
SA-Solver: Stochastic Adams Solver for Fast Sampling
of Diffusion Models

Shuchen Xue1,4∗, Mingyang Yi2†, Weijian Luo3∗, Shifeng Zhang2,Jiacheng Sun2,

Zhenguo Li2, Zhi-Ming Ma1,4
1University of Chinese Academy of Sciences 2 Huawei Noah’s Ark Lab 3 Peking University

4Academy of Mathematics and Systems Science, Chinese Academy of Sciences

Abstract

Diffusion Probabilistic Models (DPMs) have achieved considerable success in
generation tasks. As sampling from DPMs is equivalent to solving diffusion
SDE or ODE which is time-consuming, numerous fast sampling methods built
upon improved differential equation solvers are proposed. The majority of such
techniques consider solving the diffusion ODE due to its superior efficiency. How-
ever, stochastic sampling could offer additional advantages in generating diverse
and high-quality data. In this work, we engage in a comprehensive analysis of
stochastic sampling from two aspects: variance-controlled diffusion SDE and linear
multi-step SDE solver. Based on our analysis, we propose SA-Solver, which is an
improved efficient stochastic Adams method for solving diffusion SDE to generate
data with high quality. Our experiments show that SA-Solver achieves: 1) improved
or comparable performance compared with the existing state-of-the-art (SOTA)
sampling methods for few-step sampling; 2) SOTA FID on substantial benchmark
datasets under a suitable number of function evaluations (NFEs).

1 Introduction

Diffusion Probabilistic Models (DPMs) [1–3] have demonstrated substantial success across a broad
spectrum of generative tasks such as image synthesis [4–6], video generation [7, 8], text-to-image
generation [9–11], speech synthesis [12, 13], etc. The primary mechanism of DPMs involves a
forward diffusion process that incrementally introduces noise into data. Simultaneously, a reverse
diffusion process is learned to generate data from this noise. Despite DPMs demonstrating enhanced
generation performance in comparison to alternative methods such as Generative Adversarial Net-
works (GAN) [14] or Variational Autoencoders (VAE) [15], the sampling process of DPMs demand
hundreds of evaluations of network function evaluations (NFE) [2]. The substantial computation
requirement poses a significant limitation to their wider application in practice.

The existing literature on improving the sampling efficacy of DPMs can be categorized into two
ways, depending on whether conducting extra training on the DPMs. The first category necessitates
supplementary training [16–21], which often emerges as a bottleneck, thereby limiting their practical
application. Due to this, we focus on exploring the second category, which consists training-free
methods to improve the sampling efficiency of DPMs in this paper. Current training-free samplers
employ efficient numerical schemes to solve the diffusion SDE/ODE[22–26]. Compared with solving
diffusion SDE (stochastic sampler) [25–27], solving diffusion ODE (deterministic sampler) [22–24]

∗Work done during an internship at Huawei Noah’s Ark Lab. Email: xueshuchen17@mails.ucas.ac.cn,
luoweijian@stu.pku.edu.cn
†Corresponding authors: Mingyang Yi (yimingyang2@huawei.com)

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

empirically exhibits better sampling efficiency. Existing stochastic samplers typically exhibit slower
convergence speed. However, empirical observations in [3, 27] indicate that the stochastic sampler
has the potential to generate higher-quality data when increasing the sampling steps. This empirical
observation motivates us to further explore the efficient stochastic sampler.

Owing to the observed superior performance of stochastic sampler [3, 27], we speculate that adding
properly scaled noise in the diffusion SDE may facilitate the quality of generated data. Thus, instead
of solving the vanilla diffusion SDE in [22], we propose to consider a family of diffusion SDEs
which shares the same marginal distribution [28, 27] with different noise scales. Meanwhile, efficient
stochastic solvers are not carefully studied, which could be the reason that diffusion ODE exhibits
better sampling efficiency. To overcome this problem, we study the linear multi-step SDE solvers [29]
and incorporate them in the sampling.

Based on these studies, we propose SA-Solver with theoretical convergence order to solve the proposed
diffusion SDEs. Our SA-Solver is based on the stochastic Adams method in [29], by adapting it to
the exponentially weighted integral and analytical variance. With the proposed diffusion SDEs and
SA-Solver, we can efficiently generate data with controllable noise scales. We empirically evaluate
our SA-Solver on plenty of benchmark datasets of image generation. The evaluation criterion is the
Fréchet Inception Distance (FID) score [30] under different number of function evaluations (NFEs).
The experimental results can be summarized as three folds: 1) Under small NFEs, our SA-Solver
has improved or comparable FID scores, compared with baseline methods; 2) Under suitable NFEs
our SA-Solver achieves the State-of-the-Art FID scores over all benchmark datasets; 3) SA-Solver
achieves superior performance over deterministic samplers when the model is not fully trained.

2 Related Works

The DPMs originate from the milestone work [1], and are further developed by [2] and [3] to
successfully generate high-quality data, under the framework of discrete and continuous diffusion
SDEs respectively. In this paper, we mainly focus on the latter framework. As mentioned in Section
1, plenty of papers are working on accelerating the sampling of DPMs due to their low efficiency,
distinguished by whether conducting a supplementary training stage. Training-based methods, e.g.,
knowledge distillation [16–18], learning-to-sample [19], and integration with GANs [20, 21], have
the potential to sampling for one or very few steps to enhance the efficiency, but their applicability is
limited by the lack of a plug-and-play nature, thereby constraining their broad applicability across
diverse tasks. Thus we mainly focus on the training-free methods in this paper.

Solving Diffusion ODE. Since the sampling process is equivalent to solving diffusion SDE (ODE),
the training-free methods are mainly built on solving the differential equations via high-efficiency
numerical methods. As ODEs are easier to solve compared with SDEs, the ODE sampler has attracted
great attention. For example, Song et al. [22] provides an empirically efficient solver DDIM. Zhang
and Chen [28] and Lu et al. [23] point out the semi-linear structure of diffusion ODEs, and develop
higher-order ODE samplers based on it. Zhao et al. [24] further improve these samplers in terms of
NFEs by integrating the mechanism of predictor-corrector method.

Solving Diffusion SDE. Though less explored than the ODE sampler, the SDE sampler exhibits the
potential of generating higher-quality data [27]. Thus developing an efficient SDE sampler as we did
in this paper is a meaningful topic. In the existing literature, researchers [2, 26, 3] solve the diffusion
SDE by first-order discretization numerical method. The higher-order stochastic sampler of diffusion
SDE has also been discussed in [25]. Karras et al. [27] proposes another stochastic sampler (which
is not a general SDE numerical solver) tailored for diffusion problems. However, in contrast to our
proposed SA-Solver, the existing SDE samplers are limited due to their low efficiency [2, 26, 3] or
sensitivity to hyperparameters [27].

We found a concurrent paper proposing an SDE sampler SDE-DPM-Solver++ [31] which is similar
to our SA-Solver. Though both methods develop multi-step diffusion SDE samplers, our SA-Solver
is different from SDE-DPM-Solver++ as follows: 1) SA-Solver incorporates the predictor-corrector
method, which helps improve the quality of generated data [3, 32, 24]; 2) In contrast to SDE-
DPM-Solver++, SA-Solver has theoretical guarantees with proved convergence order; 3) SDE-DPM-
Solver++ is a special case of SA-Solver when the predictor step equals 2 with no corrector in our
predictor-corrector method, while our solver supports arbitrary orders with analytical forms.

2

3 Preliminary

In the regime of the continuous stochastic differential equation (SDE), Diffusion Probabilistic Models
(DPMs) [1–3, 33] construct noisy data through the following linear SDE:

dxt = f(t)xtdt+ g(t)dwt, (1)

where wt ∈ Rd represents the standard Wiener process, f(t)xt and g(t) respectively denote the drift
and diffusion coefficients. For each time t ∈ [0, T], xt|x0 ∼ N (αtx0, σ

2
t I).

Let pt(x) denotes the marginal distribution of xt, the coefficients f(t) and g(t) are meticulously
selected to guarantee that the marginal distribution pT (xT) closely approximates a Gaussian distribu-
tion, i.e., N (0, I), and the signal-to-noise-ratio (SNR) α2

t /σ
2
t is strictly decreasing w.r.t. t. In the

sequel, we follow the established notations in [33]:

f(t) =
d logαt

dt
, g2(t) =

dσ2
t

dt
− 2

d logαt

dt
σ2
t . (2)

Anderson [34] demonstrates a pivotal theorem that the forward process (1) has an equivalent reverse-
time diffusion process (from T to 0) as the following equation, so that generating process can be
equivalent to numerically solve the diffusion SDE [2, 3].

dxt =
[
f(t)xt − g2(t)∇x log pt(xt)

]
dt+ g(t)dw̄t, xT ∼ pT (xT) (3)

where w̄t represents the Wiener process in reverse time, and∇x log pt(x) is the score function.

Moreover, Song et al. [3] also prove that there exists a corresponding deterministic process whose
trajectories share the same marginal probability densities pt(x) as (3), so that the ODE solver can be
adopted for efficient sampling [23, 24]:

dxt =

[
f(t)xt −

1

2
g2(t)∇x log pt(xt)

]
dt, xT ∼ pT (xT) (4)

To get the score function∇x log pt(xt) in (3), we usually take neural network sθ(x, t) parameterized
by θ to approximate it by optimizing the denoising score matching loss [3]:

θ∗ = argmin
θ

Et

{
λ(t)Ex0

Ext|x0

[∥∥sθ(x, t)−∇xt
log p0t(xt|x0)

∥∥2
2

]}
. (5)

In practice, two methods are used to reparameterize the score-based model [35]. The first approach
utilizes a noise prediction model such that ϵθ(xt, t) = −σtsθ(xt, t), while the second employs a
data prediction model, represented by xθ(xt, t) = (xt − σtϵθ(xt, t))/αt. The reparameterized
models are plugged into the sampling process (3) or (4) according to their relationship with sθ(xt, t).

4 Variance Controlled Diffusion SDEs

As mentioned in Section 1, most of the existing training-free efficient samplers are based on solving
diffusion ODE (4), e.g., [23, 22, 24], because of their improved efficiency compared with the solvers
of diffusion SDE (3). However, the empirical observations in [27, 22] exhibit that the quality of
data generated by solving diffusion SDE outperforms diffusion ODE given sufficient computational
budgets. For example, in [22], the diffusion ODE sampler DDIM [22] significantly improve the FID
score of diffusion SDE sampler DDPM [2] (from 133.37 to 6.84) on CIFAR10 dataset [36] under 20
NFEs. However, under 1000 NFEs, the DDPM beats the DDIM in terms of FID score (3.17 v.s. 4.04).
There may be a trade-off between stochasticity and efficiency. Thus, we conjecture that adding proper
scale noise during the generating process may improve the quality of generated data with few NFEs.

In this section, we explore a family of variance-controlled diffusion SDEs, so that we can use proper
noise scales during the sampling stage. Inspired by Proposition 1 in [28] and Eq. (6) in [27], we
propose the following proposition to construct the aforementioned diffusion SDEs.
Proposition 4.1. For any bounded measurable function τ(t) : [0, T] → R, the following Reverse
SDEs

dxt =

[
f(t)xt −

(
1 + τ2(t)

2

)
g2(t)∇x log pt(xt)

]
dt+ τ(t)g(t)dw̄t, xT ∼ pT (xT) (6)

share the same marginal probability distributions with (4) and (3) .

3

The proof can be found in Appendix A.1. The proposition indicates that by solving any of the diffusion
SDEs in (6), we can sample from the target distribution. It is worth noting that the magnitude of noise
varies with τ(t), and τ(t) = 0 or τ(t) = 1 respectively correspond to the diffusion ODE and SDE in
[3]. Thus we can control the magnitude of added noise during the sampling process by varying it.

In practice, we numerically solve the diffusion SDEs (6) by substituting score function∇x log pt(xt)
in it with the “data prediction reparameterization model” xθ(xt, t) according to ∇x log pt(xt) ≈
−(xt − αtxθ(xt, t))/σ

2
t as pointed out in Section 3. Then diffusion SDEs to be solved become

dxt =

[
f(t)xt +

(
1 + τ2(t)

2σt

)
g2(t)

(
xt − αtxθ(xt, t)

σt

)]
dt+ τ(t)g(t)dw̄t. (7)

Remark 1. We reparameterize the score function in diffusion SDEs (6) with data prediction model
xθ(xt, t) to get Eq. (9). The equation can be also reparameterized by the “noise prediction model”
ϵθ(xt, t) as discussed in Section 3. Though the obtained diffusion ODEs e.g., Eq. (9) are equivalent,
the numerical solver applied to them will result in different solutions. For our proposed SA-Solver,
we find the diffusion SDEs reparameterized data prediction model significantly improves the quality
of generated data. More details and theoretical explanations are in Sec. 6 and Appendix A.2.4. For
the remaining part of the paper, we focus on data reparameterization.

We then solve the diffusion SDEs (9) with change-of-variable applying to it, i.e., changing time
variable t to log-SNR λt = log (αt/σt). Noting the following relationship in Eq. (2)

f(t) =
d logαt

dt
, g2(t) =

dσ2
t

dt
− 2

d logαt

dt
σ2
t = −2σ2

t

dλt

dt
, (8)

and plugging them into (7), it becomes

dxt =

[
d logαt

dt
xt − (1 + τ2(t))(xt − αtxθ(xt, t))

dλt

dt

]
dt+ τ(t)σt

√
−2dλt

dt
dw̄t. (9)

The above equation has an explicit solution owing to its semi-linear structure [37].
Proposition 4.2. Given xs for any time s > 0, the solution xt at time t ∈ [0, s] of (9) is

xt =
σt

σs
e−

∫ λt
λs

τ2(λ̃)dλ̃xs + σtF θ(s, t) + σtG(s, t),

F θ(s, t) =

∫ λt

λs

e−
∫ λt
λ τ2(λ̃)dλ̃

(
1 + τ2 (λ)

)
eλxθ (xλ, λ) dλ

G(s, t) =

∫ t

s

e−
∫ λt
λu

τ2(λ̃)dλ̃τ(u)

√
−2dλu

du
dw̄u,

(10)

where G(s, t) is an Itô integral [38] with the special property

σtG(s, t) ∼ N
(
0, σ2

t

(
1− e−2

∫ λt
λs

τ2(λ̃)dλ̃
))

. (11)

The proof can be seen in Appendix A.2.2. With this proposition, we can sample from the diffusion
model via numerically solving Eq. (10) starting from xT approximated by a Gaussian distribution.

5 SA-Solver: Stochastic Adams Method to Solve Diffusion SDEs

Stochastic training-free samplers for solving diffusion SDEs have not been studied as systematically
as their deterministic ODE counterparts. This stems from the inherent challenges associated with
designing numerical schemes for SDEs compared to ODEs [39]. Existing stochastic sampling
methods either use only variant of one-step discretization of diffusion SDEs [2, 26, 3], or are
specifically designed sampling procedures for diffusion processes [27] which are not general purpose
SDE solvers. Jolicoeur-Martineau et al. [25] uses stochastic Improved Euler’s method [40] with
adaptive step sizes. However, it still necessitates hundreds of steps to yield a high-quality sample.
As observed by [25], off-the-shelf SDE solvers are generally ill-suited for diffusion models, often
exhibiting inferior qualities or even failing to converge. We postulate that the current dearth of fast
stochastic samplers is principally due to factor that existing methodologies predominantly tend to rely

4

Algorithm 1 SA-Solver

Require: data prediction model xθ , timesteps {ti}Mi=0, initial value xt0 , predictor step sp, corrector
step sc, buffer B to store former evaluation of xθ, τ(t) to control variance.

