
Under review as a conference paper at ICLR 2020

CONTINUAL LEARNING WITHOUT KNOWING TASK
IDENTITIES: DO SIMPLE MODELS WORK?

Anonymous authors
Paper under double-blind review

ABSTRACT

Due to the catastrophic forgetting phenomenon of deep neural networks (DNNs),
models trained in standard ways tend to forget what it has learned from previous
tasks, especially when the new task is sufficiently different from the previous ones.
To overcome this issue, various continual learning techniques have been devel-
oped in recent years, which, however, often suffer from a substantially increased
model complexity and training time. In this paper, we consider whether properly
tailored simple models could perform well for continual learning. By proposing a
relatively simple method based on Bayesian neural networks and model selection,
we can in many cases outperform several state-of-the-art techniques in terms of
accuracy, model size, and running time, especially when each mini-batch of data
is known to come from the same task of an unknown identity. This leads to in-
teresting observations suggesting that different continual learning techniques may
be beneficial for different types of data and task diversity.

1 INTRODUCTION

Continual learning (also known as incremental learning or lifelong learning) is a paradigm in deep
neural network (DNN) training that allows the model to learn new tasks while not forgetting previous
tasks (De Lange et al., 2019). This is important in many practical scenarios where the training data
of each task arrive in an online or streaming manner and are not stored thereafter, whereas during the
inference (testing) phase, the data may come from any task. A major obstacle to continual learning is
the catastrophic forgetting phenomenon of DNN training, which causes models to forget knowledge
of previous tasks upon learning information from new tasks, especially when the training data of
different tasks are significantly different.

Various continual learning approaches have been proposed in recent years, which can overcome
catastrophic forgetting to a certain degree. However, these existing techniques have some limi-
tations. Among them, model complexity and training speed are inadequately studied in existing
works. Some existing approaches suffer from a significantly increased complexity compared to
their non-continual learning counterparts. This is an important issue because, to support continual
learning from online/streaming data, model training should be as fast as possible to make the best
use of currently available data. In addition, except for a few recent works (Lee et al., 2020; Aljundi
et al., 2019a;b), most continual learning methods require knowledge of task identity (i.e., when a
new task starts) during either the training or inference phase, which is unrealistic in many practical
applications. Furthermore, some existing methods require storing data samples from previous tasks
(Chaudhry et al., 2019), which can violate privacy regulations, such as the GDPR (European Union,
2015), and may also be otherwise inefficient.

To resolve the above limitations, we ask the following question in this paper: is there a simple,
efficient, and effective way of continual learning? We give a positive answer to this question by
presenting a low-complexity continual learning method using Bayesian neural networks (BNNs).
In our method, we initially train and store a separate BNN for each task. Upon reaching a user-
specified capacity, we downselect the stored BNN models so that only the representative models
remain stored. In the inference phase, we evaluate each input data sample with all the stored models
and obtain the final result from the model that has the lowest degree of uncertainty in its prediction.
Our method does not require task identity knowledge (i.e., it works in the task-free setting), where
task boundaries during the training phase are automatically detected based on changes in the training

1

Under review as a conference paper at ICLR 2020

loss. We do not store any data sample from previous tasks either. At any point in time, the system
only needs to access one mini-batch of data from the current task.

At a conceptual level, our method is simpler and easier to understand than many existing methods.
Surprisingly, on several classical datasets and task definitions in continual learning literature, it also
outperforms various state-of-the-art task-free continual learning techniques, in terms of accuracy,
model size, and running (wall-clock) time. Our experiments for comparison use the code of the
original papers that proposed the baseline methods, and also have the same or similar experimenta-
tion setups. The code of our method is also provided in the supplementary material.

Our finding suggests that different continual learning techniques may be beneficial for different
application scenarios. Some further discussion is also given at the end of this paper.

2 RELATED WORK

Approaches for continual learning mainly used three strategies: expansion (Rusu et al., 2016; Yoon
et al., 2017), rehearsal/replay (Wen et al., 2018; Lopez-Paz et al., 2017; Feldman & Langberg,
2011; Braverman et al., 2016; Rebuffi et al., 2017; Shin et al., 2017), and regularization (He &
Jaeger, 2018; Lee et al., 2017; Kirkpatrick et al., 2017; Rebuffi et al., 2017; Li et al., 2018; Wen
et al., 2018). Our approach shares similarities with the expansion strategy, but we avoid indefinitely
growing model size by enforcing a maximum storage capacity. Most of these existing approaches
consider the task-based setting, where tasks boundaries and identities are assumed to be known in
either training or inference phases.

Despite its importance, the task-free setting has been largely understudied, except for a few works
that we describe next. Most of the existing task-free approaches are based on replay/rehearsal strate-
gies (Aljundi et al., 2019a;b; Chrysakis & Moens, 2020; Chaudhry et al., 2019), where a small buffer
of data samples, often referred to as episodic memory, is used for rehearsal purpose. Hybrid replay
and expansion methods also exist (Rao et al., 2019), where expansion alone is not enough to avoid
catastrophic forgetting and replay is required. Lee et al. (2020) introduced a task-free expansion
method governed by Bayesian non-parametric approaches to automatically determine when to ex-
pand, which has shown to outperform many other task-free approaches, such as the works by Aljundi
et al. (2019b); Chaudhry et al. (2019). However, the downside of this approach is that it is very sen-
sitive to the choice of hyper-parameters. Furthermore, it also requires a short-term memory that
collects some training data during the process. Unlike these approaches that employ either a short-
term memory or replay buffer to store training samples, the approach we propose in this paper does
not require storing any data point, which is a strong advantage as storing raw training samples causes
privacy issues as emphasized by De Lange et al. (2019).

Our work also shares some similarities with the work by Ebrahimi et al. (2019), which also uses
BNNs to perform continual learning by adapting the learning rate based on the uncertainty of net-
work parameters. However, this approach requires each task to be trained until reaching a “plateau”.
The learning rate adaptation may also slow down the training process. Finally, most experiments
reported in their paper require task identity knowledge during inference. In this paper, we show that
our relatively simple approach, which does not require task identity knowledge in either training or
inference, is able to outperform existing task-free approaches in performance, storage, and speed.

3 PRELIMINARIES

Task-Free Continual Learning. We assume that there are K tasks. Each task corresponds to a
specific distribution of training and testing data, where the data distributions for different tasks are
generally different. At any point in time, only one mini-batch of data from the dataset of an arbitrary
task k ∈ {1, 2, ...,K} is revealed and available to the system. We consider the task-free setting
where we do not know from which task each mini-batch of data comes from, but the algorithm that
we present later estimates the task boundary and identity. Our system does not save any data point
other than the current mini-batch.

