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Abstract

Whether neural networks are capable of com-001
positional generalization has been a topic of002
much debate. Most previous studies on this sub-003
ject investigate the generalization capabilities004
of state-of-the-art deep learning architectures.005
We here take a more bottom-up approach and006
design a minimal model that displays general-007
ization on a compositional benchmark, namely,008
the gSCAN dataset. The model is a hybrid009
architecture that combines layers trained with010
gradient descent and a selective attention mech-011
anism optimized with an evolutionary strategy.012
The architecture has around 60 times fewer013
trainable parameters than models previously014
tested on gSCAN, and achieves comparable ac-015
curacies on most test splits, even when trained016
only on a fraction of the dataset. On adverb017
to verb generalization accuracy, it outperforms018
previous approaches by 65 to 86%. Through019
ablation studies, neuron pruning, and error anal-020
yses, we show that weight decay and attention021
mechanisms facilitate compositional general-022
ization by encouraging sparse representations023
divorced from irrelevant context. We find that024
the model’s sample efficiency can mainly be025
attributed to its selective attention mechanism.026

1 Introduction027

Compositionality is a core aspect of human cogni-028

tion. It is what allows us to produce and understand029

infinite combinations of known concepts, be it in030

the realm of language, vision, or motor skills. Re-031

garding artificial intelligence (AI) systems, compo-032

sitionality holds the promise of more human-like,033

robust generalization on out-of-distribution data, as034

well as increased sample efficiency. Composition-035

ality in neural networks has thus been the subject036

of numerous empirical investigations – with mixed037

results. Several studies using a variety of deep neu-038

ral network architectures have found that models039

either failed on compositional tasks or succeeded040

given enough data, but could do so without relying041

on systematic compositional rules (Baroni, 2020; 042

Lake and Baroni, 2018; Loula et al., 2018; Subra- 043

manian et al., 2019; Keysers et al., 2019; Hupkes 044

et al., 2020; Andreas et al., 2019; Chaabouni et al., 045

2020). Others found that such architectures could 046

reach compositional solutions without being explic- 047

itly constrained to do so, but that this ability varied 048

dramatically across random initializations of the 049

same model (Liška et al., 2018; McCoy et al., 2020; 050

Weber et al., 2018). 051

The main focus of these studies has been on 052

testing whether state-of-the-art deep learning archi- 053

tectures are able to learn compositionally. We here 054

take a different approach, namely that of specifi- 055

cally building a minimal model that is able to solve 056

a set of compositional generalization tasks, then 057

using this model as a tool for analyzing when and 058

how generalization occurs. Our dataset of choice 059

for this investigation is gSCAN, a challenge bench- 060

mark for systematic generalization in grounded 061

language understanding. 062

The model we use is a hybrid architecture, con- 063

taining some weights that are trained with gradient 064

descent, some that are optimized with an evolu- 065

tionary strategy, and some that are initialized ran- 066

domly and left frozen. A detailed justification of 067

these design choices is given in Section 4.2. The 068

architecture has around 60 times fewer trainable pa- 069

rameters than models previously tested on gSCAN, 070

which allows us to run extensive ablation studies 071

and error analyses to investigate factors contribut- 072

ing to generalization performance. We find that our 073

best-performing model breaks down the gSCAN 074

tasks into simpler, reusable parts and combines 075

them using only 13 neurons in its final decision 076

layer. It achieves accuracies comparable with pre- 077

viously proposed models on most test splits and 078

outperforms them on adverb to verb generalization 079

by 65 to 86%, even when trained on as little as 2% 080

of the full dataset. 081
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2 Related Work082