1: B
buffer←−−− xθ(xt0 , t0)

2: for i = 1 to max(sp, sc) do ▷ Warm-up
3: sample ξ ∼ N (0, I)
4: calculate steps for warm-up smp = min(i, sp), smc = min(i, sc)

5: xp
ti ← smp -step SA-Predictor(xti−1

, B, ξ) (Eq. (14)) ▷ Prediction Step

6: B
buffer←−−− xθ(x

p
ti , ti) ▷ Evaluation Step

7: xti ← smc -step SA-Corrector(xp
ti ,xti−1

, B, ξ) (Eq. (17)) ▷ Correction Step
8: for i = max(sp, sc) + 1 to M do
9: sample ξ ∼ N (0, I)

10: xp
ti ← sp-step SA-Predictor(xti−1 , B, ξ) (Eq. (14)) ▷ Prediction Step

11: B
buffer←−−− xθ(x

p
ti , ti) ▷ Evaluation Step

12: xti ← sc-step SA-Corrector(xp
ti ,xti−1 , B, ξ) (Eq. (17)) ▷ Correction Step

return xtM

on one-step discretization or its variants, or alternatively, on heuristic designs of stochastic samplers.
To address this factor, we leverage advanced contemporary tools in numerical solutions for SDEs,
specifically, stochastic Adams methods [29]. It necessitates fewer evaluations compared to Stochastic
Runge-Kutta schemes, making it a more suitable choice for problems which are computationally
expensive - a characteristic that diffusion sampling certainly exemplifies.

Next, we formally present our Stochastic Adams Solver (SA-Solver). To solve Eq. (9), we first
take M + 1 time steps {ti}Mi=0 which is strictly decreased from t0 = T to tM = 0.3 Then we can
iteratively obtain the xti (so that x0 approximates the required data) by the following relationship.

xti+1 =
σti+1

σti

e
−

∫ λti+1
λti

τ2(λu)dλu
xti + σti+1F θ(ti, ti+1) + σti+1G(ti, ti+1) (12)

As pointed out in Proposition 4.2, the Itô integral term G(ti, ti+1) in above equation follows a
Gaussian that can be directly sampled so we need to solve the deterministic integral term Fθ(ti, ti+1).

We further combine Eq. (12) with the predictor-corrector method, which is a widely used numerical
method. It works in two main steps. First, a predictor step is taken to make an initial approximation of
the solution. Second, a corrector step will refine the predictor’s approximation by taking the predicted
value into account. It has been proven successful in the wide application of numerical analysis [37].
Especially, there are some attempts to use the predictor-corrector method to help sample diffusion
models [3, 32, 24]. In the subsequent Section 5.1 and Section 5.2, we will separately derive our
SA-Predictor and SA-Corrector using Eq. (12). Our algorithm is outlined in Algorithm 1.

5.1 SA-Predictor

The fundamental idea behind stochastic Adams methods is to leverage preceding model evaluations
like xθ(xti , ti),xθ(xti−1

, ti−1), · · · ,xθ(xti−(s−1)
, ti−(s−1)). These evaluations can be retained

with negligible cost implications. Given these preceding model evaluations, a natural strategy for
estimating Fθ(ti, ti+1) involves the application of Lagrange interpolations [37] of these evaluations.
Lagrange interpolation of s points xθ(xti , ti),xθ(xti−1

, ti−1), · · · ,xθ(xti−(s−1)
, ti−(s−1)) is a

polynomial L(t) with degrees s− 1:

L(t) =

s−1∑
j=0

li−j(t)xθ(xti−j , ti−j), (13)

where li−j(t) : R→ R is the Lagrange basis. Lagrange interpolation is an excellent approximation of
xθ(xt, t) with the special property: L(ti−j) = xθ(xti−j , ti−j), ∀ 0 ≤ j ≤ s− 1. Thus a natural

3The diffusion SDEs (7) are reverse-time SDEs, so that the ti here is increased.

5

way to estimate Fθ(ti, ti+1) is to replace xθ(xλu , λu) with L(λ), which is just a change-of-variable
of L(t). The formula for s-step SA-Predictor is then derived.

s-step SA-Predictor Given the initial value xti at time ti, a total of s former model evaluations
xθ(xti , ti),xθ(xti−1

, ti−1), · · · ,xθ(xti−(s−1)
, ti−(s−1)), our s-step SA-Predictor is defined as:

xti+1 =
σti+1

σti

e
−

∫ λti+1
λti

τ2(λ̃)dλ̃
xti +

s−1∑
j=0

bi−jxθ(xti−j , ti−j) + σ̃iξ, ξ ∼ N (0, I), (14)

where σ̃i = σti+1

√
1− e

−2
∫ λti+1
λti

τ2(λ̃)dλ̃
according to Proposition 4.2 and bi−j is given by:

bi−j = σti+1

∫ λti+1

λti

e−
∫ λti+1
λ τ2(λ̃)dλ̃

(
1 + τ2 (λ)

)
eλli−j(λ)dλ, ∀ 0 ≤ j ≤ s− 1 (15)

We show the convergence result in the following theorem. The proof can be found in Appendix B.
Theorem 5.1 (Strong Convergence of s-step SA-Predictor). Under mild regularity conditions, our
s-step SA-Predictor (Eq. (14)) has a global error in strong convergence sense ofO(sup

0≤t≤T
τ(t)h+hs),

where h = max
1≤i≤M

(ti − ti−1).

5.2 SA-Corrector

Eq. (14) offers a “prediction” xp
ti+1

that relies on information preceding or coinciding with the time
step ti since we only use xθ(xti , ti) along with other model evaluations antecedent to it, while the
integration is over time [ti, ti+1]. Then predictor-corrector method can be incorporated to better
estimate Fθ(ti, ti+1) in Eq. (12). We perform a model evaluation xθ(x

p
ti+1

, ti+1) and construct the
Lagrange interpolations of xθ(x

p
ti+1

, ti+1),xθ(xti , ti), · · · ,xθ(xti−(s′−1)
, ti−(ŝ−1)):

L̂(t) = l̂i+1(t)xθ(x
p
ti+1

, ti+1) +

ŝ−1∑
j=0

l̂i−j(t)xθ(xti−j , ti−j), (16)

where l̂i−j(t) : R→ R is the Lagrange basis and ŝ can be different with s in Eq. (13). The ŝ-step
SA-Corrector is derived by replacing xθ(xλu

, λu) with L̂(λ) which is a change-of-variable of L̂(t).

ŝ-step SA-Corrector Given the initial value xti at time ti, a total of ŝ former model evalu-
ations xθ(xti , ti),xθ(xti−1

, ti−1), · · · ,xθ(xti−(ŝ−1)
, ti−(ŝ−1)), model evaluation of “prediction”

xθ(x
p
ti+1

, ti+1), our ŝ-step SA-Corrector is defined as:

xti+1 =
σti+1

σti

e
−

∫ λti+1
λti

τ2(λ̃)dλ̃
xti + b̂i+1xθ(x

p
ti+1

, ti+1) +

ŝ−1∑
j=0

b̂i−jxθ(xti−j , ti−j) + σ̃iξ, (17)

where ξ ∼ N (0, I), σ̃i = σti+1

√
1− e

−2
∫ λti+1
λti

τ2(λ̃)dλ̃
according to Proposition 4.2 and the

coefficients b̂i+1, b̂i−j is given by:

b̂i−j = σti+1

∫ λti+1

λti

e−
∫ λti+1
λ τ2(λ̃)dλ̃

(
1 + τ2 (λ)

)
eλ l̂i−j(λ)dλ, ∀ 0 ≤ j ≤ s− 1

b̂i+1 = σti+1

∫ λti+1

λti

e−
∫ λti+1
λ τ2(λ̃)dλ̃

(
1 + τ2 (λ)

)
eλ l̂i+1(λ)dλ

(18)

We show the convergence result in the following theorem. The proof can be found in Appendix B.
Theorem 5.2 (Strong Convergence of ŝ-step SA-Corrector). Under mild regularity conditions, our ŝ-
step SA-Corrector (Eq. (17)) has a global error in strong convergence sense ofO(sup

0≤t≤T
τ(t)h+hŝ+1),

where h = max
1≤i≤M

(ti − ti−1).

6

5.3 Connection with other samplers

We briefly discuss the relationship between our SA-Solver and other existing solvers for sampling
diffusion ODEs or diffusion SDEs.

Relationship with DDIM [22] DDIM generate samples through the following process:

xti+1
= αti+1

(
xti − σtiϵθ(xti , ti)

αti

)
+
√
1− α2

ti+1
− σ̂2

tiϵθ(xti , ti) + σ̂tiξ, (19)

where ξ ∼ N (0, I), σ̂ti is a variable parameter. In practice, DDIM introduces a parameter η such
that when η = 0, the sampling process becomes deterministic and when η = 1, the sampling process

coincides with original DDPM [2]. Specifically, σ̂ti = η

√
1−α2

ti+1

1−α2
ti

(
1− α2

ti

α2
ti+1

)
.

Corollary 5.3 (Relationship with DDIM). For any η in DDIM, there exists a τη(t) : R→ R which
is a piecewise constant function such that DDIM-η coincides with our 1-step SA-Predictor when
τ(t) = τη(t) with data parameterization of our variance-controlled diffusion SDE.

The proof can be found in Appendix B.5.1.

Relationship with DPM-Solver++(2M) [31] DPM-Solver++ is a high-order solver which solves
diffusion ODEs for guided sampling. DPM-Solver++(2M) is a special case of our 2-step SA-Predictor
when τ(t) ≡ 0.

Relationship with UniPC [24] UniPC is a unified predictor-corrector framework for solving
diffusion ODEs. UniPC-p is a special case of our SA-Solver when τ(t) ≡ 0 with predictor step p,
corrector step p in Algorithm 1.

6 Experiments

In this section, we demonstrate the effectiveness of SA-Solver over the existing sampling methods on
both a small number of function evaluations (NFEs) settings and a considerable number of NFEs
settings, with extensive experiments. We use Fenchel Inception Distance (FID) [30] as the evaluation
metric to show the effectiveness of SA-Solver. Unless otherwise specified, 50K images are sampled for
evaluation. The experiments are conducted on various datasets, with image sizes ranging from 32x32
to 256x256. We also evaluate the performance of various models, including ADM [4], EDM [27],
Latent Diffusion [5], and DiT [41].

For ease of computation, we take τ(t) ≡ τ as a constant function or a piecewise constant function.
We leave the detailed settings for τ(t), predictor step, and corrector step in Appendix E. For the
following experiments, we first discuss the effectiveness of the data-prediction model. Then we
evaluate the performance of SA-Solver under different random noise scales τ to demonstrate the
principles for selecting τ under few-steps and a considerable number of steps. Finally, we compare
SA-Solver with the existing solver to demonstrate its effectiveness.

6.1 Comparison between Data-Prediction Model and Noise-Prediction Model

We first discuss the necessity of using a data-prediction model for SA-Solver. We test on ImageNet
256x256 (latent diffusion model) with τ(t) ≡ 1. Results of the data-prediction and noise-prediction
model are shown in Table 1. It can be seen that the data-prediction model can achieve better
sampling quality values under different NFEs, thus we use the data-prediction model in the rest of the
experiments. More detailed discussions and theoretical analysis can be seen in Appendix A.2.4.

6.2 Ablation Study on Predictor/Corrector Steps and Predictor-Corrector Method

To verify the effectiveness of our proposed Stochastic Linear Multi-step Methods and Predictor-
Corrector Method, we conduct an ablation study on the CIFAR10 dataset as follows. We use
EDM [27] baseline-VE pretrained checkpoint. Concretely, we vary the number of predictor steps

7

Table 1: Compared results by FID ↓ under data-prediction and noise-prediction models, measured by
different NFEs. The latent diffusion model in ImageNet 256x256 is used for evaluation.

NFEs Noise-prediction Data-prediction
20 310.5 3.88
40 5.85 3.47
60 3.54 3.41
80 3.41 3.38

Table 2: Compared results by FID ↓ under different predictor steps and corrector steps, measured by
different NFEs. The VE-baseline model [27] in CIFAR10 32x32 is used for evaluation.

method \ setting (NFE, τ) 15,0.4 23,0.8 31,1.0 47,1.4
Predictor 1-steps only 13.76 12.44 11.72 14.67
Predictor 1-steps, Corrector 1-step 8.49 6.87 6.13 6.75
Predictor 3-steps only 5.30 3.93 3.52 2.98
Predictor 3-steps, Corrector 3-steps 4.91 3.77 3.40 2.92

and meanwhile conduct them with/without corrector to separately explore the effect of the two
components. As can be seen in Table 2, both Stochastic Linear Multi-step Methods (Predictor 1-steps
only v.s. Predictor 3-steps only) and Predictor-Corrector Method (Predictor 1-steps only v.s. Predictor
1-steps, Corrector 1-step, and Predictor 3-steps only v.s. Predictor 3-steps, Corrector 3-steps) improve
the performance of our sampler.

6.3 Effect on Magnitude of Stochasticity

The proposed SA-Solver is evaluated on various types of datasets and models, including ImageNet
256x256 [43] (latent diffusion model [5]), LSUN Bedroom 256x256 [44] (pixel diffusion model [4]),
ImageNet 64x64 (pixel diffusion model [4]), and CIFAR10 32x32 (pixel diffusion model [27]). The
models corresponding to these datasets cover pixel-space and latent-space diffusion models, with
unconditional, conditional, and classifier-free guidance settings (s = 1.5 in ImageNet 256x256).

We used different constant τ values for SA-Solver, namely {0.0, 0.2, 0.4, ..., 1.6}, where larger value
of τ correspond to larger magnitude of stochasticity. The FID results under different NFE and τ
values are shown in Fig. 1. Note that for LSUN Bedroom, 10K images are sampled for evaluation.
The experiments indicate that (1) under relatively small NFEs, smaller nonzero τ values can achieve
better FID results; (2) under a considerable number of steps (20-100), large τ can achieve better
FID. This phenomenon is consistent with the theoretical analysis we conducted in Appendix B and
Appendix C, in which the sampling error with stochasticity is dominated under small NFE, while
larger τ can significantly improve the quality of generated samples as the number of steps increases.
In subsequent experiments, unless otherwise specified, we will report the results of a proper τ(t)
value. Details can be found in Appendix E.

6.4 Comparison with State-of-the-Art

We compare SA-Solver with existing state-of-the-art sampling methods, including DDIM [22], DPM-
Solver [23], UniPC [24], Heun sampler and stochastic sampler in EDM [27]. Unless otherwise
specified, the methods are tested using the default hyper-parameters in the original papers or code.

Results on CIFAR10 32x32 and ImageNet 64x64. We use the EDM [27] baseline-VE model for
the CIFAR10 32x32 experiments and the ADM [4] model for the ImageNet 64x64 experiments. We
use EDM’s timesteps selection for all samplers for fair comparisons. EDM introduces a certain type
of SDE and a corresponding stochastic sampler, which is used for comparison. The experimental
results are shown in Fig. 2(a-b). It can be seen that the proposed SA-Solver consistently outperforms
other samplers and achieves state-of-the-art FID results. It should be noticed for EDM samplers, we
report its optimal result which is searched over four hyper-parameters. In fact, at 95 NFEs, SA-Solver
can achieve the best FID value of 2.63 in CIFAR10 and 1.81 in ImageNet 64x64 which outperforms
all other samplers.

8

Table 3: Sampling quality measured by FID of different sampling methods on DiT, Min-SNR
ImageNet [41, 42] models. DiT-XL/2-G and ViT-XL-patch2-32 with s = 1.5 are used.

Model FID (↓)

DiT ImageNet 256x256 DDPM (NFE=250) SA-Solver (Ours) (NFE=60)
2.27 2.02

Min-SNR ImageNet 256x256 Heun (NFE=50) SA-Solver (Ours) (NFE=20)
2.06 1.93

DiT ImageNet 512x512 DDPM (NFE=250) SA-Solver (Ours) (NFE=60)
3.04 2.80

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

3.0

3.5

4.0

5.0

6.0

FI
D

(a) CIFAR10 32x32 (Pixel DPM)
NFE = 23
NFE = 31
NFE = 47
NFE = 63
NFE = 95

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

2.0

2.5

3.0

4.0

5.0

FI
D

(b) ImageNet 64x64 (Pixel DPM)
NFE = 20
NFE = 40
NFE = 60
NFE = 80
NFE = 100

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
2.5

3.0

3.5

4.0

5.0

6.0

FI
D-

10
K

(c) LSUN Bedroom 256x256 (Pixel DPM)
NFE = 20
NFE = 40
NFE = 60
NFE = 80
NFE = 100

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
3.0

3.5

4.0

4.5

5.0

6.0

7.0

FI
D

(d) ImageNet 256x256 (Latent DPM)
NFE = 10
NFE = 20
NFE = 40
NFE = 60
NFE = 80
NFE = 100

Figure 1: Sampling quality measured by FID ↓ of SA-Solver under a different number of function
evaluations (NFE), varying the stochastic noise scale τ . For LSUN Bedroom, 10K samples are used
to evaluate FID.

