑓 )
9: 𝜃 ← 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑟 (∇𝜃ℓ, 𝜃)

10: end while

that any layer beyond a certain time can be dropped from
training theoretically.

Lyapunov method Inspired by LyaNet (Rodriguez et al.,
2022), for a given training data pair and supervised loss Φ,
the potential function 𝑉 can be designed as

𝑉�̂� (·) B Φ (𝑧 (·)) (15)

For example, when standard cross-entropy loss is considered,
we consider using the truncated cross entropy loss defined
as Φ(·) B max{0,Φ𝑐𝑒}. Then a point-wise Lyapunov loss
can be designed as

V B max
{
0,

𝜕𝑉�̂�

𝜕𝑧
𝑓 (𝑡, 𝑧, 𝜃) + 𝜅𝑉�̂� (𝑧)

}
(16)

Equation (38) signifies the local violation of invariance
condition specified in (8). WhenV = 0 holds for all data in
the time interval, as per Theorem 1, the inference dynamics
exhibit exponential convergence towards a prediction that
minimizes the loss. The Lyapunov loss for the dynamic
system (1) is

ℓ B E

[∫ 𝑡 𝑓

𝑡0

V𝑑𝑡

]
(17)

Theorem 2 ((Rodriguez et al., 2022)). Consider the Lyapunov
loss above. If there exists a parameter 𝜃∗ of the dynamic
system that satisfies ℓ(𝜃∗) = 0, then:

• The potential function𝑉�̂� is an exponentially stabilizing
Lyapunov function with 𝜃∗;

• For 𝑡 ∈
[
𝑡0, 𝑡 𝑓

]
, the dynamic satisfies the convergence

speed with respect to the loss Φ:

Φ (𝑧(𝑡)) ≤ Φ (𝑧(𝑡0)) 𝑒−𝜅𝑡 (18)

The Lyapunov method provides a guarantee of convergence
rate for a broader range of problems and affords us the
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opportunity to manually select the rate of convergence, as
there might be instances where too fast dynamics are not
preferred.

Learning procedure It is noteworthy that, for instance,
the utilization of Lyapunov loss ensures a convergence rate
but does not precisely guarantee the convergence of the
terminal state to a specific value since Lyapunov loss lacks
constraints specifically targeting the terminal state itself.
This dependence is influenced by the magnitude of the
terminal time, 𝑡 𝑓 . If 𝑡 𝑓 is very small, the learned dynamics
might not have sufficient time to elevate the state to the
desired value. Conversely, if 𝑡 𝑓 is excessively large, the
network could expend excessive depth on processing already
converged states, resulting in unnecessary time consumption.
Therefore, we introduce a pre-training approach. Initially,
we commence with a smaller initial value of 𝑡 𝑓 , implying the
utilization of a shallower network to train a swift dynamic
along the integration path. Subsequently, we iteratively
augment the time span, e.g. network depth, until the model
loss reaches the predefined threshold. The algorithm is
shown in Algorithm 2. This algorithm can be viewed as a
greedy approach, as it aims to identify the shortest required
time span, corresponding to the shallowest neural network,
thereby minimizing unnecessary layer complexity.

Approach 1 is convenient and intuitive, accomplished
in a single stage, yet the selection of parameter 𝜆 is a
challenge, potentially resulting in performance degradation.
Besides, it currently lacks a theoretical foundation to
guarantee the convergence rate of the learned underlying
dynamics. On the other hand, Approach 2 provides
dynamics with convergence guarantees, and it can lead to
an overall faster training since a much shorter time span
is selected during pre-training. However, this approach
requires a two-stage process and becomes more challenging
when Neural ODEs are not positioned at the end of the
network architecture. This is because the states along the
trajectory need to be passed into the subsequent neural
network, which is a limitation of LyaNet itself Note that
the second approach can be combined with the previous
Minimum-time Neural ODEs approach by incorporating
time regularization and a terminal loss, treating 𝑡 𝑓 as a
learnable parameter for training in a single stage. However,
in preliminary experiments this combined approach does not
exhibit significant advantages compared to the individual
approaches as shown in Appendix F.2.

