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Abstract

Diffusion Probabilistic Models (DPMs) have achieved considerable success in
generation tasks. As sampling from DPMs is equivalent to solving diffusion
SDE or ODE which is time-consuming, numerous fast sampling methods built
upon improved differential equation solvers are proposed. The majority of such
techniques consider solving the diffusion ODE due to its superior efficiency. How-
ever, stochastic sampling could offer additional advantages in generating diverse
and high-quality data. In this work, we engage in a comprehensive analysis of
stochastic sampling from two aspects: variance-controlled diffusion SDE and linear
multi-step SDE solver. Based on our analysis, we propose SA-Solver, which is an
improved efficient stochastic Adams method for solving diffusion SDE to generate
data with high quality. Our experiments show that SA-Solver achieves: 1) improved
or comparable performance compared with the existing state-of-the-art (SOTA)
sampling methods for few-step sampling; 2) SOTA FID on substantial benchmark
datasets under a suitable number of function evaluations (NFEs).

1 Introduction

Diffusion Probabilistic Models (DPMs) [1-3] have demonstrated substantial success across a broad
spectrum of generative tasks such as image synthesis [4—6], video generation [7, 8], text-to-image
generation [9-11], speech synthesis [12, 13], efc. The primary mechanism of DPMs involves a
forward diffusion process that incrementally introduces noise into data. Simultaneously, a reverse
diffusion process is learned to generate data from this noise. Despite DPMs demonstrating enhanced
generation performance in comparison to alternative methods such as Generative Adversarial Net-
works (GAN) [14] or Variational Autoencoders (VAE) [15], the sampling process of DPMs demand
hundreds of evaluations of network function evaluations (NFE) [2]. The substantial computation
requirement poses a significant limitation to their wider application in practice.

The existing literature on improving the sampling efficacy of DPMs can be categorized into two
ways, depending on whether conducting extra training on the DPMs. The first category necessitates
supplementary training [16-21], which often emerges as a bottleneck, thereby limiting their practical
application. Due to this, we focus on exploring the second category, which consists training-free
methods to improve the sampling efficiency of DPMs in this paper. Current training-free samplers
employ efficient numerical schemes to solve the diffusion SDE/ODE[22-26]. Compared with solving
diffusion SDE (stochastic sampler) [25-27], solving diffusion ODE (deterministic sampler) [22—-24]
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empirically exhibits better sampling efficiency. Existing stochastic samplers typically exhibit slower
convergence speed. However, empirical observations in [3, 27] indicate that the stochastic sampler
has the potential to generate higher-quality data when increasing the sampling steps. This empirical
observation motivates us to further explore the efficient stochastic sampler.

Owing to the observed superior performance of stochastic sampler [3, 27], we speculate that adding
properly scaled noise in the diffusion SDE may facilitate the quality of generated data. Thus, instead
of solving the vanilla diffusion SDE in [22], we propose to consider a family of diffusion SDEs
which shares the same marginal distribution [28, 27] with different noise scales. Meanwhile, efficient
stochastic solvers are not carefully studied, which could be the reason that diffusion ODE exhibits
better sampling efficiency. To overcome this problem, we study the linear multi-step SDE solvers [29]
and incorporate them in the sampling.

Based on these studies, we propose SA-Solver with theoretical convergence order to solve the proposed
diffusion SDEs. Our SA-Solver is based on the stochastic Adams method in [29], by adapting it to
the exponentially weighted integral and analytical variance. With the proposed diffusion SDEs and
SA-Solver, we can efficiently generate data with controllable noise scales. We empirically evaluate
our SA-Solver on plenty of benchmark datasets of image generation. The evaluation criterion is the
Fréchet Inception Distance (FID) score [30] under different number of function evaluations (NFEs).
The experimental results can be summarized as three folds: 1) Under small NFEs, our SA-Solver
has improved or comparable FID scores, compared with baseline methods; 2) Under suitable NFEs
our SA-Solver achieves the State-of-the-Art FID scores over all benchmark datasets; 3) SA-Solver
achieves superior performance over deterministic samplers when the model is not fully trained.

2 Related Works

The DPMs originate from the milestone work [1], and are further developed by [2] and [3] to
successfully generate high-quality data, under the framework of discrete and continuous diffusion
SDEs respectively. In this paper, we mainly focus on the latter framework. As mentioned in Section
1, plenty of papers are working on accelerating the sampling of DPMs due to their low efficiency,
distinguished by whether conducting a supplementary training stage. Training-based methods, e.g.,
knowledge distillation [16—18], learning-to-sample [19], and integration with GANSs [20, 21], have
the potential to sampling for one or very few steps to enhance the efficiency, but their applicability is
limited by the lack of a plug-and-play nature, thereby constraining their broad applicability across
diverse tasks. Thus we mainly focus on the training-free methods in this paper.

Solving Diffusion ODE. Since the sampling process is equivalent to solving diffusion SDE (ODE),
the training-free methods are mainly built on solving the differential equations via high-efficiency
numerical methods. As ODEs are easier to solve compared with SDEs, the ODE sampler has attracted
great attention. For example, Song et al. [22] provides an empirically efficient solver DDIM. Zhang
and Chen [28] and Lu et al. [23] point out the semi-linear structure of diffusion ODEs, and develop
higher-order ODE samplers based on it. Zhao et al. [24] further improve these samplers in terms of
NFEs by integrating the mechanism of predictor-corrector method.

Solving Diffusion SDE. Though less explored than the ODE sampler, the SDE sampler exhibits the
potential of generating higher-quality data [27]. Thus developing an efficient SDE sampler as we did
in this paper is a meaningful topic. In the existing literature, researchers [2, 26, 3] solve the diffusion
SDE by first-order discretization numerical method. The higher-order stochastic sampler of diffusion
SDE has also been discussed in [25]. Karras et al. [27] proposes another stochastic sampler (which
is not a general SDE numerical solver) tailored for diffusion problems. However, in contrast to our
proposed SA-Solver, the existing SDE samplers are limited due to their low efficiency [2, 26, 3] or
sensitivity to hyperparameters [27].

We found a concurrent paper proposing an SDE sampler SDE-DPM-Solver++ [31] which is similar
to our SA-Solver. Though both methods develop multi-step diffusion SDE samplers, our SA-Solver
is different from SDE-DPM-Solver++ as follows: 1) SA-Solver incorporates the predictor-corrector
method, which helps improve the quality of generated data [3, 32, 24]; 2) In contrast to SDE-
DPM-Solver++, SA-Solver has theoretical guarantees with proved convergence order; 3) SDE-DPM-
Solver++ is a special case of SA-Solver when the predictor step equals 2 with no corrector in our
predictor-corrector method, while our solver supports arbitrary orders with analytical forms.



3 Preliminary

In the regime of the continuous stochastic differential equation (SDE), Diffusion Probabilistic Models
(DPMs) [1-3, 33] construct noisy data through the following linear SDE:

day = f(t)edt + g(t)dwy, (M

where w; € RY represents the standard Wiener process, f(t)x; and g(t) respectively denote the drift
and diffusion coefficients. For each time ¢ € [0, T, x|y ~ N (ayxo, 02 1).

Let p;(x) denotes the marginal distribution of x;, the coefficients f(¢) and g(¢) are meticulously
selected to guarantee that the marginal distribution pr () closely approximates a Gaussian distribu-
tion, i.e., N'(0, I), and the signal-to-noise-ratio (SNR) o /o? is strictly decreasing w.r.t. ¢. In the
sequel, we follow the established notations in [33]:

dlog oy 9 do? _dlogay ,
Anderson [34] demonstrates a pivotal theorem that the forward process (1) has an equivalent reverse-

time diffusion process (from 7" to 0) as the following equation, so that generating process can be
equivalent to numerically solve the diffusion SDE [2, 3].

da; = [f(t)x: — ¢*(t) Vi log pe ()] dt + g(t)dws, @7 ~ pr(z7) )

where w;, represents the Wiener process in reverse time, and V, log p; () is the score function.

Moreover, Song et al. [3] also prove that there exists a corresponding deterministic process whose
trajectories share the same marginal probability densities p; () as (3), so that the ODE solver can be
adopted for efficient sampling [23, 24]:

1
dz; = [f(t)ait - 592(t)vm log p¢(x¢) | dt, @ ~ pr(xr) )

To get the score function Vi, 1og pi () in (3), we usually take neural network sg(x, t) parameterized
by 6 to approximate it by optimizing the denoising score matching loss [3]:

0" — arg;nin Et{)\(t)EmoEwt|wo [||se(x,t) — Va, logpo,g(mt|a:o)||;] } 5)

In practice, two methods are used to reparameterize the score-based model [35]. The first approach
utilizes a noise prediction model such that €g(xs,t) = —oysg(x¢,t), while the second employs a
data prediction model, represented by xg(x:,t) = (xt — or€g(xs,t))/ct. The reparameterized
models are plugged into the sampling process (3) or (4) according to their relationship with sg (x4, t).

4 Variance Controlled Diffusion SDEs

As mentioned in Section 1, most of the existing training-free efficient samplers are based on solving
diffusion ODE (4), e.g., [23, 22, 24], because of their improved efficiency compared with the solvers
of diffusion SDE (3). However, the empirical observations in [27, 22] exhibit that the quality of
data generated by solving diffusion SDE outperforms diffusion ODE given sufficient computational
budgets. For example, in [22], the diffusion ODE sampler DDIM [22] significantly improve the FID
score of diffusion SDE sampler DDPM [2] (from 133.37 to 6.84) on CIFAR10 dataset [36] under 20
NFEs. However, under 1000 NFEs, the DDPM beats the DDIM in terms of FID score (3.17 v.s. 4.04).
There may be a trade-off between stochasticity and efficiency. Thus, we conjecture that adding proper
scale noise during the generating process may improve the quality of generated data with few NFEs.

In this section, we explore a family of variance-controlled diffusion SDEs, so that we can use proper
noise scales during the sampling stage. Inspired by Proposition 1 in [28] and Eq. (6) in [27], we
propose the following proposition to construct the aforementioned diffusion SDE:s.

Proposition 4.1. For any bounded measurable function 7(t) : [0,T] — R, the following Reverse
SDEs

az = [10e— (25 20% ogmten | @+ g e~ prien) ©)

share the same marginal probability distributions with (4) and (3) .



The proof can be found in Appendix A.1. The proposition indicates that by solving any of the diffusion
SDEs in (6), we can sample from the target distribution. It is worth noting that the magnitude of noise
varies with 7(t), and 7(¢) = 0 or 7(t) = 1 respectively correspond to the diffusion ODE and SDE in
[3]. Thus we can control the magnitude of added noise during the sampling process by varying it.

In practice, we numerically solve the diffusion SDEs (6) by substituting score function V4 log p;(x;)
in it with the “data prediction reparameterization model” xg (¢, t) according to V log p;(x;) ~
— (x4 — cauxe (x4, t))/0? as pointed out in Section 3. Then diffusion SDEs to be solved become

dr; = [f(t)a:t + (HT%)) g>(t) <9W9(wt’t)>} dt + 7(t)g(t)dw;. 7

20 o

Remark 1. We reparameterize the score function in diffusion SDEs (6) with data prediction model
xg(xy,t) 1o get Eq. (9). The equation can be also reparameterized by the “noise prediction model”
€g(x,t) as discussed in Section 3. Though the obtained diffusion ODEs e.g., Eq. (9) are equivalent,
the numerical solver applied to them will result in different solutions. For our proposed SA-Solver,
we find the diffusion SDEs reparameterized data prediction model significantly improves the quality
of generated data. More details and theoretical explanations are in Sec. 6 and Appendix A.2.4. For
the remaining part of the paper, we focus on data reparameterization.

We then solve the diffusion SDEs (9) with change-of-variable applying to it, i.e., changing time
variable ¢ to log-SNR \; = log («v¢/0;). Noting the following relationship in Eq. (2)

_dlogay 2/, dof dlog oy 5 _ 2d)\t

and plugging them into (7), it becomes

1
dw, = [d that z, — (1+72(t)) (2 — atwg(wt,t))i}:] dt + 7(t)o \/—Q%dwt 9)

The above equation has an explicit solution owing to its semi-linear structure [37].