Results on ImageNet 256x256 and 512x512. We evaluate with two classifier-free guidance models,
one is the UNet-based latent diffusion model [5] in which the VQ-4 encoder-decoder model is
adopted, and the other is the DiT [41] model using Vision Transformer based model with KL-8
encoder-decoder. The corresponding classifier-free guidance scale, namely s = 1.5, is adopted for
evaluation. For ImageNet 256x256 dataset with UNet based latent diffusion model, the results of
different samplers are shown in Fig. 2(c). Under a considerable number of steps, SA-Solver achieves
the best sample quality, in which the FID value is 3.87 with only 20 NFEs and below 3.5 with 40
NFEs or more. While for ODE solvers, the FID values cannot reach below 4, which shows the
superiority of the proposed SDE solver.

Table 3 consists results of current SOTA models in ImageNet 256x256 and 512x512. Note that the
(Min-SNR) DiT-XL/2-G models are adopted [41, 42]. It can be seen clearly that better FID results
are achieved compared with baseline solvers used by corresponding methods. We achieve 1.93 FID
value in Min-SNR DiT model at ImageNet 256x256, and 2.80 in DiT model at ImageNet 512x512,
both of which are state-of-the-art results under existing DPMs.

Results of text-to-image generation Fig. 3 shows the qualitative results on text-to-image generation.
It can be seen that both UniPC and SA-Solver can generate images with more details. Our SA-Solver
is able to generate more reasonable images with better details.

6.5 Effect of Stochasticity for Inaccurate Score Estimation

When the training data is not enough or the computational budget is limited, the estimated score is
inaccurate. We empirically observed that the stochasticity significantly improve the sample quality
under the circumstance. To further investigate this effect, we reproduce the early training stage of
EDM [27] baseline-VE model for the CIFAR10 32x32 dataset and DiT-XL/2 [41] model for the
ImageNet 256x256 dataset. We compare SA-Solver with different stochastic level τ and existing state-
of-the-art deterministic sampling methods. We use the same hyper-parameters as the corresponding
experiment in section 6.4.

Figure 4 shows that SA-Solver outperforms deterministic sampling methods, especially in the early
stage of the training process. Moreover, larger τ value results in better performance. We also conduct
a theoretical analysis that stochasticity can mitigate the error of estimation (see Appendix C).

9

1216 24 32 48 64 96
NFE

2.5

3.0

3.5
4.0

5.0

6.0

10.0

FI
D

(a) CIFAR10 32x32 (Pixel DPM)
SA-Solver (ours)
UniPC
EDM (SDE)
EDM (ODE)
DPM-Solver
DDIM(= 0)

16 24 32 48 64 96
NFE

1.8
2.0

2.5

3.0

4.0

6.0

10.0

FI
D

(b) ImageNet 64x64 (Pixel DPM)
SA-Solver (ours)
DDIM(= 0)
DPM-Solver
UniPC
EDM (SDE)
EDM (ODE)

5 10 20 40 60 80 100
NFE

3.0

3.5
4.0

6.0

10.0

FI
D

(c) ImageNet 256x256 (Latent DPM)
SA-Solver (ours)
DDIM(= 0)
DDIM(= 1)
DPM-Solver
UniPC

Figure 2: Sampling quality measured by FID ↓ of different sampling methods of DPMs under
different NFEs.

NFE=20 NFE=50 NFE=20 NFE=50 NFE=20 NFE=50
DDIM UniPC SA-Solver(Ours)

Figure 3: Qualitative comparisons between our SA-Solver and previous state-of-the-art methods. All
images are generated by Stable Diffusion v1.5 with the same random seed. The main part of the
prompt is “portrait of curly orange haired mad scientist man”. We set the guidance scale as 7.5. The
proposed SA-Solver is able to generate images with more details.

1250 1300 1350 1400 1450 1500
Epoch

3
5
8

10

20

40

FI
D

(a) CIFAR 32x32 (Pixel DPM)(NFE=31)
SA-Solver(= 0.6)
SA-Solver(= 1.0)
DDIM
DPM-Solver
EDM(ODE)

50 100 150 200 250
Epoch

4
5
6

8

10

20

FI
D

(b) ImageNet 256x256 (Latent DPM)(NFE=40)
SA-Solver(= 0.4)
SA-Solver(= 0.8)
DDIM
DPM-Solver

Figure 4: Sampling quality measured by FID ↓ of different sampling methods of DPMs under
different training epochs.

7 Conclusions

In this paper, we propose an efficient solver named SA-Solver for solving Diffusion SDEs, achieving
high sampling performance in both minimal steps and a suitable number of steps. To better control the
scale of injected noise, we propose Variance Controlled Diffusion SDEs based on noise scale function
τ(t) and propose the analytic form of the SDEs. Based on Variance Controlled Diffusion SDE,
we propose SA-Solver, which is derived from the stochastic Adams method and uses exponentially
weighted integral and analytical variance to achieve efficient SDE sampling. Meanwhile, SA-Solver
has the optimal theoretical convergence bound. Experiments show that SA-Solver achieves state-of-
the-art sampling performance in various pre-trained DPMs models. Moreover, SA-Solver achieves
superior performance when the score estimation is inaccurate.

Although SA-Solver achieves optimal sampling performance, the noise scale τ(t) selection under
different NFEs needs further research. The paper proposes empirical criteria for selecting τ(t), more
in-depth theoretical analysis is still needed.

10

References
[1] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep unsupervised learning

using nonequilibrium thermodynamics,” in International Conference on Machine Learning.
PMLR, 2015, pp. 2256–2265.

[2] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” in Advances in Neural
Information Processing Systems, vol. 33, 2020, pp. 6840–6851.

[3] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, “Score-based
generative modeling through stochastic differential equations,” in International Conference on
Learning Representations, 2021.

[4] P. Dhariwal and A. Q. Nichol, “Diffusion models beat GANs on image synthesis,” in Advances
in Neural Information Processing Systems, vol. 34, 2021, pp. 8780–8794.

[5] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-resolution image synthe-
sis with latent diffusion models,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2022, pp. 10 684–10 695.

[6] J. Ho, C. Saharia, W. Chan, D. J. Fleet, M. Norouzi, and T. Salimans, “Cascaded diffusion
models for high fidelity image generation,” Journal of Machine Learning Research, vol. 23,
no. 47, pp. 1–33, 2022.

[7] J. Ho, T. Salimans, A. Gritsenko, W. Chan, M. Norouzi, and D. J. Fleet, “Video diffusion
models,” in Advances in Neural Information Processing Systems, 2022.

[8] A. Blattmann, R. Rombach, H. Ling, T. Dockhorn, S. W. Kim, S. Fidler, and K. Kreis, “Align
your latents: High-resolution video synthesis with latent diffusion models,” in IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2023.

[9] A. Q. Nichol, P. Dhariwal, A. Ramesh, P. Shyam, P. Mishkin, B. McGrew, I. Sutskever, and
M. Chen, “GLIDE: towards photorealistic image generation and editing with text-guided
diffusion models,” in International Conference on Machine Learning (ICML), 2022.

[10] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen, “Hierarchical text-conditional image
generation with clip latents,” 2022.

[11] C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. L. Denton, K. Ghasemipour, R. Gon-
tijo Lopes, B. Karagol Ayan, T. Salimans, J. Ho, D. J. Fleet, and M. Norouzi, “Photorealistic
text-to-image diffusion models with deep language understanding,” in Advances in Neural
Information Processing Systems, 2022.

[12] M. W. Lam, J. Wang, D. Su, and D. Yu, “Bddm: Bilateral denoising diffusion models for fast
and high-quality speech synthesis,” in International Conference on Learning Representations,
2022.

[13] K. Song, Y. Leng, X. Tan, Y. Zou, T. Qin, and D. Li, “Transcormer: Transformer for sentence
scoring with sliding language modeling,” in Advances in Neural Information Processing Systems,
2022.

[14] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. C. Courville,
and Y. Bengio, “Generative adversarial nets,” in Advances in Neural Information Processing
Systems, vol. 27, 2014, pp. 2672–2680.

[15] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in International Conference
on Learning Representations, 2014.

[16] E. Luhman and T. Luhman, “Knowledge distillation in iterative generative models for improved
sampling speed,” arXiv preprint arXiv:2101.02388, 2021.

[17] T. Salimans and J. Ho, “Progressive distillation for fast sampling of diffusion models,” in
International Conference on Learning Representations, 2022.

11

[18] C. Meng, R. Gao, D. P. Kingma, S. Ermon, J. Ho, and T. Salimans, “On distillation of guided
diffusion models,” in NeurIPS 2022 Workshop on Score-Based Methods, 2022.

[19] D. Watson, W. Chan, J. Ho, and M. Norouzi, “Learning fast samplers for diffusion models by dif-
ferentiating through sample quality,” in International Conference on Learning Representations,
2022.

[20] Z. Xiao, K. Kreis, and A. Vahdat, “Tackling the generative learning trilemma with denoising
diffusion GANs,” in International Conference on Learning Representations, 2022.

[21] Z. Wang, H. Zheng, P. He, W. Chen, and M. Zhou, “Diffusion-GAN: Training GANs with
diffusion,” in The Eleventh International Conference on Learning Representations, 2023.

[22] J. Song, C. Meng, and S. Ermon, “Denoising diffusion implicit models,” in International
Conference on Learning Representations, 2021.

[23] C. Lu, Y. Zhou, F. Bao, J. Chen, C. LI, and J. Zhu, “Dpm-solver: A fast ode solver for diffusion
probabilistic model sampling in around 10 steps,” in Advances in Neural Information Processing
Systems, S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, Eds., vol. 35,
2022, pp. 5775–5787.

[24] W. Zhao, L. Bai, Y. Rao, J. Zhou, and J. Lu, “Unipc: A unified predictor-corrector framework
for fast sampling of diffusion models,” arXiv preprint arXiv:2302.04867, 2023.

[25] A. Jolicoeur-Martineau, K. Li, R. Piché-Taillefer, T. Kachman, and I. Mitliagkas, “Gotta go fast
when generating data with score-based models,” arXiv preprint arXiv:2105.14080, 2021.

[26] F. Bao, C. Li, J. Zhu, and B. Zhang, “Analytic-DPM: An analytic estimate of the optimal
reverse variance in diffusion probabilistic models,” in International Conference on Learning
Representations, 2022.

[27] T. Karras, M. Aittala, T. Aila, and S. Laine, “Elucidating the design space of diffusion-based
generative models,” in Proc. NeurIPS, 2022.

[28] Q. Zhang and Y. Chen, “Fast sampling of diffusion models with exponential integrator,” in The
Eleventh International Conference on Learning Representations, 2023.

[29] E. Buckwar and R. Winkler, “Multistep methods for sdes and their application to problems with
small noise,” SIAM Journal on Numerical Analysis, 2006.

[30] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “GANs trained by a two
time-scale update rule converge to a local Nash equilibrium,” in Advances in Neural Information
Processing Systems, I. Guyon, U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S. V. N.
Vishwanathan, and R. Garnett, Eds., vol. 30, 2017, pp. 6626–6637.

[31] C. Lu, Y. Zhou, F. Bao, J. Chen, C. Li, and J. Zhu, “Dpm-solver++: Fast solver for guided
sampling of diffusion probabilistic models,” 2023.

[32] S. Li, L. Liu, Z. Chai, R. Li, and X. Tan, “Era-solver: Error-robust adams solver for fast
sampling of diffusion probabilistic models,” 2023.

[33] D. P. Kingma, T. Salimans, B. Poole, and J. Ho, “Variational diffusion models,” in Advances in
Neural Information Processing Systems, 2021.

[34] B. D. Anderson, “Reverse-time diffusion equation models,” Stochastic Processes and their
Applications, vol. 12, no. 3, pp. 313–326, 1982.

[35] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen, “Hierarchical text-conditional image
generation with CLIP latents,” arXiv preprint arXiv:2204.06125, 2022.

[36] A. Krizhevsky, “Learning multiple layers of features from tiny images,” Tech. Rep., 2009.

[37] K. Atkinson, W. Han, and D. E. Stewart, Numerical solution of ordinary differential equations.
John Wiley & Sons, 2011, vol. 108.

12

[38] B. Oksendal, Stochastic differential equations: an introduction with applications. Springer
Science & Business Media, 2013.

[39] P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations. Springer,
1992.

[40] A. Roberts, “Modify the improved euler scheme to integrate stochastic differential equations,”
2012.

[41] W. Peebles and S. Xie, “Scalable diffusion models with transformers,” arXiv preprint
arXiv:2212.09748, 2022.

[42] T. Hang, S. Gu, C. Li, J. Bao, D. Chen, H. Hu, X. Geng, and B. Guo, “Efficient diffusion
training via min-snr weighting strategy,” arXiv preprint arXiv:2303.09556, 2023.

[43] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei, “ImageNet: A large-scale hierarchical
image database,” in 2009 IEEE Conference on Computer Vision and Pattern Recognition. IEEE,
2009, pp. 248–255.

[44] F. Yu, Y. Zhang, S. Song, A. Seff, and J. Xiao, “Lsun: Construction of a large-scale image
dataset using deep learning with humans in the loop,” arXiv preprint arXiv:1506.03365, 2015.

[45] E. Buckwar and R. Winkler, “Improved linear multi-step methods for stochastic ordinary
differential equations,” Journal of Computational and Applied Mathematics, 2007.

13

A Derivations of Variance Controlled Diffusion SDEs

A.1 Proof of Proposition 4.1

Proposition 4.1 For any bounded measurable function τ(t) : [0, T]→ R, the following Reverse
SDEs

dxt =

[
f(t)xt −

(
1 + τ2(t)

2

)
g2(t)∇x log pt(xt)

]
dt+ τ(t)g(t)dw̄t, xT ∼ pT (xT) (20)

has the same marginal probability distributions with (4) and (3) .

Proof. Denote p(x, t) : Rd × [0, T]→ R+ as the probability density function of xt at time t, thus
p(x, T) = pT (x). Fokker-Planck equation [38] determines a Partial Differential Equation (PDE)
that pt(x) satisfies:

−∂pt(x)

∂t
= −

d∑
i=1

∂

∂xi

[
−
[
f(t)pt(x)xi −

(
1 + τ2(t)

2

)
g2(t)pt(x)

∂ log pt(x)

∂xi

]]

+
1

2

d∑
i=1

d∑
j=1

∂2

∂xi∂xj

[
τ2(t)g2(t)δijpt(x)

]
=

d∑
i=1

∂

∂xi

[
f(t)pt(x)xi −

(
1 + τ2(t)

2

)
g2(t)pt(x)

∂ log pt(x)

∂xi

]

+
1

2

d∑
i=1

∂

∂xi

[
∂

∂xi

[
τ2(t)g2(t)pt(x)

]]
.

(21)

Eq. (20) is a reverse-time SDE running from T to 0, thus there are two additional minus signs in
Eq. (21) before term ∂pt(x)

∂t and term
[
f(t)pt(x)xi −

(
1+τ2(t)

2

)
g2(t)pt(x)

∂ log pt(x)
∂xi

]
compared

with vanilla Fokker-Planck equation in general cases. Here δij is the Dirac symbol satisfies δij = 1
when i = j, otherwise, δij = 0. Notice that

∂

∂xi

[
τ2(t)g2(t)pt(x)

]
= τ2(t)g2(t)

∂

∂xi
pt(x) = τ2(t)g2(t)pt(x)

∂ log pt(x)

∂xi
. (22)

Substituting Eq. (22) into Eq. (21), we obtain that

−∂pt(x)

∂t
=

d∑
i=1

∂

∂xi

[
f(t)pt(x)xi −

(
1 + τ2(t)

2

)
g2(t)pt(x)

∂ log pt(x)

∂xi

]

+
1

2

d∑
i=1

∂

∂xi

[
τ2(t)g2(t)pt(x)

∂ log pt(x)

∂xi

]

=

d∑
i=1

∂

∂xi

[
f(t)pt(x)xi −

1

2
g2(t)pt(x)

∂ log pt(x)

∂xi

]
,

(23)

which is independent of τ(t). With the same initial condition p(x, T) = pT (x), the family of Reverse
SDEs in Eq. (20) have exactly the same evolutions of probability density function because they share
the same Fokker-Planck equation. Especially, when τ(t) = 0, Eq. (20) degenerates to diffusion
ODEs and when τ(t) = 1, Eq. (20) degenerates to diffusion SDEs.