4. Experiments
In this section, we demonstrate the benefits of the
proposed methods on a variety of machine learning
tasks. We compare the results among Vanilla Neural
ODEs, our methods, LyaNet, STEER, TayNODE (Kelly

et al., 2020) and SNOpt. Our code is available at
https://github.com/KYMiao/Accelerating-Neural-ODEs.

4.1. Supervised Learning

Binary Classification (two moons) We test our methods
on the two moons dataset for binary classification. The
results are displayed in Table 1 and Figure 3. The time of
pre-training and second phase training are also indicated
in Table 1 for the Convergence-rate-based method. Our
methods have learned considerably faster dynamics that
distinguish between the two data groups quickly, leading to
an order of magnitude reduction in training and inference
time.

Table 1. Performance on Supervised Learning Problems
Method 𝑡 𝑓 Training Inference

Binary

Vanilla 1 46.64s 71.88ms
Minimum-time 0.0904 7.33s 8.4ms

Convergence-rate-based 0.10 Pre: 5.42s 8.44msSec: 0.79s

CA

Vanilla 1 123s 86.6ms
Minimum-time 0.0819 27s 10.52ms

Convergence-rate-based 0.09 Pre: 15.98s 10.24msSec: 1.02s
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(a) State trajectory learned by Vanilla Neural ODEs
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(b) State trajectory learned by Minimum-time Neural ODEs

Figure 3. Performance on two moons dataset

Binary Classification (Concentric Annuli) We present
our results on Concentric Annuli (CA) problem (introduced
in Appendix F.2) in Table 1 and Figure 4, which includes
the loss curve over the time span and the state trajectories.
An interesting observation emerges when we apply the
same value of 𝜅 to training on the interval [0, 1], akin
to the approach taken by LyaNet. We discover that, for
𝜅 = 20, faster dynamics are not learned as shown in Figure
4(a)-4(c) compared to the case 𝜅 = 10. However, when
considering shorter time spans, a faster dynamic is attainable.
This phenomenon can be elucidated: over a longer time
span, although theoretically feasible, it becomes numerically
difficult to sustain a substantial rate of descent once the loss
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(b) 𝜅 = 10, 𝑡 𝑓 = 1
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(c) 𝜅 = 20, 𝑡 𝑓 = 1
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(d) 𝜅 = 20 with pre-training
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(e) Minimum-time

Figure 4. Performance on Concentric Annuli Problem using different methods: (a)-(c) shows the results obtained by Lyapunov method
trained with 𝜅 = 1, 10, 20 respectively on [0, 1]; (d) demonstrates the results obtained by our Convergence-rate-based method with
pre-training on [0, 0.05], 𝜅 = 20, (e) shows the results obtained by Minimum-time Neural ODEs

Table 2. Image Classification using Neural ODEs
Method Terminal Time Test Accuracy Training Time Inference Time NFE

MNIST Vanilla NODEs 1 99.57% 4h47min23s 0.546s 402.6
Minimum-time NODEs 0.0343 99.53% 20min23s 0.03s 16.1

Fashion MNIST Vanilla NODEs 1 93.07% 4h41min19s 0.494s 402.6
Minimum-time NODEs 0.0564 92.68% 22min24s 0.044s 24.2

CIFAR-10

Vanilla NODEs 1 82.60% >10h 0.531s 404.9

Minimum-time NODEs
𝜆 = 1 0.1103 76.38% 42min37s 0.098s 47.3
𝜆 = 0.5 0.1975 78.41% 50min57s 0.124s 81
𝜆 = 0.1 0.3606 81.74% 2h22min15s 0.278s 146.1

has converged to a relatively small value. This difficulty may
be exacerbated with larger values of 𝜅, as violations of the
Lyapunov function are likely to occur a lot over the longer
time span. However, over a shorter time span, especially
when the loss has not yet reached a minimum, such training is
more feasible. This observation can be seen as an additional
advantage of the pre-training approach. The results of the
combined method and SNOpt (Liu et al., 2021) are shown
in Appendix F.2.