®)

Proposition 4.2. Given x; for any time s > 0, the solution ; at time t € [0, s of (9) is

gt 7f*t 2(A)dx
Os

A -
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T, = s + 01 Fo(s,t) + 0:G(s,t),
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where G(s,t) is an Ité integral [38] with the special property
0,G(s,1) NN(07U§(1 _ 2 d)\)) (11

The proof can be seen in Appendix A.2.2. With this proposition, we can sample from the diffusion
model via numerically solving Eq. (10) starting from x7 approximated by a Gaussian distribution.

5 SA-Solver: Stochastic Adams Method to Solve Diffusion SDEs

Stochastic training-free samplers for solving diffusion SDEs have not been studied as systematically
as their deterministic ODE counterparts. This stems from the inherent challenges associated with
designing numerical schemes for SDEs compared to ODEs [39]. Existing stochastic sampling
methods either use only variant of one-step discretization of diffusion SDEs [2, 26, 3], or are
specifically designed sampling procedures for diffusion processes [27] which are not general purpose
SDE solvers. Jolicoeur-Martineau et al. [25] uses stochastic Improved Euler’s method [40] with
adaptive step sizes. However, it still necessitates hundreds of steps to yield a high-quality sample.
As observed by [25], off-the-shelf SDE solvers are generally ill-suited for diffusion models, often
exhibiting inferior qualities or even failing to converge. We postulate that the current dearth of fast
stochastic samplers is principally due to factor that existing methodologies predominantly tend to rely



Algorithm 1 SA-Solver

Require: data prediction model xg, timesteps {ti}iﬂio, initial value x4, predictor step s, corrector

step s.., buffer B to store former evaluation of g, 7(t) to control variance.

B Luffer xo(x+y,10)

1

2: for i = 1 to max(sp, s.) do > Warm-up
3 sample & ~ N (0, I)

4 calculate steps for warm-up sy = min(i, s,), s;* = min(i, s.)

5: xf,  sy'-step SA-Predictor(zy,_,, B, §) (Eq. (14)) > Prediction Step
6 B & 2 (x] ,t;) > Evaluation Step
7: xy, < s'-step SA-Corrector(xi, , x;,_,, B, £) (Eq. (17)) > Correction Step
8: for i = maxz(sp,s.) +1to M do

9: sample & ~ N (0, I)
10: xf, < sp-step SA-Predictor(x;,_,, B, €) (Eq. (14)) > Prediction Step
11: B & xg(x] ;) > Evaluation Step
12: Ty, < Sc-step SA—Corrector(acfi ,t,_,, B, &) (Eq. (17)) > Correction Step

return x;,,

on one-step discretization or its variants, or alternatively, on heuristic designs of stochastic samplers.
To address this factor, we leverage advanced contemporary tools in numerical solutions for SDEs,
specifically, stochastic Adams methods [29]. It necessitates fewer evaluations compared to Stochastic
Runge-Kutta schemes, making it a more suitable choice for problems which are computationally
expensive - a characteristic that diffusion sampling certainly exemplifies.

Next, we formally present our Stochastic Adams Solver (SA-Solver). To solve Eq. (9), we first

take M + 1 time steps {ti}go which is strictly decreased from tg = T to tj; = 0.3 Then we can
iteratively obtain the x;, (so that x( approximates the required data) by the following relationship.

At
Oty e JAtZJrl 72 (X)X

O¢,

i

Liipr =

uwti +Uti+1F0(tiati+1) +O—ti+1G(ti7ti+1) (12)
As pointed out in Proposition 4.2, the It6 integral term G(¢;,t;11) in above equation follows a
Gaussian that can be directly sampled so we need to solve the deterministic integral term Fg (¢;,t;11).

We further combine Eq. (12) with the predictor-corrector method, which is a widely used numerical
method. It works in two main steps. First, a predictor step is taken to make an initial approximation of
the solution. Second, a corrector step will refine the predictor’s approximation by taking the predicted
value into account. It has been proven successful in the wide application of numerical analysis [37].
Especially, there are some attempts to use the predictor-corrector method to help sample diffusion
models [3, 32, 24]. In the subsequent Section 5.1 and Section 5.2, we will separately derive our
SA-Predictor and SA-Corrector using Eq. (12). Our algorithm is outlined in Algorithm 1.

5.1 SA-Predictor

The fundamental idea behind stochastic Adams methods is to leverage preceding model evaluations
like xg(xs,,t;), xo(Xs, | tiz1), " ,mg(:ctp(kl) yti—(s—1)). These evaluations can be retained
with negligible cost implications. Given these preceding model evaluations, a natural strategy for
estimating Fy(t;,t;41) involves the application of Lagrange interpolations [37] of these evaluations.
Lagrange interpolation of s points xg(xy,,t;), xe(Ts, |, ti—1), 7$0($ti,(5,1)7ti—(s—1)) is a
polynomial L(t) with degrees s — 1:

s—1
L(t) = Zli—j(f)we(fﬂti,j,ti—j), (13)
=0

where [;_;(t) : R — R is the Lagrange basis. Lagrange interpolation is an excellent approximation of
xg(x;,t) with the special property: L(t;—;) = xo(®s,_;,ti—j), V0 <j<s— 1. Thusanatural

3The diffusion SDEs (7) are reverse-time SDEs, so that the ¢; here is increased.



way to estimate Fg(;,¢;+1) is to replace xg(x,, A,,) with L(A), which is just a change-of-variable
of L(t). The formula for s-step SA-Predictor is then derived.

s-step SA-Predictor Given the initial value x;, at time ¢;, a total of s former model evaluations
xo(xe,,t;), xo(r,_,tiz1), - , Lo (a:tif(kl) ,ti—(s—1)), our s-step SA-Predictor is defined as:

A

s -~ —1
Tty — [L5F 22(R)dA ; .
Bii = e D Ty, + Y bijwe(®e, i tig) +5:&  E~N(OI), (14

=0

Xt; P
-2 fxti“ 72(N)dA

where 7; = 0y, , \/1 —e according to Proposition 4.2 and b;_; is given by:

At; Nii1 ooty ox
by = 01 / T T PO (14 22 () Ml (VdA, Y0<j<s—1 (15
A,

We show the convergence result in the following theorem. The proof can be found in Appendix B.

Theorem 5.1 (Strong Convergence of s-step SA-Predictor). Under mild regularity conditions, our

s-step SA-Predictor (Eq. (14)) has a global error in strong convergence sense of O( sup 7(t)h+h?®),
0<t<T

where h = max (t; — t;—1).
1<i<M

5.2 SA-Corrector

Eq. (14) offers a “prediction” x}, ., thatrelies on information preceding or coinciding with the time
step ¢; since we only use xg(xy,, t;) along with other model evaluations antecedent to it, while the
integration is over time [t;,t;+1]. Then predictor-corrector method can be incorporated to better

estimate Fy(t;,t;+1) in Eq. (12). We perform a model evaluation g (:Bf s t;+1) and construct the

Lagrange interpolations of e (7., ti+1), To (Tt ti), -+ To(Te,_ ., tio(s-1)):
s§—1
L(t) = iy (me (@l tivr) + Y L j(Dme(@e,_;,tij), (16)

=0

where [i_j (t) : R — Ris the Lagrange basis and § can be different with s in Eq. (13). The §-step
SA-Corrector is derived by replacing g (), , A,) with L(\) which is a change-of-variable of L(t).

5-step SA-Corrector Given the initial value x;, at time ¢;, a total of § former model evalu-
ations xg(xs,,t;), To(xs, | ti 1), ’me(ﬁctii(éil),ti,(gfl)), model evaluation of “prediction”
xg(xt . ti11), our 5-step SA-Corrector is defined as:

tit1?
N¢ s -~ 5—1
Otizn — [y 2 ()dA 7 D > -
Ttipy = € b Ty, + bi1we(Ty, s tiv1) + E bi—jxe(xs,_;,tij) + i€, (17)
i =0

. \/ Co o 2(R)dR . ..
where £ ~ N(0,I),6; = o4,,,V1—e ti according to Proposition 4.2 and the
coefficients 5i+1, I;i_ ; 1s given by:

At Mg NV N
bz’—jzaml/ e T A (1+72(N) eMim;(NdA, V0<j<s—1
A,

Moy N (18)
. i id1 25y % R

bit1 =01, / e TN (14 22 (1)) Mg (A)dA

At
We show the convergence result in the following theorem. The proof can be found in Appendix B.
Theorem 5.2 (Strong Convergence of §-step SA-Corrector). Under mild regularity conditions, our s-
step SA-Corrector (Eq. (17)) has a global error in strong convergence sense of O( sup 7(t)h+h5t1),
0<t<T

here h = ti —ti—1).
where 122}}{%( i —tiz1)



5.3 Connection with other samplers

We briefly discuss the relationship between our SA-Solver and other existing solvers for sampling
diffusion ODEs or diffusion SDEs.

Relationship with DDIM [22] DDIM generate samples through the following process:

Lt — Utiee(wtm ti) o o
Ty, =y, ( - YY)+, /1= O‘fiﬂ — 67 €o(xy,, ;) + 61,&, (19)

where £ ~ N (0, I), 64, is a variable parameter. In practice, DDIM introduces a parameter 7 such
that when 7 = 0, the sampling process becomes deterministic and when 1 = 1, the sampling process

1—a2 2
coincides with original DDPM [2]. Specifically, &, = n\/ 1?;‘; ! (1 — O;f’ )
t; tit1
Corollary 5.3 (Relationship with DDIM). For any n in DDIM, there exists a 7,,(t) : R — R which
is a piecewise constant function such that DDIM-n coincides with our 1-step SA-Predictor when
7(t) = 7,,(t) with data parameterization of our variance-controlled diffusion SDE.

The proof can be found in Appendix B.5.1.

Relationship with DPM-Solver++(2M) [31] DPM-Solver++ is a high-order solver which solves
diffusion ODE:s for guided sampling. DPM-Solver++(2M) is a special case of our 2-step SA-Predictor
when 7(t) = 0.

Relationship with UniPC [24] UniPC is a unified predictor-corrector framework for solving
diffusion ODEs. UniPC-p is a special case of our SA-Solver when 7(t) = 0 with predictor step p,
corrector step p in Algorithm 1.

6 Experiments

In this section, we demonstrate the effectiveness of SA-Solver over the existing sampling methods on
both a small number of function evaluations (NFEs) settings and a considerable number of NFEs
settings, with extensive experiments. We use Fenchel Inception Distance (FID) [30] as the evaluation
metric to show the effectiveness of SA-Solver. Unless otherwise specified, SOK images are sampled for
evaluation. The experiments are conducted on various datasets, with image sizes ranging from 32x32
to 256x256. We also evaluate the performance of various models, including ADM [4], EDM [27],
Latent Diffusion [5], and DiT [41].

For ease of computation, we take 7(t) = 7 as a constant function or a piecewise constant function.
We leave the detailed settings for 7(¢), predictor step, and corrector step in Appendix E. For the
following experiments, we first discuss the effectiveness of the data-prediction model. Then we
evaluate the performance of SA-Solver under different random noise scales 7 to demonstrate the
principles for selecting 7 under few-steps and a considerable number of steps. Finally, we compare
SA-Solver with the existing solver to demonstrate its effectiveness.

6.1 Comparison between Data-Prediction Model and Noise-Prediction Model

We first discuss the necessity of using a data-prediction model for SA-Solver. We test on ImageNet
256x256 (latent diffusion model) with 7(¢) = 1. Results of the data-prediction and noise-prediction
model are shown in Table 1. It can be seen that the data-prediction model can achieve better
sampling quality values under different NFEs, thus we use the data-prediction model in the rest of the
experiments. More detailed discussions and theoretical analysis can be seen in Appendix A.2.4.

