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Abstract

Many multi-agent systems in practice are decentralized and have dynamically
varying dependencies. There has been a lack of attempts in the literature to
analyze these systems theoretically. In this paper, we propose and theoretically
analyze a decentralized model with dynamically varying dependencies called the
Locally Interdependent Multi-Agent MDP. This model can represent problems
in many disparate domains such as cooperative navigation, obstacle avoidance,
and formation control. Despite the intractability that general partially observable
multi-agent systems suffer from, we propose three closed-form policies that are
theoretically near-optimal in this setting and can be scalable to compute and store.
Consequentially, we reveal a fundamental property of Locally Interdependent Multi-
Agent MDP’s that the partially observable decentralized solution is exponentially
close to the fully observable solution with respect to the visibility radius. We then
discuss extensions of our closed-form policies to further improve tractability. We
conclude by providing simulations to investigate some long horizon behaviors of
our closed-form policies.

1 Introduction

Many important real-world multi-agent applications are decentralized and have local dynamic
relationships between agents. Examples cut across a broad spectrum of areas including obstacle
avoidance, cooperative navigation, formation control. The decentralized nature of the problem
presents a key challenge because agents have limited access to the state information of other agents.
This may be introduced either artificially to improve scalability or by physical constraints caused
by communication limitations. Another challenge is, that while each agent has their own dynamics,
they are interacting with the set of nearby agents that are dynamically varying. The presence of such
dynamic interactions makes the decision problem for different agents highly coupled and nontrivial.

With the recent successes in Reinforcement Learning (RL), there has been an increasing desire to
use this emerging tool for these types of decentralized multi-agent systems with locally dynamic
agent interactions. However, most of the work in this area is empirical ([19, 12} 15, (18 14} 136, 24, 2]).
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This is because it is non-trivial to create a model that accurately represents the decentralized partial
observability and dynamic local dependencies of agents while producing theoretically sound and
relatively tractable solutions. In addition to the empirical work, there has been a growing literature on
theoretical MARL, but none attempt to model and solve the challenges brought by the decentralized
partial observability and local dynamic agent interactions [27} 125} 26, [17} 16 35} |29 18]

The discussions above naturally motivate the question:

Can we theoretically model and find near-optimal policies for decentralized agents with dynamic
local dependencies in a scalable manner?

We answer this question affirmatively with our contributions described below.

1.1 Contributions

For our first contribution, we propose a novel setting called the Locally Interdependent Multi-Agent
MDP. It is a cooperative setting that consists of multiple agents acting in a common metric space. It
models dynamic proximity-based relationships that allow agents within a distance R to influence and
depend on one another. Furthermore, agents within proximity ) are also permitted to communicate
with each other. As the location of the agents can dynamically change, both the “dependence graph”
and the “communication graph” can be dynamic and time-varying.

As a second contribution, we provide near-optimal solutions and establish a fundamental property of
this setting. Specifically, we attempt to answer the following two questions:

1) Are there decentralized policies in this setting that perform well theoretically?

We provide three closed-form policy solutions we call the Amalgam Policy, the Cutoff Policy, and the
First Step Finite Horizon Optimal Policy. The policies in our decentralized framework have nearly the
best possible theoretical performance guarantees in this setting. This is shown by providing an upper
bound for the performance of each of policy we construct (Theorem [3.1} Theorem 3.2} Theorem 3.3))
and matching them with a performance lower bound we also construct (Theorem 3.4)), up to constant
factors.

2) How significantly does decentralized partial observability impact the best possible performance?

As a corollary, we reveal that the performance of the optimal policy in our partially observable
decentralized framework will approximate the optimal fully observable centralized policy exponen-
tially well with the increase in the visibility radius. This establishes a fundamental property of our
decentralized framework in Locally Interdependent Multi-Agent MDP’s.

Lastly, we give insight into the practical uses and behavior of our policies. We present some extensions
of our solutions that can further improve scalability, and provide simulations of toy problems in
obstacle avoidance, cooperative navigation, and formation control. They demonstrate the long term
behaviors of the policies and act as a proof of concept for applications in more complex systems.

Together, these contributions constitute a novel framework that has wide applicability and has
closed-form solutions with rigorous theoretical guarantees that are implementable in practice.

1.2 Related Work

Our work is related to two bodies of literature.

Firstly, there exist many lines of empirical work that consider a multi-agent setting with decentralized
agents and dynamic local dependencies. In fact, many resemblances of our model show up in practical
applications in problems such as cooperative navigation, obstacle avoidance, and formation control
[12,15,[19]. Some examples are robot navigation [[12, [18]], autonomous driving [24, 2], UAV’s [4} 5],
and USV’s [36]. However, all of these works are empirical in nature and our goal is to provide a
theoretical framework for these types of problems.

Secondly, our work is also related to the large body of the theoretical MARL literature. This is a very
broad area and some representative works include V-learning [3} 14} |31], mean-field RL [33} |11} [7]],
and function approximation [32| (15, [13]]. In this literature, the areas most related to us are 1) the
Dec-POMDP, 2) scalable RL, and 3) decentralized RL.



1) Our setting is indeed a special case of the Dec-POMDP [22| 23|]. Unfortunately, solving a general
Dec-POMDP is NEXP-Complete. Similar to our approach, there have been many attempts to consider
special cases of the Dec-POMDP to improve tractability. However, as far as we know, these methods
inherit the hardness of the Dec-POMDP [10, 16} [1]], cannot model the setting we consider, or are not
theoretically analyzed. A close example to our setting in the partially observable multi-agent literature
is the Interaction Driven Markov Game (IDMG) [28| 20] which has many related aspects to our
setting such as rewards decomposing into a single-agent component and a multi-agent component, but
the theory is not well explored. Compared to the IDMG, we make some additional assumptions, but
we believe the key insight that improves the theoretical quality of our solution is to allow coordination
between agents for several time steps prior to reward dependence (see the Lemma [B.T)). Another
example of a related setting is the Network Distributed POMDP [21}|34] which has some resemblance
of our setting such as transition independence and group reward dependence. However, it assumes a
fixed reward grouping and independent observations, neither of which holds in our setting. As far as
we know, the literature in this area is not able to solve problems in our setting in a theoretically sound,
tractable, and scalable manner. We take a unique approach to circumvent the difficulties of analyzing
general partial observability structures. Namely, we propose reasonable closed-form solutions for a
particular environment and observability structure and then theoretically prove their effectiveness.

2) The scalable RL literature considers a setting very close to ours [27} 25,26, [17]]. It considers
decentralized agents with local dependencies much like our setting, however, the dependence network
between agents is fixed or stochastic and the dependence is in terms of the probability transitions.
Our work has dynamic time-varying dependence networks between agents and the dependence is
in terms of the rewards. Nevertheless, it can be considered an extension of works in this area and
resemblances of relevant concepts such as the exponential decay property can be seen in this work.

3) The distributed RL literature considers multiple agents connected through a possibly stochastic
network [16, 135291 [8]]. It differs in that the objective of the distributed RL literature is to find the
joint optimal policy for all the agents by exchanging reward information with its neighbors. In our
case, agents will exchange state information with other agents and act only according to that acquired
state information.

2 Preliminaries

2.1 Locally Interdependent Multi-Agent MDP

We consider a setting with a set of agents N” = {1, ...,n}. Each agent k is associated with a state z,
from a common metric space X with an associated distance metric d. This state xj, is the “location”
of agent k. Further, each agent k € N will also have an internal state from a local state space V.
Thus the state for agent & can be represented as s, = (2, yx) € Sk where 2, € X and yi, € V.

Given the distance metric d, agents j, k € N at states s; = (z;,y;) € Sj, sk, = (xk, yx) € Sy, are
then associated with a notion of distance. We overload notation and denote the distance d between
states as d(s;, sx) = d(z;, Tk).

Each agent takes an action ay, that lies in a local action space Ay. Given sy (t), ax(t) at time ¢, agent
k’s state transitions according to a local transition function Py, i.e. si(t + 1) ~ Px(+|sx(¢), ax(¢)).
We assume agents will not travel more than a distance of 1 at each step. That is, Py (s},|sk, ax) = 0 if
d(sk, si,) > 1. Since the distance of 1 is a unitless distance dictated by the metric space, this simply
reflects the assumption that movement distance at each step is bounded.

Agents will cooperate and take actions to accumulate discounted rewards that have independent and
interdependent components. Agents will obtain independent local rewards according to a local reward
function 7;(s;, a;) at each step. Furthermore, for other agents & within a distance of a dependence
constant R of agent j, an arbitrary reward of 7; (s}, a;, s, a) will be added. These rewards will
then be discounted by factor « throughout the time steps.

This proximity-based reward function incentivizes each individual agent while providing rewards
and penalties for agents within its vicinity according to the distance metric d. As agents move
throughout the space, they will begin to influence each other in a time-varying dynamic way.
If we assert 7; 1 (s;,a;, Sk, ar) = 0 when d(s;,sr) > R, we can compactly say r;(s,a) =
Y ken Ti k(855 a4, 8k, ax) where if j, k are equal, we say 7 (s, a;j, 55, a;) = T;(s;5,a;).



To summarize, we define the Locally Interdependent Multi-Agent MDP to be M = (S, A, P,r, R, ~):

e S =851 x..x8,
e A=A x..x A,
* P(s'|s,a) = [Ien Pe(s)|sk, ax) where Py (s)|sk, ax) = 0if d(sg, s7,) > 1

s r(s,a) = Zj)keNFj7k(Sj7a/j7$k,ak) where T; i (sk, ak, sj, a;) = 0 when d(s;, si) > R.
j, k may be equal.