Image classification We evaluated the performance of our
approach on several benchmark datasets for image classi-
fication tasks, including MNIST (LeCun, 1998), Fashion-
MNIST (Xiao et al., 2017) and CIFAR-10 (Krizhevsky et al.,
2009). The results are shown in Table 2 where NFE mea-
sures the number of evaluations required by the ODE solver
to determine the solution trajectory. And the comparison
of our method and other popular approaches such as TayN-
ODEs (Kelly et al., 2020) on computation time are shown
in Figure 5. Also, (Liu et al., 2021) reports that its SNOpt
method can reduce the training time by 30% on the MNIST
dataset and 19% on the CIFAR-10 dataset, based on the

adjoint sensitivity method and adaptive solvers as shown in
Appendix F.3. However, adjoint sensitivity method is inher-
ently much slower itself, our approach demonstrates a greater
advantage in speed improvements. It is evident that our
approach achieves significant speed enhancements in both
training and inference compared to Vanilla Neural ODEs
across these three datasets, with only minimal sacrifice in
test accuracy. Particularly noteworthy is the experimentation
on the CIFAR-10 dataset, where we achieved a trade-off
between accuracy and training/inference time by tuning the
parameter 𝜆.

Vanilla NODEs STEER Tay-NODEs Minimum-time (ours)
0.0

0.5

1.0

1.5

2.0

2.5

Re
la

tiv
e 

Sc
or

e

Training Time
Inference Time

Figure 5. Comparison of different methods’ time consumption for
classification task on MNIST dataset
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MNIST classification is less complex than CIFAR10 classifi-
cation. Our results show that when we use the same network
architecture, desired performance can be achieved with a
smaller depth (integration time) in MNIST, while a longer
depth is needed for CIFAR10. As a result, this gives us
inspiration for choosing hyper parameters. In more complex
problems, consider choosing slightly smaller 𝜆 since our ulti-
mate task is to find the appropriate depth that can guarantee
the performance of the model. The results provide us also
with inspiration on how this model can be scaled up to more
complex problems; to solve more complex problems, we
might consider 1) designing a more sophisticated network
structure, and 2) finding a longer integration interval.

4.2. Generative Models

Figure 6 demonstrates our experiments on generative models
using the two moons dataset. Vanilla Neural ODEs took
more than 18 minutes to train and 100 steps to generate the
target pattern, while our minimum-time method took around
6 minutes and 20 steps respectively.

1 step 10 steps 20 steps

Va
ni

lla
O

ur
s

Figure 6. CNF Results on two-moons dataset

5. Discussions and Future work
In this work, we propose a control teory perspective, bor-
rowing techniques such as minimum-time optimal control
and Lyapunov methods from temporal and spatial angles, to
learn more efficient dynamics, determine a more suitable
network depth, optimize network structure, and consequently
accelerate the training and inference of Neural ODEs while
mitigating unnecessary computations. Future research di-
rections include integrating our approach with acceleration
targeting ODE solvers to further enhance computational
efficiency especially for the case that adaptive ODE solvers
are used. Additionally, the combination of our method
with efforts to enhance network robustness presents another
promising avenue. Furthermore, we intend to explore time-
variant Neural ODEs whose training aligns more closely

with the optimal control problems, thus enabling a more pro-
found and elucidating investigation of the interplay between
turnpike theory and the depth of Neural ODEs.
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A. Optimal Control and Maximum Principle
The approaches to solving optimal problems includes variation method, the Pontryagin maximum principle, and dynamic
programming. Applying the variation method to solve the optimal control problem requires that the control vector is not
subject to any constraints, and the Hamiltonian function is required to be continuously differentiable to the control vector.
However, in actual engineering problems, control variables are often subject to certain restrictions. In order to solve the
constrained variation problem, Pontryagin proposed and proved the principle of maximum value. Its conclusion has many
similarities with the conclusion of the variation method. It can be applied to the situation where the control variable is
limited by the boundaries and does not require the Hamiltonian function is continuously differentiable to the control vector.
So it has been widely used.