6.2 Ablation Study on Predictor/Corrector Steps and Predictor-Corrector Method

To verify the effectiveness of our proposed Stochastic Linear Multi-step Methods and Predictor-
Corrector Method, we conduct an ablation study on the CIFARI10 dataset as follows. We use
EDM [27] baseline-VE pretrained checkpoint. Concretely, we vary the number of predictor steps



Table 1: Compared results by FID | under data-prediction and noise-prediction models, measured by
different NFEs. The latent diffusion model in ImageNet 256x256 is used for evaluation.

NFEs Noise-prediction Data-prediction

20 310.5 3.88
40 5.85 347
60 3.54 341
80 3.41 3.38

Table 2: Compared results by FID | under different predictor steps and corrector steps, measured by
different NFEs. The VE-baseline model [27] in CIFAR10 32x32 is used for evaluation.

method \ setting (NFE, 7) 15,04 23,08 31,1.0 47,14
Predictor 1-steps only 13.76 1244 11.72 14.67
Predictor 1-steps, Corrector 1-step 8.49 6.87 6.13 6.75
Predictor 3-steps only 5.30 3.93 3.52 2.98

Predictor 3-steps, Corrector 3-steps ~ 4.91 3.77 3.40 2.92

and meanwhile conduct them with/without corrector to separately explore the effect of the two
components. As can be seen in Table 2, both Stochastic Linear Multi-step Methods (Predictor 1-steps
only v.s. Predictor 3-steps only) and Predictor-Corrector Method (Predictor 1-steps only v.s. Predictor
1-steps, Corrector 1-step, and Predictor 3-steps only v.s. Predictor 3-steps, Corrector 3-steps) improve
the performance of our sampler.

6.3 Effect on Magnitude of Stochasticity

The proposed SA-Solver is evaluated on various types of datasets and models, including ImageNet
256x256 [43] (latent diffusion model [5]), LSUN Bedroom 256x256 [44] (pixel diffusion model [4]),
ImageNet 64x64 (pixel diffusion model [4]), and CIFAR10 32x32 (pixel diffusion model [27]). The
models corresponding to these datasets cover pixel-space and latent-space diffusion models, with
unconditional, conditional, and classifier-free guidance settings (s = 1.5 in ImageNet 256x256).

We used different constant 7 values for SA-Solver, namely {0.0,0.2,0.4, ..., 1.6}, where larger value
of 7 correspond to larger magnitude of stochasticity. The FID results under different NFE and 7
values are shown in Fig. 1. Note that for LSUN Bedroom, 10K images are sampled for evaluation.
The experiments indicate that (1) under relatively small NFEs, smaller nonzero 7 values can achieve
better FID results; (2) under a considerable number of steps (20-100), large 7 can achieve better
FID. This phenomenon is consistent with the theoretical analysis we conducted in Appendix B and
Appendix C, in which the sampling error with stochasticity is dominated under small NFE, while
larger 7 can significantly improve the quality of generated samples as the number of steps increases.
In subsequent experiments, unless otherwise specified, we will report the results of a proper 7(t)
value. Details can be found in Appendix E.

6.4 Comparison with State-of-the-Art

We compare SA-Solver with existing state-of-the-art sampling methods, including DDIM [22], DPM-
Solver [23], UniPC [24], Heun sampler and stochastic sampler in EDM [27]. Unless otherwise
specified, the methods are tested using the default hyper-parameters in the original papers or code.

Results on CIFAR10 32x32 and ImageNet 64x64. We use the EDM [27] baseline-VE model for
the CIFAR10 32x32 experiments and the ADM [4] model for the ImageNet 64x64 experiments. We
use EDM’s timesteps selection for all samplers for fair comparisons. EDM introduces a certain type
of SDE and a corresponding stochastic sampler, which is used for comparison. The experimental
results are shown in Fig. 2(a-b). It can be seen that the proposed SA-Solver consistently outperforms
other samplers and achieves state-of-the-art FID results. It should be noticed for EDM samplers, we
report its optimal result which is searched over four hyper-parameters. In fact, at 95 NFEs, SA-Solver
can achieve the best FID value of 2.63 in CIFAR10 and 1.81 in ImageNet 64x64 which outperforms
all other samplers.



Table 3: Sampling quality measured by FID of different sampling methods on DiT, Min-SNR
ImageNet [41, 42] models. DiT-XL/2-G and ViT-XL-patch2-32 with s = 1.5 are used.

Model FID ({)

DIT ImageNet 256x256 DDPM (NFE=250) SA-Solver (Ours) (NFE=60)
2.27 2.02

Min-SNR ImageNet 256x256 Heun (NFE=50) SA-Solver (Ours) (NFE=20)
2.06 1.93

DIT ImageNet 512x512 DDPM ;I:I)l:E:ZSO) SA-Solver ((2)1;1(')5) (NFE=60)

(a) CIFAR10 32x32 (Pixel DPM) (b) 64x64 (Pixel DPM) (c) LSUN Bedroom 256x256 (Pixel DPM) (d) ImageNet 256x256 (Latent DPM)
—— NFE=23 —— NFE=20
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Figure 1: Sampling quality measured by FID | of SA-Solver under a different number of function
evaluations (NFE), varying the stochastic noise scale 7. For LSUN Bedroom, 10K samples are used
to evaluate FID.

Results on ImageNet 256x256 and 512x512. We evaluate with two classifier-free guidance models,
one is the UNet-based latent diffusion model [5] in which the VQ-4 encoder-decoder model is
adopted, and the other is the DiT [41] model using Vision Transformer based model with KL-8
encoder-decoder. The corresponding classifier-free guidance scale, namely s = 1.5, is adopted for
evaluation. For ImageNet 256x256 dataset with UNet based latent diffusion model, the results of
different samplers are shown in Fig. 2(c). Under a considerable number of steps, SA-Solver achieves
the best sample quality, in which the FID value is 3.87 with only 20 NFEs and below 3.5 with 40
NFEs or more. While for ODE solvers, the FID values cannot reach below 4, which shows the
superiority of the proposed SDE solver.

Table 3 consists results of current SOTA models in ImageNet 256x256 and 512x512. Note that the
(Min-SNR) DiT-XL/2-G models are adopted [41, 42]. It can be seen clearly that better FID results
are achieved compared with baseline solvers used by corresponding methods. We achieve 1.93 FID
value in Min-SNR DiT model at ImageNet 256x256, and 2.80 in DiT model at ImageNet 512x512,
both of which are state-of-the-art results under existing DPMs.

Results of text-to-image generation Fig. 3 shows the qualitative results on text-to-image generation.
It can be seen that both UniPC and SA-Solver can generate images with more details. Our SA-Solver
is able to generate more reasonable images with better details.

6.5 Effect of Stochasticity for Inaccurate Score Estimation

When the training data is not enough or the computational budget is limited, the estimated score is
inaccurate. We empirically observed that the stochasticity significantly improve the sample quality
under the circumstance. To further investigate this effect, we reproduce the early training stage of
EDM [27] baseline-VE model for the CIFAR10 32x32 dataset and DiT-XL/2 [41] model for the
ImageNet 256x256 dataset. We compare SA-Solver with different stochastic level 7 and existing state-
of-the-art deterministic sampling methods. We use the same hyper-parameters as the corresponding
experiment in section 6.4.

Figure 4 shows that SA-Solver outperforms deterministic sampling methods, especially in the early
stage of the training process. Moreover, larger 7 value results in better performance. We also conduct
a theoretical analysis that stochasticity can mitigate the error of estimation (see Appendix C).



(a) CIFAR10 32x32 (Pixel DPM)

(b) ImageNet 64x64 (Pixel DPM)
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Figure 2: Sampling quality measured by FID | of different sampling methods of DPMs under

different NFEs.

DDIM
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0 NF

Figure 3: Qualitative comparisons between our SA-Solver and previous state-of-the-art methods. All
images are generated by Stable Diffusion v1.5 with the same random seed. The main part of the
prompt is “portrait of curly orange haired mad scientist man”. We set the guidance scale as 7.5. The
proposed SA-Solver is able to generate images with more details.
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Figure 4: Sampling quality measured by FID | of different sampling methods of DPMs under
different training epochs.

7 Conclusions

In this paper, we propose an efficient solver named SA-Solver for solving Diffusion SDEs, achieving
high sampling performance in both minimal steps and a suitable number of steps. To better control the
scale of injected noise, we propose Variance Controlled Diffusion SDEs based on noise scale function
7(t) and propose the analytic form of the SDEs. Based on Variance Controlled Diffusion SDE,
we propose SA-Solver, which is derived from the stochastic Adams method and uses exponentially
weighted integral and analytical variance to achieve efficient SDE sampling. Meanwhile, SA-Solver
has the optimal theoretical convergence bound. Experiments show that SA-Solver achieves state-of-
the-art sampling performance in various pre-trained DPMs models. Moreover, SA-Solver achieves
superior performance when the score estimation is inaccurate.

Although SA-Solver achieves optimal sampling performance, the noise scale 7(t) selection under
different NFEs needs further research. The paper proposes empirical criteria for selecting 7(¢), more
in-depth theoretical analysis is still needed.
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A Derivations of Variance Controlled Diffusion SDEs

A.1 Proof of Proposition 4.1

Proposition 4.1 For any bounded measurable function 7(t) : [0, 7] — R, the following Reverse
SDEs

1+ 72(t _
dar = e - (F5) OV oz @0 a4 0900w, ar ~prter) QO
has the same marginal probability distributions with (4) and (3) .

Proof. Denote p(x,t) : R? x [0,T] — R as the probability density function of x, at time ¢, thus
p(x,T) = pr(x). Fokker-Planck equation [38] determines a Partial Differential Equation (PDE)
that p; () satisfies:

o) i 0 [— [fu)pt(w)xi - (H;(t)) QQ(t)pt(‘”)WH

i=1 j=1 @1
T2 o t\ L
=3 g [ (F5) @ o)
d
3 aii [ai [ 2<t>g2<t>pt<w>}}

Eq. (20) is a reverse-time SDE running from 7" to 0, thus there are two additional minus signs in
Eq. (21) before term 8p57§a:) and term {f(t)pt(w)xi — (HT#Z(Q) gg(t)pt(m)%f:(m)] compared
with vanilla Fokker-Planck equation in general cases. Here d;; is the Dirac symbol satisfies d;; = 1
when i = j, otherwise, d;; = 0. Notice that
0
81‘2‘

Substituting Eq. (22) into Eq. (21), we obtain that

() _ Zd: 8- [f(t)pt(a?)l’i _ (14—72(0) gQ(t)pt(w)alOgljt(m)}

[P0 Om(@)] = 7050 g-mi(e) = P05 Opla) ZEEL )

ot i1 31’2 2 al’z
1<~ 0 Ologp:(x)
+5 ; P, [72(t)92(t)pt(w>axj} (23)
d
0 1 ol
=3 g [FOm @~ 5 Om@) 25

which is independent of 7(¢). With the same initial condition p(«, T) = pr(x), the family of Reverse
SDEs in Eq. (20) have exactly the same evolutions of probability density function because they share
the same Fokker-Planck equation. Especially, when 7(¢) = 0, Eq. (20) degenerates to diffusion
ODEs and when 7(t) = 1, Eq. (20) degenerates to diffusion SDEs. O

A.2 Two Reparameterizations and Exact Solution under Exponential Integrator

In this subsection, we will show the exact solution of SDE in both data prediction reparameterization
and noise prediction reparameterization. The noise term in data prediction has smaller variance than
noise prediction ones, implying the necessity of adopting data prediction reparameterization for the
SDE sampler.
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A.2.1 Data Prediction Reparameterization

After approximating V log p;(x;) with sg(x¢,t) and reparameterizing sg(x,t) with —(x; —
asze(xy,t)) /02, Eq. (20) becomes

dz; = {f(t)act + (H—Qz(t)> g*(t) (W)} dt + 7(t)g(t)dw,. (24)

