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Abstract

In this work, we propose to solve batch denoising using Blahut-Arimoto algorithm
(BA). Batch denoising via BA (BDBA), similar to Deep Image Prior (DIP), is based
on an untrained score-based generative model. Theoretical results show that our
denoising estimation is highly likely to be close to the best result. Experimentally,
we show that BDBA outperforms DIP significantly.

1 Introduction

Our primary goal is to perform batch denoising using Blahut-Arimoto algorithm (BA). Denoising is
the process of removing noise from a noisy observation in order to recover the true data. Denoising
is essential in modern image processing because images are always contaminated by noise during
acquisition, compression, and transmission. Blahut-Arimoto [1, 2] is a well-known information theory
algorithm for computing either the information theoretic capacity of a channel or the rate-distortion
function of a source numerically.

In this paper, we propose a method for solving batch denoising by sampling from the rate-distortion
posterior computed by BA. Batch denoising via BA (BDBA), similar to Deep Image Prior (DIP) [3],
is based on an untrained score-based generative model (SBM) [4, 5]. Theoretical results show that
our denoising estimation is highly likely to be close to the best result. Experimentally, we show that
BDBA outperforms DIP significantly.

2 Background

2.1 Batch Denosing

Given a noisy observation (OB) dataset {y : y ∈ Rn} consisting of n-dimensional i.i.d. samples, that
is, y = x∗ + e, where x∗ ∈ Rn is the ground truth data, e ∼ N (0, σ), and e ∈ Rn, the objective is
to learn a denoising model p(x|y) such that

D∗ := Ey[‖x− x∗‖22], (1)

approaches zero, where x ∼ p(x|y).

2.2 Rate Distortion

Given a distribution p(y) and a rate-distortion trade-off β ∈ R+ associated with a distortion metric
ρ(·), the objective of rate-distortion is

R(β) := min
p(x),p(x|y)

I(x;y) + βE[ρ(x,y)], (2)

where I(x;y) denotes the mutual information, and β controls the trade-off between rate, i.e., I(x;y),
and distortion, i.e., D := E[ρ(x,y)].
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Let denote optimized p(x) and p(x|y) achieving (2) by p∗(x) and p∗(x|y).

That is,

p∗(x|y) := arg min
{p(x|y):y,x ∼p(y)p(x|y)}

I(x;y) + βE[ρ(x,y)], p∗(x) =

∫
p(y)p∗(x|y)dy. (3)

p∗(x|y) and p∗(x) are characterized by [6, chapter 10, pp. 330]

p∗(x|y) =
1

Zβ(y)
p∗(x) exp[−βρ(y,x)], Zβ(y) :=

∫
p∗(x) exp[−βρ(x,y)]dx. (4)

2.3 Score-Based Generative Models

Diffusing data to noise with an SDE Let p(x) denote the unknown distribution of a dataset.
Score-Based Generative Models (SBM [4, 5]) employs a stochastic differential equation (SDE) to
diffuse p(x) towards a noise distribution. The SDEs are of the form

dx = f(x, t)dt+ g(t)dw, (5)

where f(x, t) : Rn → Rn is the drift coefficient, g(t) ∈ R is the diffusion coefficient, and w ∈ Rn
denotes a standard Wiener process (a.k.a., Brownian motion). Intuitively, we can interpret dw as
infinitesimal Gaussian noise. The solution to (5) is a diffusion process {x(t)}t∈[0,T ], where [0, T ] is
a fixed time horizon.

That is, an SDE smoothes the data distribution by adding noise and gradually removing structure
until little of the original remains.

Generating samples with the reverse SDE Consider the following reverse SDE,

dx = [f(x, t)− g(t)2∇x log pt(x)]dt+ g(t)dw̃, (6)

where w̃ is a standard Wiener process in the reverse-time direction, and the above SDE must be
solved from t = T to t = 0. The solution to (6) is the same diffusion process {x(t)}t∈[0,T ] as (5),
assuming it is initialized with x(T ) ∼ pT (x).