For a minimization problem, given a system of ordinary differential equations

¤𝑧 (𝑡) = 𝑓 (𝑧 (𝑡) , 𝜃 (𝑡) , 𝑡) (19)

where 𝑧 ∈ 𝑅𝑛 is a phase vector, 𝜃 ∈ 𝑅𝑚 is a control parameter, and 𝑓 is a continuous vector function in the variable 𝑧 and 𝜃,
which is continuously differentiable with respect to 𝑧. 𝑈 is a certain set of admissible values of control parameter 𝜃. The
initial time 𝑡0 is fixed. Boundaries can be fixed, free or constrained by trajectory. Among all admissible controls transferring
the phase point from the position 𝑧 (𝑡0) to the position 𝑧

(
𝑡 𝑓
)
, it is required to find an optimal control, a function 𝜃∗ (𝑡) for

which the objective function

ℓ =

∫ 𝑡 𝑓

𝑡0

𝐿 (𝑧 (𝑡) , 𝜃 (𝑡) , 𝑡) 𝑑𝑡 +Φ
(
𝑧
(
𝑡 𝑓
)
, 𝑡 𝑓

)
(20)

takes smallest possible value.
Define the Hamiltonian function

𝐻 (𝑧 (𝑡) , 𝜃 (𝑡) , 𝑝 (𝑡) , 𝑡) = 𝑝𝑇 (𝑡) 𝑓 (𝑧 (𝑡) , 𝜃 (𝑡) , 𝑡) + 𝐿 (𝑧 (𝑡) , 𝜃 (𝑡) , 𝑡) (21)

Then the optimal control 𝜃∗ (𝑡), the optimal state trajectory 𝑧∗ (𝑡) and the optimal adjoint trajectory 𝑝∗ (𝑡) satisfy the following
conditions (Pontryagin, 1987):
The Canonical Equation:

¤𝑧∗ (𝑡) = 𝜕𝐻 (𝑧∗ (𝑡) , 𝜃∗ (𝑡) , 𝑝∗ (𝑡) , 𝑡)
𝜕𝑝

(22)

The Adjoint Equation:

− ¤𝑝∗ (𝑡) = 𝜕𝐻 (𝑧∗ (𝑡) , 𝜃∗ (𝑡) , 𝑝∗ (𝑡) , 𝑡)
𝜕𝑧

(23)

The Minimization of the Hamiltonian Condition:

min
𝜃∈𝑈

𝐻 (𝑧∗ (𝑡) , 𝜃 (𝑡) , 𝑝∗ (𝑡) , 𝑡) = 𝐻 (𝑧∗ (𝑡) , 𝜃∗ (𝑡) , 𝑝∗ (𝑡) , 𝑡) (24)

or
𝐻 (𝑧∗ (𝑡) , 𝜃 (𝑡) , 𝑝∗ (𝑡) , 𝑡) ≥ 𝐻 (𝑧∗ (𝑡) , 𝜃∗ (𝑡) , 𝑝∗ (𝑡) , 𝑡) ∀𝑡 ∈

[
𝑡0, 𝑡 𝑓

]
,∀𝜃 (𝑡) ∈ 𝑈 (25)

The Transversality Condition:

𝑝∗
(
𝑡 𝑓
)
=

𝜕Φ
(
𝑧
(
𝑡 𝑓
)
, 𝑡 𝑓

)
𝜕𝑧

(
𝑡 𝑓
) (26)

Constancy of the Hamiltonian for Autonomous Problems:

𝐻 (𝑧∗ (𝑡) , 𝜃∗ (𝑡) , 𝑝∗ (𝑡) , 𝑡) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 if 𝑡 𝑓 is fixed
𝐻 (𝑧∗ (𝑡) , 𝜃∗ (𝑡) , 𝑝∗ (𝑡) , 𝑡) = 0 if 𝑡 𝑓 is free and positive

(27)

Note that if 𝑧 (𝑡0) (respectively 𝑧
(
𝑡 𝑓
)

is fixed, then 𝑝 (𝑡0) (respectively 𝑝
(
𝑡 𝑓
)
) is free, if 𝑧 (𝑡0) (respectively 𝑧