Applying change-of-variable with log-SNR \; = log(a; /o) and substituting the following relation-
ship

dlog ay 9 do? dlog oy o2 9 d)\t
) = ———— t)=——-2 = —20 25
Eq. (24) becomes
dlog o dA dA
dx; = { dgt; La, — (14 7%(t)) (@ — o (x4, 1)) 1 t] dt + 7(t)oy 72d—ttdfvt
dlog a dA dA
= K dgt L (1+72(1)) dtt> x + (1+72(t)) ozt:cg(mt,t)dtt] dt (26)
d)\
+ T(t)O’t — dtt dwt
A.2.2 Proof of Proposition 4.2
Proposition 4.2 Given x, for any time s > 0, the solution x; at time ¢ € [0, s] of Eq. (9) is
T, = It = I Tz(x)dj‘ws +0iFe(s,t) + 0:G(s,t),
Os
At -
Fo(s,t) = / N ISR CVERY (L4172 (N) e*zg (zr, A) dA 27)
As
t
t Nd X d)\u
G(s,t) = / e~ I T2(A)d)‘7(u)1/—2—dwu,
o du
where G(s, t) is an [t6 integral [38] with the special property
UtG(S,t) ~ N(0,0’? (1 _ 6_2 f;: TZ(S\)dS\)) (28)

_ dlogay 2 dXy . . .
Proof. Definey, = e Jio (B = (T ) G )0y Ghere 1y € [0, T7] is a constant. Differentiate
y, with respect to ¢, we get

te Sl (g — (1472 (v)) SR dvda:t
4 e Jio (HEe = (1472 () S )dv Kdlog X (1+72) C?;) -’13t:| dt
o T (o (172 0) B Jav {(HT%)) atwg(ast,t)d(ﬂ dt )

n e_ ftto(dlc;gi)av _(1+7'2(/U)>%)dv7_(t) 72%(1“)15
V t

_ [t og ay T' v v v d)\
=e Jio (e = (142 (0)) S5 )d [(1+72(t)) atwe(wt,t)t:| dt

&t
, I
F) (g oy ~2Z dw.

15

+ e ff,to (%_(1*’72(“))



Integrating both sides from s to ¢

t _ fu(dlogay _ diy dAu
yt:str/ e to< dv (1+7—2(v)) dv )dv [(1+72(u)) Olul'e(mu,u)] du

du
t X ) ,
b [ g [P
s U

Substituting the definition of y,, y, into Eq. (30), we obtain Eq. (27)

(30)

f (%_(1-{-72(“)) ddX: )du

Ty =e T

+/ e~ S (Fd - (12 ) ) {(1 +7°(u)) auwe(wu,u)dAu} du

du
t
w(dogae (1472 (v)) G2 )dw \/—QW
+/s e (o 2 g A

— efs(idl(f”“ -7 (u)d)\u) U,

og oy 2 v d U
—|—/ G e a OF - LU [(1—|—72(u)) Ozua:e(scu,u)k} du

du
7ft (dlogi)a,u 77_2(11)%)&) 2(31)\“ _
+/S T(u)ou/ T

Ot — [t TQ(u)%duxs 3D

= —e
Os

t
t 12 D g, dAy
—|—/ Tt = Jur(0) g dv [(1+7‘2(u)) 0y Lo (X, U) — ]du
s Ou

du
t
Tt o= [ 7% (0) g dv U—Qﬂd’
—|—/s Uue v “Yr(u)o ™

_ Tt - R NdA,
Og s

e -
+gt/ e~ TN (1 4 22(0)) ez (s, A)dA
A

s

The last term oy f: e Jur? (@) T dUT(U)\ /— 2d’\“ dw, of Eq. (31) is the It6 integral term. It follows

a Gaussian distribution, which can be directly derived from two basic facts [38]: first, the definition
of It integral is the limitation in L? space; second, the limit of Gaussian Process in L? space is still
Gaussian. Then we can compute the mean as:

¢ ¢ v [ _dAy
a-t/ eifuTQ(v)%dv ( ) Qddwu] :0 (32)
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and the variance is

t
Ut/ e—fi'rz('u)%dv [ ]

Var

Tdu N/ — 27

ddAv'” dv [ d)‘ )
Ay

2 ) du
u

dwu
dwu> -0

Ny
t

=0;E / e Jum' @)
t
—0? / o I 272(1,)%01@7_2(”) <_
t

Ay .
=0} / 2~ X2 NAA22(3)q)
A

s

(33)
The expectation equals zero because the Itd integral is a martingale [38]. The computation of variance
uses the It6 Isometry, which is a crucial fact of 1t6 integral. We can further simplify the result by

using the change of variable P(\) = eJx, 27 X,

t
¢ u [ _dAy
O't/ ei-j‘u Tg(v)%dv,r( ) 2ddwu‘|

g -
=0} / 2e~ X2 N2 (3 )4)
A

Var

2 (34)
o [P dP(N)
= /pm POB
—02 (P(\) — P(\))

2
t
—o2(1 - e 2 S TZ(A)dA)

A.2.3 Noise Prediction Reparameterization

After approximating Vlogp(x;) with sg(x;,t) and reparameterizing sg(x¢,t) with
—eg(x4,t))/0t, Eq. (20) becomes

1+ 7%(t)
20't

dx, = [f(t)wt + ( ) g2(t)eg(wt,t)] dt + 7(t)g(t)dw;. (35)

Applying change-of-variable with log-SNR \; = log(a /o) and substituting the following relation-
ship

_ dlog oy 9 7dat2 dlog o o2 = o dAy
f)= =3~ =g -2 20705 (36)
Eq. (35) becomes
dlog dA¢ d/\
daoy = dgt fxy— (14 7°(t)) oveo(a, t )dt}dw T(hor\ /-2 Lrdw,. ()

Eq (35) is the formulation of noist prediction model. Similar with Proposition 4.2, Eq. (37) can be
solved analytically, which is shown in the following propositon:
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Proposition A.1. Given x; for any time s > 0, the solution x; at time t € [0, s] of (37) is

T, = %ws + a:Fo(s,t) + a:G(s,t),
s

At
Fols,t) = A e (1 4+ 72(V)) ep @, A)dA 38)

s

t
G(s,t):/ e_A“'T(u)\/—Z%dwu,

where G (s,t) is an Ité integral [38] with the special property

At
G (s,t) NN(O,af/ 26*2*72(>\)dA>. (39)
As
t dlogau
Proof. Definey, =e ~ i TE “x;, where tq € [0, T] is a constant. Differentiate y, with respect
to t, we get
dl _ ot dlogay t dlogay
dyt = 7%6 to & d”m dt +e ffo & d“dmt
dl _ [t dlogay t dlog ay dl
= 7$e o ar W dp e g TR th;at x,dt
_t dlogay g, dA; _ [t dlogay g, dMs |
— e 0TI (1 22(1) o€ (@, )d—dt—i—e Joo TE AL (g, —2d7tdwt
t dlogav v d) t dlogav v dMs |
= —e o d (14 7%(t)) Uteg(mt,t)d—;dt e o rt)o, —Qd—;dwt.
(40)
Integrating both sides from s to ¢
t _[u dlogav v d)\u
Y, = v, —/ e Ju T (14 7%(w)) aueg(a:mu)mdu
wu dlogav
+/ - I W (u)oy | —2—Ldw,.
s du
Substituting the definition of y,, y, into Eq. (41), we obtain
0g u ogav d)\u
@, = els TS dug, _|_/ R (14 7%(u)) aueg(:cu,u)d—du
s ]
t
u dlogay dA,
+/ e e led”T(u) \/—2d—dwu
’ (42)

t t
_ o o 2 dAy o [ o dAu o
== T —+—/s ~ (1 + T (u)) 0, €0(Ly,u) qu du—i—/s auT(u)au 2 Tu

S

ay A ! d,
= —xs+ at/ e (14 72(N)) eg(xa, \)dA + at/ e M (u)y/ —2 7]
«a A R du

s s

The It6 integral term oy f: e Mur(u)y/ —2d’\“ dw,, follows a Gaussian distribution. Following the

derivation in Proposition 4.2, the mean of the It6 integral term is:

t
at/ e T (u )\/Q?dwu] =0 (43)
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and the expectation is

K dX,
at/ e Mer(u)y)—2 3 dw,
s u

_E (at /: e_’\“'T(u)q/—QCg::dwu>2 - <IE lat /: e_A“T(u)\/—Q(Z:jdﬁ)u]>2

Var

L i (44)
s dA
_ 2E / —Au _27'“
o t e~ ur(u) Tu d
:af/ e~ (u)du (—2d)\u> d
. u
At
:af/ 22 (N)dA
As
O

A.2.4 Comparison between Data and Noise Reparameterizations

In Table 1 we perform an ablation study on data and noise reparameterizations, the experiment results
show that under the same magnitude of stochasticity, the proposed SA-Solver in data reparameter-
ization has a better convergence which leads to better FID results under the same NFEs. In this
subsection, we provide a theoretical view of this phenomenon.

Corollary A.2. For any bounded measurable function 7(t), the following inequality holds

o At
o2 (1 2R Wd*) <a? /A 222 72(\)d. (45)

Proof. 1t’s equivalent to show that

At

- At
1— e_2fxs T2(A)dA < ezxt/ 2672>‘72()\)d)\. (46)
As

From the basic inequality 1 — e~* < z, we have

At

1— e 2R NN < g / 72(A)dA. (47)
>\s
Thus it’s sufficient to show that
At At
e / 2”2 (A)d\ > 2 / 2(N)d), (48)
AS )\s
which is true because \
/ 9 (ewt—” - 1) 72(\)dA > 0, (49)
A

s

O

This corollary indicates that the same SDE under two different reparameterizations has different
properties under the effect of the exponential integrator. Specifically, in the numerical scheme, the
data reparameterization will inject smaller noise in each step’s updation. We speculate that this is the
reason that the data reparameterization has a better convergence, shown as in Table 1.
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B Derivations and Proofs for SA-Solver

B.1 Preliminary

We will first review some basic concepts and formulas in the numerical solutions of SDEs [39].
Suppose we have an [t6 SDE da; = f(x,t)dt + g(x¢, t)dw, and time steps {ti}ij\io ,ti €0,T] to
numerically solve the SDE. For a random variable Z, we define the L; norm || Z||, = E[|Z]], the

Lynorm ||Z]|,. =E [|Z|2} where | - | is the Euclidean norm. Denote h = max (ti —ti_1).
L2 1<i<M

Definition B.1. We shall say that a time-discrete approximation xq, - - - , 5y, where x; is a numerical
approximation of x;,, converges strongly with order v > 0, if there exists a positive constant C,
which does not depend on h and a hy > 0 such that

; < Y < hyg.
oax, |z:, — xil|,, <CRY, Y h<hg (50)

Definition B.2. We say it is mean-square convergent with order v > 0, if there exists a positive
constant C, which does not depend on h and a hy > 0 such that

onax |ze, — xill,, <CRY, ¥V h < he. (51)

Remark 2. To prove the strong convergence order v of a numerical scheme, it’s sufficient to show the
1 1
mean-square convergence order . This is from Holder Inequality E[|Z|] <E [|Z|*]* E [|1]?]* <

E[|Z? ] Thus onax @, — il < Or<n:i>jcw||mt zilp,-

We also need the following definition and assumptions, which usually holds in practical diffusion
models.

Definition B.3. A function h : R x [0, T] — R satisfies a linear growth condition if there exists a
constant K such that

h(z, t)] < K(1+ |z[?)? (52)

Assumption B.4. The data prediction model xg and its derivatives such as Oyxg, Vyxg and Axg
satisfy the linear growth condition.