That is, starting with samples of x(T ) ∼ pT (x) and reversing the process of (5), we gradually remove
noise to obtain samples x(0) ∼ p0(x), where p0(x) = p(x).

As a result, the training objective of SBM is to learn∇x log pt(x), the time-dependent score function
via a neural network, sθ(x, t), such that sθ(x, t) = ∇x log pt(x) for 0 ≤ t ≤ T . The sampling is via
Langevin dynamic [7, 8].

3 Methods

3.1 Proposed solution

Let ρ(x,y) := ‖y−x‖22. We propose batch denoising {y} by sampling x ∼ p∗(x|y), where p∗(x|y)
is computed by Algorithm 1.

BDBA is presented in Algorithm 1, where θk denotes the trained SBM at the kth-iteration. More
specifically, the inputs of the algorithm are {y}, ρ(x,y), and a selected β; The algorithm is based
on an untrained SBM, i.e., Line 2; The algorithm then alternately loops between two steps until
θk converges: denoising y by sampling x ∼ pθk(x|y) via Langevin dynamic, i.e., Line 5, where
pθk(x|y) is the same as (4) except p∗(x) is replaced by pθk(x); optimizing θk based on SBM training,
i.e., Line 6; Finally, the denoised result {x} is returned, i.e., Line 10.

That is, an SBM, θ, is trained to model ∇x log p∗(x) and correspondingly ∇x log p∗(x|y) due to
Lemma 2. p∗(x|y) is our denoising model, and the denoising can be done by Langevin dynamic.
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Algorithm 1 BDBA
1: procedure BDBA({y}, β, ρ(·))
2: k ← 0 and initialize θk arbitrarily . untrained oSBM
3: while not converged do
4: for y ∈ {y} do
5: sample x ∼ p

θk
(x|y) via Langevin dynamic . refer to Lemma 2

6: update θk with x s.t. s
θk

(x, t) = ∇x log pt(x) for 0 ≤ t ≤ T . refer to SBM training, i.e.,Sec 2.3
7: end for
8: k ← k + 1
9: end while
10: return {x}
11: end procedure

3.2 Theoretical analysis

Lemma 1. Assuming θ has enough capacity to fully represent any score function,
(pθk(x), pθk(x|y))→ (p∗(x), p∗(x|y)) when k →∞.

Lemma 1 states that (pθk(x), pθk(x|y)) learned by BDBA converges to rate-distortion posterior
(p∗(x), p∗(x|y)) regardless of how θ is initialized (see Fig. 2b). The proof is deferred to Appendix A.
Lemma 2. Assume∇x log p∗t (x) is represented by one SBM, Sθ(x, t), i.e., Sθ(x, t) = ∇x log p∗t (x)
(refer to Sec 2.3). ∇x log p∗t (x|y) can be represented by Sθ(x|y, t) := Sθ(x, t)−∇xβρ(x,y).

As a result of Lemma 2, sampling from p∗(x|y) is possible with Langevin dynamics. The proof is
deferred to Appendix B.
Theorem 1.

Pr[∀x ∼ p∗(x|y),y : ‖x− x∗‖22 ≤
(1 + α)

(1− α)

(
R(β)

β
− σ2

)
+

2 ln 1
η

nβ(1− α)
] ≥ 1− 2η, (7)

where η > 0, 0 < hβ < 1, α := 2σ2

1
β−h

, and β > h+ 2σ2.

The proof is deferred to Appendix C. Theorem 1 states that our denoising estimation is highly likely
to be close to the best result.

How to select β? Based on (4), when β → ∞, p∗(x|y) = 1y=x (i.e., p∗(x|y) = 1 if y = x
otherwise 0), that is sampling from p∗(x|y) tends to reproduce y exactly; when β = 0, p∗(x|y) =
p∗(x), that is sampling from p∗(x|y) tends to produce a random x which is independent of y. That
is, β controls the distortion between x and y. Therefore, a properly selected β gives a good denoising
result shown by Theorem 2.
Theorem 2. Given the batch denoising problem, when β is selected such thatD := E‖y−x‖22 = σ2,
we have H(x)→ H(x∗) when n→∞.