2.1 Compositional Generalization083

A number of works have addressed the challenge084

of building AI systems that generalize composition-085

ally. Neural Module Networks were designed for086

visual question answering and achieve systematic-087

ity by dynamically assembling question-specific088

models out of trainable reusable components (An-089

dreas et al., 2016a,b; Bahdanau et al., 2018). Other090

approaches explore ways of encouraging composi-091

tional representations in commonly used state-of-092

the-art models without major architectural changes.093

In this vein, Hupkes et al. (2018) and Baan et al.094

(2019) find that attentive guidance during training095

helps develop small functional groups of neurons096

that yield more compositional solutions by seq2seq097

models on lookup table tasks. Andreas (2020) and098

Akyürek et al. (2020) propose data augmentation099

schemes that promote compositional learning in100

instruction following and morphological analysis.101

Ontanón et al. (2021) focus on the effect that de-102

sign decisions such as position encodings, weight103

sharing, or model hyper-parameters can have on104

the compositional generalization abilities of Trans-105

former models. Finally Power et al. (2021) identify106

weight decay as being particularly effective at im-107

proving generalization on a binary operation table108

task.109

2.2 Grounded instruction following110

Several datasets have been proposed in recent years111

for training embodied agents to follow instructions112

in simulated 2D or 3D environments (Hermann113

et al., 2017; Yu et al., 2018a; Misra et al., 2018;114

Chaplot et al., 2018; Yu et al., 2018b; Deruyt-115

tere et al., 2019; Chevalier-Boisvert et al., 2019;116

Shridhar et al., 2020). One such task is gSCAN,117

which was specifically introduced as a benchmark118

for compositionality in grounded language under-119

standing and contains 8 test splits for assessing120

different kinds of out-of-distribution generaliza-121

tion (Ruis et al., 2020). Previous approaches to122

solving gSCAN include language-conditioned mes-123

sage passing (Gao et al., 2020), compositional net-124

works (Kuo et al., 2021), neuro-symbolic, dual-125

system models (Nye et al., 2021), and the intro-126

duction of auxiliary tasks (Jiang and Bansal, 2021;127

Heinze-Deml and Bouchacourt, 2020). The most128

successful model to date uses a general-purpose129

transformer architecture with cross-modal atten-130

tion and solves 5 out of 8 tasks (Qiu et al., 2021).131

As outlined in the introduction, our goal is not 132

necessarily to compete with these previous ap- 133

proaches. Instead we aim to devise a parameter- 134

efficient model that can serve as a tool for a more 135

in-depth investigation of the factors influencing per- 136

formance on the different gSCAN test splits, and 137

to contextualise the results with previous findings 138

on out-of-distribution generalisation. 139

2.3 Neuroevolution 140

Evolutionary algorithms (EA) are stochastic, 141

gradient-free methods that explore multiple areas 142

of a search space in parallel. This work was par- 143

ticularly inspired by Tang et al. (2020), who com- 144

bine neuroevolution techniques with self-attention 145

to solve vision-based RL tasks. Their model ex- 146

tracts relevant patches from input images through a 147

hard (non-differentiable) attention mechanism, op- 148

timized via an EA rather than more commonly used 149

techniques like RL. The most attended-to patches 150

are then passed on to an LSTM controller which 151

determines the agent’s action. The authors find that 152

this approach significantly reduces the number of 153

model parameters needed compared to previous 154

methods, as well as offering increased interpretabil- 155

ity and higher robustness to out-of-distribution 156

modifications (Tang et al., 2020). 157

3 Background 158

Our architecture makes use of an Echo-State Net- 159

work (ESN) and the covariance matrix adaptation 160

evolution strategy (CMA-ES) to reduce the number 161

of learnable parameters needed (see Section 4.2). 162

As both are not commonly used in NLP, we here 163

provide some background on these techniques. 164

3.1 Echo-State Networks 165

A basic ESN consists of an input layer W r
i , a recur- 166

rent neural network (RNN) or so-called reservoir, 167

and an output layer Wo. The reservoir’s state is 168

updated at each discrete time step as follows: 169

x[n+ 1] =(1− α)x[n] + αf
(
W r

i u[n] 170

+W r
r x[n]