For the subsequent sections, we denote 7 = sup, ,|7(s, a)|

We will also indicate a finite realizable trajectory in this MDP to be a sequence of state actions
(s(t),a(t)) fort € {0, ..., T} that have the property P(s(t+1)|s(t),a(t)) > 0forall t € {0,...,T —
1}. This is similarly defined for infinite realizable trajectories.

2.2 Group Decentralized Policies

To introduce partial observability, we say two agents can communicate with each other and take a
coordinated action if there is a path of adjacent agents each within a constant distance V' of each other
with V > R. Formally, for s € S, the visibility partition on the agents A" denoted as Z(s) is defined
by the equivalence relation such that for agents j, k € N, there is a sequence of agents ny, ..., 7y
such that ng = j,ny = k and d(n;,n;+1) < Vfori € {0,...,£ — 1}. We say two agents within the
same visibility partition can then communicate with one another (see Figure|[T).

Therefore our partially observable policy class of interest IT), contain policies 7 : S — A(A) that
take the form 7(s) = (7.(s.) : z € Z(s)) where agents within the same visibility group z € Z(s)
act according to some coordinated policy 7, in M, which is the associated Locally Interdependent
Multi-Agent MDP defined on a subset of agents z C N with the same S;, A;, P;,T; for j,k € z.
In other words, for z € Z(s), 7, will be a centralized policy based solely on the states of agents in
the communication group and can thus be executed by our communication assumptions. We call this
the group decentralized policy class.

We will generalize this notation and define a concatenation of policies. For a partition P(s) on N
possibly depending on s, and policies 7, (s, ) for p € P(s), the concatenation of policies is denoted

as 7 (s) = (my(sy) - € P(s)).

Throughout this paper, we also indicate a sample trajectory 7 = (s(t), a(t)) distributed from a policy
7 with starting state s and starting action as a as 7 ~ 7|, . If only the starting state is conditioned,
we use 7 ~ T|s.

2.3 Scalability

Notice that the size of this group decentralized policy class can be significantly smaller than all
possible policies. To illustrate, we first establish a Locally Interdependent Multi-Agent MDP with
kM agents, a finite | X|, finite |.A;| with |.A;| = |.A;| for all 4, and a trivial internal state space for
each agent. Now consider the policy class with policies of the form 7(s) = (m,(sq) : g € G)
for some fixed partition G with M agents in each group. The space required to store a group
decentralized policy will be k| X' | |A;|™ elements as opposed to | X'|*M | A; |*M elements, which
is a very dramatic difference numerically. Furthermore, the space required to store a deterministic
group decentralized policy is reduced from | X |¥M to k|X'|M elements.

In the group decentralized policy class “G” changes dynamically with the state so the numerical
advantages are MDP dependent. However, in practice, the improvements can be quite substantial (see
Appendix [A.5]for an example). The size reduction is reflected in the reduced space required to store
these policies as well as the reduced computation time of some algorithms used to find them. We
demonstrate this with the algorithms used to find the Cutoff and First Step Finite Horizon Optimal
Policies, to be introduced later in Section [3]and extensions in Section

2.4 Objectives

In this setting, we formally would like to answer the following questions that correspond to our
objectives defined in Section [I.1}
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Figure 1: 3 agents moving in the space of X = R? with standard Euclidean distance. The bottom
two agents potentially have an interdependent reward since they are within distance R of one another.
Furthermore, every agent is within distance V of another agent so all agents can communicate with
each other. Notably, the top and bottom agents may communicate even though they are not within
distance V of each other.

1) Are there decentralized policies in this setting that perform well theoretically?

Formally, we attempt to find group decentralized policies 7 that maximize V7™(s) =
Errl, Z;ﬁo Yr(s(t),a(t))|-

Equivalently, if we denote 7* to be the optimal policy for all possible policies in the MDP and
abbreviate V* = V™, we attempt to find group decentralized policies 7 such that |V*(s) — V™ (s)|
is small. This will establish concrete group decentralized policy solutions for Locally Interdependent
Multi-Agent MDP’s.

2) How significantly does decentralized partial observability impact the best possible performance?

Formally, we ask whether |[V*(s) — max e, V™ (s)| is small. This will answer whether the group
decentralized policy class is a viable alternative to the entire policy class for optimization purposes.

In this paper, we will answer both of these questions simultaneously by providing three group
decentralized policies with tight bounds.

2.5 Properties

Recalling V > R, a consequence of the reward and visibility structure is a buffer of time that agents
can coordinate before the dependence begins. A constant that will occur frequently in this paper is
c= L%J and it represents the number of time steps that an agent from a visibility group cannot
interact with agents from other visibility groups. This is more rigorously discussed in Lemma[B.T}
the Dependence Time Lemma.

Further, the positive gap between the visibility and dependence constant can be used to create
an equivalent representation on the reward function. Firstly, for any ¢ C N define ry(sg,ay) =
Zj,keg 7;.k(Sj,aj, Sk, ar). Then since 7; k(s;, a;, sk, ar) = 0 when d(s;, sp) >V > R, we can
say r(s,a) = 3. cz(s) T=(82, az). This equivalent decomposition for the reward function will also
be used regularly.

2.6 Applications

In terms of modeling tasks in the environment, we may consider specific instances of the Locally
Interdependent Multi-Agent MDP. We describe examples of three specific tasks below.



2.6.1 Cooperative Navigation

In cooperative navigation, agents need to navigate toward a location without colliding with other
agents, where two agents collide if they enter into a physical “width” of each other [[19]. Cooperative
navigation problems are important in areas that have vehicles moving in a physical environment such
as in autonomous driving, UAV’s, robot navigation etc.

To model this, we can set R to be the maximum width of an agent and assign a large penalty when
other agents enter their width radius, or something more intricate depending on the application. For
each agent k, we may provide individual incentives (such as for navigating to a location) by properly
designing T (sk, ax ). Thus agents are incentivized to accumulate individual rewards 7 (s, ay,) (for
navigating to a location) while avoiding penalties for colliding other agents. Each agent may also
have differing dynamics P, depending on the physical environment.

For a toy example of cooperative navigation using Locally Interdependent Multi-Agent MDP’s see
Appendix[A.3]

2.6.2 Obstacle Avoidance

In the setting established in the previous section, we may also incorporate many types of dynamic
obstacles by treating the obstacles as agents with trivial action spaces. For example, an obstacle
b € N would have a trivial action space A, = {X } and dynamics s, ~ P,(-|sp, X) that model the
movement of the obstacle. We may then penalize other agents that are within R of agent b. For an
example of a static obstacle, see Appendix [A.3]

In the above setting, the other agents do not know the position of obstacle b apriori, so the agents
must adapt to it dynamically. This is in contrast to integrating an obstacle into the reward function by
penalizing agents for approaching a point * € X'. In this case, all agents would know the position of
this obstacle at all times.

2.6.3 Formation Control

In some applications, we would like agents to accomplish a task such as cooperative navigation or
obstacle avoidance but prefer a specific formation, such as for drag reduction and surveillance in
UAV’s [30, 9]

By providing a more intricate structure on r, we may specify a preferred relative position to each
agent. Suppose for example that relative to agent 1 at position x; € &', we would prefer if agent 2 and
3 are at positions 3, x5 € X respectively where d(z1, 23) < R and d(z1,2%) < R. For example,
x5, x5 may form a specific angle or maintain a specific distance with x;. Then for all possible internal
states for the three agents, we may take the associated states s1, s3, s5, and set 7(s1, a1, s, a2) and
7(s1,a1, S5, a3) to be a positive quantity for any a1, az, as to incentivize these positions. In the case
X is continuous (such as R?), these can be small positive reward regions that lie in a radius R of
agent 1. This type of reward structure in the Locally Interdependent Multi-Agent MDP can model
complex formations that prefer specific agent positions relative to each other.

For an implementation of a toy example see Appendix [A.4]

3 Main Results

Here we settle the case of whether the group decentralized policy class can perform well in the
broadly applicable class of Locally Interdependent Multi-Agent MDP’s. We answer our objectives by
first providing three closed-form stationary group decentralized policies with associated upper bound
guarantees. Then, we provide a lower bound guarantee that matches each upper bound up to constant
factors. Lastly, as a corollary, we find that the performance of group decentralized policies improves
exponentially with respect to the visibility.

All theorems are proved in Appendix [D]



3.1 Three Upper Bound Constructions
3.1.1 Amalgam Policy

With our motivation to find group decentralized policies that perform well theoretically for general
Locally Interdependent Multi-Agent MDP’s, we introduce our first construction, the Amalgam Policy
A. It is defined by taking the optimal policy for each visibility group. It is named as such because it is
an amalgamation of local joint optimal policies. Formally A(s) = (75(s;) : Vz € Z(s)) where 7}
is the optimal policy for M, the Locally Interdependent Multi-Agent MDP defined for a subset of
agents z. We show that it satisfies the guarantee:

Theorem 3.1. [V*(s) — V*(s)| < (1fv)270+1f'

Recalling the definition ¢ = L%J this shows the quality of the Amalgam Policy improves

exponentially with the increase of the visibility. Storing this policy will in general require less space
because it only requires storing 7% (s ) for states s, with agents z in the same communication group.
Computing this policy can be fully scalable to compute when group sizes do not exceed some constant
L. A more in-depth discussion is provided in Sectiond] In the long horizon, this policy performs
well for many of our examples described in Appendix [Al

In addition to the Amalgam Policy, we now introduce two more policies that approach the problem in
unique ways and have some differing properties.