Assumption B.5. The data prediction model x¢g satisfies a uniform Lipschitz condition with respect
tox

|xo(x1,t) — xg(22,t)| < L1 — 22|, VI,y€ R? ¢t e [0, T (53)

B.2 Outline of the Proof

In the remaining part of this section, we will focus on our variance controlled SDE

dlog « dA dA
de, = [( di L (1 +72(1) d;) x+ (1+72(1)) atwg(wht)d—tt dt
o (54)
+7(t)o 1/—2—%1
Consider the general case of the numerical scheme as follows:
_Otigs 7f il 20y )d>\
% bz =7 i
Tip1 = o, _Z ixo(Ti—j j)
7=t (55)

b dX,
+/ e BT TN (), [ 2% .
t du

i

in which Eq. (17) and Eq (14) are the special case of this scheme. We will provide proof of the
mean-square convergence order of the numerical scheme Jmax |z:, — x|, We define the local
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error of the numerical scheme Eq. (55) for the approximation of the SDE Eq. (54) as
s—1
O, 7f fitl 2 ,\)d,\
Lipn=my, , —Tip1 =4, — o: Ty, — Z bi_jxo(xe,_;, tij)
= (56)

bt [ d\,
— = Ju" T2 (N)dA —9= " da
Otiin /t e 7(u) gy (Wu-

L; 41 can be decomposed into R; 1 and S;1. Then the mean-square convergence can be derived,
which is summarized in the following theorem proved by [29]:

Theorem B.6 ([29], Theorem 1). The mean-square convergent of x; is bounded by

R; S;
max ||z, — x|, §S{O<m<ax | Dil|, + max (l illz, n | z|1|L2)}. (57)

0<i<M s<i<M h h2

In Eq. (57), D;,i =0, --- , s — 1 are the initial error which we do not consider. Given Theorem B.6,
to show the convergence order O( Joax 7(t)h + h*) of our s-step SA-Predictor and the convergence

order O( maxTT( Yh+h*T1) of our s-step SA-Corrector, we just need to prove the following lemmas.

Lemma B.7 (Convergence rate of s-step SA-Predictor). For

A, s—1
oy, .y 1223 YdA, _
LTty = Tﬂe a Ty, + Zbi*jwo(xtifwti*j) + Ji€7 E ~ N(OvI)v
t; o
7=0

At
= o1 T o
Oi = Ot;44 - ¢

A, At,
bij; =01, / Lo ST 0D (1 2 () el (A)dA,, YOS <s—1
A,

(58)
There exists an decomposition of local error L; such that L; = R; + S; and
) s+1 ) 2
IRill,, <4118, < ogltagXTT(t)hQ’ (59)
Lemma B.8 (Convergence rate of s-step SA-Corrector). For
At §—1
O-ti - it 2(/\u)d>\u 7 7 ~
$m4=‘;ﬁf b %i+@H$dwﬁﬁh+ﬁ+§:@ﬁwdﬁwphﬂ)+m§
t; .
: =0

A¢.
. —2 [ 22 (0)dA
o =0y, 1—e¢ ti

/\ti Ati R
by = ot / e BT 00 (14 22 () M (A)dAe, YOS < s—1
At

~ Atipa At 2 ~
bivs = o1, / o I T r2(A)dA, (1 + 72 ()\u)) e)\uli+1(>\u)d>\u
At

(60)
There exists an decomposition of local error L; such that L; = R; + S; and

542 3
IRl < B2, < ma r()h?, Q)

Lemma B.7 and B.8 will be proved in Sec. B.4.

B.3 Lemmas for the Proof

To better analyze the local error here, we state the following definitions and results from [45]. For a
continuous function y : R? x [0, T] — R%, a general multiple Wiener integral over the subinterval
[t,t + h] C [0,T] is given by

t+h
I, ( / / / y(xs,, s;)dwy, (s5) - - dwy, (s1), (62)
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where r; € {0,1,--- ,d} and dwy(s) = ds. Then we have the following lemma.

Lemma B.9 (Bound of Wiener Integral). For any function y : R% x [0,T] — R? that satisfies a
growth condition in the form |y(x,t)| < K(1 + |x|2)2, for any x € RY and any t € [0,T], h > 0
such that t + h € [0, T, we have that

B 16580, )| =0 ifri # 0forsomei € {1, ,j}, (63)
tt+h _ L+
IT‘1’I”2 Ty (y)‘ Lo - O (h ) 9 (64)

where 1y is the number of zero indices and l5 is the number of non-zero indices r;.

Lemma B.10 (Property of Lagrange interpolation polynomial). For s + 1 points

(tix1,Yit1)s (tisyi), -+ 5 (tim(s—1) Yi—(s—1))» the Lagrange interpolation polynomial is
i+l
Lity=" Y k(b (65)
k=i—(s—1)

Then the following s+1 equalities hold

> kluw) =1,
k=i—(s—1)
i+1 tr u
Z lk(u)/ dug —/ duo,
k=i—(s—1) tim(s—1) i—(s=1)

i+1

tr u2 Ug
Z Ig(u) / / e / dugyq - - dugdus =
ti—(s—1) Yli—(s—1) ti—(s—1)

k=i—(s—1)
/ / / d’u,3+1 tee dU3d’U,2
ti—(s—1) Jti—(s—1) tim(s—1)

(66)

Proof. For the first equality, consider y, = 1 fori — (s —1) < k < ¢+ 1. The Lagrange interpolation

polynomial for these y;s is a constant function L(t) = 1. We have L(u) = ;:11 (s—1) le(u) = 1.
For the second equality, consider y; = ;’i( o dus. The Lagrange interpolation polyno-

mial for these yis is a polynomial of degree 1 L(t) = t — t;_(s_1). We have L(u) =

i+1
2:1 (s—1) lk ft du2 =Uu— ti—(s—l) S f;jiwil) d'LLQ.
For equalities from the third to the last, without loss of generality, we
prove the p — th equality, where 3 < »p < s 4+ 1L Consider y, =
tr U Up— . . .
tf o ff(g L fﬂp(: N duy - - du;;duz The Lagrange 1nterp01at10n polynomial for these
yrs is a polynomial of degree p — 1 L(¢ ft - t S :f(il,l) duy, - - - duzdus.
We  have  L(u) = flj - fl o fljp(:il) duy, - - - dugdus =
u u Up—1
fL (s—1) fL (s—1) ‘ftif(sfl) duy, - - - dugdus. O

B.4 Proof of Lemma B.7 (for Theorem. 5.1) and Lemma B.8 (for Theorem. 5.2)

To simplify the notation, we will introduce two operators which will appear in the Itd formula.
Suppose we have an [t6 SDE dx; = f(x4, )dt + g(x¢, t)dw; and h(x, t) is a twice continuously

differentiable function. Let I'o(:) = 0:(-) + Vo (-) f, T'1(:) = 22 A(-) and T'a(+) = Vi (-)g in which
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Ve is the Jacobian matrix, and A is the Laplacian operator. With the notation here, we can express
the It6 formula for h(x,t) as

h(zs,t) :h(ws,s)+/t (Fo(h)+F1(h))dt+/tl“2(h)dwt. 67)

Given the above lemmas, we will analyze the local error L;; step by step. Inspired by Theorem B.6,
for data-prediction reparameterization model, L;; can be estimated by decomposing the terms step
by step. The first step of decomposition is summarized as the following lemma:

Lemma B.11 (First step of estimating local error L, in data-prediction reparameterization model).
Given the exact solution of data prediction model

At 205745
Ty = 26_ I 72(’\)‘1)‘3:3 + o0t Fo(s,t) + 0G(s,t),

Os

N e
Fo(s,t) = / . S (L+72(N) e*zg (2, A) dX (68)
A

s

t s Y
G(s,t) = / e PN ) 2%

With proper by, k € [i — (s — 1),i + 1], The local error L;11 in Eq. (56) is

Lip1 = R, + S5 (69)
where
1 3
s =0 (OrgixTT(t)hz)
i—1 tig1 At
L _ — LA 22 (0)dA A, A
Ri+1 _k_‘;_l) Uti+1 ([l e fku ( ) (1 +T2(U)) e du du) >

tht1
( / Fo(mg)dt> (70)
tr

tit1 Aty 2 “ d\,
+o01, / e LT (14 7%(u)) et (/ I‘O(:cg)dt> T
t tl

i

'le

s—1 fk+1
- E bi—; / o(xe)d

j=-1 k=i—(s—1) te

Proof. The difference between Eq. (55) and Eq. (56) is that x; is our numerical approximation,
while x4 is the exact solution of SDE Eq. (54) at time ¢ = ;. Substitute the exact solution Eq. (31)

of x;, ,, we have

_ ot 2 tit1 tit1 dA,
Livy = l+1 f (A)dAmti tou,, / o it 7—2()\)d)\7_(u) / 2d7dwu
Uti t.

i

B 2200 da 2 A
+ 04,0, e~ I (1 + T ()\u)) e xg(Ta,, Au)dAy
At

o dA
= Ot;44 / e b T2(/\)d/\7(“) —2—
t

] du
e, s— (71)
Oty — [ 7 22(A)dAy
_ ﬁe fAt’i T ( ) mti _ Z bi-jme(mtiij,ti_j)
O, j=—1
b dx
=0ti44 / e HT TN (14 72 () ety (w, U)T;du
ti

s—1
- Z bi—jze(Tt, ;,ti—j)-

i=—1
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Let f(@,t) = (252 — (14 72(0) B ) @+ (1 + 7)) cwo @, ) B¢ g(1) = 7(D)ouy /2%

By It6’s formula [38], we have

i—1

tet1
Zo(@a ) = 2o(i,_ yitioen)t S [ (Col@a)+ Tilwa)) di

k=i—(s—1) "tk

) (72)
u i—1 tk+1 u
+ / (Fo(il:g) + Fl(:vg)) dt + / Fg(iL’g)d’l]Jt + / Fg(wg)d@t7
ti k=i—(s—1) 7tk ti
tet1
xo(xr,_;,tij) = xo(Tt, (o 1) tim(s—1)) + Z / (Lo(ze) +T'1(we)) di
k=i—(s—
e (73)
i J 1 tk+1
/ 2(xe)dwy,
k=i—(s—1) tk
Substituting Eq. (72) and Eq. (73) into Eq. (71), we have
Lita
tit1 B Af’q‘,+1 7_2 d)\
O-ti+1/t € fxu (2)dA (1+T2(u)> Au Z bl 7 CBQ ti_ (s—l)?tif(sfl))
i J——l
i-1 tit1 Aty d\
+ Z Ot;q </ e b () (1 + TQ(U)) et dudu> X
k=i—(s—1) ti u
tet1
(/ (To(e) + T (w6)) dt)
ty
i—1 tita Ait1 o d tet1
+ Z Ttiin </ e~ haT TN (14 7%(u)) e)‘“dudu) X (/ Fg(wg)dﬁ)t)
k=i—(s—1) ti u te
titv1 At; u dx
+ Tty / e fxu +1 7—2()\)(1)\ (1 + 72(u)) 6)\“ </ (Fo(ajg) “+ Fl(xg)) dt> T;du
ts t;
tit1 A, u d\,
+ 04,0 / e~ ST 0 (1 + Tz(u)) et (/ Fg(wg)dwt) d—du
ti ti u
s—1 i— J 1 tht1 i— ] 1 tk+1
— Z bi,j / Fo(wg) + Iy (iL‘g)) dt + / wg )dw,
j=-1 k=i—(s—1) k=i—(s—1) "t
(74)
We will divide the local error L;; into distinct terms. The first term has a coefficient
tit1 _ f)‘t’i+1 7—2(>\)d>\ 9
Tt e (1+7%(u)) e Z bij. (75)
t

i j=—1

By Lemma B.10, by constructed by the integral of Lagrange polynomial in Eq. (58) and Eq. (60)

satisfies b, = O(h) and the coefficient (75) is zero. Furthermore, we have g(t) = 7(t)o; —2% =
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(@) (Oglta<xT7'(t)) . By Lemma B.9, we have the following estimations

i—1

tit1 At dA th+1
Z Tty (/ e~ Fn, T T (NdA (1+ T2(u)) e/\“deu) X (/ Fl(mg)dt)
t; tr

k=i—(s—1)

=0 ( max 72(t)h2> ,

0<t<T
i—1

tit1 A, dX tht1
Z Ut7,+1 (/ e f)‘u +1 TQ(A)dX (1 + 7_2(“)) eAu(h;du) X (/ 1—w2(m9)dwt>
t;

k=i—(s—1) tk
=0 ( max T(t)hg> ,
0<t<T

tit1 At u d)\,
Tty / e~ a0 (14 7%(u)) e (/ Fl(:cg)dt> d—du =0 ( max TQ(t)hz) ,
¢ t <t<