)
, (1) 171

where α is a leak rate, x[n] is the current reser- 172

voir activation state, f is a the hyperbolic tangent 173

function, u[n] is the external input, and W r
r is the 174

reservoir’s internal weight matrix. The ESN’s out- 175

put is computed as 176

y[n+ 1] =g(Wox[n+ 1]), (2) 177
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where g is an activation function. Crucially, W r
i178

and W r
r are randomly initialized and left untrained179

– only Wo is optimized. This leads to considerably180

faster training times than for conventional RNNs181

where all weights are learned (Gauthier et al., 2021).182

ESNs’ main areas of application therefore include183

resource-constrained contexts like robotics and184

edge computing (Nakajima, 2020).185

3.2 CMA-ES186

CMA-ES is a black-box optimization algorithm. It187

has been empirically shown to perform robustly188

on a range of tasks and requires very little pa-189

rameter tuning (Hansen et al., 2010), making it190

the EA of choice for optimizing the model in191

Tang et al. (2020) which inspired our architecture.192

CMA-ES works by iteratively sampling λ candi-193

date solutions from a multivariate normal distribu-194

tion N (m,σ2, C) with mean m, step size σ and195

covariance matrix C. At each generation, the can-196

didate solutions’ fitness is evaluated according to197

some function f , and m, σ, and C are adjusted to198

increase the probability of success. As the CMA-199

ES algorithm is not a main focus of this work, we200

relegate details on how the parameters are updated201

to Appendix A and refer the interested reader to202

Hansen and Ostermeier (2001) for a more in-depth203

description of the method.204

4 Experiment setup205

4.1 gSCAN Benchmark206

The gSCAN environment is a grid with objects207

of various shapes, sizes, and colors. It is repre-208

sented as a 16 × 6 × 6 array, where 6 is the grid209

size and 16 is the dimension of the binary feature210

encoding for each grid cell. The agent receives211

synthetically generated English language instruc-212

tions which it must carry out using 6 output actions,213

such as walking or turning. Some combinations214

are held out of the training set. Out-of-distribution215

generalization is then assessed on nine separate216

test splits, listed in Table 1, measured using exact217

match accuracy of predicted action sequences. The218

full dataset has ≈ 370, 000 training and ≈ 20, 000219

test sequences. Hupkes et al. (2020) propose to220

distinguish between five interpretations of model221

compositionality, namely, the systematic recom-222

bination of known parts and rules (systematicity),223

the extension of predictions beyond lengths seen224

during training (productivity), robustness to syn-225

onym substitutions (substitutivity), dependence on226

Table 1: Overview of gSCAN’s compositional test splits

Test Split Held-out Examples

A: Random Random (in-distribution)

B: Yellow Squares
Yellow squares as targets if
referred to as yellow

C: Red Squares Red squares as targets
D: Novel Direction Targets south-west of the agent

E: Relativity
Circles of size 2 referred to as small
(references are relative to other grid
objects, not tied to absolute sizes)

F: Class inference
Pushing squares of size 3 (heavy
objects are pushed/pulled twice)

G: Adverb k = 1
All except k mentions of cautiously
(looking both ways before each step)

H: Adverb to verb
Commands containing both pull and
while spinning (turning 4 times)

I: Length Action sequences of length ≥ 15

local vs global structures (localism), and the pref- 227

erence for rules vs exceptions (overgeneralization). 228

Following this taxonomy, split G tests the model’s 229

one-shot learning capabilities, or overgeneraliza- 230

tion. Split I tests for productivity. We mainly con- 231

sider splits B, C, D, E, F, and H, which focus on 232

systematic generalization and substitutivity. 233

4.2 Model 234

To solve a gSCAN task, the agent requires knowl- 235

edge of the command to carry out, the grid state, 236

and its own past actions. The latter is needed to 237

keep track of e.g. the number of turns completed 238

when “spinning". In the following, we describe 239

how these inputs are represented and processed. 240

Reservoir To create the representation of the 241

language command we chose an ESN, due to its 242

ability to capture information about all input words 243

and their order in a single vector, without requiring 244

any weight updates. This fit our goal of keeping the 245

number of trainable parameters low. The instruc- 246

tion to the agent is tokenized, one-hot encoded, and 247

input sequentially to a reservoir with 400 hidden 248

neurons, which is updated after each token accord- 249

ing to Equation 1. All reservoir neurons are ran- 250

domly connected to an output layer Wo of size 64, 251

yielding a 64-dimensional command embedding. 252

Selective attention The selective attention part 253

of the model is responsible for extracting task- 254

relevant information from the input grid. The com- 255

mand embedding xlang ∈ R1×64 is passed through 256

a layer Wlang ∈ R64×16. The resulting vector is 257

convolved with the input grid at each position to 258

obtain a heatmap over grid G ∈ R16×6×6. The x- 259

and y-coordinates and the 16-dimensional feature 260
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vector for the most-attended grid cell g∗ are then261