The proof is deferred to Appendix D. Theorem 2 suggests that if β satisfiesD = σ2, i.e., the empirical
MSE average of x and y is equal to the noise magnitude of x∗ and y, then the entropy of x is equal
to that of x∗ asymptotically. The experimental demonstration is shown in Fig. 2a.

4 Experiment

Since BDBA is an untrained method, we now compare it with state of the art untrained denoising
methods, such as the DIP method (as opposed to learned methods in [9]). We compare denoising
results with 171 randomly selected images of CelebA-HQ [10]. Appendix E contains the details of
the experiment.

The denoising examples are presented in Fig. 1 and quantitative results are in Fig. 2. Fig. 2a shows
D-D∗ curve when denoising via BDBA with e ∼ N (0, 1). Fig. 2a shows that when D = 0.9, D∗
obtains its minimum value at 0.05. The discrepancy between this and Theorem 2 which predicts
when D = 1, D∗ obtains its minimum value at 0 is because Theorem 2 holds asymptotically. Fig. 2b
compares the D∗ evolution when θ is initialized randomly or by a pretrained model. Fig. 2b shows
that both converge to the same D∗ eventually. However, BDBA with a pretrained initialization
converges faster and gives a lowerD∗ initially. As shown by Fig. 2c, BDBA significantly outperforms
DIP especially for large σ.
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(a) OB (e ∼ N (0, 0.25)) ; (b) BDBA (MSE = 0.02); (c) DIP (MSE = 0.06).

Figure 1: Denoising example.
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(a) D vs D∗ (e ∼ N (0, 1));
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(b) D∗ evolution (e ∼ N (0, 1));
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(c) Comparison with DIP.

Figure 2: Quantitative results.

5 Related Work

The Bayesian posterior sampling method was proposed in [9], and it was shown to be nearly optimal.
Our rate-distortion posterior sampling differs from [9] in two ways: first, we use the rate-distortion
posterior rather than the Bayesian posterior; second, BDBA, similar to DIP [3], is based on an
untrained SBM [4, 5] rather than a pretrained SBM as [9].

Some work has been done for inverse problems using pretrained SBMs via unsupervised methods,
for example, [11, 12, 13, 14]. Song et al. has presented a framework for all inverse problems [4];
Kawar et al. [11, 13] presented a denoising method by sampling from a posterior distribution based
on [15]; Choi et al. [12] demonstrated super-resolution methods with SBMs; Compressive-sensing
methods via SBM has been presented by Song et al. [16]. However, no work on solving the denoising
problem with an untrained SBM has been presented.

6 Conclusions and Future work

We propose to solve the batch denoising problem by sampling from the rate-distortion posterior
computed using Blahut-Arimoto. Theoretical results show that our estimate is highly likely to be
close to the best result. We demonstrate empirically that our method outperforms Deep Image Prior.

The proposed framework can theoretically be generalized to other noises, such as Laplacian noise, by
replacing a noise-corresponding distortion. Our empirical results, however, show that the denoising
performance is inferior to other denoising methods. We leave the investigation as future work.
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A Proof to Lemma 1

Proof. The proof is based on [6, Theorem 10.5] and the assumption that θ has enough capacity to
fully represent any score function.

B Proof to Lemma 2

Proof. Based on (4), we have ∇x ln p∗(x|y) = ∇x ln p∗(x) − β∇xρ(x,y). Thus replacing
∇x ln p∗(x|y) with Sθ(x, t) finishes this part.

C Proof to Theorem 1

Its proof breaks down to prove the following parts:

• ‖x− x∗‖22 satisfies

Pr{∀x ∼ p∗(x|y),y : ‖x−x∗‖22 ≤
(1 + α)

(1− α)
[
R(β)

β
−σ2] +

2 ln 1
η

nβ(1− α)
} ≤ 1− 2η, (8)

where η > 0, 0 < hβ < 1, α := 2σ2

1
β−h

, R(β) := minp(x),p(x|y)[I(x;y) + βE(‖y − x‖22)],

and β > h+ 2σ2.