3.1.2 Cutoff Policy

We now introduce the group decentralized Cutoff Policy x which has properties that take advantage
of the setting to improve scalability. We introduce a notion of the Cutoff Multi-Agent MDP which
modifies the communication structure for Locally Interdependent Multi-Agent MDP’s so agents are
not allowed to re-enter visibility groups (for more details see Appendix [C). The Cutoff Policy is
the optimal policy in the Cutoff Multi-Agent MDP converted for use in the Locally Interdependent
Multi-Agent MDP setting. Formally, we define x(s) = (7$((s., {z})) : Vz € Z(s)).

We prove the bound:

Theorem 3.2. |[V*(s) — VX(s)| < (12:%”c+17:_

Again, this is a group decentralized policy so it benefits from the reduced space required to store
the policy. However, in contrast to the Amalgam Policy, the computational scalability described in
Section[2.3]is achieved with the Cutoff Policy. It benefits from the partial observability because of
the inherent properties of the Cutoff Multi-Agent MDP. Namely, the exact Bellman Equations in
the Cutoff Multi-Agent MDP only require the computation of values for states s, where all agents
in z are in the same communication group (See Appendix [C). This can significantly improve the
tractability, as the computational scalability now reflects the size of the stored policy.

The policy can perform better than the Amalgam Policy in the long horizon for examples with positive
interdependent rewards (see Appendix [A.2)).

3.1.3 First Step Finite Horizon Optimal Policy

The final policy is called the First Step Finite Horizon Optimal Policy ¢. As the name suggests,
the policy will take the first step in the discounted finite horizon optimal policy for the Locally
Interdependent Multi-Agent MDP. Formally, if {7*?, 7% ..., 7%} are the set of discounted finite
horizon optimal policies with horizon c, the policy is defined as ¢(s) = 7*9(s). This is stationary
and shown to be a group decentralized policy by Corollary For this policy, we prove:

Theorem 3.3. [V*(s) — V?(s)| < %vcﬂﬁ

We also show that the First Step Finite Horizon Optimal Policy can equivalently be computed on the
Cutoff Multi-Agent MDP with Theorem Therefore, we obtain the same reduced computational
and storage savings. However, since this policy only considers a limited horizon, the long horizon
behavior can be inferior to the other two.



3.1.4 Summary of the Three Policies

These three group decentralized policies take different intuitive approaches to perform well. Roughly,
the Amalgam, Cutoff, and First Step Finite Horizon Optimal Policies convert the optimal policy
7*, optimal cutoff policy 7, and the optimal discounted finite horizon policy {7*0, 7*1 ... 7*¢},
respectively, into valid stationary group decentralized policies.

All of these policies are more tractable to store and compute than the optimal policy except for the
Amalgam Policy which can be modified using our discussions in Section[d]to improve computational
scalability.

Although they all satisfy a similar theoretical guarantee, differences will show in varying long horizon
behaviors that are explored in Appendix [A]

3.2 Lower Bound

Next, we present a construction for a lower bound on the best possible group decentralized policy.

Theorem 3.4. There exists a Locally Interdependent Multi-Agent MDP M({) such that for every
visibility V = 20+ 1, £ € {0, 1, ...}, there exists s, a such that |V*(s) — maxqem, V™ (s)| > %7:22 7.

1

The above lower bound matches our three prior results up to constant factors and proves they nearly
have the best performance guarantee we can establish for general Locally Interdependent Multi-Agent
MDP’s.

3.3 Performance of Group Decentralized Policies

To conclude, notice all three upper bounds are also upper bounds for |V*(s) — maxqem, V().
Together with our discussion above, we have proven a fundamental property of group decentralized
policies in Locally Interdependent Multi-Agent MDP’s. Namely,

Corollary 3.5. |V*(s) — max,em, V™(s)] = O(7Y).

We know this is the best asymptotic guarantee we may establish for general Locally Interdependent
Multi-Agent MDP’s because of our lower bound. This shows that the class of group decentralized
policies can indeed produce viable solutions in Locally Interdependent Multi-Agent MDP’s.

4 Fully Scalable Extensions

We discussed in Section [2.3|that for our setting, the restricted visibility can improve the computation
and storage requirements of these group decentralized policies. Here, we present modifications of our
policies that fully mitigate the effect of the curse of dimensionality and are completely scalable.

As is currently presented, when the visibility groups become too large, the state and action space grow
exponentially and the group decentralized policies can still be intractable to compute and store. The
goal of the following extensions is to effectively deal with the situation where group sizes become
too large.

4.1 Eliminating Large Groups

Depending on the specific Locally Interdependent Multi-Agent MDP instance and the initial state we
are interested in, agents may be sparse in X when running our group decentralized policies. This
may happen when agents within R of each other are penalized and agents are incentivized to pursue
spread-out independent rewards. With this sparsity, visibility group sizes may naturally not exceed
some small constant L. when running our group decentralized policies. Then, for our three policies,
we would only need to compute them for N" = L agents. This can result in extreme computational
savings in practice. See Appendix [A.3]for a toy example of how we can tractably compute the exact
Amalgam Policy for many agents with a fixed initial state.

Since we are running the exact policy, our bounds in Section [3] hold for this initial state while
benefiting from the scalability.



4.2 Reducing Visibility and Splitting Large Groups

Suppose that a group decentralized policy starting at a particular initial state, the sizes of visibility
groups do exceed L but the dependence groups (similar to visibility groups but defined for radius
R) do not exceed size L. This may occur when V is much larger than R. Then, we may reduce the
complexity by artificially splitting the visibility groups into smaller groups that do not exceed size
L. For the best possible split based on the visibility, we may reduce the visibility ) just until the
point Vy, (up to some precision) that visibility group sizes do not exceed L. Essentially, reducing the
visibility makes the agents more “sparse”.

4.3 Approximations of Large Groups

Lastly, we may handle larger group sizes > L by using empirical tools such as deep actor-critic
methods [19]. For the Amalgam Policy, we may use these methods as intended to find an approx-
imation for the optimal policy for these large groups of agents. For the Cutoff and the First Step
Finite Horizon Policies, empirical methods may need to be modified using the Bellman Optimality
equations presented in Appendix [C|

This method is unique in that it combines theoretical and empirical methods. For the Amalgam Policy,
in the case that the group sizes are small < L, the local optimal policies are taken. When group sizes
become large and finding the exact optimal policy is difficult, we transition to our empirical methods.
This method provides very scalable solutions for Locally Interdependent Multi-Agent MDP’s.

5 Conclusion and Future Works

We have formulated a broadly applicable theoretical framework that models partially observable
decentralized agents with dynamic local dependencies. We illustrated this using examples of appli-
cations such as cooperative navigation, obstacle avoidance, and formation control. We found three
closed-form policy solutions (Amalgam Policy, Cutoff Policy, and First Step Finite Horizon Optimal
Policy) which satisfied theoretical upper bounds that were optimal up to constant factors. We also
discussed the improved scalability in storing and computing these policies. Then, we gave various
extensions to further improve the scalability of these policies. Lastly, we provided simulations and
investigated the long term behaviors of the policies.

Overall, we believe that the proof techniques utilized in this paper may be used for applications
beyond the Multi-Agent MDP setting. For example, the Telescoping Lemma as stated applies to
general MDP’s and is not commonly seen or used.

Empirically, the scalability, applicability, and long horizon behaviors of the Amalgam and Cutoff
Policies seem promising (see Appendix [A) when considered with our extensions described in
Sectiond] Some work however is required to overcome limitations described in Appendix [A.6]

An interesting follow-up work would be methods for performing reinforcement learning in this
context. We are also interested to see whether we can extend this work to the setting where agents
only act based on agents within view rather than forming communication groups.
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A Long Horizon Simulations

Our theory demonstrates that asymptotically, increasing the visibility of the Amalgam, Cutoff, and
First Step Finite Horizon Optimal Policies will improve their quality exponentially. The First Step
Finite Horizon Optimal Policy achieves this by considering the first c iterations and ignoring rewards
beyond distance c. However, in practice, we may be interested in the behavior of these policies
far beyond c iterations for fixed visibility V and initial state, such as when rewards are sparse and
unavailable for many iterations past c or when the visibility is small. Therefore, we would like to
study the non-trivial long horizon behaviors of the Amalgam and Cutoff Policies.

For the above purpose, we will run toy grid-world simulations for various settings which will serve
as a proof of concept for our policy constructions, demonstrate the applications of our Locally
Interdependent Multi-Agent MDP settings, and uncover some peculiarities of our policies in the long
horizon. We will then discuss various rollouts of the policies starting from a specific initial state in
the various instances of the Locally Interdependent Multi-Agent MDP.

In the figures, red will represent the optimal policy, blue will represent the Amalgam Policy, and
green will represent the Cutoff Policy. The initial starting points are denoted by X’s and self-loops
labeled with numbers describe how many times agents stayed in that position. Spaces colored in green
represent locations where agents may obtain independent rewards and red represents independent
penalties.

All examples shown will have trivial internal states and deterministic transitions.

A.1 Bullseye Problem

The purpose of the following example is to demonstrate our theory described in the paper, provide an
example of cooperative navigation, and begin exploring the differences between the Amalgam and
the Cutoff Policies. The outcome of the simulation is shown in Figure 2]

For this problem, we have a central reward of +100 that agents obtain individually at the center of
the bullseye shown in green. Agents that reach the bullseye will not interact with any other agents
and will no longer obtain any other rewards (formally, they are sent down a long chain of states with
no rewards). Furthermore, any agent that is within a radius R = 20 of another agent is penalized
with —500. Also, agents that move away from the bullseye are penalized with —2. The visibilities
are described beneath the figure and the discount factor is v = 0.9. We consider 2 agents and put
one of them 24 spaces on the left side of the bullseye and the other 25 spaces on the right side. The
optimal policy is to wait for the closer agent to get close enough to the bullseye and trail behind.

