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Best Manipulation Position!

Fig. 1: Mobile Robotic Manipulation through Differentiable Affordance Learning. Our proposed affordance is
conditioned on robot positions, which is also differentiable and thus can serve as an objective for optimization. For heatmap
color denotation, from Blue to Red, the per-point color refers to the target affordance value. The red in the first RGB
sub-figure star denotes the target manipulation point.

Abstract— Mobile manipulation in diverse environments is
essential yet challenging for robotic home assistants and flexible
production. Point-level affordance, which predicts the per-
point actionable score and thus proposes the best point to
interact with, has demonstrated excellent performance and
generalization capabilities in static manipulation. However,
whether such actionable priors can be directly used for mobile
manipulation remains untested. In this paper, we present a
comprehensive differentiable-affordance-based learning frame-
work, MobileAfford, which uses only visual input to guide
the whole motion and manipulation process. We unify the
motion and manipulation process for known and unknown
objects in arbitrary environments into trajectory and target
affordance optimization. We demonstrate the applicability of
the framework in various experiments, including pushing and
pulling known and unknown articulated objects on movable
robot platforms. Experiment results showcase the state-of-the-
art effectiveness of our approach.

I. INTRODUCTION

We, humans, spend little effort finding optimal paths
and interacting with various scene objects to accomplish
everyday tasks in our daily lives. However, such capability of
mobile manipulation is extremely challenging for intelligent
robots to achieve due to the exceptionally high complexity
in obstacle-existed motion space coupled with rich 3D object

space.

There have been tremendous research endeavors studying
generalizable perception for static manipulation in computer
vision and robotics. Many great advances in 3D representa-
tion learning for various tasks, e.g., 3D shape recognition [3],
pose estimation [21], [25] and semantic segmentation [17],
[20] have laid a solid foundation for generalizable 3D
perception. It then results in the emergence of object-centric
3D manipulation, among which object-centric affordance
learning occurs and serves as a bridge between 3D geometry
learning and robotic skill learning [15], [24], [28], [23], [26],
[8], [4]. Such learned visual actionable affordance essentially
predicts the action likelihood for accomplishing a certain
downstream manipulation task at each point on a 3D input
geometry like a point cloud.

Though showing promising generalization capability, the
application scenarios of these object-centric representation
learning methods are mostly limited to simple static ma-
nipulation tasks, e.g., single-gripper pushing/pulling [15],
[24], [23], [26], flying-manipulator collaboration [28], [8].
Recent works [22], [4] have proposed a novel robot-object-
environment handshaking framework for whole-body ma-
nipulation, which essentially predicts the affordance maps
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Fig. 2: The Whole Framework. In the left, we learned the environment-aware affordance. In the right, we use environment-
aware affordance to guide the mobile manipulation to avoid collisions with occluders. For point-level affordance scores,
from Blue to Red, the color means from not affordable to totally affordable. The red in the first RGB sub-figure star denotes
the target manipulation point. The trajectory of our manipulation sequence is guided by trajectory affordance optimization.

for a position-fixed robot arm instead of flying grippers.
Such robot-object-environment coupled actionable affor-
dance, trained across diverse 3D shape geometry (e.g., refrig-
erators, microwaves), diverse occlusion environments (e.g.,
various combinations of occluders like chairs, boxes), and
diverse robot positions (e.g., in the front or right to the
target) for a specific downstream manipulation task (e.g.,
pushing and pulling), is proven to generalize to novel unseen
objects (e.g., tables), environments (e.g., new combinations
of occluders like bottles, buckets) and robot positions (e.g., in
the left to the target). However, even though such affordance
can be coupled with robot positions, its application does not
go beyond static manipulation and thus the robot’s position
- affordance correlation is not fully utilized. As we can
observe from Figure 1, the affordance is dependent on the
robot’s position for mobile manipulation. How to design a
framework to utilize the affordance curve for motion strategy
remains intriguing.

In this paper, we study the mobile manipulation task from
the perspective of representation learning and investigate
learning mobile manipulation strategy through conditional
visual actionable affordance over the 2D base trajectory and
the 3D target. We propose a novel framework MobileAfford
to tackle the mobile manipulation problem. At the core
of our design, MobileAfford treats the mobile manipulation
strategy as an optimization problem over the 2D position
and 3D target conditioned affordance. Concretely, we design
a differentiable affordance learning framework to guide the
motion and manipulation process. The conditional affordance
is differentiable and thus the motion and manipulation pro-
cess can both be unified through affordance optimization.
Such affordance representation inherits the generalization

capability of previous works [4] and can be applied to known
and unknown objects in arbitrary environments.

We evaluated the proposed method on four mobile ma-
nipulation tasks: pushing without occlusions, pushing with
occlusions, pulling without occlusions and pulling with oc-
clusions. We set up our benchmark for experiments using
assets from Partnet-Mobility dataset [18] and ShapeNet [3]
dataset, with IssacGym [12] as our simulation environment.
Quantitative comparisons against baseline methods prove
the effectiveness of our proposed framework. Qualitative
results further show that our learned affordance is reasonably
convex and can serve as the objective for various mobile
manipulation tasks. To summarize, we make the following
contributions:

• We present a novel framework MobileAfford to learn
differentiable actionable affordance for mobile manipu-
lation;

• We propose a unified perspective for representing both
motion strategy and manipulation action through con-
ditional affordance optimization over the 2D trajectory
and the 3D target;

• We set up a benchmark built upon IssacGym [12] using
Partnet-Mobility dataset [18] and ShapeNet [3] dataset
for generalizable mobile manipulation tasks;

• We show qualitative results and quantitative compar-
isons against the baselines to validate the effectiveness
of our proposed approach.