extracted:262

g∗ = argmax
(
(xlang ·Wlang) ∗G

)
(3)263

Because this argmax operation is non-264

differentiable, we follow Tang et al. (2020)’s265

approach of using CMA-ES to optimize Wlang.266

However, in contrast to Tang et al., we apply the267

attention matrix to feature vectors rather than268

image patches, and we do not evolve all learnable269

parameters in our model. This is because our270

model has significantly more parameters than that271

of Tang et al. and the time and space complexity272

of CMA-ES is quadratic in the dimensionality of273

its objective function – restricting its application274

to problems with no more than a few hundred275

variables (Varelas et al., 2018). Therefore, only this276

selective attention part of the model is optimized277

using CMA-ES. The rest is trained using gradient278

descent. Inspired by joint attention mechanisms279

and parental guidance during child learning, the280

CMA-ES receives auxiliary feedback on whether281

the correct target object was most attended to.282

We also test and report the results for a version283

where the CMA-ES receives as feedback the284

cross-entropy loss produced by the agent’s final285

prediction outputs (see Section 5.1).286

Action attention The action attention part of287

the model serves as the agent’s “memory" of288

past outputs. The command embedding under-289

goes self-attention, yielding a weighted embedding290

alang ∈ R1×64. This is then passed through another291

attention layer Wact ∈ R64×200 and multiplied292

element-wise with a vector xact ∈ R200×1 contain-293

ing the agent’s one-hot encoded past 20 actions and294

orientations:295

aact = (alang ·Wact)⊙ xact (4)296

As there is no argmax operation involved, Wa is297

trained with conventional gradient descent.298

Controller Finally, the outputs of the selective299

and action attention modules are concatenated with300

the agent’s current x- and y-coordinates and orien-301

tation, as well as the unweighted command embed-302

ding and input to the agent’s controller to predict303

the agent’s next step. The controller consists of a304

layer normalization layer, a layer with 100 hidden305

ReLU units, and an output layer of size 6.306

In total, the model has a little under 5 · 104 train-307

able parameters, compared to around 3 · 106 for308

models previously tested on gSCAN (Qiu et al.,309

2021). A schematic overview is shown in Figure 1.310

“Walk to a yellow 
small cylinder”

0 0 1 0 0 1

hidden layer

self - 
attention

attention

attention 
(CMA-ES)

command 
embedding

push staypullwalkturn rightturn left

grid

agent’s past actions 
and orientations

agent loc. + 
orientation target loc. target 

features
language 
command

agent’s past actions 
and orientations

reservoir

gSCAN task

Figure 1: Schematic visualization of the proposed model

4.3 Training details 311

The weights of the ESN were initialized with a 312

spectral radius of 0.99 and a density of 1e− 2. The 313

leaking rate was set to 1e−1. For the CMA-ES, we 314

used a population size of 8 and an initial normal dis- 315

tribution with standard deviation 1e− 1. Optimiza- 316

tion was implemented with the pycma library1. For 317

the part of the model trained via gradient descent, 318

we used the Adamax optimizer and a learning rate 319

cycle with an upper boundary of 1e−2. Weight de- 320

cay was set to 1e− 4 and models were trained with 321

batch size 4,096 for 100 epochs unless otherwise 322

specified. All performance results are based on 10 323

runs. Each run used a different random seed for 324

model weight initialization. However, the same 10 325

seeds were used for all tested modified or ablated 326

architectures, so that all compared models started 327

with the same 10 sets of weights. Experiments 328

were implemented in Pytorch2 and run on a server 329

with 4 NVIDIA RTX 3090 GPUs and a 24 core 330

Epyc CPU. The training time for one model was 331

approximately 1.3 hours on the full dataset, 16 min- 332

utes on the 10% subset, and 9 minutes on the 2% 333

subset. Code is publicly available at anonymous. 334

4open.science/r/minmodgscan-8F20. 335

1pypi.org/project/cma/
2pytorch.org
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5 Results336