TheK tasks arrive in a sequential manner and each task may appear one or multiple times during the
training phase. The goal of training is to learn a model that can accurately classify data from any of

2

Under review as a conference paper at ICLR 2020

𝒟1 𝒟2 𝒟3

… 𝒮

Model
storage with
maximum
capacity 𝑁

New task detected New task detected

Save model

Figure 1: Overview of training procedure.

the K tasks. During the inference phase, the system receives mini-batches of the testing data from
arbitrary tasks. The task identity is unknown to the system in both training and inference phases.

Bayesian Neural Networks (BNNs). BNNs have useful characteristics that are beneficial for con-
tinual learning. Unlike standard DNNs that aim to find a deterministic value of model parameters to
fit the data, BNNs aim to estimate the posterior distribution p(w|D) over the model parameter vector
w, by considering the training data D, which includes the input data and the target output for a su-
pervised classifier, as the evidence. This posterior distribution can be estimated using Bayes’ rule as
p(w|D) = p(D|w)p(w)

p(D) , where p(w) is an assumed prior distribution and p(D|w) is the likelihood.

In most cases, the true posterior p(w|D) is intractable because the term p(D) cannot be efficiently
computed in practice. Variational methods are used to find a parametric distribution q(w;φ) that
approximates p(w|D), i.e., p(w|D) ≈ q(w;φ). The parametric distribution q belongs to a ”well-
behaved” family of distributions, such as normal or exponential distributions that can be represented
by a set of parameters φ such as mean µ and variance σ2 (i.e., φ = (µ, σ)). The goal of BNN
training is to find the parameter φ that minimizes the Kullback-Leibler (KL) divergence between the
parametric distribution q and the true posterior distribution: φ∗ = argminφKL(q(w;φ)||p(w|D)).
The KL divergence is often intractable. However, minimizing the KL divergence is equivalent to
minimizing the negative of the tractable evidential lower bound (ELBO) (Blundell et al., 2015):

L(φ,D) = Ew∼q(w;φ)[log q(w;φ)− log p(w)− log p(D|w)] (1)

At the end of training, q(w;φ) can be used as an approximation of p(w|D). In practice, L(φ,D) is
often minimized using stochastic gradient descent (SGD) on φ where each iteration is based on an
approximate gradient of L(φ,D) computed on a mini-batch sampled from D.

Continual Learning with BNNs. In theory, the Bayesian framework has an interesting property
that when learning from sequential tasks with training data D1,D2, ...,DK , one can estimate the
posterior distribution p(w|D1,D2, ...,Dk) (k ∈ {2, ...,K}) by using the previous posterior as the
new prior:

p(w|D1,D2, ...,Dk) ∝ p(Dk|w)p(w|D1, ...,Dk−1). (2)
Unfortunately, as mentioned earlier, the true posterior is intractable in most practical scenarios and
performing repeated approximations accumulates errors, which causes the algorithm to forget old
tasks. This underlines the need for new approaches for efficient and effective continual learning.

4 OUR APPROACH

The main idea of our approach is that we train multiple BNN models, where each model captures
one or multiple similar tasks. These models can be regarded as experts for such tasks. We save up
to N representative models during training, which are then used for inference, where N is a user-
defined positive integer related to the desired aggregated model size and complexity. We emphasize
that our system does not know true task boundaries or identities during either training or inference.

4.1 TRAINING

As shown in Figure 1, during training, mini-batches of training data arrive in a sequential manner,
where we do not know from which task the data comes from. Upon receiving a new mini-batch, the
variational parameters φ get updated by performing SGD (or its accelerated variants) on L(φ,D)
defined in (1). Let t denote the iteration/mini-batch index, we use φt to denote the variational
parameters after the t-th iteration.

3

Under review as a conference paper at ICLR 2020

The task boundaries are detected based on the changes of values of the log-likelihoods across mini-
batches. We estimate that a new task has started if the average log-likelihood on the most recent
mini-batches is sufficiently smaller than that on some previous mini-batches. Note that we assume
that each task stays in the system for a number of consecutive iterations during training, before
switching to the next task, which is a common assumption in existing works (Chaudhry et al., 2019;
Lee et al., 2020; Ebrahimi et al., 2019). For each (detected) task identity k, we obtain a separate
BNN model at the end of this task, i.e., before the algorithm determines that a new task k + 1 has
started. We use φtk to denote the final variational parameters of the BNN model obtained for task
k, in the tk-th iteration right before the next task k + 1 starts. Some representative BNN models
obtained at the end of detected tasks are stored, where we select the representative models in an
online manner so that we save at most N models. The detailed steps are explained as follows.

Detecting Task Boundaries. The variational parameters φ are updated after each SGD iteration
on a minibatch. Hence, the posterior distribution of w also gets updated as it is approximated by
q(w;φt) (at iteration t). The key idea of task boundary detection is to look at the likelihood of
the current mini-batch of data on the posterior of w estimated from the previous data. To do so,
we consider the expected log-likelihood term in (1), lt := Ew∼q(w;φt−1)[log p(D(t)|w)] with D(t)

being the current mini-batch of data, which can be approximated using Monte Carlo by sampling w
from q(w;φt−1). We compute and save lt in each iteration t.

When a new task starts, φ is gradually adapted to fit the new task. Hence, at the beginning of a new
task, φ still fits the old task best. To detect whether a new task has started, we define a time window
of length T and in any iteration t = nT (n ∈ Z+) we compute Ln := 1

T

∑nT
τ=(n−1)T+1 lτ . Then, we

compare Ln with Ln−1. If Ln−1 − Ln > θ at iteration t = nT , where θ is some threshold, we say
that the likelihood has decreased by a significant margin and a new task started at t = (n− 1)T + 1
(and the previous task ended at t = (n − 1)T). The reason for computing Ln on a time window T
is to average out the noise that can exist in a single mini-batch.

Our empirical finding suggests that a proper choice of θ is the standard deviation of Ln over a few
recent time windows starting at or after the start of the current task.

Knowledge Transfer Between Tasks. When a task switch is detected, we can use the posterior
of w learned from the previous task as the prior of the current task, as in (2), so that we transfer
knowledge from previous tasks into the current model to some degree. Such knowledge transfer
is optional and depends on whether there may be correlation across different tasks. Our empirical
results show that knowledge transfer may benefit certain scenarios while not in other scenarios.

Model Management. When a task ends at the tk-th iteration, we obtain φtk that captures the
variational parameters for the model obtained for task k. We save up to N of such models that are
jointly used for inference as we will see in Section 4.2. In addition, at any iteration t = nT , we save
the model φnT in a buffer if a new task is not detected, so that we can revert back to this model later
if a new task is detected after the next window t = (n+ 1)T .