II. RELATED WORK

A. Agent-centric Motion Planning

Berenson, et.al. [1] proposed the sampling-based plan-
ner based on rapidly exploring random trees (RRTs) for
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Fig. 3: Visualization of Manipulation Trajectory Guided by Our Proposed Approach. The red star in each first sub-figure
denotes the target manipulation point.
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Fig. 4: Visualization of Our 3D Target Affordance Maps. In each row, the robot is positioned from left to right.

manipulation under end-effector pose constraints. However,
it suffers from shortcomings such as incorporating non-
holonomic constraints and dynamics. Previous works like [2],
[5], [14] incorporate the object’s kinematic model as a task
space constraint and apply sampling-based planners with IK
to find feasible solutions. However, these methods are of-
ten computationally expensive, require offline planning, and
may suffer from the shortcomings of IK when approaching
singularities.

B. Object-centric and Conditional Affordance Learning

Gibson [9] first proposed the affordance as a kind of
representation that indicates possible ways for robots to
interact with the target and complete tasks. Many works
study object-centric affordance for the classic grasping task
in robotics [13], [19], [6], [11], [10], [27], while there exist
many current works on point-level affordance indicating
object geometrics for articulated object manipulation [15],
[24], [23], [7], [8], dual-gripper collaboration [28] and object
to object interaction [16]. Except for these object-centric
affordance works, recent works like [22], [4] have proposed

conditional affordance for whole-body manipulation, which
essentially predicts the affordance maps conditioned on dif-
ferent robot positions and occlusion environments. However,
even though such affordance can be conditioned on robot
positions and acquire great generalization capabilities, its
application does not go beyond static manipulation.

III. METHOD

As shown in Figure 2, our method mainly consists of 3
modules, the Motion Planning Module P , the Affordance
Prediction Module A and the Optimization Module O .

In the initial state, the robot will perceive the partial
3D point cloud as input and feed it through A to get an
initial conditional affordance map. This affordance map is
then fed into O to conduct iterative closed-loop affordance
optimization, with the trajectory and target affordance value
as the objective and robot position as the condition. The
optimization trajectory for the robot position forms our
motion strategy, which is shown in Figure 5. Besides, to
first approach the object from far away and finally finish the
manipulation actions, we also need P to guide the robot’s



Fig. 5: Visualization of Our 2D Trajectory Optimization. The left subfigure demonstrates the 2D affordance map about
the robot’s different positions in the motion trajectory. The right subfigure shows a typical trajectory affordance curve of
our proposed method.

whole-body motion.

A. Motion Planning Module

We design a mobile MPC (Model Predictive Controller)
for our 9-DoF mobile panda arm as the motion planner P .

B. Affordance Prediction Module

We use the conditional affordance network from En-
vAwareAfford [4] as our predictor A , which is shown in
Figure 2.

C. Optimization Module

We perform sampling-based affordance optimization O to
obtain our motion strategy. Concretely, at each iteration, our
model predicts the affordance for the present robot position.
Our model then samples N directions with M strides as our
sampled next position. Our predictor A then inferences over
these N×M positions, the results of which are then fed into
O to find the optimal one.

D. Planning-Optimization Adaptation

The affordance predictor A , when applied to a robot
positioned at a considerable distance initially, tends to output
an affordance map filled entirely with zeros, which lacks the
necessary gradient to guide the optimization process effec-
tively. Thus we use the motion planner P to first approach
the object for a certain distance to obtain a meaningful 2D
trajectory affordance gradient for optimization O .

When the final conditional affordance value reaches its
optimum, the optimizer O will stop and the motion planner
P will output the manipulation strategy.

IV. EXPERIMENT

A. Task and Environment Settings

We evaluated our proposed method on two mobile ma-
nipulation tasks: pushing without occlusions, pushing with
occlusions. In all tasks, a mobile robotic arm is required
to accomplish a specific manipulation goal with different
objects.

TABLE I: Quantitative results in no occluder, one occluder,
multi-occluder scenes.

Method No occluder One occluder Multiple occluders
Heuristic 46.7 42.8 35.7

Ours 70.2 64.3 52.6

Our offline data is collected in the simulator Issac-
Gym [12], using assets from PartNet-Mobility, a 3D artic-
ulated object dataset [18] and ShapeNet, a comprehensive
rigid 3D shape dataset [3]. These offline data only contain
single-position interaction results for the training of our
affordance predictor A .

B. Baselines and Ablation

We benchmarked our method against another algorithm,
which is briefly described in the following:

• Heuristic: In this method, we move the robot directly
in the front of the target point, and then manipulate it.

C. Quantitative and Qualitative Results

Table I shows our large-scale evaluation results in
simulation over different tasks. As the heuristic method
does not include the procedure of optimization proce-
dure, our environment-aware-affordance-based method out-
performs this baseline by quite a large margin.

Figure 3 shows that the mobile manipulation of our
method successfully helps in avoiding collisions with oc-
clusion objects and manipulating the target point.

V. CONCLUSIONS

In this paper, we proposed a novel framework MobileAf-
ford for learning differentiable conditional actionable af-
fordance, which unified the motion and manipulation pro-
cess for known and unknown objects in arbitrary environ-
ments through affordance optimization. We set up large-scale
benchmarks in IssacGym [12] for four mobile manipulation
tasks using the PartNet-Mobility [18] and ShapeNet [3]
datasets. Results proved the effectiveness of our approach
and its superiority over the baselines.
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