. . 0<t<T
tit1 ;o u d\, )
= Jan T r2(A)da 2 Au _ 3
Ttyn /tl e Ix (1+7%(w)e § Iy (ze)dw, qu @ OrgntanTT(t)h ,
s—1 i— ] 1 tk+1
o _ 20\ 12
Z bi—j /t 1(xg)dt = O (Oglta<XTT (t)h ) ,
j=—1 k=i—(s—1) """k
s—1 i— ] 1 tk+1 .
Z bi—; /t 2(xg)dwy = O <Or<nta<xT7'(t)h2) ,
j=—1 k=i—(s—1) """k
(76)
and the summation of the above terms is Sf}r)l =0 ( max T(t)hg)
0<t<T
The remaining terms of local error are
1 it tit1 Miy1 o dA Fot1
REJF)I = Z Tty </ e~ ST TN (1+72(w)) e)‘“dudu) X (/ Fg(wg)dt)
b U t
k=i—(s—1) v k
tit1 At, u dX
to,, / e T TN (14 22(y) A ( / I‘O(:cg)dt) —du
t; t; du
s—1 i— J 1 tk+1
SDIL TR SR At
j=—1 k=i—(s—1) t
(77
which completes the proof. O

The remaining problem is to estimate the RZ 1 in Eq. (70). We can further expand the term I'y(zg)
as following

Lo(xg) (x4, t)

t
Ty (w0) (t, . 1rti (o) + /
t

t
(FOFO (wg) + 11T (wg)) dt + / Fgro(wg)d’wt.
i—(s—1)

ti—(s—1)
(78)

Substituting the expansion of I'g(xg), we perform the approximation of L;1, which is summarized
with the following lemma:

Lemma B.12 (Second step of estimating ;1 in data-prediction reparameterization model). Rz(i)l
in Eq. (70) can be decomposed as

R = R, + 83, (79)
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bitr Ay -2 “ dA,
:at¢+1/t e b e (1 +7’2(u)) et </ du2> Edu Lo(zo) (@i, .y ti(s-1))
i—(s—1)

tig1 At, u U2 d)\u
+0¢,., / e~ T ax (1 + 7'2(u)) e (/ / Tolo(xe) (Tus, us) dU3du2> Edu
t ti—(s—1)

ti—(s—1)

s—1 ti_j
- Z bz;j/ dug x To(®e)(Tt,_ (1) ti—(s—1))
ti(s—1)

j=—1

s—1 tioj ua
— Z bi*j/ / Foro(a?g) ($u37U3) d'l.LgdUQ
ti(s—1) Yli—(s—1)

j=—1

(80)

Proof. We start with decomposing the term Rgr)l

1
R

tit1 At u d\,
S / e f>\u 1 2(0)dx (1 + T2(u)> ez\u </ F()(CL‘G)(CL‘UZ,Ug)dU2> M du
i—(s—1)

bttt Ay -2 “ dA,
:Uti+1/t e Sau (A)dA (1 +T2(u)) et (/ du2> —du Y du - Fo(a:g)( ti (571),152‘_(3_1))
i—(s—1)

tita Miv1 o
+ 044, / e~ HT TN (14 7%(u)) e
t

i

“ w2 dA,
/ / (ToTo(xe) + 1T (xe)) (g, us) dugdug | =—du
ti_(s—1) Yti—(s—1) du

tita AMit1 2
4 Uti+1/ e~ S, T (NdA (1 + TQ(U)) e
t

i

“ 2 _ dA,
Dolo(xe) (Tuy, us) dw, dus d—du
ti(s—1) Jti—(s—1) u

tifj
- Z bifj/ dug x Fo(wo)(fﬂti,(s,l),ti—(s—l))
i—(s—1)

ti—j U2
_ Z bifj / / (FOFO(:I:Q) + Flro(wg)) (:Eu37 U3) duzdus
i—(s—1) Yti—(s—1)

— Z bz ]/ / FQFO (139) ($u3,U3)dﬂ)u3dU2.

j=—1 ti(s—1) Jti—(s—1)

(81)
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‘We further estimate the terms with I'y and I's.

tit1 At
o, / o I 1 22(0dA (1 + 7,2(u)) e
t

7

/ / ['1Do(26) (Tuy, us) duzdus %d“
ti—(s—1) Yti—(s—1) du

tiy1 At,
o, / o I 1 r2(0)dA (1 + T2(’U,)) e
t

7

u U2 d, (82)
/ / Talo(xe) (T, us) dw, dus —du
tio(s—1) Yti—(s—1)
=0 ( max 7(t)h ) ,
0<t<T

Z bi— ]/ / I'To(ze) (Tuy, us) dugdus = O < max T2(t)h3> ,
ti(s—1) Yt (s-1)

0<t<T
j=—1

S L

j=—1 ti—(s—1) Yli—(s—1)

[N

_ 5
Ialo(xe) (T, us) dwy,dug = O <013ta<xT7'(t)hz> .

The summation of the above terms is S(2) = O <Or£1a<xT7'(t)hg> . Compared with S, this term can
<t<

be omitted.

The remaining local error is

tit1 At U dX
R§+)1 Otiin / e~ a0 (1 + T2(u)) et / duy | =—2du
t; ti(s—1) du

i

x Lo(xe)(Tt,_(,_y)sti—(s—1))

tit1 Mig1 o
+ 04, / e~ ST T (NdA (1 + 72(u)) et
t

i

v 2 dA,
/ / F()FQ (.’139) (.’IJUB y Ug) d’LL3dU2 —du (83)
ti—(s—1) Yli—(s—1) du

ti—j

s—1
- Z bi—j/ dug x To(xe)(xt, (s ti—(s—1))

j:—l tio(s—1)
i—j
— Z bl ]/ / Foro :Bg) (iL’uS,’U,g) dU3dUQ
j=—1 ti (s—1) ti— (s—1)
which completes the proof. O

Remark 3. With Lemma B.11 and B.12, the local error L;1, can be decomposed to the term
Siy1 = Sz(+1 + SZ+1 and the term R£+)1 It is clear that S; 41 = O ( max T(t)h? ), and we will

show that given b;_; constructed by integral of Lagrange polynomial in Eq. (58) and Eq. (60),
(2 _ 3
R, =0 (1)
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By Lemma B.10, by, constructed by the integral of Lagrange polynomial in Eq. (58) and Eq. (60)
satisfies that the coefficient for Uo(xe)(Tt,_,_,)sti—(s—1))

tit1 At; u d)\ s—1 tij
Ttis / e~ I, T TIO0AA (1 + TZ(U)) et (/ du2> duu du — Z bi_j/ dus,
t ti—(sfl) j=—1

i ti—(s—1)
(84)
equals zero. And the remaining term in Rl(i)l is O(h3).

Remark 4. We will show that the local error can be further decomposed such that L; 1 = Rgi)l +

s j : s ) 3
> =1 Si(-Ji-)l' In this case Sit1 =, Si(j_)l is the term such that S; 11 = O <0r%1tanTT(t)h2 ) and
)

we will show that by our constructed b;_j, Rg_1 = O (h*T).

K2

Lemma B.13 (5 — th step of estimating L, ; in data-prediction reparameterization model). For
1<s+1, Rg__ll) in Eq. (70) can be decomposed as

RELY = RY 4+ S5, (83)
where
) _ 2j+1
S =0 (OIéltE)%XTT(t)h 2 )
w)
tit1 i u U2 Uj—1 d\
=04, / o= P PR (0an (1 + 72(u)) eMu </ / / du - -~du3du2> U
du
t; tio(s—1) Yti—(s—1) ti—(s—1)

j—1

—
To---To(we)(@e,_(, 1) ti—(s-1))

tit1 Mil1 o
+0¢,4, / P SRR VLR (1 + TQ(U)) oA
t.

u uz I d\,
s FO s Fo(mg) (iliuj+1 y Uj+1> duj+1 s dU3dUQ du
t; t; t; du
i—(s—1) i—(s—1) i—(s—1)

J—1

s—1 tifj u2 Uj—1 —
_ Z b’Li]/ / / d’U,j ~--du;>,duz 'PO"'FO(wG)(wti,(s,l)7ti—(5—1))
; ti(s—1) Jti—(s—1)

j=—1 ti—(s—1)

s—1 ti—j u2 uj J
— E bi,j / / tee / Fo tee Fo(wg) (iL‘ujJrl,UjJrl) duj+1 R dU3dUQ
ti(s—1) Yli—(s—1) ti_(s—1)

j=—1
(86)
Furthermore, given that by, is constructed by the integral of Lagrange polynomial in Eq. (58) and

Eg. (60), RY), = O(hit)

i—1
/—JH
Sketch of the proof (1) Use the Itd formula Eq. (67) to expand I'g - - - T'g (g ). (2) Use Lemma B.9

to estimate the stochastic term S . For the remaining term RO, by Lemma B.10, by, constructed
by the integral of Lagrange polynomial in Eq. (58) and Eq. (60) satisfies that the coefficient before
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,_j.zxﬁ
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Uf7+1/ o ST 22 (0)dx (1 2 (/ / / du; -- 'dU3du2> Tudu
i—(s—1) Yti—(s—1) ti—(s—1) u
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- E bl j / / / de tee dU3du2.
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‘ (87)
equals zero. And the remaining term in Rgﬂr)l is O(h7T1).

—
The process can be repeated until the coefficient before 'y - - - T'g (zcg)(zctif(kl) stio(s—1)) 18

tita Xeiyq dx
Ot;41 / e f)\u + 7-2()\)(1)\ (1 + 7_ / / / dus+1 . du3du2 1
t; ti(s—1) Yli—(s—1) ti_(s—1) u

ti— J s
_ Z bz j/ / / dus+1 dU3d7.L2
ti(s—1) ti(s—1)

j=—1 ti(s—1)
(88)
which equals zero. And the remaining term R} is O(h*+2).

We conclude with the proof of Lemma B.7 and B.8.

Proof for Lemma B.8 (Convergence for s-step SA-Corrector) The stochastic term S;;1 can be
estimated as O (Orél&xTT(t)hg). Lemma B.10 prove that with b;_; defined in Theorem 5.2, the

coefficients of Eq. (75), Eq. (84), Eq. (87) and Eq. (88) equal zero. Thus the deterministic term ;1
can be estimated as O(h**?2). The proof is completed.

Proof for Lemma B.7 (Convergence for s-step SA-Predictor) The stochastic term S;11 can be

<t<T
defined in Theorem 5.1, the coefficients of Eq. (75), Eq. (84), Eq. (87) and Eq. (88) equal zero except
for the last term. This is because in s-step SA-Predictor we only have s points in contrast to s + 1

estimated as O (Omax T(t)hg> from Eq. (76) and Eq. (82). Lemma B.10 prove that with b;_;

points in s-step SA-Corrector, for which we can only obtain the first s equalities in Lemma B.10.

Thus the deterministic term R;; can be estimated as O(h**1). The proof is completed.

B.5 Relationship with Existing Samplers
B.5.1 Relationship with DDIM

DDIM [22] generates samples through the following process:

Ty, — O, €0 wti,t' ~ ~
Zi, =, ( - ( z)> 1- 0l —oheo(wn ts) + 616, (89)

i

where & ~ N (0, I), 64, is a variable parameter. In practice, DDIM introduces a parameter 7 such
that when 7 = 0, the sampling process becomes deterministic and when 1 = 1, the sampling process

—a
tg tit1

1—(1?_ afz_
coincides with original DDPM [2]. Specifically, 6;, = 77\/ TP (1 — )

Corollary 5.3 For any 7 in DDIM, there exists a 7,,(¢) : R — R which is a piecewise constant
function such that DDIM-1 coincides with our 1-step SA-Predictor when 7(t) = 7,(t) with data
parameterization of our variance-controlled diffusion SDE.
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Proof. Our 1-step SA-Predictor when 7(t) = 7,t € [t;,t;41] with data parameterization of our
variance-controlled diffusion SDE is

Ot.
Ty, = ::1 €7T2(>\ti+17)“‘i)wti + oy (1 — 67(1+7—2)(Ati+17)‘ti)> mg({lﬁt“ti)
‘ (90)
+ 0oy \/1 - 6_272()‘%“—)‘%)5.