• The expectation of ‖x− x∗‖22 is upper-bounded by

E[‖x− x∗‖22 −
(1 + α)

(1− α)
(
R(β)

β
− σ2)] ≤ 4

β(1− α)n
. (9)

The main technique is Craig–Bernstein inequality [17, p.96] and the rate-distortion function for lossy
compression. We present Craig–Bernstein inequality [17, p.96].
Lemma 3. Let Wi (i = 1, 2, · · · , n) be a set of independent random variables with average W̄ =

1
n

n∑
i=1

Wi. For all τ ≥ 0 and ε, c ∈ (0, 1), we have

Pr[W̄ − EW̄ ≥ τ

nε
+
nεV ar(W̄ )

2(1− c)
] ≤ e−τ . (10)

C.1 Proof to (8)

Proof. Let us consider Ui associated with ln pe(yi|xi)
pe(yi|x∗

i )
. That is

Ui := |yi − xi|2 − |yi − x∗i |2 = [xi − x∗i ]
2 − 2[yi − x∗i ][xi − x∗i ]. (11)

its mean is EUi = [xi − x∗i ]
2, and its variance is V ar(Ui) = 4σ2[xi − x∗i ]

2 due to the Gaussian
assumption.

Now, let us consider Ū = 1
n

∑
i Ui = 1

n

∑
i |yi−xi|2− 1

n

∑
i |yi−x∗i |2 = ‖y−x‖22−‖y−x∗‖22.

Its mean is EŪ = ‖x− x∗‖22 = E[‖y − x‖22]− σ2, and its variance is V ar(Ū) = 4σ2

n (‖x− x∗‖22).

Applying the Craig-Bernstein inequality to−Ū with τ = nI(x;y)+ln 1
η , ε = β, and c = hβ ∈ (0, 1)

yields

Pr[‖x− x∗‖22 − Ū ≥
I(x;y)

β
+

ln 1
η

nβ
+

2σ2‖x− x∗‖22
1
β − h

] ≤ e−nI(x;y)η. (12)

Let α := 2σ2

1
β−h

and apply (12) to all x ∼ p∗(x|y) and all y with union found, thus we have

Pr[∀x ∼ p∗(x|y),y : (1− α)‖x− x∗‖22 ≥ Ū +
I(x;y)

β
+

ln 1
η

nβ
] ≤ η, (13)
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where RHS of (13) is due to the number of (y,x) satisfying the above constraint is bounded by
enI(x;y) asymptotically [18].

Applying the Craig-Bernstein inequality to Ū with τ = ln 1
η , ε = β, and c = hβ and the fact that

EŪ = E[‖y − x‖22]− σ2, we have

Pr[∀x ∼ p∗(x|y),y : Ū ≥ (1 + α)
(
E[‖y − x‖22]− σ2

)
+

ln 1
η

nβ
] ≤ η. (14)

Together with (13) and (14), we have

Pr[∀x ∼ p∗(x|y),y : (1−α)‖x−x∗‖22 ≥ (1+α)
(
E[‖y − x‖22]− σ2

)
+
I(x;y)

β
+

2 ln 1
η

nβ
] ≤ 2η.

(15)
As α > 0, it also holds that

Pr[∀x ∼ p∗(x|y),y : (1−α)‖x−x∗‖22 ≥ (1+α)

(
E[‖y − x‖22]− σ2 +

I(x;y)

β

)
+

2 ln 1
η

nβ
] ≤ 2η,

(16)
and

Pr[∀x ∼ p∗(x|y),y : (1−α)‖x−x∗‖22 ≥ (1+α) min
p(x),p(x|y)

(
E[‖y − x‖22]− σ2 +

I(x;y)

β

)
+

2 ln 1
η

nβ
] ≤ 2η.