A.2 Two Reparameterizations and Exact Solution under Exponential Integrator

In this subsection, we will show the exact solution of SDE in both data prediction reparameterization
and noise prediction reparameterization. The noise term in data prediction has smaller variance than
noise prediction ones, implying the necessity of adopting data prediction reparameterization for the
SDE sampler.

14

A.2.1 Data Prediction Reparameterization

After approximating ∇x log pt(xt) with sθ(xt, t) and reparameterizing sθ(xt, t) with −(xt −
αtxθ(xt, t))/σ

2
t , Eq. (20) becomes

dxt =

[
f(t)xt +

(
1 + τ2(t)

2σt

)
g2(t)

(
xt − αtxθ(xt, t)

σt

)]
dt+ τ(t)g(t)dw̄t. (24)

Applying change-of-variable with log-SNR λt = log(αt/σt) and substituting the following relation-
ship

f(t) =
d logαt

dt
, g2(t) =

dσ2
t

dt
− 2

d logαt

dt
σ2
t = −2σ2

t

dλt

dt
, (25)

Eq. (24) becomes

dxt =

[
d logαt

dt
xt −

(
1 + τ2(t)

)
(xt − αtxθ(xt, t))

dλt

dt

]
dt+ τ(t)σt

√
−2dλt

dt
dw̄t

=

[(
d logαt

dt
−
(
1 + τ2(t)

) dλt

dt

)
xt +

(
1 + τ2(t)

)
αtxθ(xt, t)

dλt

dt

]
dt

+ τ(t)σt

√
−2dλt

dt
dw̄t.

(26)

A.2.2 Proof of Proposition 4.2

Proposition 4.2 Given xs for any time s > 0, the solution xt at time t ∈ [0, s] of Eq. (9) is

xt =
σt

σs
e−

∫ λt
λs

τ2(λ̃)dλ̃xs + σtF θ(s, t) + σtG(s, t),

F θ(s, t) =

∫ λt

λs

e−
∫ λt
λ τ2(λ̃)dλ̃

(
1 + τ2 (λ)

)
eλxθ (xλ, λ) dλ

G(s, t) =

∫ t

s

e−
∫ λt
λu

τ2(λ̃)dλ̃τ(u)

√
−2dλu

du
dw̄u,

(27)

where G(s, t) is an Itô integral [38] with the special property

σtG(s, t) ∼ N
(
0, σ2

t

(
1− e−2

∫ λt
λs

τ2(λ̃)dλ̃
))

. (28)

Proof. Define yt = e
−

∫ t
t0
(d log αv

dv −(1+τ2(v)) dλv
dv)dvxt, where t0 ∈ [0, T] is a constant. Differentiate

yt with respect to t, we get

dyt = −
(
d logαt

dt
−
(
1 + τ2(t)

) dλt

dt

)
e
−

∫ t
t0
(d log αv

dv −(1+τ2(v)) dλv
dv)dvxtdt

+ e
−

∫ t
t0
(d log αv

dv −(1+τ2(v)) dλv
dv)dvdxt

= −
(
d logαt

dt
−
(
1 + τ2(t)

) dλt

dt

)
e
−

∫ t
t0
(d log αv

dv −(1+τ2(v)) dλv
dv)dvxtdt

+ e
−

∫ t
t0
(d log αv

dv −(1+τ2(v)) dλv
dv)dv

[(
d logαt

dt
−
(
1 + τ2(t)

) dλt

dt

)
xt

]
dt

+ e
−

∫ t
t0
(d log αv

dv −(1+τ2(v)) dλv
dv)dv

[(
1 + τ2(t)

)
αtxθ(xt, t)

dλt

dt

]
dt

+ e
−

∫ t
t0
(d log αv

dv −(1+τ2(v)) dλv
dv)dvτ(t)σt

√
−2dλt

dt
dw̄t

= e
−

∫ t
t0
(d log αv

dv −(1+τ2(v)) dλv
dv)dv

[(
1 + τ2(t)

)
αtxθ(xt, t)

dλt

dt

]
dt

+ e
−

∫ t
t0
(d log αv

dv −(1+τ2(v)) dλv
dv)dvτ(t)σt

√
−2dλt

dt
dw̄t.

(29)

15

Integrating both sides from s to t

yt = ys +

∫ t

s

e
−

∫ u
t0
(d log αv

dv −(1+τ2(v)) dλv
dv)dv

[(
1 + τ2(u)

)
αuxθ(xu, u)

dλu

du

]
du

+

∫ t

s

e
−

∫ u
t0
(d log αv

dv −(1+τ2(v)) dλv
dv)dvτ(u)σu

√
−2dλu

du
dw̄u.

(30)

Substituting the definition of yt, ys into Eq. (30), we obtain Eq. (27)

xt = e
∫ t
s (

d log αu
du −(1+τ2(u)) dλu

du)duxs

+

∫ t

s

e−
∫ u
t (

d log αv
dv −(1+τ2(v)) dλv

dv)dv
[(
1 + τ2(u)

)
αuxθ(xu, u)

dλu

du

]
du

+

∫ t

s

e−
∫ u
t (

d log αv
dv −(1+τ2(v)) dλv

dv)dvτ(u)σu

√
−2dλu

du
dw̄u.

= e
∫ t
s (

d log σu
du −τ2(u) dλu

du)duxs

+

∫ t

s

e−
∫ u
t (

d log σv
dv −τ2(v) dλv

dv)dv
[(
1 + τ2(u)

)
αuxθ(xu, u)

dλu

du

]
du

+

∫ t

s

e−
∫ u
t (

d log σv
dv −τ2(v) dλv

dv)dvτ(u)σu

√
−2dλu

du
dw̄u

=
σt

σs
e−

∫ t
s
τ2(u) dλu

du duxs

+

∫ t

s

σt

σu
e−

∫ t
u
τ2(v) dλv

dv dv

[(
1 + τ2(u)

)
αuxθ(xu, u)

dλu

du

]
du

+

∫ t

s

σt

σu
e−

∫ t
u
τ2(v) dλv

dv dvτ(u)σu

√
−2dλu

du
dw̄u.

=
σt

σs
e−

∫ λt
λs

τ2(λ̃)dλ̃xs

+ σt

∫ λt

λs

e−
∫ λt
λ τ2(λ̃)dλ̃

(
1 + τ2(λ)

)
eλxθ(xλ, λ)dλ

+ σt

∫ t

s

e−
∫ t
u
τ2(v) dλv

dv dvτ(u)

√
−2dλu

du
dw̄u.

(31)

The last term σt

∫ t

s
e−

∫ t
u
τ2(v) dλv

dv dvτ(u)
√
−2dλu

du dw̄u of Eq. (31) is the Itô integral term. It follows
a Gaussian distribution, which can be directly derived from two basic facts [38]: first, the definition
of Itô integral is the limitation in L2 space; second, the limit of Gaussian Process in L2 space is still
Gaussian. Then we can compute the mean as:

E

[
σt

∫ t

s

e−
∫ t
u
τ2(v) dλv

dv dvτ(u)

√
−2dλu

du
dw̄u

]
= 0 (32)

16

and the variance is

Var

[
σt

∫ t

s

e−
∫ t
u
τ2(v) dλv

dv dvτ(u)

√
−2dλu

du
dw̄u

]

=E

(σt

∫ t

s

e−
∫ t
u
τ2(v) dλv

dv dvτ(u)

√
−2dλu

du
dw̄u

)2
−(E[σt

∫ t

s

e−
∫ t
u
τ2(v) dλv

dv dvτ(u)

√
−2dλu

du
dw̄u

])2

=E

(σt

∫ s

t

e−
∫ t
u
τ2(v) dλv

dv dvτ(u)

√
−2dλu

du
dwu

)2
− 0

=σ2
tE

∫ s

t

(
e−

∫ t
u
τ2(v) dλv

dv dvτ(u)

√
−2dλu

du

)2

du


=σ2

t

∫ s

t

e−
∫ t
u
2τ2(v) dλv

dv dvτ2(u)

(
−2dλu

du

)
du

=σ2
t

∫ λt

λs

2e−
∫ λt
λ 2τ2(λ̃)dλ̃τ2(λ)dλ

(33)
The expectation equals zero because the Itô integral is a martingale [38]. The computation of variance
uses the Itô Isometry, which is a crucial fact of Itô integral. We can further simplify the result by
using the change of variable P (λ) = e

∫ λ
λt

2τ2(λ̃)dλ̃.

Var

[
σt

∫ t

s

e−
∫ t
u
τ2(v) dλv

dv dvτ(u)

√
−2dλu

du
dw̄u

]

=σ2
t

∫ λt

λs

2e−
∫ λt
λ 2τ2(λ̃)dλ̃τ2(λ)dλ

=σ2
t

∫ P (λt)

P (λs)

P (λ)
dP (λ)

P (λ)

=σ2
t (P (λt)− P (λs))

=σ2
t (1− e−2

∫ λt
λs

τ2(λ)dλ)

(34)

A.2.3 Noise Prediction Reparameterization

After approximating ∇x log pt(xt) with sθ(xt, t) and reparameterizing sθ(xt, t) with
−ϵθ(xt, t))/σt, Eq. (20) becomes

dxt =

[
f(t)xt +

(
1 + τ2(t)

2σt

)
g2(t)ϵθ(xt, t)

]
dt+ τ(t)g(t)dw̄t. (35)

Applying change-of-variable with log-SNR λt = log(αt/σt) and substituting the following relation-
ship

f(t) =
d logαt

dt
, g2(t) =

dσ2
t

dt
− 2

d logαt

dt
σ2
t = −2σ2

t

dλt

dt
, (36)

Eq. (35) becomes

dxt =

[
d logαt

dt
xt −

(
1 + τ2(t)

)
σtϵθ(xt, t)

dλt

dt

]
dt+ τ(t)σt

√
−2dλt

dt
dw̄t. (37)

Eq (35) is the formulation of noist prediction model. Similar with Proposition 4.2, Eq. (37) can be
solved analytically, which is shown in the following propositon:

17

Proposition A.1. Given xs for any time s > 0, the solution xt at time t ∈ [0, s] of (37) is

xt =
αt

αs
xs + αtF θ(s, t) + αtG(s, t),

F θ(s, t) =

∫ λt

λs

e−λ
(
1 + τ2(λ)

)
ϵθ(xλ, λ)dλ

G(s, t) =

∫ t

s

e−λuτ(u)

√
−2dλu

du
dw̄u,

(38)

where G(s, t) is an Itô integral [38] with the special property

αtG(s, t) ∼ N
(
0, α2

t

∫ λt

λs

2e−2λτ2(λ)dλ
)
. (39)

Proof. Define yt = e
−

∫ t
t0

d log αv
dv dv

xt, where t0 ∈ [0, T] is a constant. Differentiate yt with respect
to t, we get

dyt = −
d logαt

dt
e
−

∫ t
t0

d log αv
dv dv

xtdt+ e
−

∫ t
t0

d log αv
dv dv

dxt

= −d logαt

dt
e
−

∫ t
t0

d log αv
dv dv

xtdt+ e
−

∫ t
t0

d log αv
dv dv d logαt

dt
xtdt

− e
−

∫ t
t0

d log αv
dv dv (

1 + τ2(t)
)
σtϵθ(xt, t)

dλt

dt
dt+ e

−
∫ t
t0

d log αv
dv dv

τ(t)σt

√
−2dλt

dt
dw̄t

= −e−
∫ t
t0

d log αv
dv dv (

1 + τ2(t)
)
σtϵθ(xt, t)

dλt

dt
dt+ e

−
∫ t
t0

d log αv
dv dv

τ(t)σt

√
−2dλt

dt
dw̄t.

(40)
Integrating both sides from s to t

yt = ys −
∫ t

s

e
−

∫ u
t0

d log αv
dv dv (

1 + τ2(u)
)
σuϵθ(xu, u)

dλu

du
du

+

∫ t

s

e
−

∫ u
t0

d log αv
dv dv

τ(u)σu

√
−2dλu

du
dw̄u.

(41)

Substituting the definition of yt, ys into Eq. (41), we obtain

xt = e
∫ t
s

d log αu
du duxs +

∫ t

s

e−
∫ u
t

d log αv
dv dv

(
1 + τ2(u)

)
σuϵθ(xu, u)

dλu

du
du

+

∫ t

s

e−
∫ u
t

d log αv
dv dvτ(u)σu

√
−2dλu

du
dw̄u

=
αt

αs
xs +

∫ t

s

αt

αu

(
1 + τ2(u)

)
σuϵθ(xu, u)

dλu

du
du+

∫ t

s

αt

αu
τ(u)σu

√
−2dλu

du
dw̄u

=
αt

αs
xs + αt

∫ λt

λs

e−λ
(
1 + τ2(λ)

)
ϵθ(xλ, λ)dλ+ αt

∫ t

s

e−λuτ(u)

√
−2dλu

du
dw̄u.

(42)

The Itô integral term αt

∫ t

s
e−λuτ(u)

√
−2dλu

du dw̄u follows a Gaussian distribution. Following the
derivation in Proposition 4.2, the mean of the Itô integral term is:

E

[
αt

∫ t

s

e−λuτ(u)

√
−2dλu

du
dw̄u

]
= 0 (43)

18

and the expectation is

Var

[
αt

∫ t

s

e−λuτ(u)

√
−2dλu

du
dw̄u

]

=E

(αt

∫ t

s

e−λuτ(u)

√
−2dλu

du
dw̄u

)2
−(E[αt

∫ t

s

e−λuτ(u)

√
−2dλu

du
dw̄u

])2

=E

(αt

∫ s

t

e−λuτ(u)

√
−2dλu

du
dwu

)2
− 0

=α2
tE

∫ s

t

(
e−λuτ(u)

√
−2dλu

du

)2

du


=α2

t

∫ s

t

e−2λuτ2(u)du

(
−2dλu

du

)
du

=α2
t

∫ λt

λs

2e−2λτ2(λ)dλ

(44)

A.2.4 Comparison between Data and Noise Reparameterizations

In Table 1 we perform an ablation study on data and noise reparameterizations, the experiment results
show that under the same magnitude of stochasticity, the proposed SA-Solver in data reparameter-
ization has a better convergence which leads to better FID results under the same NFEs. In this
subsection, we provide a theoretical view of this phenomenon.

Corollary A.2. For any bounded measurable function τ(t), the following inequality holds

σ2
t

(
1− e−2

∫ λt
λs

τ2(λ̃)dλ̃
)
≤ α2

t

∫ λt

λs

2e−2λτ2(λ)dλ. (45)

Proof. It’s equivalent to show that

1− e−2
∫ λt
λs

τ2(λ̃)dλ̃ ≤ e2λt

∫ λt

λs

2e−2λτ2(λ)dλ. (46)

From the basic inequality 1− e−x ≤ x, we have

1− e−2
∫ λt
λs

τ2(λ̃)dλ̃ ≤ 2

∫ λt

λs

τ2(λ)dλ. (47)

Thus it’s sufficient to show that

e2λt

∫ λt

λs

2e−2λτ2(λ)dλ ≥ 2

∫ λt

λs

τ2(λ)dλ, (48)

which is true because ∫ λt

λs

2
(
e2(λt−λ) − 1

)
τ2(λ)dλ ≥ 0, (49)

This corollary indicates that the same SDE under two different reparameterizations has different
properties under the effect of the exponential integrator. Specifically, in the numerical scheme, the
data reparameterization will inject smaller noise in each step’s updation. We speculate that this is the
reason that the data reparameterization has a better convergence, shown as in Table 1.

19

B Derivations and Proofs for SA-Solver

B.1 Preliminary

We will first review some basic concepts and formulas in the numerical solutions of SDEs [39].
Suppose we have an Itô SDE dxt = f(xt, t)dt+ g(xt, t)dwt and time steps {ti}Mi=0 , ti ∈ [0, T] to
numerically solve the SDE. For a random variable Z, we define the L1 norm ∥Z∥L1

= E [|Z|], the

L2 norm ∥Z∥L2
= E

[
|Z|2

] 1
2 , where | · | is the Euclidean norm. Denote h = max

1≤i≤M
(ti − ti−1).