(
𝑡 𝑓
)
) is free,

then 𝑝 (𝑡0) (respectively 𝑝
(
𝑡 𝑓
)
) is fixed. The advantage of the Pontryagin Maximum Principle is that it can be used to solve

the optimal control problems with constraints of control parameter and give the conditions which optimal control should
follows. It is noteworthy that what Pontryagin Maximum Principle provides are only necessary conditions.
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B. Proof of Proposition 3.1
Proof. Define the augmented objective function with a Lagrange multiplier 𝑝 as

L = ℓ −
∫ 𝑡 𝑓

𝑡0

𝑝(𝑡) [ ¤𝑧(𝑡) − 𝑓 (𝑡, 𝑧(𝑡), 𝜃)] 𝑑𝑡 (28)

and ¤𝑧 − 𝑓 = 0 always holds by construction, so 𝑝(𝑡) can be freely assigned while 𝑑L
𝑑𝜃

= 𝑑ℓ
𝑑𝜃

. As to the integration part on
right hand side of (28), we have∫ 𝑡 𝑓

𝑡0

𝑝(𝑡) ( ¤𝑧 − 𝑓 ) 𝑑𝑡 = 𝑝(𝑡)𝑧(𝑡)
��𝑡 𝑓
𝑡0

−
∫ 𝑡 𝑓

𝑡0

¤𝑝(𝑡)𝑧(𝑡)𝑑𝑡 −
∫ 𝑡 𝑓

𝑡0

𝑝(𝑡) 𝑓 𝑑𝑡

= 𝑝
(
𝑡 𝑓
)
𝑧
(
𝑡 𝑓
)

− 𝑝 (𝑡0) 𝑧 (𝑡0) −
∫ 𝑡 𝑓

𝑡0

( ¤𝑝(𝑡)𝑧(𝑡) + 𝑝(𝑡) 𝑓 ) 𝑑𝑡

Hence,
L = Φ

(
𝑧
(
𝑡 𝑓
) )
− 𝑝

(
𝑡 𝑓
)
𝑧
(
𝑡 𝑓
)
+ 𝑝 (𝑡0) 𝑧 (𝑡0)

+
∫ 𝑡 𝑓

𝑡0

( ¤𝑝(𝑡)𝑧(𝑡) + 𝑝(𝑡) 𝑓 + 𝐿) 𝑑𝑡

Then the gradient of ℓ with respect to 𝜃 can be computed as

𝑑ℓ

𝑑𝜃
=

𝑑L
𝑑𝜃

=

(
𝜕Φ

𝜕𝑧
(
𝑡 𝑓
) − 𝑝(𝑡 𝑓 )

)
𝑑𝑧(𝑡 𝑓 )
𝑑𝜃

+
∫ 𝑡 𝑓

𝑡0

(
¤𝑝(𝑡) 𝑑𝑧(𝑡)

𝑑𝜃
+ 𝑝(𝑡)

(
𝜕 𝑓

𝜕𝜃
+ 𝜕 𝑓

𝜕𝑧

𝑑𝑧

𝑑𝜃

)
+ 𝜕𝐿

𝜕𝜃
+ 𝜕𝐿

𝜕𝑧

𝑑𝑧

𝑑𝜃

)
𝑑𝑡

(29)

Now if we set this Lagrange multiplier as the adjoint state for the Hamiltonian function

𝐻 (𝑧, 𝑝, 𝜃) = 𝑝 𝑓 + 𝐿 (30)

and according to PMP, the optimality conditions requires

¤𝑧 = 𝜕𝐻

𝜕𝑝
= 𝑓 , ¤𝑝 = −𝜕𝐻

𝜕𝑧
= −𝑝 𝜕 𝑓

𝜕𝑧
− 𝜕𝐿

𝜕𝑧
(31)

with initial conditions 𝑧(𝑡0) = 𝑧0 and 𝑝(𝑡 𝑓 ) = 𝜕Φ
𝜕𝑧 (𝑡 𝑓 ) =

𝜕Φ

𝜕𝑧(𝑡 𝑓 ) . Substituting (31) into (29), it can be obtained that

𝑑ℓ

𝑑𝜃
=

∫ 𝑡 𝑓

𝑡0

(
𝑝(𝑡) 𝜕 𝑓

𝜕𝜃
+ 𝜕𝐿

𝜕𝜃

)
𝑑𝑡

=

∫ 𝑡0

𝑡 𝑓

(
−𝑝(𝑡) 𝜕 𝑓

𝜕𝜃
− 𝜕𝐿

𝜕𝜃

)
𝑑𝑡 =

∫ 𝑡0

𝑡 𝑓

−𝜕𝐻
𝜕𝜃

𝑑𝑡

(32)

proving the result. □

C. Proof of gradient w.r.t. time
Proof. As to the gradient of ℓ with respect to 𝑡 𝑓 , the computation is related to taking the derivative with respect to the upper
limit of a variable integral:

𝑑ℓ

𝑑𝑡 𝑓
=

𝜕Φ

𝜕𝑧
(
𝑡 𝑓
) 𝑑𝑧(𝑡 𝑓 )

𝑑𝑡 𝑓
+ 𝑑

𝑑𝑡 𝑓

∫ 𝑡 𝑓

𝑡0

𝐿 (𝑧 (𝑡) , 𝜃, 𝑡)

=
𝜕Φ

𝜕𝑧
(
𝑡 𝑓
) 𝑓 (𝑧 (𝑡 𝑓 ) ) + 𝐿 (

𝑡 𝑓
) (33)
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In fact, we can optimize the initial time 𝑡0 as well. The derivative of the loss with respect to 𝑡0 is ∇𝑡0ℓ = 𝑑ℓ
𝑑𝑡 𝑓
−∫ 𝑡0

𝑡 𝑓

(
−𝑝(𝑡) 𝜕 𝑓

𝜕𝑡
− 𝜕𝐿

𝜕𝑡

)
𝑑𝑡.

Let 𝑝𝑎𝑢𝑔 =

[
𝑝

𝑝𝑡

]
where 𝑝𝑡 =

𝑑ℓ
𝑑𝑡 (𝑡 ) . The Jacobian of 𝑓 has the form

𝜕 𝑓𝑎𝑢𝑔

𝜕 [𝑧, 𝑡] =
[
𝜕 𝑓

𝜕𝑧

𝜕 𝑓

𝜕𝑡

0 0

]
(𝑡) (34)

then
𝑑𝑝𝑎𝑢𝑔

𝑑𝑡
=
[
𝑝(𝑡) 𝑝𝑡 (𝑡)

] 𝜕 𝑓𝑎𝑢𝑔

𝜕 [𝑧, 𝑡] −
[
1 1

] 𝜕𝐿

𝜕 [𝑧, 𝑡] = −
[
𝑝(𝑡) 𝜕 𝑓

𝜕𝑧
𝑝𝑡 (𝑡) 𝜕 𝑓

𝜕𝑡

]
−
[
𝜕𝐿
𝜕𝑧

𝜕𝐿
𝜕𝑡

]
(35)

Hence, the gradients with respect to 𝑡0 is

∇𝑡0ℓ = 𝑝𝑡 (𝑡0) =
𝑑ℓ

𝑑𝑡 𝑓
−
∫ 𝑡0

𝑡 𝑓

(
−𝑝(𝑡) 𝜕 𝑓

𝜕𝑡
− 𝜕𝐿

𝜕𝑡

)
𝑑𝑡 (36)

proving the result. □

However, in our setting, we are primarily concerned with the length of the time interval, i.e. the depth. Therefore, we only
need to learn the terminal time.

D. Proof of Theorem 3
Starting by rearranging the terms of the integral:

Proof.

ℓ B E(𝑧0 , �̂�)∼𝐷

[∫ 𝑡 𝑓

𝑡0

V𝑑𝑡

]
=

∫
𝐷

∫ 𝑡 𝑓

𝑡0

V𝑑𝑡𝑑𝐷 ((𝑧0, �̂�)) =
∫
𝐷×[𝑡0 ,𝑡 𝑓 ]

V𝑑𝐷 (𝑡, (𝑧0, �̂�)) (37)

Recall that

V B max
{
0,

𝜕𝑉�̂�

𝜕𝑧
𝑓 (𝑡, 𝑧, 𝜃) + 𝜅𝑉�̂� (𝑧)

}
(38)

It can be found thatV is beging integrated over a bounded domain and it satisties the following properties:

• V ≥ 0 for all values of 𝑧0, �̂�, 𝑡.