We see that the Amalgam Policy with VV = 25 takes a sub-optimal policy that backtracks as it notices
the other agent approaching. As we increase the visibility, we find the number of backtracks decreases,
and the quality of the value function improves very quickly.

We also see at the bottom, the Cutoff Policy does not perform well in this example. A common theme
across these simulations will be that the Cutoff Policy performs poorly when the interdependent
rewards are primarily penalties. Note that this does not conflict with our theoretical upper bounds and
a more extensive discussion is given in Appendix[A.6
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Figure 2: Bullseye Problem: In red is the optimal policy with a discounted sum of rewards of 8.85.
The top three in blue are Amalgam Policy rollouts with V = 25,V = 35, V = 45 top to bottom. They
have a total discounted reward of 6.74, 8.26, and 8.85 respectively. Therefore, [V*(s) — V*(s)] is

2.11, 0.59, 0 respectively. In green is the Cutoff Policy with )V = 25. It obtains a discounted reward
of —5.38. All reported discounted sum of rewards are rounded to the second decimal place.

A.2 Aisle Walk Problem

The following example demonstrates that the Cutoff Policy does indeed perform better than the
Amalgam Policy for certain examples. This example will have positive interdependent rewards. The
outcome of the simulation is shown in Figure 3]

For this problem with 2 agents, with )V = 2, an interdependent reward of 20 is given whenever the
agents are within R = 1 step of each other, so the agents are incentivized to stick together. However,
there is a tempting reward of 4120 on either side shown in green, that agents may split apart and
obtain on the sides of the central aisle. Agents are required to move one step forward at each time
step and can only change the column they are in to move out of the central aisle or return to the
central aisle at specific points shown in the figure. At the top of the figure, the agents are stuck in
those positions and left to interact interdependently for the remainder of the iterations. The discount
factor is v = 0.9. The optimal policy is then to split apart to obtain independent rewards and rejoin
again at the end of the aisle.

We see that, for this example, the Cutoff Policy performs better than the Amalgam Policy. The
Amalgam Policy is tempted by the independent rewards and does not have the mechanism to rejoin
again because the other agent is out of view. However, the Cutoff Policy takes this into account and
decides that staying in the aisle is the best option.
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Figure 3: Aisle Walk Problem: In red is the optimal policy with a discounted reward of 496.84, In
blue is the Amalgam Policy with a discounted reward of 234.40, and in green is the Cutoff Policy
with a discounted reward of 400. All reported discounted sum of rewards are rounded to the second
decimal place.
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A.3 Highway Problem

This problem demonstrates obstacle avoidance in our setting and provides another example of the
Cutoff Policy performing poorly when penalties are introduced in the interdependent rewards. The
outcome of the simulation is shown in Figure [}

Again with 2 agents, if any agent is within R = 3 of another, the agent receives an interdependent
penalty of —500. One agent is fixed near the center and acts as an obstacle. The visibility is V = 5.

There is a primary reward at the top left of 4100 shown in green and agents that achieve the primary
reward will no longer obtain any other rewards. The agent that is not fixed has the option of traveling
around the obstacle agent to obtain the primary reward or to use the “highway” at the bottom left
shown in red to transport there in 1 iteration but incur a penalty of —25. Using the highway will thus
result in a less discounted primary reward. The discount factor is v = 0.98. The optimal strategy is
to pay the price and take the highway to the +100 reward because of the obstacle agent that is in the
way.

The Amalgam Policy has limited visibility and does not initially see the obstacle. Thus, it attempts
to maximize its reward by avoiding the cost of the highway and taking the long way around. Once
it notices the obstacle, it avoids it and eventually receives a greater discounted final reward that is
suboptimal.

The Cutoff Policy shown in Figure [5|once again becomes confused once it notices the obstacle and
performs poorly. This is again due to the penalties introduced in the interdependent rewards. A
discussion of this phenomenon is provided in Appendix
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Figure 4: Highway Problem with Amalgam and Optimal Policy: In red is the optimal policy with
a discounted reward of 73.5 and in blue is the Amalgam Policy with 70.93 rounded to the second
decimal place.
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Figure 5: Highway Problem with Cutoff Policy: In green is the Cutoff Policy with an accumulated
discounted reward of 0.

A.4 Lane Merging Problem

The purpose of this example is to provide an example of formation control and to show a situation
that both policies find the optimal policy. The outcome of the simulation is shown in Figure [f]

For this example, every agent can only move forward or stay in its position. If an agent is within 1
distance of another agent, it will incur a penalty of —500. However if the agent are exactly R = 2
distance from another agent, it will receive a reward of 410. Lastly, any agent in the rightmost 7
squares will receive a reward of 4+-100 at every step. VV = 4 and the discount factor is v = 0.9. There
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are two agents on each side of two lanes that merge in the center, one set closer to the junction than
the other. The optimal strategy is then to allow the agents closer to the junction to pass and then to
follow in formation.

All policies for this example find the exact optimal policy. Once the agents take a step forward, the
agents all come within view of each other and they can coordinate effectively.
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Figure 6: Lane Merging Problem: The Amalgam, optimal, and Cutoff Policies have the same
trajectory with accumulated discounted reward of 2514.11.

A.5 Bullseye Problem with Many Agents

This example demonstrates scalable cooperative navigation with many agents. The outcome of the
simulation is shown in Figure

For this example, we have two “bullseyes” similar to Appendix [A.T] Agents that are at the center
of a bullseye will receive +100 reward and receive a penalty of —10 for moving away from either
bullseye. Agents will also receive a penalty of —500 if they are within R = 1 space of another agent.
V = 3 and the discount factor is v = 0.9. Similar to the Bullseye Problem, once an agent reaches
the bullseye, it will not incur any more rewards or penalties. Here we consider an initial state with 8
agents. The optimal strategy is intractable to compute on the machine this was computed on.

For this particular initial state, group sizes of the Amalgam Policy do not exceed 3 so the exact actions
were found by simply computing the Amalgam Policy for 3 agents. This is an example of how our
discussion in Section4.T|can be used in practice.
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Figure 7: Bullseye Problem with Many Agents: The paths taken by the 8 agents with the Amalgam
Policy. Only computation for 3 agents is required.
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A.6 Discussion: Penalty Jittering

Intuitively the Cutoff Policy seems like it should perform better than the Amalgam policy for many
cases as in the Aisle Walk Problem because the solution to the Cutoff Multi-Agent MDP incorporates
information about the visibility dynamics. This is in comparison to the Amalgam Policy which simply
consists of local optimal policies patched together.

But, as seen in the previous examples, if interdependent rewards include heavy penalties, the Cutoff
Policy may not perform well. We call this phenomenon “penalty jittering” as the interdependent
penalties cause agents taking the policy to get stuck moving back and forth. This is a general
phenomenon that may occur for the Amalgam Policy as well but is particularly an issue for the Cutoff
Policy.

To illustrate the issue, consider a grid world in Figure[8] Agents incur a large penalty (e.g. —500)
when overlapping with each other (R = 0). There is a large reward (e.g. +100) for remaining in
the leftmost state and a small reward (e.g. +10) for remaining in the rightmost state. The optimal
strategy is for one agent to stay in the leftmost state and the other agent to stay in the rightmost state.
The visibility is V = 1.

For this example, both the Amalgam and the Cutoff Policies will fail to find the optimal policy. When
the agent on the right is in the rightmost state, the agent does not see the agent on the left but is aware
of the high reward leftmost state so it moves to the center. When the agent on the right is in the center
and in the visibility of the left agent, both policies will suggest the right agent to move to the smaller
reward rightmost state because the agent on the left already occupies the leftmost state. The agent
will move to the rightmost state but will forget the existence of the other agent and re-enter the center
state for the same reason as before. Therefore, the agent on the right will continue to move back and
forth.

In general, this is a larger issue for the Cutoff Policy, because the “suggestion” made by the policy
when the agents are connected assumes that when agents are disconnected, they will never reconnect
(see Appendix [C). That is, the initial suggestion made by the policy for the agent to leave the visibility
group assumes the agent will be able to return to the area and obtain a high independent reward
without any consequences. Therefore, the Cutoff Policy will tend to prefer these types of situations.

For this example, when overlapping agents gain a positive reward, the penalty jittering phenomenon
will not be observed because if the policy “suggests” for an agent to leave the visibility, returning to
the group will only seem less attractive with the interdependent rewards removed.

We believe that this “forgetfulness” is a general issue for group decentralized policies and overcoming
this will be an important part of using these policies in more complex systems. One potential way to
overcome this is to incorporate memory into group decentralized policies, which we leave as a future
direction.

Finally, we note that the penalty jittering does not conflict with our theoretical upper bounds, as the
bounds are asymptotic in terms of visibility, whereas the penalty jittering examples occur in this long
horizon setting with a fixed limited visibility.
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Figure 8: Example of Penalty Jittering.

B Proof Summary

As mentioned previously, we would like to upper bound the quantity |V*(s) — V™ (s)| for the three
group decentralized policies in place of 7. All three will use similar proof techniques that are outlined
here.
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The proofs for each policy in Appendix [D]will be divided into 3 steps. In the first step, we discuss the
consequences of the Dependence Time Lemma. In the second step, we will use ideas from the first
step to demonstrate the performance of three naive versions of our closed-form group decentralized
policies. Lastly, we will use the Telescoping Lemma to convert the guarantees from these naive policy
candidates into guarantees for our closed-form group decentralized policies.