Let S denote an indexed set of stored models and we always ensure |S| ≤ N . We use the task index
k to denote the model φtk for simplicity. When a new task k+ 1 is detected, if |S| < N , we always
save the model for the previous task k into S. When |S| = N , i.e., we have reached the storage
(aggregated model size) limit N , we determine which models to keep in S in the following way.

Every time when a new task k+1 is detected, we compute a distance (e.g., KL divergence) between
the softmax outputs1 of the BNN model k and all models in S, on the current mini-batch tk + T ,
where plus T is because a new task is detected at the end of the time window of length T . Let ki
denote the i-th model currently stored in S, i.e., ki ∈ S , where we note that we may have i < ki
because some models before ki may have been deleted. To avoid confusion, we write the current
task (and its corresponding model) as k• := k. Let dki,kj (t) denote the distance between models ki
and kj computed on the t-th mini-batch. A small (correspondingly, large) value of dki,kj (t) means
that models ki and kj give similar (correspondingly, different) predictions on mini-batch t.

By computing dki,k•(tk• + T) for all i ∈ S every time when a new task k• + 1 starts, we can
progressively obtain all the distances dki,kj (tkj + T) for all i ∈ {1, ..., |S|}, j ∈ {1, ..., |S|, •},
and i < j (we assume • > |S|). Hence, at any point in time, the system keeps the following

1Similar to many existing works, we consider supervised classification problems in this paper.

4

Under review as a conference paper at ICLR 2020

|S|-by-(|S|+ 1) distance matrix:

A =

dk0,k1(tk1+T) dk0,k2(tk2+T) · · · dk0,k|S|(tk|S|+T) dk0,k•(tk•+T)

∞ dk1,k2(tk2+T) · · · dk1,k|S|(tk|S|+T) dk1,k•(tk•+T)

∞ ∞
. . .

...
∞ ∞ ∞ dk|S|−1,k|S|(tk|S|+T) dk|S|−1,k•(tk•+T)
∞ ∞ ∞ ∞ dk|S|,k•(tk•+T)

 (3)

which is an upper-triangle matrix because we cannot compute newer models on older mini-batches
as we do not save data. For convenience of minimization, we set those distances that cannot be
computed as infinity. Note that if ki ∈ S at the end of k•, we must have ki ∈ S at the end of kj for
any j > i. Hence, the above matrix A can be computed progressively every time when a new task
is detected, without saving any data.

When |S| = N , we have N + 1 models including k•, and we need to delete a model. To determine
which model to delete, we find the smallest distance dki,kj in A and its corresponding pair of models
ki and kj . These two models are the most similar to each other. We delete the older model ki (i < j)
because newer models can capture some information of older models when knowledge transfer is
enabled. After deleting ki, the distances related to ki are also deleted. Here, we note that when a
model km is deleted from S, it will never be added back again and we decrement the indices i and j
by one for all i, j > m. With this process, we never delete k• because it is the newest, so we add k•
to S.

4.2 INFERENCE

At inference time, for each stored model k ∈ S , we use Monte Carlo approximation to estimate the
probability distribution of the output (label) y for a given input data sample x:

pk(y|x) = Ew∼p(w|Dk)p(y|x,w) ≈ 1

R

R∑
r=1

p(y|x,w(r)
k) (4)

where w
(r)
k is sampled from q(w;φ∗tk) and we take the average over R samples. By computing the

above for all |S|models in S, we obtain the approximate probability distribution pk(y|x) from each
model k ∈ S. Assume that the ground-truth label y includes one-hot encoded labels, our final goal
is to find the predicted label ŷ that is equal to the ground-truth label y with high probability.

Based on the estimated probability distributions {pk(y|x) : ∀k ∈ S}, we find ŷ in the follow-
ing way. We first compute an uncertainty value defined as uk =

∑
d stdk([p(y|x,w)]d), where

[p(y|x,w)]d is the d-th element of the probability distribution p(y|x,w) and stdk(·) denotes the
standard deviation (estimated overR samples) when sampling w from q(w;φ∗tk) ≈ p(w|Dk). Then,
we first find the model k∗ with the smallest uncertainty, i.e., k∗ := argmink uk; and afterwards find
a one-hot encoded ŷ that has the highest probability, i.e., ŷ := argmaxy:‖y‖0=1 pk∗(y|x).
The rationale behind this approach is that, as the uncertainty uk is defined as the sum standard
deviation of each element yd of y, it captures how certain each model k is about its prediction. The
most certain model most likely aligns well with the task that generated the input data.

In practice, uk is further averaged over the entire mini-batch of data, to reduce noise in individual
samples, since similarly to existing works, we assume that data within a mini-batch come from the
same task. Instead of the standard deviation, other statistics such as variance may also be used, but
we found that standard deviation gives the best performance empirically.

5 EXPERIMENTS

Continual Learning Scenarios. We experiment our proposed approach in various continual learn-
ing scenarios following common practice in the literature, including:

• 5-Split MNIST (Nguyen et al., 2017), where the MNIST dataset (LeCun et al., 1998) is
split into 5 tasks, each containing two digit categories (i.e., 0/1, 2/3, 4/5, 6/7, 8/9), and

5

Under review as a conference paper at ICLR 2020

2-Split MNIST (Ebrahimi et al., 2019), where the original dataset is split into 2 tasks, each
containing five digit categories (i.e., 0-4 and 5-9). For the 5-Split and 2-Split cases, each
task has 12,000 and 30,000 training data samples, respectively.

• Split CIFAR-10 (Lee et al., 2020), where the CIFAR-10 dataset (Krizhevsky et al., 2009)
is split into 5 tasks, corresponding to the categories 0/1, 2/3, 4/5, 6/7, 8/9, respectively.
Each task includes 10,000 training data samples.

• MNIST-SVHN (Shin et al., 2017) consists of two tasks, one task with MNIST data and the
other task with SVHN data (Netzer et al., 2011). The two tasks have 60,000 and 73,000
training data samples, respectively.

• Rotated MNIST (Lopez-Paz et al., 2017), where each task is represented by digits rotated
by a fixed angle. In most of our experiments, we define 4 tasks with angles 0◦, 30◦, 60◦,
90◦, which is more challenging than the scenario used by Farajtabar et al. (2020) with 5
tasks and smaller rotation angles 0◦, 10◦, 20◦, 30◦, 40◦ (results for this alternative setting
are reported in Appendix A.4). Each task has 60,000 training data samples.