Definition B.1. We shall say that a time-discrete approximation x0, · · · ,xM , where xi is a numerical
approximation of xti , converges strongly with order γ > 0, if there exists a positive constant C,
which does not depend on h and a h0 > 0 such that

max
0≤i≤M

∥xti − xi∥L1
≤ Chγ , ∀ h ≤ h0. (50)

Definition B.2. We say it is mean-square convergent with order γ > 0, if there exists a positive
constant C, which does not depend on h and a h0 > 0 such that

max
0≤i≤M

∥xti − xi∥L2
≤ Chγ , ∀ h ≤ h0. (51)

Remark 2. To prove the strong convergence order γ of a numerical scheme, it’s sufficient to show the

mean-square convergence order γ. This is from Hölder Inequality E [|Z|] ≤ E
[
|Z|2

] 1
2 E
[
|1|2
] 1

2 ≤
E
[
|Z|2

] 1
2 . Thus max

0≤i≤M
∥xti − xi∥L1

≤ max
0≤i≤M

∥xti − xi∥L2
.

We also need the following definition and assumptions, which usually holds in practical diffusion
models.

Definition B.3. A function h : Rd × [0, T]→ Rd satisfies a linear growth condition if there exists a
constant K such that

|h(x, t)| ≤ K(1 + |x|2) 1
2 (52)

Assumption B.4. The data prediction model xθ and its derivatives such as ∂txθ,∇xxθ and ∆xθ

satisfy the linear growth condition.

Assumption B.5. The data prediction model xθ satisfies a uniform Lipschitz condition with respect
to x

|xθ(x1, t)− xθ(x2, t)| ≤ L|x1 − x2|, ∀x, y ∈ Rd, t ∈ [0, T] (53)

B.2 Outline of the Proof

In the remaining part of this section, we will focus on our variance controlled SDE

dxt =

[(
d logαt

dt
−
(
1 + τ2(t)

) dλt

dt

)
xt +

(
1 + τ2(t)

)
αtxθ(xt, t)

dλt

dt

]
dt

+ τ(t)σt

√
−2dλt

dt
dw̄t.

(54)

Consider the general case of the numerical scheme as follows:

xi+1 =
σti+1

σti

e
−

∫ λti+1
λti

τ2(λu)dλu
xi +

s−1∑
j=−1

bi−jxθ(xi−j , ti−j)

+ σti+1

∫ ti+1

ti

e−
∫ ti+1
u τ2(λ)dλτ(u)

√
−2dλu

du
dw̄u.

(55)

in which Eq. (17) and Eq (14) are the special case of this scheme. We will provide proof of the
mean-square convergence order of the numerical scheme max

0≤i≤M
∥xti − xi∥L2

. We define the local

20

error of the numerical scheme Eq. (55) for the approximation of the SDE Eq. (54) as

Li+1 = xti+1
− xi+1 = xti+1

−
σti+1

σti

e
−

∫ λti+1
λti

τ2(λ)dλ
xti −

s−1∑
j=−1

bi−jxθ(xti−j
, ti−j)

− σti+1

∫ ti+1

ti

e−
∫ ti+1
u τ2(λ)dλτ(u)

√
−2dλu

du
dw̄u.

(56)

Li+1 can be decomposed into Ri+1 and Si+1. Then the mean-square convergence can be derived,
which is summarized in the following theorem proved by [29]:
Theorem B.6 ([29], Theorem 1). The mean-square convergent of xi is bounded by

max
0≤i≤M

∥xti − xi∥L2
≤ S

{
max

0≤i≤s−1
∥Di∥L2

+ max
s≤i≤M

(∥Ri∥L2

h
+
∥Si∥L2

h
1
2

)}
. (57)

In Eq. (57), Di, i = 0, · · · , s− 1 are the initial error which we do not consider. Given Theorem B.6,
to show the convergence order O(max

0≤t≤T
τ(t)h+ hs) of our s-step SA-Predictor and the convergence

orderO(max
0≤t≤T

τ(t)h+hs+1) of our s-step SA-Corrector, we just need to prove the following lemmas.

Lemma B.7 (Convergence rate of s-step SA-Predictor). For

xti+1
=

σti+1

σti

e
−

∫ λti+1
λti

τ2(λu)dλu
xti +

s−1∑
j=0

bi−jxθ(xti−j
, ti−j) + σ̃iξ, ξ ∼ N (0, I),

σ̃i = σti+1

√
1− e

−2
∫ λti+1
λti

τ2(λ)dλ

bi−j = σti+1

∫ λti+1

λti

e−
∫ λti+1
λu

τ2(λv)dλv
(
1 + τ2 (λu)

)
eλu li−j(λu)dλu, ∀ 0 ≤ j ≤ s− 1

(58)
There exists an decomposition of local error Li such that Li = Ri + Si and

∥Ri∥L2
≤ hs+1, ∥Si∥L2

≤ max
0≤t≤T

τ(t)h
3
2 , (59)

Lemma B.8 (Convergence rate of s-step SA-Corrector). For

xti+1 =
σti+1

σti

e
−

∫ λti+1
λti

τ2(λu)dλu
xti + b̂i+1xθ(x

p
ti+1

, ti+1) +

ŝ−1∑
j=0

b̂i−jxθ(xti−j , ti−j) + σ̃iξ,

σ̃i = σti+1

√
1− e

−2
∫ λti+1
λti

τ2(λ)dλ

b̂i−j = σti+1

∫ λti+1

λti

e−
∫ λti+1
λu

τ2(λv)dλv
(
1 + τ2 (λu)

)
eλu l̂i−j(λu)dλu, ∀ 0 ≤ j ≤ s− 1

b̂i+1 = σti+1

∫ λti+1

λti

e−
∫ λti+1
λu

τ2(λv)dλv
(
1 + τ2 (λu)

)
eλu l̂i+1(λu)dλu

(60)
There exists an decomposition of local error Li such that Li = Ri + Si and

∥Ri∥L2
≤ hs+2, ∥Si∥L2

≤ max
0≤t≤T

τ(t)h
3
2 , (61)

Lemma B.7 and B.8 will be proved in Sec. B.4.

B.3 Lemmas for the Proof

To better analyze the local error here, we state the following definitions and results from [45]. For a
continuous function y : Rd × [0, T]→ Rd, a general multiple Wiener integral over the subinterval
[t, t+ h] ⊂ [0, T] is given by

It,t+h
r1r2···rj (y) =

∫ t+h

t

∫ s1

t

· · ·
∫ sj−1

t

y(xsj , sj)dwr1(sj) · · · dwrj (s1), (62)

21

where ri ∈ {0, 1, · · · , d} and dw0(s) = ds. Then we have the following lemma.

Lemma B.9 (Bound of Wiener Integral). For any function y : Rd × [0, T] → Rd that satisfies a
growth condition in the form |y(x, t)| ≤ K(1 + |x|2) 1

2 , for any x ∈ Rd, and any t ∈ [0, T], h > 0
such that t+ h ∈ [0, T], we have that

E
[
It,t+h
r1r2···rj (y)|Ft

]
= 0 if ri ̸= 0 for some i ∈ {1, · · · , j}, (63)∥∥∥It,t+h

r1r2···rj (y)
∥∥∥
L2

= O
(
hl1+

l2
2

)
, (64)

where l1 is the number of zero indices and l2 is the number of non-zero indices ri.

Lemma B.10 (Property of Lagrange interpolation polynomial). For s + 1 points
(ti+1, yi+1), (ti, yi), · · · , (ti−(s−1), yi−(s−1)), the Lagrange interpolation polynomial is

L(t) =

i+1∑
k=i−(s−1)

lk(t)yk. (65)

Then the following s+1 equalities hold

i+1∑
k=i−(s−1)

lk(u) = 1,

i+1∑
k=i−(s−1)

lk(u)

∫ tk

ti−(s−1)

du2 =

∫ u

ti−(s−1)

du2,

...
i+1∑

k=i−(s−1)

lk(u)

∫ tk

ti−(s−1)

∫ u2

ti−(s−1)

· · ·
∫ us

ti−(s−1)

dus+1 · · · du3du2 =

∫ u

ti−(s−1)

∫ u2

ti−(s−1)

· · ·
∫ us

ti−(s−1)

dus+1 · · · du3du2

(66)

Proof. For the first equality, consider yk ≡ 1 for i− (s−1) ≤ k ≤ i+1. The Lagrange interpolation
polynomial for these yks is a constant function L(t) ≡ 1. We have L(u) =

∑i+1
k=i−(s−1) lk(u) = 1.

For the second equality, consider yk =
∫ tk
ti−(s−1)

du2. The Lagrange interpolation polyno-
mial for these yks is a polynomial of degree 1 L(t) = t − ti−(s−1). We have L(u) =∑i+1

k=i−(s−1) lk(u)
∫ tk
ti−(s−1)

du2 = u− ti−(s−1) =
∫ u

ti−(s−1)
du2.

For equalities from the third to the last, without loss of generality, we
prove the p − th equality, where 3 ≤ p ≤ s + 1. Consider yk =∫ tk
ti−(s−1)

∫ u2

ti−(s−1)
· · ·
∫ up−1

ti−(s−1)
dup · · · du3du2. The Lagrange interpolation polynomial for these

yks is a polynomial of degree p − 1 L(t) =
∫ t

ti−(s−1)

∫ u2

ti−(s−1)
· · ·
∫ up−1

ti−(s−1)
dup · · · du3du2.

We have L(u) =
∫ u

ti−(s−1)

∫ u2

ti−(s−1)
· · ·
∫ up−1

ti−(s−1)
dup · · · du3du2 =∫ u

ti−(s−1)

∫ u2

ti−(s−1)
· · ·
∫ up−1

ti−(s−1)
dup · · · du3du2.

B.4 Proof of Lemma B.7 (for Theorem. 5.1) and Lemma B.8 (for Theorem. 5.2)

To simplify the notation, we will introduce two operators which will appear in the Itô formula.
Suppose we have an Itô SDE dxt = f(xt, t)dt+ g(xt, t)dwt and h(x, t) is a twice continuously
differentiable function. Let Γ0(·) = ∂t(·) +∇x(·)f , Γ1(·) = g2

2 ∆(·) and Γ2(·) = ∇x(·)g in which

22

∇x is the Jacobian matrix, and ∆ is the Laplacian operator. With the notation here, we can express
the Itô formula for h(x, t) as

h(xt, t) = h(xs, s) +

∫ t

s

(Γ0(h) + Γ1(h)) dt+

∫ t

s

Γ2(h)dw̄t. (67)

Given the above lemmas, we will analyze the local error Li+1 step by step. Inspired by Theorem B.6,
for data-prediction reparameterization model, Li+i can be estimated by decomposing the terms step
by step. The first step of decomposition is summarized as the following lemma:
Lemma B.11 (First step of estimating local error Li+1 in data-prediction reparameterization model).
Given the exact solution of data prediction model

xt =
σt

σs
e−

∫ λt
λs

τ2(λ̃)dλ̃xs + σtF θ(s, t) + σtG(s, t),

F θ(s, t) =

∫ λt

λs

e−
∫ λt
λ τ2(λ̃)dλ̃

(
1 + τ2 (λ)

)
eλxθ (xλ, λ) dλ

G(s, t) =

∫ t

s

e−
∫ λt
λu

τ2(λ̃)dλ̃τ(u)

√
−2dλu

du
dw̄u,

(68)

With proper bk, k ∈ [i− (s− 1), i+ 1], The local error Li+1 in Eq. (56) is

Li+1 = R
(1)
i+1 + S

(1)
i+1 (69)

where

S
(1)
i+1 =O

(
max
0≤t≤T

τ(t)h
3
2

)
R

(1)
i+1 =

i−1∑
k=i−(s−1)

σti+1

(∫ ti+1

ti

e−
∫ λti+1
λu

τ2(λ)dλ
(
1 + τ2(u)

)
eλu

dλu

du
du

)
×

(∫ tk+1

tk

Γ0(xθ)dt

)
+ σti+1

∫ ti+1

ti

e−
∫ λti+1
λu

τ2(λ)dλ
(
1 + τ2(u)

)
eλu

(∫ u

ti

Γ0(xθ)dt

)
dλu

du
du

−
s−1∑
j=−1

bi−j

i−j−1∑
k=i−(s−1)

∫ tk+1

tk

Γ0(xθ)dt.

(70)

Proof. The difference between Eq. (55) and Eq. (56) is that xj is our numerical approximation,
while xtj is the exact solution of SDE Eq. (54) at time t = tj . Substitute the exact solution Eq. (31)
of xti+1

, we have

Li+1 =
σti+1

σti

e
−

∫ λti+1
λti

τ2(λ)dλ
xti + σti+1

∫ ti+1

ti

e−
∫ ti+1
u τ2(λ)dλτ(u)

√
−2dλu

du
dw̄u

+ σti+1

∫ λti+1

λti

e−
∫ λti+1
λu

τ2(λ)dλ
(
1 + τ2(λu)

)
eλuxθ(xλu , λu)dλu

− σti+1

∫ ti+1

ti

e−
∫ ti+1
u τ2(λ)dλτ(u)

√
−2dλu

du
dw̄u

−
σti+1

σti

e
−

∫ λti+1
λti

τ2(λu)dλu
xti −

s−1∑
j=−1

bi−jxθ(xti−j
, ti−j)

=σti+1

∫ ti+1

ti

e−
∫ λti+1
λu

τ2(λ)dλ
(
1 + τ2(u)

)
eλuxθ(xu, u)

dλu

du
du

−
s−1∑
j=−1

bi−jxθ(xti−j
, ti−j).

(71)

23

Let f(x, t) =
(

d logαt

dt −
(
1 + τ2(t)

)
dλt

dt

)
x+
(
1 + τ2(t)

)
αtxθ(x, t)

dλt

dt , g(t) = τ(t)σt

√
−2dλt

dt .
By Itô’s formula [38], we have

xθ(xu, u) = xθ(xti−(s−1)
, ti−(s−1)) +

i−1∑
k=i−(s−1)

∫ tk+1

tk

(Γ0(xθ) + Γ1(xθ)) dt

+

∫ u

ti

(Γ0(xθ) + Γ1(xθ)) dt+

i−1∑
k=i−(s−1)

∫ tk+1

tk

Γ2(xθ)dw̄t +

∫ u

ti

Γ2(xθ)dw̄t,

(72)

xθ(xti−j , ti−j) = xθ(xti−(s−1)
, ti−(s−1)) +

i−j−1∑
k=i−(s−1)

∫ tk+1

tk

(Γ0(xθ) + Γ1(xθ)) dt

+

i−j−1∑
k=i−(s−1)

∫ tk+1

tk

Γ2(xθ)dw̄t,

(73)

Substituting Eq. (72) and Eq. (73) into Eq. (71), we have

Li+1

=

σti+1

∫ ti+1

ti

e−
∫ λti+1
λu

τ2(λ)dλ
(
1 + τ2(u)

)
eλu

dλu

du
du−

s−1∑
j=−1

bi−j

xθ(xti−(s−1)
, ti−(s−1))

+

i−1∑
k=i−(s−1)

σti+1

(∫ ti+1

ti

e−
∫ λti+1
λu

τ2(λ)dλ
(
1 + τ2(u)

)
eλu

dλu

du
du

)
×

(∫ tk+1

tk

(Γ0(xθ) + Γ1(xθ)) dt

)
+

i−1∑
k=i−(s−1)

σti+1

(∫ ti+1

ti

e−
∫ λti+1
λu

τ2(λ)dλ
(
1 + τ2(u)

)
eλu

dλu

du
du

)
×
(∫ tk+1

tk

Γ2(xθ)dw̄t

)

+ σti+1

∫ ti+1

ti

e−
∫ λti+1
λu

τ2(λ)dλ
(
1 + τ2(u)

)
eλu

(∫ u

ti

(Γ0(xθ) + Γ1(xθ)) dt

)
dλu

du
du

+ σti+1

∫ ti+1

ti

e−
∫ λti+1
λu

τ2(λ)dλ
(
1 + τ2(u)