B.1 Step 1: Dependence Time Lemma

In this step of the proofs, we will introduce various relevant lemmas derived from the Dependence
Time Lemma to be used in later steps. We introduce the Dependence Time Lemma here.

The lemma describes a fundamental property of visibility groups in Locally Interdependent Multi-
Agent MDP’s. Since V > R and agents move at most a distance of 1, a buffer of time ¢ = L%J is
created during which an agent cannot interact with another agent from outside its visibility group.
That is, the interdependent rewards 7(s;(t), a;(t), sx(t), ax(t)) = 0 for agents 7, k in different initial
visibility groups for up to c time steps. Formally, this is stated in the following lemma.

Lemma B.1. (Dependence Time Lemma) For any realizable trajectory (s(t), a(t)) and time step T,
we have

r(s(T+9),a(T +6)) = Z r.(8.(T +6),a.(T +9))
z€Z(s(T))

for o €40, ...,c}.

Proof. Consider two agents j, k € N such that d(s;(T"), si(T")) > V. Firstly, using the definition of
the distance metric and the probability transition function of the Locally Interdependent Multi-Agent

MDP, we may conclude d(s;(T), s;(T + 9)) < Zf;& d(sj(T +1),s;(T+i+1)) <. Similarly
for agent k.

Further by applying the reverse triangle inequality and substituting what we found, we
have

d(s;(T'+6), s, (T + 0)) = d(s;(T), sx(T)) — d(s;(T + 6), 5;(T))
- d(Sk(T + (5), Sk(T))

>V -2

>V -2
Y-R

>y _9of 2%

v o(Y5)

=R.

Now that we established d(s;(T" + 0), sx(T + J)) > R, by the definition of the reward function
for the Locally Interdependent Multi-Agent MDP, 7; (s;(T' + 6), a; (T + 9), sx,(T + 6), ar(T +
d)) = 0 for agents j, k that have d(s;(T), sx(T)) > V. This implies r(s(T + 0),a(T + 0)) =
> zezs(ry) T=(8z(T +6),a:(T + 9)).

O

B.2 Step 2: Performance of Naive Policies

With some consequences of the Dependence Time Lemma in hand, this step of the proof will look to
three naive policy candidates that satisfy a guarantee similar to the one we are after. They are naive
because none of them are valid group decentralized policies. We will attempt to convert these into
valid group decentralized policies afterward.

The proofs for all three following lemmas are provided in Appendix

The first policy corresponds to a naive version of the Amalgam Policy. For any partition G on N, let
m&(s) = (m(sg) : Vg € G). Then the policy is defined as 77 .. (s) for some fixed s*. Notice that
this is not a group decentralized policy and is not allowed in our setting because the communication
groups are fixed. Using lemmas derived in step 1, we may derive the following lemma:
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Lemma B.2. |[V*(s) — V™20 (s)] < (lgw),yc-i-l,]:'

The second policy candidate is the optimal cutoff policy 7€. This policy viewed from the perspective
of the Locally Interdependent Multi-Agent MDP is non-Markovian since the policy uses information
about the cutoff partition. However, the following result still holds:

Lemma B.3. [V*(s) — V™ ((s,Z(s)))| < et

1
a7

The last policy candidate is the discounted finite horizon optimal policy with a horizon of c. It will turn
out that a consequence of the Dependence Time Lemma is that 79 in {7*9 71 .. 7*¢} is a group
decentralized policy by Corollary However, all together, the discounted finite horizon optimal
policy is not valid because the policy is non-stationary. We show that the following relationship is

satisfied:
Lemma Bd. [V*(s) = V5 (s)| < g2557F 7

where V" is the optimal discounted finite horizon values up to horizon c.

B.3 Step 3: Telescoping Lemma

Lastly, we will use the Telescoping Lemma introduced here to help bridge the gap between our
policy candidates and their corresponding valid group decentralized policies. Intuitively, it says
that if we can express the expected discounted rewards within two stopping times as the expected
difference between two discounted value functions, then we may express the whole value function as
an expectation of a telescoping sum of these discounted value functions.

Below is the formal condition we would like to be held for the lemma:

Condition B.5. For a MDP, a given policy w, and a sequence of stopping times 0 = Ty < T7 < ...
, we have a family of value functions parameterized by the state {V*}, such that the following
inequality is satisfied:

Errl, {Zfﬁlvtr(S(t),a(t))] > Ernl, [’VTiVS(Ti)(S(Ti)) =T VT (5(Tin)) |-

It turns out that this condition is satisfied with equality for the Amalgam policy using a change in
the visibility groups as the stopping time and setting V*(T:)(s) = V™ zs(r) (s). The Cutoff Policy
satisfies a very similar condition with equality by setting the stopping time to when any agent enters
another agents visibility and V(") (s) = yr ((s, Z(s))). The First Step Finite Horizon Optimal
policy will use every step as the stopping time and V(") (s) = V;*(s). The condition does not hold
with equality in this case.

Below is the formal statement for the Telescoping Lemma. Note that the inequality holds with
equality when the condition Condition[B.5]is held with equality.

Lemma B.6. (Telescoping Lemma) For any MDP,
suppose 0 = Ty < Ty < ... are stopping times such that Condition|[B.3|is satisfied. Then we have

V7(5) > Ermn, {V%s) — Y ATAT } where AT = VAT (s(T))) — VAT (s(T3).

Proof. By definition and assumption, we may show

V() = Eym, [iwsm, 0)]

0 Tiy1—1
=2 Eren, [ > Atr(s(e), a(t))]

= =
> Ernl. Lﬁ; <,_)/T1VS(T¢)(S(/I”L_)) _ 7TMVs(Ti)(S(TiJrl)))]
=Err, {VS(S) - ivnﬁ?] :
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Notice that in the case stopping times become infinite after a certain time, v*° = 0, and the sum
inside the expectation will be finite.

By bounding the quantity A7 for all three policies, we may use this lemma to effectively bound the
difference between the value functions of each naive policy candidate and its corresponding valid
group decentralized policies. This paired with our bound on the naive policy candidates will be
sufficient for producing our desired upper bounds.

C The Cutoff Multi-Agent MDP setting

It will turn out that for any Locally Interdependent Multi-Agent MDP, there will be an instance of a
related setting we call the Cutoff Multi-Agent MDP that has nice properties we describe below. It is
used in the construction of one of our closed-form policies, the Cutoff Policy (See Theorem .

Intuitively, the Cutoff Multi-Agent MDP is a version of the Locally Interdependent Multi-Agent
MDP with an embedded communication structure where agents do not interact with one another once
they disconnect. More specifically, if two agents lie in different visibility partitions at any time, the
agents will lie in different visibility partitions for all subsequent time steps (see Figure[9). We refer to
this new notion of a permanently disconnecting visibility partition as the cutoff partition.

\

/

Figure 9: The diagram on the left represents our communication structure in the Locally Interdepen-
dent Multi-Agent MDP. Agents that leave each other’s visibility reconnect when re-entering each
other’s visibility. On the right is the Cutoff Multi-Agent MDP. Agents that leave each other’s visibility
are not able to reconnect even when the agents re-enter each other’s visibility radii.
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Formally for any realizable trajectory 7 = (s(t), a(t)) in a Locally Interdependent Multi-Agent
MDP, we define the cutoff partition at time 7" as C7 (T') = (y<p <1 Z(s(t")). Here, the intersection

denotes an intersection of partitions defined as P, N P, = {p1 Np2|p1 € P1,p2 € Po} \ {@} for
partitions P;, P,. Observe that this partition only gets finer in time similar to our intuition above.

Furthermore, in this setting, we will say that agents in different cutoff partitions do not incur
interdependent rewards.

We can summarize these ideas with the complete definition of the Cutoff Multi-Agent MDP. For the
following definition let B(N) be the set of all partitions on A.

For any Locally Interdependent Multi-Agent MDP M = (S, A, P,r,v), we can define the Cutoff
Multi-Agent MDP as C = (S¢, A®, P rC,~). Where:

¢ S¢:={(5,0):5€8,C € BN)}

e AC = A

s PC((s',Z(s")NC)|(s,C),a) = P(s'|s,a) and 0 otherwise
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s 7¢((5,0),a) = Y ecc Te(Se, ac).

We will overload notation and say a policy 7 in the Locally Interdependent Multi-Agent MDP may
be viewed as a policy in the Cutoff Multi-Agent MDP by letting 7((s, C)) = 7 (s)

Consider the relationship between the distribution of the trajectories with policy 7 in the associated
Locally Interdependent Multi-Agent MDP and in the Cutoff Multi-Agent MDP. We can compare
realizable trajectories in the Locally Interdependent Multi-Agent MDP of the form 7 = (s(¢), a(t))
with s(0) = s, a(0) = a and realizable trajectories in the Cutoff Multi-Agent MDP of the form
7' = ((s(t),C’(t)),a(t)) with C'(0) = Z(s). Notice that by the definition of P¢, we have for any
time step 7" and state action pair s*, a*,

P((s(),a(1) = (57, ) = P (61, € (T, () = (57, €7, ) )

where C7(T') is the Cutoff Partition for the Locally Interdependent Multi-Agent MDP trajectory.
Thus, these trajectories are equivalently distributed.