• Permuted MNIST (Goodfellow et al., 2013), where each task is a certain random permu-
tation of the input pixels of MNIST images. The distribution of labels remains the same
but the distribution of input images is different. Similar as Ebrahimi et al. (2019), we learn
a sequence of 10 random permutations. Each task has 60,000 training data samples.

Compared Methods. For our proposed approach, we report two sets of results: with knowledge
transfer (Ours-T) and with no knowledge transfer (Ours-NT). We compare with several other state-
of-the-art task-free approaches:

• Reservoir (Chaudhry et al., 2019), which is a simple experience replay method that has
been shown to outperform many other continual learning approaches. The episodic mem-
ory can be managed in a task-free setting, which makes Reservoir a strong baseline to
compare with, in terms of both accuracy and complexity.

• CN-DPM (Lee et al., 2020), which is an expansion-based method that consists of a set of
experts that learn different subsets of the data that belong to different tasks. The number of
experts is governed by a non-parametric Bayesian framework. We also include an extension
of CN-DPM that leverages task-homogeneity within a mini-batch (i.e., data in the same
mini-batch come from the same task, see Section 4.2) during inference to select the best
expert, which is referred to as CN-DPM-H.

• UCB (Ebrahimi et al., 2019), which is a BNN-based method that adapts the learning rate
using an uncertainty defined as related to the probability distribution of BNN parameters.

• Fine-Tuning, which is a popular baseline used in previous works where the model is
naively trained using SGD or its accelerated variants, without paying specific attention
to avoiding catastrophic forgetting. The model is an ordinary neural network.

• Bayesian Fine-Tuning (BBB-FT), which is similar to Fine-Tuning but the model is a BNN
instead of an ordinary network.

In Appendix A.4, we also compare with task-based (i.e., not task-free) approaches.

Architecture and Other Details. For our approach, Split-MNIST, Rotated MNIST, and Permuted
MNIST are trained using a BNN with a single fully-connected layer containing 64 neurons, and
Split CIFAR with a single fully-connected layer containing 200 neurons. For MNIST-SVHN, we
use a LeNet-5 (LeCun et al., 1998) architecture. As our approach does not assume knowledge of
task identities, we employ a single head setting, which is much more challenging than the multi-
head setting used by Ebrahimi et al. (2019); Farajtabar et al. (2020); Lopez-Paz et al. (2017). For
our method, we use Adam optimizer with a mini-batch size of 64 and learning rate of 0.001 for
all the experiments, except for Split CIFAR-10 where we use a learning rate of 0.0002 because the
CIFAR-10 dataset is more complex. Apart from the experiment related to model management, the
capacity (i.e., N) is equal to the number of tasks. At inference time, the number of Monte Carlo
samples is set to either R = 10 (referred to as “Ours-*-10”) or R = 2 (referred to as “Ours-*-2”).
Our BNN implementation is based on the code by Shridhar et al. (2019)2. Additional details are
given in Appendix A.1.

2https://github.com/kumar-shridhar/PyTorch-BayesianCNN

6

https://github.com/kumar-shridhar/PyTorch-BayesianCNN

Under review as a conference paper at ICLR 2020

Table 1: 5-Split MNIST, Split CIFAR-10, and MNIST-SVHN

Method Overall
Acc. (%)

#Param. #Samples Training time per
sample (ms)

Inference time
per sample (ms)

5-Split
MNIST

Fine-tuning 19.73±0.01 478K 0 0.453±0.008 0.273±0.002
Reservoir 85.83±0.53 478K 500× 5 0.474±0.003 0.257±0.007
CN-DPM 94.38±0.11 524K 500 2.921±0.040 0.381±0.006
CN-DPM-H 99.12±0.02 524K 500 (same as above) 0.497±0.030
Ours-NT-10 98.59±0.52 509K 0 0.228±0.006 2.551±0.101
Ours-T-10 96.57±1.51 509K 0 0.197±0.003 2.274±0.026
Ours-NT-2 97.54±0.67 509K 0 (same as above) 0.777±0.062
Ours-T-2 95.26±0.86 509K 0 (same as above) 0.551±0.002

Split
CIFAR-10

Fine-tuning 19.35±0.05 11.2M 0 6.61±0.031 0.929±0.004
Reservoir 44.53±0.71 11.2M 1000×5 23.275±0.071 1.454±0.005
CN-DPM 46.46±0.58 4.6M 1000 10.311±0.017 2.717±0.018
CN-DPM-H 87.33±1.4 4.6M 1000 (same as above) 2.937±0.007
Ours-NT-10 47.17±7.70 1.58M 0 0.257±0.004 2.625±0.085
Ours-T-10 64.24±4.64 1.58M 0 0.275±0.005 2.595±0.034
Ours-NT-2 40.50±5.88 1.58M 0 (same as above) 0.585±0.016
Ours-T-2 56.4±1.84 1.58M 0 (same as above) 0.629±0.014

MNIST-
SVHN

Fine-tuning 85.78±2.83 11.2M 0 6.49±0.031 0.798±0.003
Reservoir 94.90±0.14 11.2M 1000×2 21.510±0.841 0.808±0.015
CN-DPM 95.38±0.12 7.8M 1000 10.179±0.073 2.776±0.018
CN-DPM-H 96.27±0.31 7.8M 1000 (same as above) 2.698±0.011
Ours-NT-10 93.65±0.19 248K 0 0.342±0.012 2.214±0.033
Ours-T-10 93.59±0.17 248K 0 0.417±0.014 2.606±0.064
Ours-NT-2 93.15±0.21 248K 0 (same as above) 0.551±0.015
Ours-T-2 93.18±0.15 248K 0 (same as above) 0.490±0.036

For baseline approaches, we replicate the same neural network architectures and other settings as
Lee et al. (2020). All baselines results were reproduced using the original code3 from the paper by
Lee et al. (2020), except for UCB where we report results from its original paper (Ebrahimi et al.,
2019) directly and adapt our setting to theirs in order to make fair comparison. For CN-DPM-H, we
use a mini-batch size of 64 during inference, so that it is comparable with our method.

Unless stated otherwise, the system receives data from each task for a consecutive duration of 10
epochs during training as in Lee et al. (2020), before switching to the next task, except for UCB and
its comparison where it is assumed that each task is present until training reaches a plateau as this is
required for the UCB method.