)
eλu

(∫ u

ti

Γ2(xθ)dw̄t

)
dλu

du
du

−
s−1∑
j=−1

bi−j

 i−j−1∑
k=i−(s−1)

∫ tk+1

tk

(Γ0(xθ) + Γ1(xθ)) dt+

i−j−1∑
k=i−(s−1)

∫ tk+1

tk

Γ2(xθ)dw̄t


(74)

We will divide the local error Li+1 into distinct terms. The first term has a coefficient

σti+1

∫ ti+1

ti

e−
∫ λti+1
λu

τ2(λ)dλ
(
1 + τ2(u)

)
eλu

dλu

du
du−

s−1∑
j=−1

bi−j . (75)

By Lemma B.10, bk constructed by the integral of Lagrange polynomial in Eq. (58) and Eq. (60)

satisfies bk = O(h) and the coefficient (75) is zero. Furthermore, we have g(t) = τ(t)σt

√
−2dλt

dt =

24

O
(

max
0≤t≤T

τ(t)

)
. By Lemma B.9, we have the following estimations

i−1∑
k=i−(s−1)

σti+1

(∫ ti+1

ti

e−
∫ λti+1
λu

τ2(λ)dλ
(
1 + τ2(u)

)
eλu

dλu

du
du

)
×
(∫ tk+1

tk

Γ1(xθ)dt

)

=O
(

max
0≤t≤T

τ2(t)h2

)
,

i−1∑
k=i−(s−1)

σti+1

(∫ ti+1

ti

e−
∫ λti+1
λu

τ2(λ)dλ
(
1 + τ2(u)

)
eλu

dλu

du
du

)
×
(∫ tk+1

tk

Γ2(xθ)dw̄t

)

=O
(

max
0≤t≤T

τ(t)h
3
2

)
,

σti+1

∫ ti+1

ti

e−
∫ λti+1
λu

τ2(λ)dλ
(
1 + τ2(u)

)
eλu

(∫ u

ti

Γ1(xθ)dt

)
dλu

du
du = O

(
max
0≤t≤T

τ2(t)h2

)
,

σti+1

∫ ti+1

ti

e−
∫ λti+1
λu

τ2(λ)dλ
(
1 + τ2(u)

)
eλu

(∫ u

ti

Γ2(xθ)dw̄t

)
dλu

du
du = O

(
max
0≤t≤T

τ(t)h
3
2

)
,

s−1∑
j=−1

bi−j

i−j−1∑
k=i−(s−1)

∫ tk+1

tk

Γ1(xθ)dt = O
(

max
0≤t≤T

τ2(t)h2

)
,

s−1∑
j=−1

bi−j

i−j−1∑
k=i−(s−1)

∫ tk+1

tk

Γ2(xθ)dw̄t = O
(

max
0≤t≤T

τ(t)h
3
2

)
,

(76)

and the summation of the above terms is S(1)
i+1 = O

(
max
0≤t≤T

τ(t)h
3
2

)
.

The remaining terms of local error are

R
(1)
i+1 =

i−1∑
k=i−(s−1)

σti+1

(∫ ti+1

ti

e−
∫ λti+1
λu

τ2(λ)dλ
(
1 + τ2(u)

)
eλu

dλu

du
du

)
×
(∫ tk+1

tk

Γ0(xθ)dt

)

+ σti+1

∫ ti+1

ti

e−
∫ λti+1
λu

τ2(λ)dλ
(
1 + τ2(u)

)
eλu

(∫ u

ti

Γ0(xθ)dt

)
dλu

du
du

−
s−1∑
j=−1

bi−j

i−j−1∑
k=i−(s−1)

∫ tk+1

tk

Γ0(xθ)dt,

(77)
which completes the proof.

The remaining problem is to estimate the R
(1)
i+1 in Eq. (70). We can further expand the term Γ0(xθ)

as following

Γ0(xθ)(xt, t)

=Γ0(xθ)(xti−(s−1)
, ti−(s−1)) +

∫ t

ti−(s−1)

(Γ0Γ0(xθ) + Γ1Γ0(xθ)) dt+

∫ t

ti−(s−1)

Γ2Γ0(xθ)dw̄t.

(78)

Substituting the expansion of Γ0(xθ), we perform the approximation of L̃i+1, which is summarized
with the following lemma:

Lemma B.12 (Second step of estimating Li+1 in data-prediction reparameterization model). R
(1)
i+1

in Eq. (70) can be decomposed as

R
(1)
i+1 = R

(2)
i+1 + S

(2)
i+1, (79)

25

where

S
(2)
i+1 = O

(
max
0≤t≤T

τ(t)h
5
2

)
R

(2)
i+1

=σti+1

∫ ti+1

ti

e−
∫ λti+1
λu

τ2(λ)dλ
(
1 + τ2(u)

)
eλu

(∫ u

ti−(s−1)

du2

)
dλu

du
du · Γ0(xθ)(xti−(s−1)

, ti−(s−1))

+σti+1

∫ ti+1

ti

e−
∫ λti+1
λu

τ2(λ)dλ
(
1 + τ2(u)

)
eλu

(∫ u

ti−(s−1)

∫ u2

ti−(s−1)

Γ0Γ0(xθ) (xu3
, u3) du3du2

)
dλu

du
du

−
s−1∑
j=−1

bi−j

∫ ti−j

ti−(s−1)

du2 × Γ0(xθ)(xti−(s−1)
, ti−(s−1))

−
s−1∑
j=−1

bi−j

∫ ti−j

ti−(s−1)

∫ u2

ti−(s−1)

Γ0Γ0(xθ) (xu3
, u3) du3du2

(80)

Proof. We start with decomposing the term R
(1)
i+1

R
(1)
i+1

=σti+1

∫ ti+1

ti

e−
∫ λti+1
λu

τ2(λ)dλ
(
1 + τ2(u)

)
eλu

(∫ u

ti−(s−1)

Γ0(xθ)(xu2
, u2)du2

)
dλu

du
du

−
s−1∑
j=−1

bi−j

∫ ti−j

ti−(s−1)

Γ0(xθ)(xu2
, u2)du2

=σti+1

∫ ti+1

ti

e−
∫ λti+1
λu

τ2(λ)dλ
(
1 + τ2(u)

)
eλu

(∫ u

ti−(s−1)

du2

)
dλu

du
du · Γ0(xθ)(xti−(s−1)

, ti−(s−1))

+ σti+1

∫ ti+1

ti

e−
∫ λti+1
λu

τ2(λ)dλ
(
1 + τ2(u)

)
eλu(∫ u

ti−(s−1)

∫ u2

ti−(s−1)

(Γ0Γ0(xθ) + Γ1Γ0(xθ)) (xu3 , u3) du3du2

)
dλu

du
du

+ σti+1

∫ ti+1

ti

e−
∫ λti+1
λu

τ2(λ)dλ
(
1 + τ2(u)

)
eλu(∫ u

ti−(s−1)

∫ u2

ti−(s−1)

Γ2Γ0(xθ) (xu3
, u3) dw̄u3

du2

)
dλu

du
du

−
s−1∑
j=−1

bi−j

∫ ti−j

ti−(s−1)

du2 × Γ0(xθ)(xti−(s−1)
, ti−(s−1))

−
s−1∑
j=−1

bi−j

∫ ti−j

ti−(s−1)

∫ u2

ti−(s−1)

(Γ0Γ0(xθ) + Γ1Γ0(xθ)) (xu3 , u3) du3du2

−
s−1∑
j=−1

bi−j

∫ ti−j

ti−(s−1)

∫ u2

ti−(s−1)

Γ2Γ0(xθ) (xu3
, u3) dw̄u3

du2.

(81)

26

We further estimate the terms with Γ1 and Γ2.

σti+1

∫ ti+1

ti

e−
∫ λti+1
λu

τ2(λ)dλ
(
1 + τ2(u)

)
eλu(∫ u

ti−(s−1)

∫ u2

ti−(s−1)

Γ1Γ0(xθ) (xu3 , u3) du3du2

)
dλu

du
du

=O
(

max
0≤t≤T

τ2(t)h3

)
,

σti+1

∫ ti+1

ti

e−
∫ λti+1
λu

τ2(λ)dλ
(
1 + τ2(u)

)
eλu(∫ u

ti−(s−1)

∫ u2

ti−(s−1)

Γ2Γ0(xθ) (xu3
, u3) dw̄u3

du2

)
dλu

du
du

=O
(

max
0≤t≤T

τ(t)h
5
2

)
,

s−1∑
j=−1

bi−j

∫ ti−j

ti−(s−1)

∫ u2

ti−(s−1)

Γ1Γ0(xθ) (xu3
, u3) du3du2 = O

(
max
0≤t≤T

τ2(t)h3

)
,

s−1∑
j=−1

bi−j

∫ ti−j

ti−(s−1)

∫ u2

ti−(s−1)

Γ2Γ0(xθ) (xu3 , u3) dw̄u3du2 = O
(

max
0≤t≤T

τ(t)h
5
2

)
.

(82)

The summation of the above terms is S(2) = O
(

max
0≤t≤T

τ(t)h
5
2

)
. Compared with S(1), this term can

be omitted.

The remaining local error is

R
(2)
i+1 =σti+1

∫ ti+1

ti

e−
∫ λti+1
λu

τ2(λ)dλ
(
1 + τ2(u)

)
eλu

(∫ u

ti−(s−1)

du2

)
dλu

du
du

× Γ0(xθ)(xti−(s−1)
, ti−(s−1))

+ σti+1

∫ ti+1

ti

e−
∫ λti+1
λu

τ2(λ)dλ
(
1 + τ2(u)

)
eλu(∫ u

ti−(s−1)

∫ u2

ti−(s−1)

Γ0Γ0(xθ) (xu3
, u3) du3du2

)
dλu

du
du

−
s−1∑
j=−1

bi−j

∫ ti−j

ti−(s−1)

du2 × Γ0(xθ)(xti−(s−1)
, ti−(s−1))

−
s−1∑
j=−1

bi−j

∫ ti−j

ti−(s−1)

∫ u2

ti−(s−1)

Γ0Γ0(xθ) (xu3
, u3) du3du2

(83)

which completes the proof.

Remark 3. With Lemma B.11 and B.12, the local error Li+1 can be decomposed to the term

Si+1 = S
(1)
i+1 + S

(2)
i+1 and the term R

(2)
i+1. It is clear that Si+1 = O

(
max
0≤t≤T

τ(t)h
3
2

)
, and we will

show that given bi−j constructed by integral of Lagrange polynomial in Eq. (58) and Eq. (60),
R

(2)
i+1 = O

(
h3
)
.

27

By Lemma B.10, bk constructed by the integral of Lagrange polynomial in Eq. (58) and Eq. (60)
satisfies that the coefficient for Γ0(xθ)(xti−(s−1)

, ti−(s−1))

σti+1

∫ ti+1

ti

e−
∫ λti+1
λu

τ2(λ)dλ
(
1 + τ2(u)

)
eλu

(∫ u

ti−(s−1)

du2

)
dλu

du
du−

s−1∑
j=−1

bi−j

∫ ti−j

ti−(s−1)

du2,

(84)
equals zero. And the remaining term in R

(2)
i+1 is O(h3).

Remark 4. We will show that the local error can be further decomposed such that Li+1 = R
(s)
i+1 +∑s

j=1 S
(j)
i+1. In this case Si+1 =

∑s
j=1 S

(j)
i+1 is the term such that Si+1 = O

(
max
0≤t≤T

τ(t)h
3
2

)
, and

we will show that by our constructed bi−j , R(s)
i+1 = O

(
hs+1

)
.

Lemma B.13 (j − th step of estimating Li+1 in data-prediction reparameterization model). For
j ≤ s+ 1, R(j−1)

i+1 in Eq. (70) can be decomposed as

R
(j−1)
i+1 = R

(j)
i+1 + S

(j)
i+1, (85)

where

S
(j)
i+1 = O

(
max
0≤t≤T

τ(t)h
2j+1

2

)
R

(j)
i+1

=σti+1

∫ ti+1

ti

e−
∫ λti+1
λu

τ2(λ)dλ
(
1 + τ2(u)

)
eλu

(∫ u

ti−(s−1)

∫ u2

ti−(s−1)

· · ·
∫ uj−1

ti−(s−1)

duj · · · du3du2

)
dλu

du
du

·
j−1︷ ︸︸ ︷

Γ0 · · ·Γ0(xθ)(xti−(s−1)
, ti−(s−1))

+σti+1

∫ ti+1

ti

e−
∫ λti+1
λu

τ2(λ)dλ
(
1 + τ2(u)

)
eλu∫ u

ti−(s−1)

∫ u2

ti−(s−1)

· · ·
∫ uj

ti−(s−1)

j︷ ︸︸ ︷
Γ0 · · ·Γ0(xθ)

(
xuj+1

, uj+1

)
duj+1 · · · du3du2

 dλu

du
du

−
s−1∑
j=−1

bi−j

∫ ti−j

ti−(s−1)

∫ u2

ti−(s−1)

· · ·
∫ uj−1

ti−(s−1)

duj · · · du3du2 ·
j−1︷ ︸︸ ︷

Γ0 · · ·Γ0(xθ)(xti−(s−1)
, ti−(s−1))

−
s−1∑
j=−1

bi−j

∫ ti−j

ti−(s−1)

∫ u2

ti−(s−1)

· · ·
∫ uj

ti−(s−1)

j︷ ︸︸ ︷
Γ0 · · ·Γ0(xθ)

(
xuj+1

, uj+1

)
duj+1 · · · du3du2

(86)
Furthermore, given that bk is constructed by the integral of Lagrange polynomial in Eq. (58) and
Eq. (60), R(j)

i+1 = O(hj+1)

Sketch of the proof (1) Use the Itô formula Eq. (67) to expand

j−1︷ ︸︸ ︷
Γ0 · · ·Γ0(xθ). (2) Use Lemma B.9

to estimate the stochastic term S(j). For the remaining term R(j), by Lemma B.10, bk constructed
by the integral of Lagrange polynomial in Eq. (58) and Eq. (60) satisfies that the coefficient before

28

j−1︷ ︸︸ ︷
Γ0 · · ·Γ0(xθ)(xti−(s−1)

, ti−(s−1))

σti+1

∫ ti+1

ti

e−
∫ λti+1
λu

τ2(λ)dλ
(
1 + τ2(u)

)
eλu

(∫ u

ti−(s−1)

∫ u2

ti−(s−1)

· · ·
∫ uj−1

ti−(s−1)

duj · · · du3du2

)
dλu

du
du

−
s−1∑
j=−1

bi−j

∫ ti−j

ti−(s−1)

∫ u2

ti−(s−1)

· · ·
∫ uj−1

ti−(s−1)

duj · · · du3du2.

(87)
equals zero. And the remaining term in R

(j)
i+1 is O(hj+1).

The process can be repeated until the coefficient before

s︷ ︸︸ ︷
Γ0 · · ·Γ0(xθ)(xti−(s−1)

, ti−(s−1)) is

σti+1

∫ ti+1

ti

e−
∫ λti+1
λu

τ2(λ)dλ
(
1 + τ2(u)

)
eλu

(∫ u

ti−(s−1)

∫ u2

ti−(s−1)

· · ·
∫ us

ti−(s−1)

dus+1 · · · du3du2

)
dλu

du
du

−
s−1∑
j=−1

bi−j

∫ ti−j

ti−(s−1)

∫ u2

ti−(s−1)

· · ·
∫ us

ti−(s−1)

dus+1 · · · du3du2.

(88)
which equals zero. And the remaining term Rs+1

i+1 is O(hs+2).

We conclude with the proof of Lemma B.7 and B.8.

Proof for Lemma B.8 (Convergence for s-step SA-Corrector) The stochastic term Si+1 can be

estimated as O
(

max
0≤t≤T

τ(t)h
3
2

)
. Lemma B.10 prove that with bi−j defined in Theorem 5.2, the

coefficients of Eq. (75), Eq. (84), Eq. (87) and Eq. (88) equal zero. Thus the deterministic term Ri+1

can be estimated as O(hs+2). The proof is completed.