For ease of notation going forward, anytime a state is a tuple consisting of a partition on the agents,
it will refer to a state in the Cutoff Multi-Agent MDP. We will also use C, to reference the related
Cutoff Multi-Agent MDP for M. The value function of C, will be defined implicitly by passing in
the state for a subset of agents g € \. For example, with a policy 7, the value function at (s,, Cy)
would be V7™ ((s4, Cy)). We will also denote the optimal policy for Cg as 7§

The permanent disconnections in this setting lead to a key property for Cutoff Multi-Agent MDP’s.
Namely, the value function will decompose according to our agent partitions for the Cutoff Multi-
Agent MDP.

We may equivalently write,

V7™ ((sg,Cy))

oo
:Errwﬂ’g\(sg, Cy) |:Z’Yt rc t)):l
t=0 c€Cy(1)
oo
:ETNWQ\(SQ, Cy) |:Z’Yt 7"0 ):|
t=0 ceCy
Z ET~W9|(sg,C )[ZV Tc Sc Qe t)):|
ceCy
= > V™ ((5e, {c}))-
cely

The second equality is permitted because the partitions only get finer with time.

This decomposition tells us that the value function for states with the trivial partition (a partition with
only a single group) serve as the “atoms" for the Cutoff Multi-Agent MDP. That is finding the value
function for all states reduces to finding the value function for states with the trivial partition.

Furthermore, we can substitute this decomposition into the Bellman Consistency Equations to obtain:
VT (1 D) = B, o | @7 (55, (91)00)

where

Q™ (- {91:09) = (5 1) 00) + TBo ey | Sy V(0 (1)

And in the case of the Bellman Optimality equations we have:

V*((sg,{9})) = maxa, Q" ((sg, {9}), ag)

where
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Q*((Sm {9})7ag) = T((Sw {g}) ag) + 'YESQNP(-lsga%) Zzez(sfq) V*((sz,{2})) |-

In other words, the process for deriving the values for trivial partition states only requires
values of other trivial partition states. With this, we may safely ignore the value function for states
with a non-trivial partition for the Cutoff Multi-Agent MDP.

In fact, for this paper, we will only be interested in values of the form V' ((s, Z(s))). Consequentially,
we only need to look at values of the form V' ((s,4, {g})) for a subset of agents g € N with g € Z(s)
for some state s. This means our “atoms” are states s, that have every agent within distance )V of
some other agent, paired with the trivial partition. Thus, we have savings in this partially observable
setting by only having to compute a smaller table of values corresponding to the states of agents
within the same visibility group.

By definition, these savings will show up exactly in the computation of the Cutoff Policy described in

Section[3,1.2)

D Proofs

Recall from the proof summary in Appendix [B] there will be three steps for proving each upper
bound.

o Step 1) Consequences of the Dependence Time Lemma
* Step 2) Bounding performance of naive policies

o Step 3) Use Telescoping Lemma to bound performance of final policy.

We cover these 3 steps for each closed-form policy. Then, we conclude by presenting the construction
and proof for the lower bound.

For the remainder of this section, for a fixed partition G, define:

VE(s') = Ernnl, Zt OZ ca” rg(sg(t)aag(t)) .

We will also denote for any partition on N, E(P) = {(j, k)|, k € p,p € P} to be pairs of agents
X

within the same partition. Similarly, E¢(P) = ) are pairs of agents in different
partitions.

=z
—
S
3

D.1 The Amalgam Policy

Recall the definition of the Amalgam Policy \(s) = (73(s.) : Vz € Z(s)).

D.1.1 Step1)

Using the Dependence Time Lemma, we may derive the following lemma. Intuitively, it is the effect
that the Dependence Time Lemma has on the Q-values for Locally Interdependent Multi-Agent
MDP’s.

Lemma D.1. For any policy w, any realizable trajectory (s(t),a(t)), and § € {0, ...,c}, let T > 6
be an arbitrary time step. We have |V (s(T')) = V7 p_g),(s(T))] < AARar

Proof. Recall, in our notation 7 ~ 7|, , refers to the random trajectory (s(t), a(t)) generated by the
MDP starting with s(0) = s, a(0) = a.

Notice that if we are given a new trajectory realization (s'(t'), a’(¢')) with s’(0) = s(7T'), the concate-
nated trajectory defined as (s(t"), a(t"”)) fort” € {0,...,T—1}and (s'(t" =T),a' (t" =T)) fort" €
{T,T +1,...} is also a realizable trajectory. Furthermore, we may apply Dependence Time Lemma
on this trajectory at time step 7" — § to prove that r(s'(t"), a’(t')) = 3_,c 7(s(1—s)) T= (82 ('), aL(t))
fort’ € {0, ...,c — ¢}. Using this decomposition, we can obtain:

22



V7T(s(T))

B [va’ 3 m,k<s;<t'>,a;<t’>,s’k<t'>,az<t’>>]

/=0 J,kEN

c—90
Emw)[zvt S (L), al ()
t'=0

z€Z(s(T-9))

o0
YR rj,kcs;(t'),a;<t'>,s;<t’>,a;<t'>>}
t'=c4+1-06 i keEN
o0

Emw){zwt’ DR CAGRAR)

t'=0 z€Z(s(T-9))

+ 2 > Tk (85 (), a5 (t'), s (t), ak(t’))}

t'=c+1-4§ (4,k)EE(Z(s(T—9)))
= VZsr—e)(s(T)) + &

For the third equality, recall that by our notation, E¢(Z(s(T — ¢))) denotes tuples of two agents j, k
that do not lie in the same partitions of Z(s(7 — 0)). In this step, we have completed the infinite sum
in the first term by regrouping the 7; ;, terms.

c+1-68 _ . ctl—6 _

Which concludes the proof since £ € [— 13—, 27——7].

<

D.1.2 Step2)

Recall the definition of the naive policy candidate 77 .\(s) = (m3(sg) : Vg € Z(s")) for some
fixed s*.

Proof for Lemma [B.2] With the lemma from step 1 in hand, we are ready to prove the bound on the
naive policy candidate.

Proof. Notice that because 77, (s) takes the local optimal policies, the expected discounted sum of
rewards accumulated by the agents in this group is optimal. Therefore, for any z € Z(s),
el | S0 7700 6(0)] 2 Brvrey | T 1520100 .

This implies V;, (s) — V(" (5) < 0.

Using this relationship between the value functions and applying Lemma [D1] twice with
0=0,

V*(s) = V720 (s)

* oy s 2 c ~
<V2e(8) = V() (s) + =y ARG

S ,_YC+1,”:.
(I—7)

D.1.3 Step 3)

We start with an auxiliary lemma before proving Theorem [3.1]

Lemma D.2. For realizable trajectories in a Locally Interdependent Multi-Agent MDP, define a
sequence of stopping times with Ty = 0 and T; the time step t for which Z(s(t)) # Z(s(t — 1)) for
the i-th time. Then Conditionholds for the Amalgam Policy A with V™2 as the family of value

functions.

23



Proof. For this proof, given a realizable trajectory 7 = (s(t), a(t)), we let 77 be (s(t), a(t)) with
t € {T,..00}. 77 will be (s(t),a(t)) for t € {0,..T — 1} appended with s(T). Lastly, 7,2 is
(s(t),a(t)) fort € {T1,...,To — 1} appended with s(7%).
To begin the proof, we show the following equivalence.
Ti+171
E;oal { > Wtr(s(t%a(t))]
t=T;
Ti+171

~Epna, B, | Y 2r(6(0),a)

t=T,;

Tip1—1

=B, B | 32 2rls).at0)
t=T;
Ti+171

= Eqs(1))~n. [ETTI.NMS { Z V'r(s(t),a(t))

t=T;

The second equality eliminates unnecessary random variables that don’t appear in the expectation
and the third equality evokes the strong Markov property of Markov Chains.

Now notice that by the definition of our stopping times, for all ' € {T;,...,T;11 — 1} we have
Z(s(T;)) = Z(s(t')) and therefore 775, .y) = T (). In other words, between these two stopping

times, the policy W}( s(T2)) is taken.

To continue this pattern, we define a virtual trajectory 77, = (s(t), a’(t)) defined only for ¢ €

{T;,T; +1,..} as T;}“ concatenated with an instance the realizable trajectory (s*"(t), a%"t(t)) ~

T2 (s(T)) |s(y,,)- Formally, we define the virtual trajectory T;Fi’"“ to consist of

t),a(t) te {Tu ...,T‘i+1 — ].}
s'(t),d (t) = 8(- .
( ) ( ) {s””t(t—Ti+1),amrt(t—Ti+1) tc {Ti+17~-~}-

We now have completed the trajectory that takes 77, (s(1y)) & each step to generate T’Ti. By construc-
tion, it is equivalently distributed to 77, (s(T3)) |s(z,) starting at time step 7.

Returning to our proof, we may substitute our virtual trajectory into what we found earlier, to get

Bumyent. [Beg | S 206 0. )]l

which is equivalent to

ES(Ti)N)\\S |:,\/T,i Vﬁ*z(s(Ti))(s(Ti)):| — ES(Ti)NAIS |:ET/T1 {Ziﬂ:ﬂ ,ytr(s’(t), a/(t))

We simplify the second term using similar techniques as above to obtain:

S(Ti)”

Euimal By, | 3 2'r(6/ 0007 |
t=Tit1
— > t T
B py, [B | X G000
t=Ti1

= - t / / Tit1

B ET;;HIN)“S |:ET/Ti+1 |:t ; v T(S (t)7a (t)) Tr, :|:|
=Ti+1

= Botriaal, |:]ET’}«L+1 [ Z V(s (t),d' (1)) S(Terl):|:|
t=T;41
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=Eo(Ti, 1)~ AT VT2 (3(Tigq)) |-

The first equality conditions on additional variables. Similar to before, the second equality eliminates
variables that do not appear in the expectation and the third equality evokes the strong Markov
property.