Performance Evaluation. After training on sequentially arriving tasks, the model is evaluated on
the test data from the union of all tasks. We compute the task-wise accuracy ak, which is the
accuracy of task k’s test data after having sequentially learned all K tasks, and the overall accuracy
a := 1

K

∑K
k=1 ak. We also record the number of model parameters (floating point numbers) and the

number of stored training data samples for each method. For our approach, the number of parameters
is the total number of BNN parameters (mean and standard deviation values) of all models stored in
S. We further record the per-sample time of training and inference involving all K tasks, measured
on a cloud computing instance with 8 CPU cores, 8 GB memory, and a K80 GPU.

We obtain statistics from 5 independent runs with different random seeds for each setting, and report
mean and standard deviation values in Tables 1–4 where appropriate.

Results. The results on 5-Split MNIST, Split CIFAR-10, and MNIST-SVHN are shown in Table 1,
with comparison to Fine-Tuning, Reservoir, and CN-DPM. We see that our method performs better
than the strongest baseline CN-DPM (original version) in many cases, and in other cases we perform
similarly to the baselines, in terms of accuracy and number of parameters. For the accuracy, CN-
DPM-H gives the best performance here, suggesting that the availability of task-homogeneous mini-
batch for inference can also significantly improve CN-DPM’s accuracy for these three settings, at a
cost of longer training time than our method. In all cases, the training time per sample of our method
is faster (usually by an order of magnitude or more) than baseline methods, while our inference time

3https://github.com/soochan-lee/CN-DPM

7

https://github.com/soochan-lee/CN-DPM

Under review as a conference paper at ICLR 2020

Table 2: Rotated and Permuted MNIST

Method Overall
Acc. (%)

#Param. #Samples Training time per
sample (ms)

Inference time
per sample (ms)

Rotated
MNIST

Fine-tuning 61.93±0.73 478K 0 0.454±0.007 0.272±0.002
Reservoir 88.49±0.79 478K 500× 4 0.507±0.007 0.254±0.004
CN-DPM 53.15±0.92 709K 500 3.984±0.149 0.373±0.004
CN-DPM-H 57.73±0.92 709K 500 (same as above) 0.601±0.019
Ours-NT-10 96.89±0.02 407K 0 0.190±0.004 2.051±0.097
Ours-T-10 97.01±0.14 407K 0 0.153±0.006 1.722±0.036
Ours-NT-2 95.91±0.08 407K 0 (same as above) 0.421±0.011
Ours-T-2 96.51±0.11 407K 0 (same as above) 0.384±0.011

Permuted
MNIST

Fine-tuning 42.62±1.54 478K 0 0.448±0.003 0.189±0.006
Reservoir 87.47±0.60 478K 500×10 0.571±0.032 0.216±0005
CN-DPM 14.07±3.51 1.19M 500 6.115±0.954 0.408±0.077
CN-DPM-H 19.05±2.23 1.19M 500 (same as above) 0.661±0.121
Ours-NT-10 95.61±0.04 1.02M 0 0.166±0.002 0.762±0.010
Ours-T-10 91.06±0.35 1.02M 0 0.156±0002 0.69±0.017
Ours-NT-2 94.65±0.05 1.02M 0 (same as above) 0.171±0.012
Ours-T-2 90.08±0.32 1.02M 0 (same as above) 0.162±0.038

Table 3: Comparison with UCB and BBB-FT, 2-Split MNIST (Left) and Permutation-MNIST (Right)
Method Overall Acc. (%) # Param. Overall Acc. (%) # Param.
UCB

2-Split
MNIST

98.7 1.9M
Perm.

MNIST

92.5 1.9M
BBB-FT 98.1 1.9M 86.1 1.9M
Ours-NT 98.72±0.13 204K 96.31±0.21 1.02M
Ours-T 98.66±0.05 204K 93.23±0.32 1.02M

per sample remains similar to baseline methods and also similar to our training time. This makes
our approach useful for settings where both training and evaluation data arrive to the system in a
streaming manner, which are deleted after the current mini-batch. Furthermore, our approach does
not require storing any training data samples, unlike Reservoir and CN-DPM. This is an advantage
in terms of not only privacy but also storage. To illustrate, for the CIFAR-10 dataset, saving 1,000
samples for CN-DPM corresponds to storing 3M floating point numbers (i.e., 32× 32× 3× 1000),
and 5 times more for Reservoir.

Table 2 shows the results for rotated and permuted MNIST. Our approach generally outperforms
the baselines with a large margin. The bad performance of CN-DPM is possibly related to hyper-
parameter tuning. Although we use the same hyper-parameters as in the original paper for MNIST
dataset, it does not seem to perform well for rotated and permuted MNIST. As the approach is very
slow (especially since each task has 60,000 training samples), it is impractical to try a wide range of
hyper-parameters. This is a shortcoming of CN-DPM that requires detailed hyper-parameter tuning
which is often impractical. Note that unlike Table 1, even CN-DPM-H gives low accuracy in Table 2,
suggesting that homogeneous mini-batch does not help CN-DPM much for these two settings. As
CN-DPM does not seem to be a strong baseline for rotated and permuted MNIST, we also compare
with additional task-based baselines in Appendix A.4 that require task identity knowledge during
training, where we see that our task-free method even outperforms many state-of-the-art task-based
methods.

The task-wise accuracies of the above are given in Appendix A.2.

An interesting question that arises is whether task-homogeneity within a mini-batch at inference
is essential for our method. We give the accuracy results for different mini-batch sizes (during
inference) in Appendix A.3. The general observation is that while the homogeneous mini-batch
assumption is essential for obtaining good accuracy for class incremental settings (5-Split MNIST
and Split CIFAR-10), it appears not critical for non-class incremental settings. For example, our
method still gives higher accuracies for rotated and permuted MNIST than the baselines even if the
mini-batch size is 1 at inference time. This suggests an interesting phenomenon that our method
works well for continual learning scenarios with certain characteristics.

Table 3 compares our approach to UCB and BBB-FT, where the accuracy and number of parameters
are obtained directly from the paper by Ebrahimi et al. (2019), from the only experiment where task

8

Under review as a conference paper at ICLR 2020

Table 4: Varying capacity with cyclic Rotated MNIST (12 Tasks), per task and overall accuracies (in %)

Capacity (i.e., N) 0◦ 30◦ 60◦ 90◦ Overall
2 80.14±0.71 96.92±0.09 84.91±0.98 96.57±0.14 89.63±0.14
4 96.38±0.08 96.90±0.10 97.00±0.12 96.49±0.24 96.69±0.07
8 96.46±0.10 97.03±0.21 97.39±0.23 96.75±0.07 96.90± 0.04
12 96.36±0.07 97.50±0.01 97.51±0.01 96.82±0.07 97.07±0.05

identity was not used at inference time. As UCB requires to train each task until reaching a plateau,
in our method we also assume that each task is present until training reaches a plateau to ensure fair
comparison. We do not report the running time because the original paper (Ebrahimi et al., 2019)
does not have such results. We see that our approach outperforms the two baselines by both the
accuracy and number of model parameters.