Proof for Lemma B.7 (Convergence for s-step SA-Predictor) The stochastic term Si+1 can be

estimated as O
(

max
0≤t≤T

τ(t)h
3
2

)
from Eq. (76) and Eq. (82). Lemma B.10 prove that with bi−j

defined in Theorem 5.1, the coefficients of Eq. (75), Eq. (84), Eq. (87) and Eq. (88) equal zero except
for the last term. This is because in s-step SA-Predictor we only have s points in contrast to s+ 1
points in s-step SA-Corrector, for which we can only obtain the first s equalities in Lemma B.10.
Thus the deterministic term Ri+1 can be estimated as O(hs+1). The proof is completed.

B.5 Relationship with Existing Samplers

B.5.1 Relationship with DDIM

DDIM [22] generates samples through the following process:

xti+1
= αti+1

(
xti − σtiϵθ(xti , ti)

αti

)
+
√
1− α2

ti+1
− σ̂2

tiϵθ(xti , ti) + σ̂tiξ, (89)

where ξ ∼ N (0, I), σ̂ti is a variable parameter. In practice, DDIM introduces a parameter η such
that when η = 0, the sampling process becomes deterministic and when η = 1, the sampling process

coincides with original DDPM [2]. Specifically, σ̂ti = η

√
1−α2

ti+1

1−α2
ti

(
1− α2

ti

α2
ti+1

)
.

Corollary 5.3 For any η in DDIM, there exists a τη(t) : R → R which is a piecewise constant
function such that DDIM-η coincides with our 1-step SA-Predictor when τ(t) = τη(t) with data
parameterization of our variance-controlled diffusion SDE.

29

Proof. Our 1-step SA-Predictor when τ(t) = τ, t ∈ [ti, ti+1] with data parameterization of our
variance-controlled diffusion SDE is

xti+1
=
σti+1

σti

e−τ2(λti+1
−λti)xti + αti+1

(
1− e−(1+τ2)(λti+1

−λti)
)
xθ(xti , ti)

+ σti+1

√
1− e−2τ2(λti+1

−λti)ξ.

(90)

DDIM-η generates samples through the following process

xti+1
= αti+1

xθ (xti , ti)+
√
1− α2

ti+1
− σ̂2

tiϵθ(xti , ti)+σ̂tiξ, σ̂ti = η

√√√√1− α2
ti+1

1− α2
ti

(
1−

α2
ti

α2
ti+1

)
.

(91)

If we substitute σ̂ti with σti+1

√
1− e−2τ2(λti+1

−λti), we can verify that
√
1− α2

ti+1
− σ̂2

ti =

σti+1e
−τ2(λti+1

−λti
). The DDIM-η then becomes

xti+1 =αti+1xθ (xti , ti) + σti+1e
−τ2(λti+1

−λti)
(
xti − αtixθ(xti , ti)

σti

)
+ σti+1

√
1− e−2τ2(λti+1

−λti)ξ

=
σti+1

σti

e−τ2(λti+1
−λti)xti +

(
αti+1

− αti

σti

σti+1
e−τ2(λti+1

−λti)
)
xθ (xti , ti)

+ σti+1

√
1− e−2τ2(λti+1

−λti)ξ

=
σti+1

σti

e−τ2(λti+1
−λti)xti + αti+1

(
1− e−(1+τ2)(λti+1

−λti)
)
xθ(xti , ti)

+ σti+1

√
1− e−2τ2(λti+1

−λti)ξ,

(92)

which is exactly the same with our 1-step SA-Predictor. To find the τη , we solve the relationship

η

√√√√1− α2
ti+1

1− α2
ti

(
1−

α2
ti

α2
ti+1

)
= σti+1

√
1− e−2τ2

η(λti+1
−λti). (93)

The relationship between τ and η is

η = σti

√√√√√1− e−2τ2
η(λti+1

−λti)

1− α2
ti

α2
ti+1

, τη =

√√√√√ log

(
1− η2

σ2
ti

(
1− α2

ti

α2
ti+1

))
−2
(
λti+1 − λti

) . (94)

In a concurrent paper [31], Lu et al. prove the result that their SDE-DPM-Solver++1 coincides with
DDIM with a special η. Their result is a special case of Corollary 5.3 when τη ≡ 1 and η take a
special value, while our result holds for arbitrary η.

B.5.2 Relationship with DPM-Solver++(2M)

DPM-Solver++ [31] is a high-order solver which solves diffusion ODEs for guided sampling. DPM-
Solver++(2M) is equivalent to the 2-step Adams-Bashforth scheme combined with the exponential
integrator. While our 2-step SA-Predictor is also equivalent to the 2-step Adams-Bashforth scheme
combined with the exponential integrator when τ(t) ≡ 0. Thus DPM-Solver++(2M) is a special case
of our 2-step SA-Predictor when τ(t) ≡ 0.

30

B.5.3 Relationship with UniPC

UniPC [24] is a unified predictor-corrector framework for solving diffusion ODEs. Specifically,
UniPC-p uses a p-step Adams-Bashforth scheme combined with the exponential integrator as a
predictor and a p-step Adams-Moulton scheme combined with the exponential integrator as a corrector.
While our p-step SA-Predictor is also equivalent to the p-step Adams-Bashforth scheme combined
with the exponential integrator when τ(t) ≡ 0 and our p-step SA-Corrector is also equivalent to
the p-step Adams-Moulton scheme combined with the exponential integrator when τ(t) ≡ 0. Thus
UniPC-p is a special case of our SA-Solver when τ(t) ≡ 0 with predictor step p, corrector step p in
Algorithm 1.

C Selection on the Magnitude of Stochasticity

In this section, we will show that we choose τ(t) ≡ 1 in a number of NFEs. We will show that under
certain conditions, the upper bound of KL divergence between the marginal distribution and the true
distribution can be minimized when τ(t) ≡ 1.

Let pt(x) denotes the marginal distribution of xt, by Proposition 4.1, we know that for any bounded
measurable function τ(t) : [0, T]→ R, the following Reverse SDEs

dxt =

[
f(t)xt −

(
1 + τ2(t)

2

)
g2(t)∇x log pt(xt)

]
dt+ τ(t)g(t)dw̄t, xT ∼ pT (xT), (95)

have the same marginal probability distributions. In practice, we substitute ∇x log pt(xt) with
sθ(xt, t) and substitute pT (xT) wiht π to sample the reverse SDE.

dxθ
t =

[
f(t)xθ

t −
(
1 + τ2(t)

2

)
g2(t)sθ(x

θ
t , t)

]
dt+ τ(t)g(t)dw̄t, xθ

T ∼ π, (96)

where π is a known distribution, specifically here a Gaussian. We have the following theorem under
the Assumption in Appendix A in [3].
Theorem C.1. Let p = p0 be the data distribution, which is the distribution if we sample from the
ground truth reverse SDE (54) at time 0. Let pτ(t)θ be the distribution if we sample from the practical
reverse SDE (96) at time 0. Under the assumptions above, we have

DKL

(
p∥pτ(t)θ

)
≤DKL (pT ∥π) +

1

8

∫ T

0

Ept(x)

[(
τ(t) +

1

τ(t)

)2

g2(t)∥∇x log pt(x)− sθ(x, t)∥2
]
dt.

(97)

This evidence lower bound (ELBO) is minimized when τ(t) ≡ 1.

Proof. Denote the path measure of Eq. (95) and Eq. (96) as µ and ν respectively. Both µ and ν
are uniquely determined by the corresponding SDEs due to assumptions. Consider a Markov kernel
K
(
{zt}t∈[0,T] ,y

)
= δ(z0 = y). Thus we have the following result∫

K
(
{xt}t∈[0,T] ,x

)
dµ
(
{xt}t∈[0,T]

)
= p0(x), (98)∫

K
({

xθ
t

}
t∈[0,T]

,x
)
dν
({

xθ
t

}
t∈[0,T]

)
= p

τ(t)
θ (x). (99)

By data processing inequality for KL divergence

DKL

(
p∥pτ(t)θ

)
= DKL

(
p0∥pτ(t)θ

)
=DKL

(∫
K
(
{xt}t∈[0,T] ,x

)
dµ
(
{xt}t∈[0,T]

)∥∥∥∫ K
({

xθ
t

}
t∈[0,T]

,x
)
dν
({

xθ
t

}
t∈[0,T]

))
≤DKL (µ∥ν) .

(100)

31

By the chain rule of KL divergence, we have

DKL (µ∥ν) = DKL (pT ∥π) + Ez∼pT

[
DKL

(
µ(·|xT = z)∥ν(·|xθ

T = z)
)]

. (101)

By Girsanov Thoerem, DKL

(
µ(·|xT = z)∥ν(·|xθ

T = z)
)

can be computed as

DKL

(
µ(·|xT = z)∥ν(·|xθ

T = z)
)

=Eµ

[∫ T

0

1

2

(
τ(t) +

1

τ(t)

)
g(t) (∇x log pt(x)− sθ(x, t)) dw̄t

]

+ Eµ

[
1

2

∫ T

0

1

4

(
τ(t) +

1

τ(t)

)2

g2(t)∥∇x log pt(x)− sθ(x, t)∥2dt

]

=
1

8

∫ T

0

Ept(x)

[(
τ(t) +

1

τ(t)

)2

g2(t)∥∇x log pt(x)− sθ(x, t)∥2
]
dt

(102)

D Implementation Details

For our 2-step SA-Predictor and 1-step SA-Corrector, we find that the coefficient will degenerate to a
simple case.

For 2-step SA-Predictor, assume on [ti, ti+1], τ(t) = τ is a constant,

bi = e−λti+1
τ2

σti+1(1 + τ2)

∫ λti+1

λti

e(1+τ2)λ λ− λti−1

λti − λti−1

dλ, (103)

bi−1 = e−λti+1
τ2

σti+1(1 + τ2)

∫ λti+1

λti

e(1+τ2)λ λ− λti

λti−1
− λti

dλ, (104)

we have

xti+1 =
σti+1

σti

e
−

∫ λti+1
λti

τ2(λ̃)dλ̃
xti + bixθ(xti , ti) + bi−1xθ(xti−1

, ti−1) + σ̃iξ

=
σti+1

σti

e
−

∫ λti+1
λti

τ2(λ̃)dλ̃
xti + (bi + bi−1)xθ(xti , ti)

− bi−1(xθ(xti , ti)− xθ(xti−1 , ti−1)) + σ̃iξ.

(105)

Let h = λti+1
− λti , we have

bi + bi−1 = e−λti+1
τ2

σti+1
(1 + τ2)

∫ λti+1

λti

e(1+τ2)λdλ

= αti+1
(1− e−h(1+τ2))

bi−1 = αti+1

e−(1+τ2)h + (1 + τ2)h− 1

(1 + τ2)(λti − λti−1
)

=
αti+1

λti − λti−1

1− (1 + τ2)h+ 1
2 (1 + τ2)2h2 +O(h3) + (1 + τ2)h− 1

1 + τ2

=
αti+1

λti − λti−1

1

2
(1 + τ2)h2 +O(h3)

(106)

Thus we implement b̂i−1 as
αti+1

λti
−λti−1

1
2 (1 + τ2)h2 and b̂i as αti+1

(1 − e−h(1+τ2)) − b̂i−1. Note

that substituting bi, bi−1 as b̂i, b̂i−1 will maintain the convergence order result of 2-step SA-Predictor
since the modified term is O(h3). The implementation detail for 1-step SA-Corrector is technically
the same.

32

E Experiment Details

E.1 Details on τ(t), Predictor Steps and Corrector Steps

CIFAR10 32x32 For the CIFAR10 experiment in Section 6.4, we use the pretrained baseline-
unconditional-VE model4from [27]. It’s an unconditional model with VE noise schedule.
To fairly compare with results in [27], we use a piecewise constant function τ(t) inspired
by [27]. Concretely, denoting σEDM

t = σt

αt
, our τ(t) is set to be a constant τ in the interval

[(σEDM)−1(0.05), (σEDM)−1(1)] and to be zero outside the interval. We find empirically that this
piecewise constant function setting makes our SA-Solver converge better, especially in large noise
scale cases. We use a 3-step SA-Predictor and a 3-step SA-Corrector. For the CIFAR10 experiment
in Section 6.2 and 6.5, we also use the piecewise constant function τ(t) as above. The predictor steps
and corrector steps vary to verify the effectiveness of our proposed method in Section 6.2, while they
are both set to be 3-steps in Section 6.5.

ImageNet 64x64 For the ImageNet 64x64 experiment in Section 6.4, we use the pretrained model5
from [4]. It’s a conditional model with VP cosine noise schedule. To fairly compare with results
in [27], we use a piecewise constant function τ(t) inspired by [27]. Concretely, denoting σEDM

t = σt

αt
,

our τ(t) is set to be a constant τ in the interval [(σEDM)−1(0.05), (σEDM)−1(50)] and to be zero
outside the interval. We find empirically that this piecewise constant function setting makes our
SA-Solver converge better, especially in large noise scale cases. We use a 3-step SA-Predictor and a
3-step SA-Corrector.

Other experiments For other experiments, we use a constant function τ(t) ≡ τ . It’s generally
not the optimal choice for each individual task, thus further fine-grained tuning has the potential to
improve the results. We aim to report the result of our SA-Solver without extra hyperparameter tuning.
We use a 3-step SA-Predictor and a 3-step SA-Corrector under 20 NFEs and 2-step SA-Predictor and
a 1-step SA-Corrector beyond 20 NFEs.

E.2 Details on Pretrained Models and Settings

CIFAR10 32x32 For the CIFAR10 experiment, we use the pretrained baseline-unconditional-VE
model6from [27]. It’s an unconditional model with VE noise schedule. To fairly compare with results
in [27], we follow the time step schedule in it. Specifically, we set σmin = 0.02 and σmax = 80 and
select the step by σi = (σ

1
7
max +

i
N−1 (σ

1
7
min − σ

1
7
max))7 for SA-Solver and UniPC. We directly report

the results of the deterministic sampler and stochastic sampler of EDM. To make it a strong baseline,
we report the results of the optimal setting for 4 hyper-parameters {Schurn, Stmin, Stmax, Snoise}
and report its lowest observed FID. While for SA-Solver and UniPC, we report the averaged observed
FID.

ImageNet 64x64 For the ImageNet 64x64 experiment, we use the pretrained model7 from [4].
It’s a conditional model with VP cosine noise schedule. To fairly compare with results in [27], we
follow the time step schedule in it and use conditional sampling. Specifically, we set σmin = 0.0064

and σmax = 80 and select the step by σi = (σ
1
7
max + i

N−1 (σ
1
7
min − σ

1
7
max))7 for SA-Solver, UniPC,

DPM-Solver and DDIM. We directly report the results of the deterministic sampler and stochastic
sampler of EDM. To make it a strong baseline, we report the results of the optimal setting for 4
hyper-parameters {Schurn, Stmin, Stmax, Snoise} and report its lowest observed FID. While for
SA-Solver, UniPC, DPM-Solver and DDIM, we report the averaged observed FID.

4https://nvlabs-fi-cdn.nvidia.com/edm/pretrained/baseline/
baseline-cifar10-32x32-uncond-ve.pkl

5https://openaipublic.blob.core.windows.net/diffusion/jul-2021/64x64_diffusion.pt
6https://nvlabs-fi-cdn.nvidia.com/edm/pretrained/baseline/

baseline-cifar10-32x32-uncond-ve.pkl
7https://openaipublic.blob.core.windows.net/diffusion/jul-2021/64x64_diffusion.pt

33

https://nvlabs-fi-cdn.nvidia.com/edm/pretrained/baseline/baseline-cifar10-32x32-uncond-ve.pkl
https://nvlabs-fi-cdn.nvidia.com/edm/pretrained/baseline/baseline-cifar10-32x32-uncond-ve.pkl
https://openaipublic.blob.core.windows.net/diffusion/jul-2021/64x64_diffusion.pt
https://nvlabs-fi-cdn.nvidia.com/edm/pretrained/baseline/baseline-cifar10-32x32-uncond-ve.pkl
https://nvlabs-fi-cdn.nvidia.com/edm/pretrained/baseline/baseline-cifar10-32x32-uncond-ve.pkl
https://openaipublic.blob.core.windows.net/diffusion/jul-2021/64x64_diffusion.pt

ImageNet 256x256 For the ImageNet 256x256 experiment, we use three different pretrained
models:LDM8(VP, handcrafted noise schedule) from [5], DiT-XL/29(VP, linear noise schedule)
from [41], Min-SNR10(VP, cosine noise schedule) from [42]. We use classifier-free guidance of scale
s = 1.5 and a uniform time step schedule because it’s the most common setting for guided sampling
for ImageNet 256x256.