DDIM-7 generates samples through the following process

5 - o 1—af | o?
T, = 0y T (Ty,, 1)+ /1 — g, — 07 €o(xe,,t:)+04,&,6¢, =1 a2 1— — i .
—a2 2
: o H _ _27'2()\ti 1_)\ti) s A2 _o~2
If we substitute 64, with oy, ,\/1—e€ + , we can verify that /1 —of = —0; =

72Nt —At,)
e i+1~ "%’ The DDIM-7 then becomes

Oty

C— Qv Lt
$ti+1 :Oéti+1 Te (wtmtz) + UtiJrl 677—2()\%&17}‘%) (wtl atlwo(mt” 1)>

+ Otins \/1 — 6_2T2(>\ti+1 _>‘fi>€

O¢. .
:%ei‘ﬂ()\t”li&i)wti + (ati+1 o %O—t' eTQ()\ti+1)\ti)) Lo (wtiﬂt’i)
t.

i

+ Oty pq \/1 — e 2 (i _/\fi)g

=it o= (i 7’\“)%1' +oag,,, (1 B 67(1+T2)(Ati+17%)) xo(xt;,1i)
Ot,

i

+ 0t \/1 - 672T2(Ati+1 7&")5;

which is exactly the same with our 1-step SA-Predictor. To find the 7,,, we solve the relationship

1—a? a?
T ar (1 s ) = o1 V1 e O ), ©3)
ti tit1
The relationship between 7 and 7 is
2 a?
1— e 2 (A=) log <1 B ;Iti <1 B af;L >>

n= Ot; a? aTn = )\ )\ . (94)

j [—c; _2( ZES ti)

Ctign

O

In a concurrent paper [31], Lu ef al. prove the result that their SDE-DPM-Solver++1 coincides with
DDIM with a special ). Their result is a special case of Corollary 5.3 when 7, = 1 and 1) take a
special value, while our result holds for arbitrary 7.

B.5.2 Relationship with DPM-Solver++(2M)

DPM-Solver++ [31] is a high-order solver which solves diffusion ODEs for guided sampling. DPM-
Solver++(2M) is equivalent to the 2-step Adams-Bashforth scheme combined with the exponential
integrator. While our 2-step SA-Predictor is also equivalent to the 2-step Adams-Bashforth scheme
combined with the exponential integrator when 7(¢) = 0. Thus DPM-Solver++(2M) is a special case
of our 2-step SA-Predictor when 7(t) = 0.
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B.5.3 Relationship with UniPC

UniPC [24] is a unified predictor-corrector framework for solving diffusion ODEs. Specifically,
UniPC-p uses a p-step Adams-Bashforth scheme combined with the exponential integrator as a
predictor and a p-step Adams-Moulton scheme combined with the exponential integrator as a corrector.
While our p-step SA-Predictor is also equivalent to the p-step Adams-Bashforth scheme combined
with the exponential integrator when 7(¢) = 0 and our p-step SA-Corrector is also equivalent to
the p-step Adams-Moulton scheme combined with the exponential integrator when 7(¢) = 0. Thus
UniPC-p is a special case of our SA-Solver when 7(t) = 0 with predictor step p, corrector step p in
Algorithm 1.

C Selection on the Magnitude of Stochasticity

In this section, we will show that we choose 7(¢) = 1 in a number of NFEs. We will show that under
certain conditions, the upper bound of KL divergence between the marginal distribution and the true
distribution can be minimized when 7(¢) = 1.

Let p;(x) denotes the marginal distribution of &, by Proposition 4.1, we know that for any bounded
measurable function 7(¢) : [0,7] — R, the following Reverse SDEs

dax; = [f(t)a:t — (14—;—2(0> 9> (t)Va logpt(ﬁﬂt)] dt +7(t)g(t)dw, a7 ~pr(xr), (95)

have the same marginal probability distributions. In practice, we substitute V, log p:(x:) with
sg(x¢,t) and substitute pp(x7) wiht 7 to sample the reverse SDE.

aa? = [ 102 ~ () wso(at.0)] ar + gt afm 06

where 7 is a known distribution, specifically here a Gaussian. We have the following theorem under
the Assumption in Appendix A in [3].

Theorem C.1. Let p = pq be the data distribution, which is the distribution if we sample from the

ground truth reverse SDE (54) at time Q. Let p;(t) be the distribution if we sample from the practical
reverse SDE (96) at time 0. Under the assumptions above, we have

Dkt (PHP;(t))
e 1)’ O7)
<Dics rllm) 45 [ B [(v(twﬂt)) g2<t>|vmlogpt<a:>Se<m,t>ﬂ at.

This evidence lower bound (ELBO) is minimized when 7(t) = 1.

Proof. Denote the path measure of Eq. (95) and Eq. (96) as p and v respectively. Both p and v
are uniquely determined by the corresponding SDEs due to assumptions. Consider a Markov kernel

K ({zt}te[O,T] ,y) = §(z¢ = y). Thus we have the following result
/K ({wt}te[O,T] 7:c> dp ({wt}te[o,T]> = po(x), (98)

/K ({xf}te[w :c) dv ({wf}te[m) = )P (x). (99)

By data processing inequality for KL divergence

Dk (P||P;(t)) = Dkr (POHP(;(t))

=Dk1 (/K <{wt}te[O,T] ,sc) dp ({wt}tE[O,T]> H/K ({w?}te[O,T] ,w) dv <{wf}t€[07T])>

<Dgkr (pllv).
(100)
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By the chain rule of KL divergence, we have
Dir (llv) = Dt (0rl17) + Esnpy [Dicr (uler = 2)[v(|28 = 2))] . (101)

By Girsanov Thoerem, D¢y, (p(-|xr = 2)||v(-|x§ = z)) can be computed as

Dkyr (p(|zr = 2)|v(|=f = 2))

/OT % <T(t) + 1) g(t) (V log py(z) — so(w,t))dwt]

—E 0
T 2 102
5,5 [ 370+ ) POV osp(e) - se<m,t>||2dt] .
T 2
:é/o ]Ept(w) [(T(t) + % g2(t)||vac Ingt(x) - 89(m7t)||2] dt
O

D Implementation Details

For our 2-step SA-Predictor and 1-step SA-Corrector, we find that the coefficient will degenerate to a
simple case.

For 2-step SA-Predictor, assume on [t;,¢;+1], 7(t) = 7 is a constant,

Mg A=Ay
b= e My (1472 / e WL (103)
At /\tz‘ )\ti—l
A, T2 2 A (1+7—2))\ A— Ay
bici=e "tinT oy (14 77) 7d)\ (104)
A, — A
we have
; — [OEF 22(R)dA -
Ty, = 0:1 J * xy, +bixo (e, t;) + bi—1xe(xr,_,, tiz1) + 7€
M 205045 (105)
2%6 P, (/\)dl\ﬁﬂti + (bi + bi—1)xo (2, 1;)
t;
—bi—1(ze(®t,,ti) — o(Tt,_,,ti-1)) + 5i€.
Leth = Ay, — A¢;, we have
A 2 2 it 1+72)A
bi+biog=e M oy, (147 )/ (TN
)\1,7;
= O,y (1 - e_h(1+72))
b — eI L (14 72)h—1
e T G - A (106)
1=+ 7)h+ 10 +72)202+ O + (1+72)h— 1
Ati —At,Fl 1+T2
iy 1 2\7.2 3
=—1 "1 h®+ O(h
N = A 12( +77)h" + O(h?)

Thus we implement b;_; as %%(1 +72)h2 and b; as ay,,, (1 — e "0+7)) —h, ;. Note
i—1

that substituting b;, b;_1 as bz7 bz_1 will maintain the convergence order result of 2-step SA-Predictor
since the modified term is O(h?). The implementation detail for 1-step SA-Corrector is technically
the same.
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E Experiment Details

E.1 Details on 7(¢), Predictor Steps and Corrector Steps

CIFAR10 32x32 For the CIFAR10 experiment in Section 6.4, we use the pretrained baseline-
unconditional-VE model*from [27]. It’s an unconditional model with VE noise schedule.
To fairly compare with results in [27], we use a piecewise constant function 7(¢) inspired

by [27]. Concretely, denoting o/P* = 2, our 7(t) is set to be a constant 7 in the interval

[(eZPM)=1(0.05), (cEPM)~1(1)] and to be zero outside the interval. We find empirically that this
piecewise constant function setting makes our SA-Solver converge better, especially in large noise
scale cases. We use a 3-step SA-Predictor and a 3-step SA-Corrector. For the CIFAR10 experiment
in Section 6.2 and 6.5, we also use the piecewise constant function 7(¢) as above. The predictor steps
and corrector steps vary to verify the effectiveness of our proposed method in Section 6.2, while they
are both set to be 3-steps in Section 6.5.

ImageNet 64x64 For the ImageNet 64x64 experiment in Section 6.4, we use the pretrained model’
from [4]. It’s a conditional model with VP cosine noise schedule. To fairly compare with results

in [27], we use a piecewise constant function 7 () inspired by [27]. Concretely, denoting oM = Z—j

our 7 () is set to be a constant 7 in the interval [(cFPM)=1(0.05), (¢FPM)~1(50)] and to be zero
outside the interval. We find empirically that this piecewise constant function setting makes our
SA-Solver converge better, especially in large noise scale cases. We use a 3-step SA-Predictor and a
3-step SA-Corrector.

Other experiments For other experiments, we use a constant function 7(t) = 7. It’s generally
not the optimal choice for each individual task, thus further fine-grained tuning has the potential to
improve the results. We aim to report the result of our SA-Solver without extra hyperparameter tuning.
We use a 3-step SA-Predictor and a 3-step SA-Corrector under 20 NFEs and 2-step SA-Predictor and
a 1-step SA-Corrector beyond 20 NFEs.

E.2 Details on Pretrained Models and Settings

CIFAR10 32x32 For the CIFAR10 experiment, we use the pretrained baseline-unconditional-VE
model®from [27]. It’s an unconditional model with VE noise schedule. To fairly compare with results
in [27], we follow the time step schedule in it. Specifically, we set ¢,,,;, = 0.02 and 7., = 80 and
the results of the deterministic sampler and stochastic sampler of EDM. To make it a strong baseline,
we report the results of the optimal setting for 4 hyper-parameters {.Schurns Stmin, Stmazs Snoise }

and report its lowest observed FID. While for SA-Solver and UniPC, we report the averaged observed
FID.

1 . 1 1
select the step by 0; = (07haz + 575 (0ynin — Trmaz))” for SA-Solver and UniPC. We directly report

ImageNet 64x64 For the ImageNet 64x64 experiment, we use the pretrained model” from [4].
It’s a conditional model with VP cosine noise schedule. To fairly compare with results in [27], we
follow the time step schedule in it and use conditional sampling. Specifically, we set o, = 0.0064
1 1

DPM-Solver and DDIM. We directly report the results of the deterministic sampler and stochastic
sampler of EDM. To make it a strong baseline, we report the results of the optimal setting for 4
hyper-parameters {Scnurn, Stmin, Stmaz, Snoise } and report its lowest observed FID. While for
SA-Solver, UniPC, DPM-Solver and DDIM, we report the averaged observed FID.