In Table 4, we consider the case where the four different angles of rotated MNIST appear cyclically
so that there are 12 tasks in total, i.e., the sequence of tasks are 0◦, 30◦, 60◦, 90◦, 0◦, 30◦, 60◦,
The results are obtained using our method with knowledge transfer (i.e., Ours-T). We consider the
impact of storage capacityN . We see that choosingN = 4 gives close to the highest accuracy, since
there are only four unique rotation degrees out of the 12 tasks. When we set N = 2, the overall
accuracy is still good. Furthermore, we observed that our algorithm saved models for degrees 30◦
and 90◦ when N = 2, which shows that our model management approach is effective because the
30◦ and 90◦ models may be still good for 0◦ and 60◦, respectively.

6 CONCLUSION

In this work, we have studied an efficient continual learning technique with three characteristics: 1)
low complexity and fast running time, 2) does not require task identity knowledge in either train-
ing or inference (i.e., task-free), 3) does not require storing training data samples. Our results have
shown that our method can outperform various state-of-the-art baselines in terms of accuracy, stor-
age, and speed, for certain continual learning settings. The interesting observation is that using small
standalone BNN models as experts as in our method may outperform existing approaches that use
a much larger model where small portions of the model represent different experts. Because our
BNN models are very small, we still maintain low complexity and fast speed even though we save
multiple models.

Our work suggests that, in the state-of-the-art baseline methods where multiple experts are branched
out from a single complex model, the benefit of having such a complex model in those methods
appears questionable at least on some datasets and task definitions. Our experiments have used
datasets that are commonly used in state-of-the-art continual learning works. For more complex
datasets, it is possible that some entity of sufficient complexity that is shared across multiple experts
can be potentially beneficial. However, how such common entity should be constructed remains an
interesting direction for future work, since existing approaches with such spirit may underperform
our method that is based on small BNN models.

A limitation of this work is that the accuracy drops if the mini-batch size during inference is small,
suggesting that observing multiple samples from the same task is useful for model selection. Further-
more, the improvement of CN-DPM’s accuracy when applying the same homogeneous mini-batch
during inference shows that identifying the correct expert may be a critical challenge in continual
learning techniques that use multiple experts/models, especially for class incremental settings such
as Split CIFAR-10.

REFERENCES

Rahaf Aljundi, Klaas Kelchtermans, and Tinne Tuytelaars. Task-free continual learning. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 11254–11263,
2019a.

Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample selection
for online continual learning. In Advances in Neural Information Processing Systems, pp. 11816–
11825, 2019b.

9

Under review as a conference paper at ICLR 2020

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in
neural networks. arXiv preprint arXiv:1505.05424, 2015.

Vladimir Braverman, Dan Feldman, and Harry Lang. New frameworks for offline and streaming
coreset constructions. arXiv preprint arXiv:1612.00889, 2016.

Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny. Efficient
lifelong learning with a-gem. arXiv preprint arXiv:1812.00420, 2018.

Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K
Dokania, Philip HS Torr, and Marc’Aurelio Ranzato. On tiny episodic memories in continual
learning. arXiv preprint arXiv:1902.10486, 2019.

Aristotelis Chrysakis and Marie-Francine Moens. Online continual learning from imbalanced data.
Proceedings of Machine Learning Research, 2020.

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Aleš Leonardis, Gregory
Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying forgetting in classification
tasks. arXiv preprint arXiv:1909.08383, 2019.

Sayna Ebrahimi, Mohamed Elhoseiny, Trevor Darrell, and Marcus Rohrbach. Uncertainty-guided
continual learning with bayesian neural networks. arXiv preprint arXiv:1906.02425, 2019.

European Union. General data protection regulation, 2015. URL http://data.consilium.
europa.eu/doc/document/ST-9565-2015-INIT/en/pdf.

Mehrdad Farajtabar, Navid Azizan, Alex Mott, and Ang Li. Orthogonal gradient descent for contin-
ual learning. In International Conference on Artificial Intelligence and Statistics, pp. 3762–3773,
2020.

Dan Feldman and Michael Langberg. A unified framework for approximating and clustering data.
In Proceedings of the forty-third annual ACM symposium on Theory of computing, pp. 569–578.
ACM, 2011.

Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empiri-
cal investigation of catastrophic forgetting in gradient-based neural networks. arXiv preprint
arXiv:1312.6211, 2013.

Xu He and Herbert Jaeger. Overcoming catastrophic interference using conceptor-aided backprop-
agation. 2018.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521–3526, 2017.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Sang-Woo Lee, Jin-Hwa Kim, Jaehyun Jun, Jung-Woo Ha, and Byoung-Tak Zhang. Overcoming
catastrophic forgetting by incremental moment matching. In Advances in Neural Information
Processing Systems, pp. 4652–4662, 2017.

Soochan Lee, Junsoo Ha, Dongsu Zhang, and Gunhee Kim. A neural dirichlet process mixture
model for task-free continual learning. arXiv preprint arXiv:2001.00689, 2020.

Yu Li, Zhongxiao Li, Lizhong Ding, Peng Yang, Yuhui Hu, Wei Chen, and Xin Gao. Supportnet:
solving catastrophic forgetting in class incremental learning with support data. arXiv preprint
arXiv:1806.02942, 2018.

David Lopez-Paz et al. Gradient episodic memory for continual learning. In Advances in Neural
Information Processing Systems, pp. 6467–6476, 2017.

10

http://data.consilium.europa.eu/doc/document/ST-9565-2015-INIT/en/pdf
http://data.consilium.europa.eu/doc/document/ST-9565-2015-INIT/en/pdf

Under review as a conference paper at ICLR 2020

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. 2011.

Cuong V Nguyen, Yingzhen Li, Thang D Bui, and Richard E Turner. Variational continual learning.
arXiv preprint arXiv:1710.10628, 2017.

Dushyant Rao, Francesco Visin, Andrei Rusu, Razvan Pascanu, Yee Whye Teh, and Raia Hadsell.
Continual unsupervised representation learning. In Advances in Neural Information Processing
Systems, pp. 7647–7657, 2019.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2001–2010, 2017.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative
replay. In Advances in Neural Information Processing Systems, pp. 2990–2999, 2017.

Kumar Shridhar, Felix Laumann, and Marcus Liwicki. A comprehensive guide to bayesian convo-
lutional neural network with variational inference. arXiv preprint arXiv:1901.02731, 2019.