Substituting this into what we found above, we achieve

T,H,lfl

E . [ > Wtr(s(t)ﬂ(t))] =B, {7TiVﬂ*Z(Tﬁ>(5(ﬂ)) — TRV (5(Tiy )
t=T;

which is exactly Condition [B.5] O
Proof of Theorem [3.1] With the above preparations, we are now ready to prove Theorem [3.1]

Proof. For any partition G on NV, let 7y (s) = (7, (s,) : Vg € G).

Let To = 0 and T; be the time step ¢ for which Z(s(t)) # Z(s(t — 1)) for the i-th time.
By definition, for all ¢ € {T;,...,T;41 — 1} we have Z(s(T;)) = Z(s(t')) and therefore
T2 = ")

From Lemma[D.2] we know Condition [B23]is satisfied and we may use the Telescoping Lemma.
We have

VA(8) > Epopy, [V (5) = 000 ATIAT

and we may bound

AT = VTEHD) (5(T)) = VTEC) (s(T)
<V(5(T)) = V) (5(Ty))
< Vitucn (5(T) = VG ((T) + ™
< LW
(1=2)
Where the inequality in the penultifnate step is by Lemma[D.1|with 6 = 0 applied twice. The last step
is because V7 .\ (s(T3)) — VZTF(ZS((ST:T;))) (s(T3)) < 0, using the same reasoning as in Lemma

Ry

Plugging in our upper bound for A7 into our result from the Telescoping Lemma, we get
VA(s) > V7720 (8) — g2y 20
(1-7)

Therefore, using Lemma we obtain

Vi(s) = V(s)

2
* Toy(s c+2 =
<V*(s) VZ<>(s)+(1_w27 T
2
S ,yc-‘rl?';_i_ ,yc+2~
(1—=7) (1—7)?
2
_ c+1~
a—p’ "
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D.2 The Cutoff Policy

Recall the definition of the Cutoff Policy x(s) = (75 ((s., {z})) : Vz € Z(s)). This is equivalent to
saying x(s) = 7¢((s, Z(s))) by the following equality:
(s, Z(s))) = argmax, Q" ((s, Z(s)), a)
=argmax, Y Q"((s:,{=}),a:)
z€Z(s)

= (argmaxazQ*((sz, {z}),a.):Vz € Z(s))
= (n5((s2,{2})) : V2 € Z(5)).

The decomposition in the second equality can be shown similarly to the value decomposition shown
in Appendix [C|

We will also overload notation for this section and say a policy 7 in the Locally Interdependent Multi-
Agent MDP may be viewed as a policy in the Cutoff Multi-Agent MDP by letting 7((s, C')) = 7 (s).

D.2.1 Step1)

We begin by using the Dependence Time Lemma to establish a relationship between policies in the
Cutoff Multi-Agent MDP and the Locally Interdependent Multi-Agent MDP.

Lemma D.3. For any policy w in the Locally Interdependent Multi-Agent MDP, we have
c+1
(V7 (s) = V7 ((s, Z(s)))| < T

Proof. Recall our notation E°(P) for a partition P are all tuples (7, k) such that agents j, k do not
lie in the same partitions.

A consequence of the Dependence Time Lemma in the Locally Interdependent Multi-Agent
MDP setting is that, for any realizable trajectory 7, with ¢ € {0,...c} and §p € {0, ...,t} we have

r(s(t),a(t)) = ZzeZ(s(éo)) r2(s:(1), ax(1)).

With this decomposition, we know that for every J, specified above, we have
Tik(s;(t),a;(t),sp(t),an(t)) = 0 for (j,k) € E°(Z(s(d))). In otherwords,
75k(85(t),a;(t), sk(t),an(t)) = 0 for (j,k) € E°(Ns,<tZ(s(dp))) using our notation for
the intersection of partitions. The quantity Ns,<;Z(s(do)) is exactly C7 (¢) by definition, so we may
make the decomposition r(s(t), a(t)) = 3 ccr ) r=(8:(t), az(1))

Therefore,

V() = Mb{zw 5 Tkl (0) 050, u0) n6)|

t=0 i keEN

_ Mlb[zy S ra(s().0:(0)

t=0 zEC"(t)

+ Z At Z rj,k(si(t),aj(t),sk(t),ak(t))]

t=c+1l j,kEN

_ Mlb[zy S ra(s().a:(0)

= z€CT(t)
+ Z 7t Z rj,k(sj(t)7a:j(t),Sk(t)7ak(t)):|
t=ct+l (j,k)EE(CT(t))

=V7((s,Z(s))) + ¢
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ekl el

This concludes the proof since £ € [— "{_7 7, ﬁ’"]~

O

The following is the corresponding lemma to Lemma [D.T]in the Cutoff Setting. It also can be viewed
as the effect the Dependence Time Lemma has on the Q-values for the Cutoff MDP.

Lemma D.4. Let (s(t), a(t)) be any realizable trajectory in the Locally Interdependent Multi-Agent
MDP, 7t be any policy in the Cutoff Multi-Agent MDP, and § € {0, ...,c}. Further, let T > § is an

arbitrary time step. We have [V (s(T), Z(s(T)) = VZ(,(r—a)(s(1). Z(s(T))| < L=

T

Proof. Notice that the realizable trajectory in the statement is in the Locally Interdependent Multi-

Agent MDP, and therefore, we may use the Dependence Time Lemma. Similar to what is shown

in Lemma we consider a new trajectory realization (s'(t'),a’(¢')) with s'(0) = s(T). For

t' € {0,...c — &6} we know T; k(s ('), a;(t'), sk(t'),ax(t')) = 0 for (j,k) € E°(Z(s(T — 9))).

By the definition of 7C, we also have 7, 1.(s;(t'), a;(t'), sk (t'), ar(t')) = 0 for the tuples (4, k) in

E°(C™(t')). Put together, this gives us the following decomposition 7€ ((s(t'), C(t')),a(t')) =
ceCm ()2 (s(T—8)) T=(82 ('), a(t")) on the reward function.

Using this equality, we have
VT ((s(T), Z(s(T))))

:Ewmm{zvt/ > Tz(sz(t/)aaZ(t/)):|

=0  2eCT (')

=Errnlo [Z o r2(s2(t), a= (1))

t'=0 z€CT(t")NZ(s(T—3))

Y Y )]

t'=ctl—=5  zeCT(¢')

“Errn| 07X nls@hal)

t'=0  zeCT(t)NZ(s(T—3))

+ > T Tt ai (), se(t), ax(t))
t'=ctl=6  (j,k)EE(CT ()N
E°(Z(s(T—-9)))
= Vs (5(T), Z(s(T)))) + &.

The reasoning in most of the steps is similar to Lemma[D.1] In the penultimate step, E(C™(t')) N
E<(Z(s(T —9))) expresses the tuples of agents (j, k) such that j, k are in different partitions of
Z(s(T — 4)) but are in the same partition in C" (¢').

ct1-5 _
/r’

R

This concludes the proof since £ € [—2 ﬁr].

1—y

D.2.2 Step 2)

Proof of Lemma [B.3] We will next prove the naive policy candidate bound.

Proof. Using Lemma[D.3] we can show
* €
Vi(s)=VT ((s, Z(s)))

<VH(s) = V™ ((s,2(s)))

1
S a7

c+1=
< .
(1—7)
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D.2.3 Step 3)

We say that for partitions P; and P, on N, partition Py is finer than a partition P, P, C P if for all
p1 € P, there exists po € P» such that p; C ps. Then, we have the following:

Lemma D.5. For realizable trajectories in a Locally Interdependent Multi-Agent MDP, define a
sequence of stopping times with Ty = 0 and T; the time step t for which Z(s(t)) ¢ Z(s(t — 1)) for
the i-th time. Then we have,

Tip1—1
]ETNX|S[ t; fytr(s(t),a(t))] =ET~XS{vTiV”C((S(Ti),Z(S(E))))]
B [V T, () 2]

Ti<t'<Tif1
Proof. The proof is omitted as it is very similar to Lemma[D.2]

Proof of Theorem 3.2] Finally, with all the previous results in hand, we may prove the main result.
Proof. Let Tp = 0 and T; be the time step ¢ for which Z(s(t)) ¢ Z(s(t — 1)) for the i-th time. By

definition, for all ¢’ € {T;, ..., T;+1 — 1} the visibility partitions only become finer.

We use Lemma [D.5] and a minor variation of the Telescoping Lemma (proof very similar to
Lemma [B.6) to obtain:

VX(s) > Eyoy, [V”c«a 2(5)) - X, vaAz]

where we have

— v <<s<n>,z<s< )
= V™ ((s(Ty), Z(s(Ti — 1) N Z(s(T1))))
~ V™ ((5(T3), Z(5(T3)))
= Vz( ri—1)) ((T3), Z(s(13))))
— V™ (s(Th), Z(5(T))))

1
< =7
(1=2)

where the inequality in the last step is by Lemma[D.4]with 6 = 1.
Plugging in our upper bound for A7 into our result from above, we get
VX(s) > V7 ((s, Z(5))) — gzt
Therefore, by using Lemma [B.3]we find

Vi(s) = VX(s)

<V*(s) = V™ (s, Z(s))) + :

=P

1
c+1~ c+1z=
(R e

,yc-i-l,':

oL
T (1-9)
_ 2_7 c+1~
T =2’
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and this concludes the proof.