ImageNet 512x512 For the ImageNet 256x256 experiment, we use the pre-trained model: DiT-
XL/211 from [41]. We use classifier-free guidance of scale s = 1.5 and a uniform time step schedule
following the settings of DiT [41].

LSUN Bedroom 256x256 For the LSUN Bedroom 256x256 experiment, we use the pretrained
model12 from [4]. We use unconditional sampling and a uniform lambda step schedule from [23].

F Additional Results

We include the detailed FID results in Figure 1, Figure 2 and Figure 4 in the tables 4 to 14. The
ablation study shows that stochasticity indeed helps improve sample quality. We find that for small
NFEs, the magnitude of stochasticity should be small while for large NFEs, large magnitude of
stochasticity helps improve sample quality. It can also be observed that in latent space, SDE converges
faster as in Table 13. With only 10 NFEs, τ = 0.6 is better than τ = 0. With 20 NFEs, our SA-Solver
can achieve 3.87 FID, which outperforms all ODE samplers even with far more steps.

Table 4: Sample quality measured by FID ↓ on CIFAR10 32x32 dataset (VE-baseline model from [27])
varying the number of function evaluations (NFE). For the results from EDM†, we reported its lowest
observed FID.

Method \ NFE 11 15 23 31 47 63 95

DDIM(η = 0) 18.28 12.23 7.93 6.45 5.27 4.83 4.42
DPM-Solver 9.26 5.13 4.52 4.30 4.02 3.97 3.94
UniPC 6.42 5.02 4.19 4.00 3.91 3.90 3.89
EDM(ODE)† 13.46 5.62 4.04 3.82 3.79 3.80 3.79

EDM(SDE)† 23.94 8.94 4.73 3.95 3.59 3.36 3.06
SA-Solver 6.46 4.91 3.77 3.40 2.92 2.74 2.63

Table 5: Sample quality measured by FID ↓ on CIFAR10 32x32 dataset (VE-baseline model from [27])
varying the number of function evaluations (NFE) and the magnitude of stochasticity (τ).

SA-Solver \ NFE 11 15 23 31 47 63 95

τ = 0.0 6.46 5.06 4.22 4.02 3.93 3.92 3.91
τ = 0.2 6.54 5.01 4.14 3.95 3.89 3.84 3.83
τ = 0.4 6.79 4.91 4.03 3.81 3.76 3.74 3.67
τ = 0.6 7.34 4.91 3.85 3.65 3.60 3.56 3.57
τ = 0.8 8.61 5.28 3.77 3.48 3.45 3.43 3.50
τ = 1.0 10.89 6.52 3.98 3.40 3.21 3.25 3.29
τ = 1.2 14.49 9.33 5.19 3.69 3.00 3.03 3.07
τ = 1.4 20.19 13.76 7.60 4.91 2.92 2.86 2.93
τ = 1.6 27.90 20.51 11.89 8.07 3.25 2.74 2.80
τ = 1.8 36.26 29.43 18.13 14.00 4.60 2.83 2.63

8https://ommer-lab.com/files/latent-diffusion/nitro/cin/model.ckpt
9https://dl.fbaipublicfiles.com/DiT/models/DiT-XL-2-256x256.pt

10https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/releases/download/v0.0.
0/ema_0.9999_xl.pt

11https://dl.fbaipublicfiles.com/DiT/models/DiT-XL-2-512x512.pt
12https://openaipublic.blob.core.windows.net/diffusion/jul-2021/lsun_bedroom.pt

34

https://ommer-lab.com/files/latent-diffusion/nitro/cin/model.ckpt
https://dl.fbaipublicfiles.com/DiT/models/DiT-XL-2-256x256.pt
https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/releases/download/v0.0.0/ema_0.9999_xl.pt
https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/releases/download/v0.0.0/ema_0.9999_xl.pt
https://dl.fbaipublicfiles.com/DiT/models/DiT-XL-2-512x512.pt
https://openaipublic.blob.core.windows.net/diffusion/jul-2021/lsun_bedroom.pt

Table 6: Sample quality measured by FID ↓ on ImageNet 64x64 dataset (model from [4]) varying the
number of function evaluations (NFE). For the results from EDM†, we reported its lowest observed
FID.

Method \ NFE 15 23 31 47 63 95

DDIM(η = 0) 8.48 5.39 4.27 3.46 3.17 2.95
DPM-Solver 3.49 3.04 2.88 2.80 2.76 2.74
UniPC 3.51 2.84 2.75 2.72 2.71 2.72
EDM(ODE)† 4.78 3.12 2.84 2.73 2.73 2.67

EDM(SDE)† 8.94 4.30 3.40 2.72 2.44 2.22
SA-Solver 3.41 2.61 2.23 1.95 1.88 1.81

Table 7: Sample quality measured by FID ↓ on ImageNet 64x64 dataset (model from [4]) varying the
number of function evaluations (NFE) and the magnitude of stochasticity (τ).

SA-Solver \ NFE 15 23 31 47 63 95

τ = 0.0 3.48 2.72 2.72 2.66 2.64 2.71
τ = 0.2 3.41 2.80 2.63 2.63 2.64 2.60
τ = 0.4 3.52 2.70 2.51 2.51 2.49 2.49
τ = 0.6 3.98 2.61 2.44 2.39 2.34 2.35
τ = 0.8 5.80 2.68 2.32 2.24 2.19 2.21
τ = 1.0 10.06 3.38 2.23 2.09 2.08 2.08
τ = 1.2 18.39 5.52 2.52 1.95 1.97 2.00
τ = 1.4 32.42 10.37 3.83 2.05 1.89 1.89
τ = 1.6 52.31 19.64 7.10 2.60 1.88 1.81

G Additional Samples

We include additional samples in this section. In Figure 5 and Figure 6 we compare samples of our
proposed SA-Solver with other diffusion samplers. In Figure 7 and Figure 8, we compare samples of
our proposed SA-Solver under different NFEs and τ . In Figure 9 and Figure 10, we compare samples
of our proposed SA-Solver with other diffusion samplers on text-to-image tasks. Our SA-Solver can
generate more diverse samples with more details.

35

Table 8: Sample quality measured by FID ↓ on CIFAR10 32x32 dataset (model trained by ourselves;
see Section 6.5) varying the sampling method and the training epoch.

method (NFE = 31) \ epoch 1250 1300 1350 1400 1450 1500

DDIM 39.32 29.79 19.59 12.98 8.63 6.64
DPM-Solver 30.57 22.11 13.85 8.85 5.68 4.55
EDM(ODE) 27.51 19.82 12.37 8.03 5.33 4.32
SA-Solver(τ = 0.6) 20.55 14.89 9.71 6.55 4.61 4.08
SA-Solver(τ = 1.0) 13.62 10.01 6.79 4.81 3.70 3.47

Table 9: Sample quality measured by FID ↓ on ImageNet 256x256 dataset (model trained by ourselves;
see Section 6.5) varying the sampling method and the training epoch.

method (NFE = 40) \ epoch 50 100 150 200 250

DDIM 19.40 9.61 6.75 5.86 5.12
DPM-Solver 18.75 8.96 6.15 5.28 4.62
SA-Solver(τ = 0.4) 17.93 8.39 5.69 4.84 4.24
SA-Solver(τ = 0.8) 16.57 7.54 5.15 4.48 3.99

Table 10: Sample quality measured by FID ↓ on ImageNet 256x256 dataset(model from [5]) varying
the number of function evaluations (NFE).

Method \ NFE 5 10 20 40 60 80 100

DDIM(η = 0) 58.68 16.32 6.82 4.71 4.45 4.28 4.23
DPM-Solver 166.88 6.19 5.51 4.17 4.18 4.21 4.15
UniPC 12.79 4.96 4.21 4.14 4.12 4.09 4.10

DDIM(η = 1) 138.91 50.05 14.60 6.09 4.56 4.12 3.87
SA-Solver 11.46 4.82 3.88 3.47 3.37 3.37 3.33

Table 11: Ablation study on the effect of the magnitude of stochasticity using SA-Solver. Sample
quality measured by FID ↓ on CIFAR10 32x32 dataset(model from [27]) varying the number of
function evaluations (NFE) and the magnitude of stochasticity(τ).

τ \ NFE 15 23 31 47 63 95 127

0 4.84 4.11 3.94 3.86 3.88 3.87 3.87
0.2 4.96 4.04 3.84 3.75 3.74 3.79 3.75
0.4 5.27 4.00 3.87 3.64 3.71 3.70 3.62
0.6 6.05 3.95 3.61 3.49 3.46 3.53 3.43
0.8 7.40 4.12 3.53 3.28 3.37 3.32 3.30
1.0 10.00 4.49 3.41 3.18 3.24 3.17 3.15
1.2 13.58 5.14 3.59 3.10 3.02 2.97 3.05
1.4 17.88 6.55 3.94 3.04 3.01 2.89 2.95
1.6 22.42 8.44 4.69 3.20 3.02 2.94 2.89

36

Table 12: Ablation study on the effect of the magnitude of stochasticity using SA-Solver. Sample
quality measured by FID ↓ on ImageNet 64x64 dataset(model from [4]) varying the number of
function evaluations (NFE) and the magnitude of stochasticity(τ).

τ \ NFE 20 40 60 80 100

0 3.30 2.83 2.78 2.79 2.82
0.2 3.32 2.77 2.72 2.74 2.79
0.4 3.37 2.68 2.63 2.62 2.59
0.6 3.61 2.57 2.49 2.49 2.47
0.8 4.19 2.51 2.40 2.34 2.30
1.0 5.55 2.54 2.32 2.21 2.20
1.2 7.93 2.77 2.29 2.14 2.14
1.4 11.55 3.20 2.40 2.14 2.08
1.6 16.15 3.97 2.60 2.20 2.09

Table 13: Ablation study on the effect of the magnitude of stochasticity using SA-Solver. Sample
quality measured by FID ↓ on ImageNet 256x256 dataset(model from [5]) varying the number of
function evaluations (NFE) and the magnitude of stochasticity(τ).

τ \ NFE 5 10 20 40 60 80 100

0 11.46 5.04 4.30 4.16 4.12 4.10 4.16
0.2 11.88 4.89 4.29 4.05 4.02 4.01 4.03
0.4 12.69 4.84 4.14 3.86 3.84 3.83 3.84
0.6 14.84 4.82 3.99 3.63 3.62 3.63 3.61
0.8 18.82 5.09 3.87 3.55 3.50 3.47 3.47
1.0 25.96 6.06 3.88 3.47 3.41 3.39 3.38
1.2 37.20 8.23 3.92 3.47 3.37 3.37 3.33
1.4 53.03 12.93 4.08 3.53 3.40 3.38 3.36
1.6 71.30 24.08 4.43 3.56 3.44 3.45 3.33

Table 14: Ablation study on the effect of the magnitude of stochasticity using SA-Solver. Sample
quality measured by FID ↓ on LSUN Bedroom 256x256 dataset(model from [4]) varying the number
of function evaluations (NFE) and the magnitude of stochasticity(τ).

τ \ NFE 20 40 60 80 100

0 3.60 3.14 3.06 3.09 3.07
0.2 3.51 3.12 3.00 2.99 2.99
0.4 3.70 3.09 2.97 3.03 3.16
0.6 4.10 3.08 2.95 2.99 3.03
0.8 4.75 3.11 2.97 2.89 2.99
1.0 6.18 3.28 2.98 2.90 2.91
1.2 8.54 3.53 3.12 2.86 3.00
1.4 12.14 4.25 3.24 2.98 2.93
1.6 16.63 5.50 3.75 3.18 3.10

37

NFE = 15 NFE = 23 NFE = 47 NFE = 95

DDIM(η = 0)

DPM-Solver

UniPC

EDM(ODE)

EDM(SDE)

SA-Solver(ours)

Figure 5: Samples by DDIM, DPM-Solver, UniPC, EDM(ODE), EDM(SDE) and our SA-Solver
with 15, 23, 47, 95 NFEs with the same random seed from CIFAR10 32x32 VE baseline model [27]

38

NFE = 15 NFE = 23 NFE = 47 NFE = 95

DDIM(η = 0)

DPM-Solver

UniPC

SA-Solver(ours)

Figure 6: Samples by DDIM, DPM-Solver, UniPC, and our SA-Solver with 15, 23, 47, 95 NFEs with
the same random seed from ImageNet 64x64 model [27](conditional sampling)

39

NFE = 20 NFE = 40 NFE = 60 NFE = 100

SA-Solver(η = 0)

SA-Solver(η = 0.2)

SA-Solver(η = 0.4)

SA-Solver(η = 0.6)

SA-Solver(η = 0.8)

SA-Solver(η = 1.0)

SA-Solver(η = 1.2)

Figure 7: Samples by SA-Solver with 20, 40, 60, 100 NFEs varying stochasticity(τ) with the same
random seed from LSUN-Bedroom 256x256 model [4](unconditional sampling).

40

NFE = 60

SA-Solver(τ = 0)

SA-Solver(τ = 0.4)

SA-Solver(τ = 0.8)

SA-Solver(τ = 1.0)

Figure 8: Samples by SA-Solver with 60 NFEs varying stochasticity(τ) with the same random seed
from ImageNet 512x512 DiT model [41] with classifer-free guidance scale s = 4.0(default setting to
show image).

41

NFE = 20 NFE = 50 NFE = 100

DDIM(η = 0)

UniPC

SA-Solver(Ours)

Figure 9: Samples using Stable-Diffusion v1.5 [5] with a classifier-free guidance scale 7.5 with
different solvers and NFEs. Prompt:The Legend of Zelda landscape atmospheric, hyper realistic, 8k,
epic composition, cinematic, octane render, artstation landscape vista photography by Carr Clifton
Galen Rowell, 16K resolution, Landscape veduta photo by Dustin Lefevre tdraw, 8k resolution,
detailed landscape painting by Ivan Shishkin, DeviantArt, Flickr, rendered in Enscape, Miyazaki,
Nausicaa Ghibli, Breath of The Wild, 4k detailed post processing, artstation, rendering by octane,
unreal engine.

42

NFE = 20 NFE = 50 NFE = 100

DDIM(η = 0)

UniPC

SA-Solver(Ours)

Figure 10: Samples using Stable-Diffusion v1.5 [5] with a classifier-free guidance scale 7.5 with
different solvers and NFEs. Prompt:glowwave portrait of curly orange haired mad scientist man from
borderlands 3, au naturel, hyper detailed, digital art, trending in artstation, cinematic lighting, studio
quality, smooth render, unreal engine 5 rendered, octane rendered, art style by pixar dreamworks
warner bros disney riot games and overwatch.

43

	Introduction
	Related Works
	Preliminary
	Variance Controlled Diffusion SDEs
	SA-Solver: Stochastic Adams Method to Solve Diffusion SDEs
	SA-Predictor
	SA-Corrector
	Connection with other samplers

	Experiments
	Comparison between Data-Prediction Model and Noise-Prediction Model
	Ablation Study on Predictor/Corrector Steps and Predictor-Corrector Method
	Effect on Magnitude of Stochasticity
	Comparison with State-of-the-Art
	Effect of Stochasticity for Inaccurate Score Estimation

	Conclusions
	Derivations of Variance Controlled Diffusion SDEs
	Proof of Proposition 4.1
	Two Reparameterizations and Exact Solution under Exponential Integrator
	Data Prediction Reparameterization
	Proof of Proposition 4.2
	Noise Prediction Reparameterization
	Comparison between Data and Noise Reparameterizations

	Derivations and Proofs for SA-Solver
	Preliminary
	Outline of the Proof
	Lemmas for the Proof
	Proof of Lemma B.7 (for Theorem. 5.1) and Lemma B.8 (for Theorem. 5.2)
	Relationship with Existing Samplers
	Relationship with DDIM
	Relationship with DPM-Solver++(2M)
	Relationship with UniPC

	Selection on the Magnitude of Stochasticity
	Implementation Details
	Experiment Details
	Details on (t), Predictor Steps and Corrector Steps
	Details on Pretrained Models and Settings

	Additional Results
	Additional Samples