5.1 Performance337

As shown in Table 2, the model with auxiliary at-338

tention feedback reaches competitive accuracy on339

splits A, C, E, and F. On split H, it outperforms340

previous proposals by 65 to 86%. To see if gener-341

alization extended to other combinations, we also342

tested two custom splits. The first is a variation of343

task C, where not only red squares, but also yellow344

squares, green cylinders, and blue circles never ap-345

pear as targets during training. The second is an ex-346

tension of split H, where in addition to “pull while347

spinning", the agent is never told to “push while348

zigzagging" or to “walk hesitantly" during train-349

ing. The model generalized to test sets containing350

only held-out shape-color and verb-adverb combi-351

nations, reaching 98.7% ± 1.5 and 98.9% ± 0.5352

accuracy, respectively.353

Table 3 compares the performance of models354

trained with and without an auxiliary feedback sig-355

nal as well as models receiving perfect target lo-356

cation inputs, for reference. As can be seen, the357

model without an auxiliary signal does learn to fo-358

cus on the target in some cases, but performance359

across the 10 runs exhibits a high variation. We360

also test a model which instead of absolute loca-361

tions receives agent-centric row- and column-wise362

distances as input, which is sometimes used in RL363

goal navigation tasks. This stronger inductive bias364

seems to force the agent to more reliably employ365

the selective attention mechanism for target loca-366

tion, even when it only receives indirect feedback367

in the form of cross-entropy loss. Detailed evalua-368

tion results are given in B.369

5.2 Sample Efficiency370

One of the main advantages of our model is its sam-371

ple efficiency. As shown in Figure 2, it achieves372

around 90% accuracy on splits A and C when373

trained on only 1% of the dataset, and 90 - 97%374

accuracy on splits A, C, E, and F with 2% of the375

data. This is well below the 40% data requirement376

threshold identified by Qiu et al. (2021) for their377

cross-modal transformer model. Interestingly, the378

exact match accuracy on splits B and C peaks at the379

10% subset and declines slightly when given more380

data – something we take a closer look at in Section381

5.3. Performance on task H increases more slowly382

than on other splits and requires at least 10% of the383

dataset to surpass 90% accuracy.384

Figure 2: Sample efficiency on test splits for models
with selective attention and auxiliary feedback

5.3 Error Analyses 385

Attention: We first analyze the mistakes made by 386

the models trained without auxiliary feedback by 387

treating the task of focusing on the correct target 388

as a classification, and analyzing the feature-wise 389

confusion matrices of the models. This reveals 390

an accumulated false discovery rate of 66.5% for 391

the “agent" dimension of the grid cell feature vec- 392

tors, compared to 0% for the models trained with 393

feedback. This means the models without attentive 394

guidance tend to overly focus on the agent. The 395

location of the agent does coincide with the target 396

object’s location around 18% of the time, which 397

might lead to an overreliance on this dimension. 398

We also find that the models trained without atten- 399

tion supervision struggle more with under-specified 400

commands. For example, the models focus on an 401

object of the correct color in ca. 96% of cases when 402

the color is explicitly mentioned in the command. 403

When the target object is only referred to by its 404

shape or size, the accuracy drops to about 90%. 405

Detailed confusion matrices can be found in D.1. 406

Yellow squares: In the case of split B, perfor- 407

mance exhibits a large variation across instantia- 408

tions of the same model. Out of 10 runs, approxi- 409

mately half always achieve accuracies in the range 410

of 90 - 99% while the others only reach 35 - 55%. 411

The best performance is achieved with a 10% sub- 412

set of the training set, where all ten models reach 413

at least 60% accuracy. A look at the confusion 414

matrices shows that, on average, models correctly 415

identify a square as their target object in 97% of 416

test cases. However, their color accuracy is only 417

around 75%. Taken together, this suggests that the 418

models overfit to the absence of yellow squares. 419

Depending on the random initialization of its selec- 420

tive attention matrix, a model may be more or less 421
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Seq2Seq
(2020)

GECA
(2020)

Heinze
(2020)

Gao
(2020)

Kuo
(2020)

Qiu
(2021)

Jiang
(2021)

Nye
(2021)

Ours
(100%)