Junfeng Wen, Yanshuai Cao, and Ruitong Huang. Few-shot self reminder to overcome catastrophic
forgetting. arXiv preprint arXiv:1812.00543, 2018.

Jaehong Yoon, Eunho Yang, Jeongtae Lee, and Sung Ju Hwang. Lifelong learning with dynamically
expandable networks. arXiv preprint arXiv:1708.01547, 2017.

11

Under review as a conference paper at ICLR 2020

A APPENDIX

A.1 ADDITIONAL DETAILS FOR EXPERIMENTS

For our method, we initialize the prior as a normal distribution N (0, 1) for Split-MNIST, Rotated-
MNIST, and Permuted-MNIST, andN (0, 0.01) for Split CIFAR and MNIST-SVHN. The variational
distribution q is also a normal distribution N (µ, σ2), where the initial mean µ is randomly sampled
from N (0, 0.01) and the initial standard deviation is chosen such that σ = log(1 + eρ) where ρ is
sampledN (−5, 0.1), as suggested in the code by Shridhar et al. (2019). The time window length T
for task detection is set to the number of mini-batches in one epoch.

The results of Permuted MNIST with CN-DPM was obtained by setting the learning rates of both
the generator and discriminator to 1/4 of the original learning rates used for the MNIST dataset in
the original paper by Lee et al. (2020). The reason is that, without this change, the training process
with CN-DPM gets into ill-conditions that cause large fluctuations in the loss, ultimately generating
a very large number of experts making the training excessively slow.

A.2 TASK-WISE ACCURACIES

Tables 5–8 report the per task and overall accuracies for 5-Split MNIST, Split CIFAR, MNIST-
SVHN, Rotated MNIST, and Permuted MNIST, respectively. The accuracy is in percentages (%).

Table 5: Accuracies of 5-Split MNIST and Split CIFAR-10

5-Split-MNIST
Method 0/1 2/3 4/5 6/7 8/9 Overall
Fine-Tuning 0.00±0.00 0.00±0.00 0.00±0.00 0.00± 0.00 98.48±0.05 19.73±0.01
Reservoir 91.07±0.98 78.21±1.19 74.63±2.31 85.67±1.45 99.1±0.18 85.83±0.53
CN-DPM 98.27±0.18 93.59±0.54 92.24±0.33 94.95±0.24 92.57±0.11 94.38±0.11
Ours-NT 99.92±0.02 94.63±1.20 99.54±0.18 99.73±0.08 97.81±1.01 98.32±0.29
Ours-T 99.91±0.01 97.85±0.93 99.30±0.18 99.51±0.17 78.87±12.40 94.94±2.41

Split-CIFAR-10
Method 0/1 2/3 4/5 6/7 8/9 Overall
Fine-Tuning 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 96.76±0.23 19.35±0.05
Reservoir 20.85±2.49 15.58±3.20 29.07±3.59 60.85±2.32 96.28±0.44 44.53±0.71
CN-DPM 54.19±3.38 32.67±2.34 35.63±2.46 50.63±1.54 59.16±2.40 46.46±0.58
Ours-NT 80.79±3.62 56.39±9.21 28.42±10.71 47.92±10.27 24.75±7.72 47.65±4.00
Ours-T 84.66±0.20 61.38±8.40 37.03±11.03 85.02±1.70 41.27±4.90 61.87±2.81

Table 6: Accuracies of MNIST-SVHN

Method MNIST SVHN Overall
Fine Tuning 77.82±5.31 94.29±0.53 85.78±2.83
Reservoir 96.46±0.14 93.15± 0.38 94.90±0.14
CN-DPM 99.24±0.10 92.52±0.13 95.38±0.12
Ours-NT 98.83±0.09 85.3± 1.96 92.06±1.02
Ours-T 98.62± 0.08 88.26±0.16 93.34±0.09

12

Under review as a conference paper at ICLR 2020

Table 7: Accuracies of Rotated MNIST

Method 0◦ 30◦ 60◦ 90◦ Overall
Fine-tuning 21.96±1.04 42.86±1.76 84.42±0.77 98.46±0.06 61.93±0.73
Reservoir 76.38±2.09 85.39±1.63 93.69±0.40 98.49±0.07 88.49±0.79
CN-DPM 16.42±1.65 29.03±1.40 72.78±1.11 94.40±0.10 53.15±0.92
Ours-NT 96.34±0.11 96.83±0.07 96.67±0.05 96.36±0.14 96.57±0.04
Ours-T 95.07±0.28 97.64±0.16 97.65±0.06 96.96±0.08 96.93±0.11

Table 8: Accuracies of Permutated MNIST

Method T0 T1 T2 T3 T4
Fine-Tuning 12.12±2.42 15.7±1.05 19.12±4.09 16.78±3.98 24.00±4.52
Reservoir 75.46±1.62 81.15±2.65 78.84±3.14 81.93±3.17 86.22±1.55
CN-DPM 13.55±4.31 14.14±4.14 13.99±3.76 14±3.83 13.67±3.26
Ours-NT 96.64±0.11 96.84±0.11 96.38±0.11 96.13±0.5 95.67±0.14
Ours-T 96.62±0.12 97.43±0.13 96.89±0.15 88.77±0.49 89.60±0.85

Method T5 T6 T7 T8 T9 Overall
Fine-Tuning 32.04±7.51 48.27±3.86 70.44±4.07 90.02±1.25 97.77±0.19 42.62±1.54
Reservoir 89.05±0.74 91.95±0.58 95.09±0.62 96.8±0.16 98.17±0.14 87.47±0.60
CN-DPM 13.46±3.45 13.32±3.45 12.81±3.48 12.03±3.20 12.03±2.87 14.07±3.51
Ours-NT 95.21±0.17 95.04±0.16 94.84±0.11 94.79±0.26 94.48±0.14 95.60±0.04
Ours-T 89.04±0.05 88.56±0.29 88.40±0.56 87.65±0.71 87.62±0.69 91.05±0.35

A.3 VARYING SIZE OF EVALUATION BATCH FOR PROPOSED APPROACH

The results for different mini-batch sizes at inference are shown4 in Table 9, where R = 10. We
see that when the mini-batch size is 1, the accuracies of 5-Split MNIST and Split CIFAR are sub-
stantially worse than those with mini-batch size of 64. However, we obtain similar accuracies for
MNIST-SVHN, Rotated MNIST, and Permuted MNIST across different mini-batch sizes, which
suggests that task-homogeneity within a mini-batch is more need for class incremental learning than
for non-class incremental learning. Comparing with Table 2, we see that out method still gives
higher accuracies than baseline methods for rotated and permuted MNIST even if the mini-batch
size is 1 for inference. However, the accuracies for other datasets and task partitions are worse. This
suggests an interesting phenomenon that our method works well for continual learning scenarios
with certain characteristics.