D.3 The First Step Finite Horizon Optimal Policy

Recall the definition of the First Step Finite Horizon Optimal Policy. If 7%, ...
{0, %1 .., 7*¢} are the set of discounted finite horizon optimal policies with horizon c, then
¢(s) = m0(s).

For the purposes of this section, 7" ~ 7%;,,.;. | . Will denote a realizable trajectory defined between
time steps ¢ and c distributed according to a roll out starting at s(¢) = s using the non-stationary

policy 7' (s(t')) for t’ € {t, ..., ¢} to generate actions. 7¢ ~ ﬂ}imte| is defined similarly and

s,a

will condition on s(t) = s and a(t) = a.

D.3.1 Stepl)

First, we will show that the First Step Finite Horizon Optimal Policy for a Locally Interdependent
Multi-Agent MDP can equivalently be computed on the Cutoff Multi-Agent MDP.

Let V}*, Q7. be the values for the discounted finite horizon optimal reward for a Locally Interdependent
Multi-Agent MDP with horizon c¢. Similarly V¢, Q% will represent the optimal discounted finite
horizon values with horizon c in the Cutoff Multi-Agent MDP. Then we have the following lemma:

Theorem D.6. Q}(s,a) = QS((s, Z(s)),a) for any s, a.

Proof. Recall from the proof of Lemma[D.3| we have for any realizable trajectory 7/ = (s'(t'), a(t'))
in a Locally Interdependent Multi-Agent MDP, r(s'(t'), a’(t')) = 3_.ccr (1) T2 (8% (1), @’ (")) for
t' €{0,...,c}.

For h € {0, ..., c} let 7} be any realizable trajectory. In the following, we will append an instance of
from h + 1 onwards and call this realizable trajectory 7. We find,

/
z

c C
Th ™ T finite| (s(h),C7 (h)),a(h)

Q5 ((s(h), O™ (h)), a(h))

Y s (.a)]

<s(h>,cwh>>,a<h>[t_h 2€C (1)

¢ C
Th™T finite

o

vtr<s<t>,a<t>>>}

¢ C
Th™T finite (s(h),CT (h)),a(h) [t

>

=r(s,a)+

VB | M3 QL (5,C7(0) 1 2(), ).

This is nearly identical to the Bellman Equations for the Discounted Finite Horizon Locally Interde-
pendent Multi-Agent MDP problem.

In fact, we have QY ((s(h),C7(h)),a(h)) = Q;(s(h),a(h)) inductively since Q¢ = Q¥ = 0.
Therefore, Q(s,a) = QS ((s, Z(s)), a).

O

Next, we use Theorem [D.6] to prove that the discounted finite horizon optimal policy is a group-
decentralized policy.

Corollary D.7. The discounted finite horizon joint optimal policy 7*:° for M is a group decentralized
policy.
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Proof. Using Theorem and a decomposition similar to the Cutoff Multi-Agent MDP value
decomposition shown in Appendix We can show that 70 is group decentralized:

7*0(s) = argmax Q) (s, a)
= argmax, Qf ((s, Z(s)), a)
= argmax,, Z Q6 ((s2,{2}), a.)

z€Z(s)

= (argmaxang((sz7 {z}),a,) :Vz € Z(s)).

D.3.2 Step2)

Proof of Lemma [B.4] We are now ready to prove the bound on the naive policy candidate.

Proof. Using the definition of the discounted finite horizon optimal policy, we find

Vi(s) = V5 (s)

< By, [ivtr@(ﬂ,a(t»]

t=0
[Z v'r(s(t), a(t))l

t=0

%
finite

TG~

<Eor, [élws(w,a(t))}

!
el
)

c+1=
< .
(1-~

The second inequality holds because the optimal discounted finite horizon reward will have a larger
expected discounted sum of rewards in the first c iterations.
O

D.3.3 Step3)

Lemma D.8. For the First Step Finite Horizon Optimal Policy ¢ and and i € {0,1, ...}
Ervgl. [,717"(5(2-)’ a(Z)):l > Eroy). |:77%*(3(l)) - ’7i+1VO*(S(Z' + 1)):| — ety

Proof. Recall our notation from Lemmafor 77, 71 and TTTf. It will be used again in this Lemma.

To achieve Condition with our specific stopping time and policy, we must bound
Ervel. [’717"(5(2'), a(i))} for each 1.
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Similar to Lemma[D.2] we will apply the law of total expectation, eliminate random variables, and
apply the Markov property to obtain the equivalence,

Bema, [2'7(50).0(0)

By [EM,S {vir(é’(i)va(i))

= Ering). {Eﬂws {v"r(s(i),a(i))

= Buimal, [Emal, [7'r((0): ()

Again as in to Lemma|[D.2] we will construct a virtual trajectory. Here, we will define (s(t), ' (t))
to be 7/7T¢*! for t € {i,...,i + ¢+ 1} by starting with s(i), a(i) and appending an instance of the
trajectory (s"7* ('), a’" (t')) = (T"""*)§ ~ Thinisel sit1) starting at time step 1. Further, we will
append what we call a ghost sample of sV""(c), a¥""*(c). This is a state s” ~ P(-|s""(c),a"""(c))
and an arbitrary action a”.

In other words,

s(2), a(i) t=1
s'(t),d (t) = < s¥"H(t —i),a" "t (t —d) te{i+1,..,i+c}
s, a"” t=i+c+1.

We use this new realizable trajectory in place of 7; by adding and subtracting the rest of the trajectory
Eutym, | Brma, [117(5(0),a(0)

to obtain,
1+c+1

= Byt [Eoen | 3 20,0000
= itetl

= Eugyeat [Egieon | 3 (5(0,0(0)

t=i+1

s(z’)” :

We can bound the first quantity by bounding the ghost sample and recognizing that the trajectory
leading up to that sample is distributed according to 7}, |s(:) as follows

o

(0] | - v

1+c+1

Es(i)~¢|s |:ET7L/i+C+1 |: Z ,ytr(s’(t), a’(t))
t=1

i+c

> Eoeat, [Bne| 3050, (0)
t=1

— By, [v%%s(i))} _ e

In the second quantity, notice that the inner expectation is over 7; i+etl s a realizable trajectory under
a non-stationary policy. Therefore, we may upper bound the discounted sum of rewards under this
trajectory for c iterations with the discounted finite horizon optimal expected reward. Using steps
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similar to before,
1+c+1

Esiy~ol, |:E7.i/i+c+l { Z ~ir(s'(t),d' (1))

t=1+4+1

o
]
]

sti+ 1|

itc+1

= ETZ+1N¢|S |:]E7_i/i+c+1 |: Z ’ytT(Sl(t), a’(t))

t=i+1

1+c+1

=E i1y, []Erff;ﬂ[ D A (1),d (1)
’ ! t=it+1
1+c+1

~ B [Egen | 3 27(60,00)
t=1+1

< Esit1)~el. |:’7i+1VO*(S(i + 1))} .

Substituting these two bounds into our original equation,
o, 117600 a0)| 2 Ert |35 6(0) =2V (o0 + )] =457

as desired.
O

Proof of Theorem 3.3] With all the previous preparations, we are now ready to prove the main result.

we have

Proof. Let T; = i. Using Lemma
VS (5(0) =2 (oG 1) 7

Brvan, |17 (50, 0] > o,

and therefore,

E, gy, [ (r(s(i). a(@)) + vcﬂﬂ} >y, [vivo*@(i)) Y (s(i 1))].

Intuitively, we can think about this as Condition[B-3]applied to an MDP with all rewards adjusted by
SRy o

Using the Telescoping Lemma, we have

VO(s) = (VO(s) + 3 2" - ot

t=c+1 v
* = i AT 1 c+1~
> Ervgl, {Vo (s) — ZleAi] 1= ARG
i=1
= V5 (s) — ——A°T17,
0 1—~

where the last equality holds because AT = V(s(i)) — V5 (s(i)) =0
Therefore, we may substitute our result from the Telescoping Lemma to obtain
V*(s) = V?(s)

1
V) Vi (5) 4 g

< 2 et
=125
where Lemma [B-4]is used in the last inequality.
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D.4 Lower Bound

Proof of Theorem [3.4] We conclude by providing the construction for the lower bound here.

e @ al

Figure 10: Lower Bound Construction M,

Proof. The construction is a completely deterministic MDP with 2 agents and the only non-trivial
action can be taken at S3 shown in Figure The MDP consists of no rewards and will only
suffer penalty —7 if agents overlap (R = 0). Notice that states S5, S¢ transition to each other
deterministically.

Here, ¢ = £ because V = 2¢ + 1 implies ¢ = [Y5R | = [£ + 1] = £. When agents are at state
S1, S3, the optimal action is for the S5 agent to take a; so they do not collide. Similarly, when agents
are at Sy, S3, the optimal is for the agent at S to take action ay.

Denote the trivial action as X and py = P(7(S3) = ao). Notice,

[V ((51,53))| = [po@Q((S1,53), (X, ag))|

7 ,.Y€+1 o ,Ychl ~ c+2 ~

*pol_,yrfpol_,yTZpol_,yT
and

[V ((S2,93)) = [(1 = po)Q((S2, S3), (X, a1))|
+2 c+2

= (1—290)17_ r= (1—2?0)17_ r.
Since V*((Sl, 53)) = V*((SQ, Sg)) == 0,
cither |V*((S1, 53)) = V((S1. 53))| = 137 or [V*((S2, 83)) — V((S2, S3))| > $ 7= must be
true.

O
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