(17)

Define R(β) := minp(x),p(x|y)[I(x;y) + βE(‖y − x‖22)], we have

Pr[∀x ∼ p∗(x|y),y : (1− α)‖x− x∗‖22 ≥ (1 + α)(
R(β)

β
− σ2) +

2 ln 1
η

nβ
] ≤ 2η, (18)

that is

Pr[∀x ∼ p∗(x|y),y : ‖x− x∗‖22 ≥
(1 + α)

(1− α)
(
R(β)

β
− σ2) +

2 ln 1
η

nβ(1− α)
] ≤ 2η. (19)

C.2 Proof to (9)

The technique is based on [19]. That is if X is a random variable such that E[X] < ∞, then
integration by parts yields

E[X] ≤
∫ ∞
0

Pr[X ≥ t]dt. (20)

Let X := ‖x− x∗‖22 −
(1+α)
(1−α) (

R(β)
β − σ2), η = e−

tnβ(1−α)
2 such that

2 ln 1
η

nβ(1−α) = t. Based on (20),
we have

E[‖x− x∗‖22 −
(1 + α)

(1− α)
(
R(β)

β
− σ2)] ≤

∫ ∞
0

Pr[‖x− x∗‖22 −
(1 + α)

(1− α)
(
R(β)

β
− σ2) ≥ t]dt,(21)

≤ 2

∫ ∞
0

exp−
tnβ(1−α)

2 dt, (22)

=
4

β(1− α)n
.

D Proof to Theorem 2

The proof to Theorem 2 is based on [20, 21], and for completeness we present it here.

Proof. First, we address the following theorem and then complete the proof of Theorem 2.
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Theorem 3. Let ρ(y,x) = − log2 pe(z), z = x− y, d = H(e), and R(d) be defined as follows:

R(d) := min
{p(x),p(x|y):E[ρ(x,y)]≤d}

I(x;y). (23)

Then if z and e follow the same distribution, R(d) = H(x)−H(e).

Proof. Let the distributions associated with (x,y), (P ∗(x|y), P ∗(x)), achieve R(d). Then

R(d) = I(x;y), (24)
= H(x)−H(x|y),

= H(x)−H(x− y|y),

≥ H(x)−H(x− y), (25)
= H(x)−H(z), (26)
= H(x)−H(e), (27)

where

(24) H(x) and H(x|y) are defined upon (p∗(x|y), p∗(y));

(25) is due to the fact that conditioning reduces entropy, i.e., H(x|y) ≤ H(x);

(26) H(x) is defined upon P ∗(x) and H(z) is defined upon pe(z);

(27) is due to the assumption that z and e follow the same distribution.

Next, we prove the above lower abound is achievable: As E[ρ(x∗,y)] = H(e) = H(z), the
derivations from (24) to (27) hold for the distribution associated with (x∗,y), i.e., p(y|x∗) and
p(x∗). Therefore, if (p∗(x|y), p∗(x)) and (p(y|x∗), p(x∗)) are identical (see below for the identical
proof), then the above lower bound is achievable. This finishes this part of proof as R(d) is defined
in (23).

Now, we prove Theorem 2: R(d) is achieved by both (p∗(x|y), p∗(y)) and (p(y|x), p(x∗)). As
R(d) a strictly convex function of associated conditional distributions [6, Section 13.7, pp. 362],
there is only one minimizer for a strictly convex function [22]. Therefore, (p∗(x|y), p∗(x)) and
(p(y|x), p(x∗)) must be identical and this leads to H(x)→ H(x∗) with proper β chosen such that
d = H(z) = H(e).

E Experimental details

We performed all our experiments on a single GPU. The running time of BDBA is comparable to DIP.

BDBA is in PyTorch [23]. SBM is from https://github.com/cloneofsimo/minDiffusion. The image
size of dataset is 128× 128. We set T to 1000 for Langevin MCMC. The initialization of x0 is from
y. Adam [24] optimizer with an initial learning rate of 1e−4 is used.

DIP is from the open-source implementation: https://github.com/DmitryUlyanov/deep-image-prior.
For DIP, we use the U-NET [25] with skip connections. Adam optimizer with an initial learning rate
of 1e−3 is used. The loss function is MSE. The DIP optimization iterations is 1000.
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