• V is continuous since it is themaximum of two continuous functions.

Then it can be concluded that ℓ(𝜃∗) = 0 only can be achieved when V = 0 for all data. This follows from the standard
calculus argument that if the function weren’t zero at a point there would be a region surrounding that point that would
integrate to a strictly positive value. Then it can only be satisfied when

𝜕𝑉�̂�

𝜕𝑧
𝑓 (𝑡, 𝑧, 𝜃∗) + 𝜅𝑉�̂� (𝑧) ≤ 0 (39)

for all data. According to Theorem 1, we have that the potential function𝑉�̂� is an exponentially stabilizing Lyapunov function
with 𝜃∗ and since 𝑉�̂� (·) B Φ (𝑧 (·)), it can be shown that

Φ (𝑧(𝑡)) ≤ Φ (𝑧(𝑡0)) 𝑒−𝜅𝑡 (40)

□
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E. Update of 𝑡 𝑓 in Minimum-time Neural ODEs
To ensure the safety of terminal time updates and prevent overly abrupt changes, we propose to apply clipping to the updates:

𝑡 𝑓 =


𝑇, 𝑡 𝑓 > 𝑇

𝑡0 + 𝜖, 𝑡 𝑓 < 𝑡0 + 𝜖
𝑡 𝑓 , else

(41)

where 𝜖 denotes the step size used when using a fixed-step ODE solver, and in other cases, it can be chosen as a small value.
When the initial upper bound of integration is chosen to be sufficiently large, 𝑇 can be set as the initial upper bound 𝑇 𝑓 ,
while in other situations, alternative values may be considered. For instance, 𝑇 = 2𝑇 𝑓 − 𝑡0 − 𝜖 , and in this case the centre of
the feasible interval for 𝑡 𝑓 is 𝑇 𝑓 where 𝑇 𝑓 denotes the initial upper bound.

F. Experiments Details
F.1. Binary Classification

The moon dataset is shown as Figure 7. The experiments are run on Apple M1 Pro chip. We fit a three–layer network of

Figure 7. moon dataset

hidden dimensions 16. ODE-solver is chosen as RK4 with step size 0.01. Optimizer is Adam with learning rate as 0.1.

The results obtainded by Lyapunov method are shown in Figure 8 respectively.

Figure 8. State trajectory learned by Lyapunov method with pre-training

F.2. Concentric Annuli

The Concentric Annuli is shown as Figure 9. The problem is described as:

𝑓 (𝑥) =
{

0 if ∥𝑥∥ = 𝑟1
1 if ∥𝑥∥ = 𝑟2

(42)
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Figure 9. Concentric Annuli

Table 3. Performance of Combined Method on Concentric Annuli
Method Terminal Time Training Time Inference Time

Concentric Annuli

Vanilla 1 123s 86.6ms
Minimum-time 0.0819 27s 10.52ms

Convergence-rate-based 0.09 Pre: 15.98s 10.24msSec: 1.02s
Combined 0.0687 16.03s 10.01ms

where 𝑥 represents 2-dimensional data.
The experiments are run on Apple M1 Pro chip. The basic sturcture is chosen as Augmented Neural ODEs to address the
problem of intersection of integral trajectory. We fit a three–layer network of hidden dimensions 32. ODE-solver is chosen
as RK4 with step size 0.01. Optimizer is Adam with learning rate as 0.01, scheduler as ExponentialLR.

Especially, for Lyapunov method, which is pre-trained on [0, 0.05], the pre-trained results are shown in Figure 10. Then, the

Figure 10. Pre-trained results. left: Boundary Decision; right: State Trajectories

threshold of loss is set as 0.01, the results after finishing the iteration to find the safe terminal time are shown in Figure 11.

As the paper points out, these two approaches can be combined to complement each other’s strengths by using ℓ =

ℓ𝑙𝑦𝑎 + 𝜆1𝜙 + 𝜆2
∫ 𝑡 𝑓

𝑡0
1𝑑𝑡. The results of the combined method are shown in Table 3.