1 . 1 1
and 0,4, = 80 and select the step by 0y = (0/haz + 57 (0in — Oaz))” for SA-Solver, UniPC,

*https://nvlabs-fi-cdn.nvidia.com/edm/pretrained/baseline/
baseline-cifar10-32x32-uncond-ve.pkl
Shttps://openaipublic.blob.core.windows.net/diffusion/jul-2021/64x64_diffusion.pt
*https://nvlabs-fi-cdn.nvidia.com/edm/pretrained/baseline/
baseline-cifar10-32x32-uncond-ve.pkl
"https://openaipublic.blob.core.windows.net/diffusion/jul-2021/64x64_diffusion.pt
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ImageNet 256x256 For the ImageNet 256x256 experiment, we use three different pretrained
models:LDM?3(VP, handcrafted noise schedule) from [5], DiT-XL/2°(VP, linear noise schedule)
from [41], Min-SNR'(VP, cosine noise schedule) from [42]. We use classifier-free guidance of scale
5 = 1.5 and a uniform time step schedule because it’s the most common setting for guided sampling
for ImageNet 256x256.

ImageNet 512x512 For the ImageNet 256x256 experiment, we use the pre-trained model: DiT-
XL/2!" from [41]. We use classifier-free guidance of scale s = 1.5 and a uniform time step schedule
following the settings of DiT [41].

LSUN Bedroom 256x256 For the LSUN Bedroom 256x256 experiment, we use the pretrained
model'? from [4]. We use unconditional sampling and a uniform lambda step schedule from [23].

F Additional Results

We include the detailed FID results in Figure 1, Figure 2 and Figure 4 in the tables 4 to 14. The
ablation study shows that stochasticity indeed helps improve sample quality. We find that for small
NFEs, the magnitude of stochasticity should be small while for large NFEs, large magnitude of
stochasticity helps improve sample quality. It can also be observed that in latent space, SDE converges
faster as in Table 13. With only 10 NFEs, 7 = 0.6 is better than 7 = 0. With 20 NFEs, our SA-Solver
can achieve 3.87 FID, which outperforms all ODE samplers even with far more steps.

Table 4: Sample quality measured by FID | on CIFAR10 32x32 dataset (VE-baseline model from [27])
varying the number of function evaluations (NFE). For the results from EDMT, we reported its lowest
observed FID.

Method \ NFE 11 15 23 31 47 63 95

DDIM(n =0) 1828 1223 793 645 527 483 4.42
DPM-Solver 926 5.13 452 430 4.02 397 394
UniPC 642 502 419 400 391 390 3.89
EDM(ODE)f 1346 5.62 4.04 382 379 380 3.79

EDM(SDE)' 2394 894 473 395 359 336 3.06
SA-Solver 6.46 491 377 340 292 274 2.63

Table 5: Sample quality measured by FID | on CIFAR10 32x32 dataset (VE-baseline model from [27])
varying the number of function evaluations (NFE) and the magnitude of stochasticity (7).

SA-Solver \ NFE 11 15 23 31 47 63 95

7=0.0 646 506 422 402 393 392 391
T=0.2 654 501 414 395 389 384 383
T=04 679 491 403 381 376 374 3.67
T=0.6 734 491 385 365 3.60 356 3.57
T=028 861 528 377 348 345 343 3.50
T=10 10.89 652 398 340 321 325 3.29
T=12 1449 933 519 3.69 3.00 3.03 3.07
T=14 20.19 1376 7.60 491 292 286 293
T=1.6 2790 2051 11.89 8.07 325 274 2280
T=138 36.26 29.43 18.13 14.00 4.60 2.83 2.63

Shttps://ommer-lab.com/files/latent-diffusion/nitro/cin/model.ckpt

ghttps ://dl.fbaipublicfiles.com/DiT/models/DiT-XL-2-256x256.pt

https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/releases/download/v0.0.
0/ema_0.9999_x1.pt

"https://dl.fbaipublicfiles.com/DiT/models/DiT-XL-2-512x512.pt

https://openaipublic.blob.core.windows.net/diffusion/jul-2021/1sun_bedroom.pt
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Table 6: Sample quality measured by FID | on ImageNet 64x64 dataset (model from [4]) varying the
number of function evaluations (NFE). For the results from EDMT, we reported its lowest observed
FID.

Method \ NFE 15 23 31 47 63 95

DDIM(n =0) 848 539 427 346 3.17 295
DPM-Solver 349 3.04 288 280 276 274
UniPC 351 284 275 272 271 272
EDM(ODE)f 478 3.12 284 273 273 267

EDM(SDE)" 894 430 340 272 244 222
SA-Solver 341 261 223 195 1.88 1.81

Table 7: Sample quality measured by FID | on ImageNet 64x64 dataset (model from [4]) varying the
number of function evaluations (NFE) and the magnitude of stochasticity (7).

SA-Solver \ NFE 15 23 31 47 63 95

7=0.0 348 272 272 266 264 271
T=0.2 341 280 263 263 264 2.60
T=04 352 270 251 251 249 249
7=0.6 398 261 244 239 234 235
7=028 580 2,68 232 224 219 221
T=1.0 10.06 338 223 2.09 208 2.08
T=12 18.39 552 252 195 197 2.00
T=14 3242 1037 3.83 205 189 1.89
T=16 52.31 1964 7.10 2.60 1.88 1.81

G Additional Samples

We include additional samples in this section. In Figure 5 and Figure 6 we compare samples of our
proposed SA-Solver with other diffusion samplers. In Figure 7 and Figure 8, we compare samples of
our proposed SA-Solver under different NFEs and 7. In Figure 9 and Figure 10, we compare samples
of our proposed SA-Solver with other diffusion samplers on text-to-image tasks. Our SA-Solver can
generate more diverse samples with more details.
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Table 8: Sample quality measured by FID | on CIFAR10 32x32 dataset (model trained by ourselves;
see Section 6.5) varying the sampling method and the training epoch.

method (NFE =31) \ epoch 1250 1300 1350 1400 1450 1500

DDIM 39.32 2979 19.59 1298 8.63 6.64
DPM-Solver 30.57 2211 1385 885 5.68 455
EDM(ODE) 27.51 19.82 1237 8.03 533 432
SA-Solver(t = 0.6) 20.55 14.89 9.71 6.55 4.61 4.08
SA-Solver(t = 1.0) 13.62 10.01 6.79 481 3.70 347

Table 9: Sample quality measured by FID | on ImageNet 256x256 dataset (model trained by ourselves;
see Section 6.5) varying the sampling method and the training epoch.

method (NFE = 40) \ epoch 50 100 150 200 250

DDIM 1940 9.61 6.75 586 5.12
DPM-Solver 18.75 896 6.15 528 4.62
SA-Solver(t = 0.4) 1793 839 5.69 484 424
SA-Solver(t = 0.8) 16.57 17.54 515 448 3.99

Table 10: Sample quality measured by FID | on ImageNet 256x256 dataset(model from [5]) varying
the number of function evaluations (NFE).

Method \ NFE 5 10 20 40 60 80 100

DDIM(n =0) 58.68 1632 682 471 445 428 423
DPM-Solver 16688 6.19 551 417 4.18 421 4.15

UniPC 1279 496 421 414 412 409 4.10
DDIM(n =1) 13891 50.05 14.60 6.09 456 4.12 3.87
SA-Solver 1146 482 388 347 337 337 333

Table 11: Ablation study on the effect of the magnitude of stochasticity using SA-Solver. Sample
quality measured by FID | on CIFARI10 32x32 dataset(model from [27]) varying the number of
function evaluations (NFE) and the magnitude of stochasticity(7).

7\ NFE 15 23 31 47 63 95 127

0 484 411 394 386 388 3.87 3.87
0.2 496 404 384 375 374 379 3.5
0.4 527 400 3.87 3.64 371 370 3.62
0.6 6.05 395 361 349 346 353 343
0.8 740 4.12 353 328 337 332 3.30
1.0 10.00 4.49 341 3.18 324 317 3.15
1.2 13.58 5.14 359 3.10 3.02 297 3.05
1.4 17.88 655 394 3.04 3.01 289 295
1.6 2242 844 4.69 320 3.02 294 289
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Table 12: Ablation study on the effect of the magnitude of stochasticity using SA-Solver. Sample
quality measured by FID | on ImageNet 64x64 dataset(model from [4]) varying the number of
function evaluations (NFE) and the magnitude of stochasticity(7).

7\ NFE 20 40 60 80 100

0 330 283 278 279 282
0.2 332 277 272 274 279
04 337 268 263 262 259
0.6 3.61 257 249 249 247
0.8 419 251 240 234 230
1.0 555 254 232 221 220
1.2 793 277 229 214 214
1.4 11.55 320 240 214 2.08
1.6 16.15 397 260 220 2.09

Table 13: Ablation study on the effect of the magnitude of stochasticity using SA-Solver. Sample
quality measured by FID | on ImageNet 256x256 dataset(model from [5]) varying the number of
function evaluations (NFE) and the magnitude of stochasticity(r).

7\ NFE 5 10 20 40 60 80 100
0 1146 504 430 4.16 4.12 410 4.16
0.2 11.88 489 429 4.05 4.02 401 403
04 12.69 484 414 386 384 383 3.84
0.6 14.84 482 399 3.63 3.62 363 3.61
0.8 18.82 5.09 3.87 355 350 347 347
1.0 2596 6.06 3.88 347 341 339 338
1.2 3720 823 392 347 337 337 3.33
1.4 53.03 1293 4.08 3.53 340 338 3.36
1.6 7130 24.08 443 356 344 345 333

Table 14: Ablation study on the effect of the magnitude of stochasticity using SA-Solver. Sample
quality measured by FID | on LSUN Bedroom 256x256 dataset(model from [4]) varying the number
of function evaluations (NFE) and the magnitude of stochasticity(7).

7\ NFE 20 40 60 80 100

0 3.60 3.14 3.06 3.09 3.07
0.2 3.51 312 3.00 299 299
04 370 3.09 297 3.03 3.16
0.6 410 3.08 295 299 3.03
0.8 475 311 297 289 299
1.0 6.18 328 298 290 291
1.2 854 353 312 286 3.00
1.4 12.14 425 324 298 293
1.6 16.63 550 3.75 3.18 3.10
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Figure 5: Samples by DDIM, DPM-Solver, UniPC, EDM(ODE), EDM(SDE) and our SA-Solver
with 15, 23, 47, 95 NFEs with the same random seed from CIFAR10 32x32 VE baseline model [27]
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DDIM, DPM-Solver, UniPC, and our SA-Solver with 15, 23, 47, 95 NFEs with

the same random seed from ImageNet 64x64 model [27](conditional sampling)

Figure 6: Samples by
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NFE = 100

SA-Solver(n = 0)

SA-Solver(n = 0.2)

SA-Solver(n = 0.4)

SA-Solver(n = 0.6) [

SA-Solver(n = 0.8)

SA-Solver(n = 1.0)
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Figure 7: Samples by SA-Solver with 20, 40, 60, 100 NFEs varying stochasticity(7) with the same
random seed from LSUN-Bedroom 256x256 model [4](unconditional sampling).
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Figure 8: Samples by SA-Solver with 60 NFEs varying stochasticity(7) with the same random seed
from ImageNet 512x512 DiT model [41] with classifer-free guidance scale s = 4.0(default setting to
show image).
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Figure 9: Samples using Stable-Diffusion v1.5 [5] with a classifier-free guidance scale 7.5 with
different solvers and NFEs. Prompt:The Legend of Zelda landscape atmospheric, hyper realistic, 8k,
epic composition, cinematic, octane render, artstation landscape vista photography by Carr Clifton
Galen Rowell, 16K resolution, Landscape veduta photo by Dustin Lefevre tdraw, 8k resolution,
detailed landscape painting by Ivan Shishkin, DeviantArt, Flickr, rendered in Enscape, Miyazaki,
Nausicaa Ghibli, Breath of The Wild, 4k detailed post processing, artstation, rendering by octane,

unreal engine.
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Figure 10: Samples using Stable-Diffusion v1.5 [5] with a classifier-free guidance scale 7.5 with
different solvers and NFEs. Prompt:glowwave portrait of curly orange haired mad scientist man from
borderlands 3, au naturel, hyper detailed, digital art, trending in artstation, cinematic lighting, studio
quality, smooth render, unreal engine 5 rendered, octane rendered, art style by pixar dreamworks
warner bros disney riot games and overwatch.
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