4For permuted MNIST, only the results for one instance of the experiment are given, because we were not
able to obtain the results of 5 runs before the author response deadline, thus there is no standard deviation
shown for this case in the table.

13

Under review as a conference paper at ICLR 2020

Table 9: Accuracies of Different Mini-batch Sizes at Inference

Size: 1 Size: 2 Size: 4 Size: 8
5-Split MNIST Ours-NT-10 59.15±1.22 70.43±1.44 79.91±1.38 86.68±1.24

Ours-T-10 56.11±1.54 68.79±1.14 78.71±0.66 85.18±093
Split CIFAR-10 Ours-NT-10 28.05±0.33 28.91±0.56 30.98±0.51 35.12±0.98

Ours-T-10 31.17±0.67 34.22±0.81 38.67±0.95 45.08±0.31
MNIST-SVHN Ours-NT-10 90.76±0.39 92.17±0.22 93.18±0.15 93.60±0.19

Ours-T-10 89.82±1.03 91.61±0.56 92.91±0.31 93.49±0.16
Rotated MNIST Ours-NT-10 89.76±0.43 93.15±0.23 95.53±0.09 96.54±0.08

Ours-T-10 89.38±0.64 92.81±0.30 95.01±0.16 96.22±0.08
Permuted MNIST Ours-NT-10 89.04 94.13 95.52 95.60

Ours-T-10 83.78 88.68 90.96 91.45
Size: 16 Size: 32 Size: 64

5-Split MNIST Ours-NT-10 93.10±1.09 96.37±1.03 98.59±0.52
Ours-T-10 90.06±1.48 94.07±1.31 96.57±1.51

Split CIFAR-10 Ours-NT-10 40.73±1.86 45.69±4.01 47.17±7.70
Ours-T-10 53.01±1.69 59.13±3.11 64.24±4.64

MNIST-SVHN Ours-NT-10 93.64±0.17 93.66±0.18 93.65±0.19
Ours-T-10 93.60±0.17 93.61±0.16 93.59±0.17

Rotated MNIST Ours-NT-10 96.80 ± 0.06 96.87±0.06 96.89±0.027
Ours-T-10 96.69±0.08 96.87±0.05 97.01±0.14

Permuted MNIST Ours-NT-10 95.64 95.65 95.61±0.04
Ours-T-10 91.53 91.53 91.06±0.35

A.4 COMPARISON WITH TASK-BASED METHODS

In this experiment, we compare our approach with some existing task-based approaches that require
knowing the task identities during training, such as Orthogonal Gradient Descent (Farajtabar et al.,
2020), an approach that restricts the direction of the gradient updates to avoid catastrophic forgetting,
A-GEM that works by ensuring that the episodic memory loss over the previous tasks does not
increase (Chaudhry et al., 2018), EWC (Kirkpatrick et al., 2017) which is a popular regularization
technique using Fisher information to find the importance of weights, and Fine-Tuning SGD which
is a similar baseline as Fine-Tuning used in the main paper, which shows what happens if nothing is
done to avoid catastrophic forgetting. For these baseline approaches, we report the original results
from the paper by Farajtabar et al. (2020) and we run our approach for the same number of epochs
(i.e., 5) as for the baselines in order to compare fairly. Table 10 shows that our task-free approach
is also able to outperform task-based baseline approaches. We emphasize here that even in this
experiment, our approach is run without knowledge of task identities, for both training and inference,
whereas all baselines have such knowledge during training.

Table 10: Comparison with task-based methods

Rotated MNIST
Method 0◦ 10◦ 20◦ 30◦ 40◦

OGD 75.6±2.1 86.6 ±1.3 91.7 ±1.1 94.3± 0.8 93.4±1.1
A-GEM 72.6±1.8 84.4 ±1.6 91.70 ±1.1 93.9± 0.6 94.6±1.1
EWC 61.9±2.0 78.1 ±1.8 89.0 ±1.6 94.4± 0.7 93.9±0.6
Fine-Tuning (SGD) 62.9±1.0 78.5 ±1.5 88.6 ±1.4 95.1± 0.5 94.1±1.1
Ours-NT 94.47±0.09 95.91±0.42 96.61±0.07 96.30±0.26 97.11±0.04
Ours-T 95.26±0.29 96.97±0.17 97.18±0.35 97.02±0.28 97.59±0.18

Permutated MNIST
Method T1 T2 T3 T4 T5
OGD 79.5±2.3 88.9 ±0.7 89.6±0.3 91.8± 0.9 92.4±1.1
A-GEM 85.5±1.7 87.0 ±1.5 89.6 ±1.1 91.2± 0.8 93.9±1.0
EWC 64.5±2.9 77.1 ±2.3 80.4 ±2.1 87.9±1.3 93.0±0.5
Fine-Tuning (SGD) 60.6±4.3 77.6 ±1.4 79.9 ±2.1 87.7±2.9 92.4±1.1
Ours-NT 94.16±0.18 95.58±0.02 96.24±0.03 96.20±0.13 95.68±0.05
Ours-T 94.28±0.20 96.54±0.11 96.42±0.07 95.05±0.37 89.13±2.90

14

Under review as a conference paper at ICLR 2020

A.5 ADDITIONAL EXPERIMENTS FOR MODEL MANAGEMENT

In this experiment, five tasks of Split-MNIST appear cyclically so that there are 15 tasks in total,
i.e., the sequence of tasks are 0/1, 2/3, 4/5, 6/7, 8/9, 0/1, 2/3, Results reported in Table 11
show that our model management approach is able to remove redundant models and can reduce the
number of stored models to 5 without affecting the accuracy. The results are obtained using our
method with knowledge transfer (i.e., Ours-T).

Table 11: Varying Capacity, Cyclic Split-MNIST (15 tasks)

Capacity
(i.e.,N)

0/1 2/3 4/5 6/7 8/9 Overall

5 99.80±0.23 95.66 ±1.10 99.55±0.07 99.60±0.55 97.074±0.25 98.33±0.30
15 99.92±0.02 98.17 ±0.48 99.73±0.13 99.7±0.09 96.63 ±9.39 98.89±0.17

15

	Introduction
	Related Work
	Preliminaries
	Our Approach
	Training
	Inference

	Experiments
	Conclusion
	Appendix
	Additional Details for Experiments
	Task-wise Accuracies
	Varying size of evaluation batch for proposed approach
	Comparison with Task-Based Methods
	Additional Experiments for Model Management