The results of using the network structure optimization in SNOpt (Liu et al., 2021) in the Concentric Annuli problem are
shown in Table 4. The speedup of this method is also significant, but its total elapsed time is still long because it is based on
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Figure 11. Final results. left: Boundary Decision; right: State Trajectories

Table 4. Results Comparison with SNOpt (Liu et al., 2021)
Method Training Time Inference Time

Concentric Annuli

Vanilla (Auto Diff) 123s 86.6ms
Minimum-time 27s 10.52ms

Convergence-rate-based Pre: 15.98s 10.24msSec: 1.02s
Vanilla (ASM + adaptive) 1307s 0.91s

SNOpt (adaptive) 927s 0.54s
Vanilla (ASM + fixed) 465s 0.33s

SNOpt (fixed) 89s 34.2ms

the adjoint sensitivity method (ASM). When using a fixed stepsize ODE solver, the total depth of the network is directly
linked to the terminal time. In this paper, we use the fixed step solver for consideration, because in most cases of our target
tasks, the performance of the fixed step solver is sufficient. Our method can be equally applied to the case that uses adaptive
stepsize solver, where again it has the effect of accelerating training and inference. But the acceleration will not be as
significant as in the fixed stepsize method, because in addition to the terminal time, the adaptive step size also affects the
overall network depth. The results on Concentric Annuli are as follows in Table 5.

F.3. Image Classification

The experiments are run on NVIDIA Tesla V100 GPU. The network sturcture is based on the code from Neural ODEs
paper. The ODE-solver is chosen as RK4 with step size 0.01, and integral time span for Vanilla Neural ODEs is set as [0, 1].
Optimizer is SGD with learning rate starting as 0.1 with decay rate [0.1, 0.01, 0.001] at epoch [60, 100, 140]. Training
epoch is chosen as 160, batch size is 128. Data augmentation technique are used on all the dataset, MNIST, Fashion-MNIST
and CIFAR.
The reduction in training time using minimum-time Neural ODEs and network structure optimization scheme in SNOpt (Liu
et al., 2021) for MNIST and CIFAR-10 is shown in the table, where the results for SNOpt are taken from its paper. We use
the same network architecture as (Liu et al., 2021; Chen et al., 2018) for image classification on MNIST and CIFAR-10.
It should be pointed out that our percentage training time reduction is based on Vanilla Neural ODEs using automatic

Table 5. Performance with Adaptive Solvers on CA
Method 𝑡 𝑓 Training Time Inference Time

Concentric Annuli Vanilla (adaptive) 1 168s 117.288ms
Minimum-time (adaptive) 0.0724 129s 86.493ms
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Table 6. Training Time Reduction with SNOpt and Our Method on Image Datasets
Dataset Method 𝑡 𝑓 Test Accuracy Percentage Training Time Reduction

MNIST Minimum-time NODEs 0.0349 99.53% 94%
SNOpt (Liu et al., 2021) 0.38 98.99% 30%

CIFAR-10 Minimum-time NODEs 𝜆 = 0.1 0.3606 81.74% 76%

SNOpt (Liu et al., 2021) 0.49 77.82% 19%

differentiation, while SNOpt’s dropped time is based on that using adjoint method, and the latter one is significantly slower
than the one based on automatic differentiation (may reach 10 times). Although the network structure optimization scheme
part of (Liu et al., 2021) also contains an update of the terminal time, it still remains within the purpose of the whole paper,
which is to improve the convergence efficiency of the training with a small memory cost which is different with ours.

F.4. CNF

The experiments are run on NVIDIA Tesla V100 GPU. The network sturcture is based on the code from Neural ODEs
paper. The ODE-solver is chosen as RK4 with step size 0.01, and integral time span for Vanilla Neural ODEs is set as [0, 1].
Optimizer is Adam with learning rate starting as 0.05. Training iterations are chosen as 1000, batch size is 512. 𝜆 used is
here is 0.35.
Figure 12 demonstrates our experiments on generative models on two-circles dataset.

1 step 10 steps 20 steps

Va
ni

lla
O

ur
s

Figure 12. CNF Results on two-circles dataset
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