Ours
(10%)

A 97.69 ± 0.2 87.60 ± 1.2 94.19 ± 0.7 98.60 ± 1.0 96.73 ± 0.6 99.95 ± 0.0 - 74.7 99.7 ± 0.1 99.5 ± 0.1
B 54.96 ± 39.4 34.92 ± 39.3 86.45 ± 6.3 99.08 ± 0.7 94.91 ± 1.3 99.90 ± 0.1 - 81.3 73.5 ± 25.4 81.6 ± 14.3
C 23.51 ± 21.8 78.77 ± 6.6 81.07 ± 10.1 80.31 ± 24.5 67.72 ± 10.8 99.25 ± 0.9 - 78.1 99.4 ± 0.4 99.5 ± 0.2
D 0.00 ± 0.0 0.00 ± 0.0 - 0.16 ± 0.1 11.52 ± 8.2 0.00 ± 0.0 - 0.0 2.2 ± 1.5 3.5 ± 2.7
E 35.02 ± 2.4 33.19 ± 3.7 43.43 ± 7.0 87.32 ± 27.4 76.83 ± 2.3 99.02 ± 1.2 - 53.6 97.4 ± 2.0 96.8 ± 1.9
F 92.52 ± 6.8 85.99 ± 0.9 - 99.33 ± 0.5 98.67 ± 0.1 99.98 ± 0.0 - 76.2 99.1 ± 0.6 98.3 ± 1.7
G 0.00 ± 0.0 0.00 ± 0.0 - - 1.14 ± 0.3 0.00 ± 0.0 4.9 0.00 0.00 ± 0.0 0.0 ± 0.1
H 22.70 ± 4.6 11.83 ± 0.3 - 33.6 ± 20.8 20.98 ± 1.4 22.2 ± 0.01 28.0 21.8 98.4 ± 1.1 94.2 ± 3.7

Table 2: Exact match accuracy on gSCAN compositional splits. For our proposed model, we report both the
performance of models trained on the full dataset and of those trained on a 10% subset.

Table 3: Exact match accuracy and attention match
accuracy on gSCAN compositional splits for models
with selective attention, optimized with and without
auxiliary feedback.

perfect att. w/o aux. signal
abs. loc.

w/o aux. signal
rel. dist.

seq.
match

seq.
match

att.
match

seq.
match

att.
match

A 100.0 ± 0.0 59.3 ± 29.1 74.2 ± 21.4 83.0 ± 3.4 92.8 ± 2.2
B 100.0 ± 0.0 50.8 ± 21.1 61.6 ± 17.0 59.5 ± 15.7 70.0 ± 16.7
C 100.0 ± 0.0 70.0 ± 29.5 73.8 ± 24.8 89.7 ± 9.3 91.1 ± 8.4
D 1.9 ± 1.7 0.1 ± 0.2 66.6 ± 28.9 0.8 ± 0.9 91.3 ± 2.6
E 100.0 ± 0.0 50.3 ± 20.4 62.1 ± 17.9 74.1 ± 6.2 84.1 ± 7.6
F 100.0 ± 0.0 52.6 ± 25.0 70.4 ± 20.7 67.5 ± 9.3 84.4 ± 8.0
G 0.0 ± 0.0 0.0 ± 0.0 63.0 ± 15.7 0.0 ± 0.0 73.0 ± 5.8
H 99.3 ± 1.0 37.5 ± 20.2 74.4 ± 14.9 56.4 ± 6.2 89.9 ± 3.9

predisposed to generalization on this task. In the422

absence of any samples with yellow squares that423

could cause a course correction, this predisposi-424

tion may be exacerbated with each update and thus425

deteriorate performance in the higher-data regimes.426

Novel direction: Similar to previous architec-427

tures tested on gSCAN, our model has no trouble428

identifying the correct targets in split D (Ruis et al.,429

2020; Qiu et al., 2021). Its attention match accu-430

racy is 100%. However, it cannot navigate to the431

identified target successfully. On average, it ends432

up in the correct row in 44% of cases, in the right433

column in 23% of cases, and never both.434

5.4 Ablations435

Weight Decay and Action Attention: As shown436

in Table 4, ablating weight decay or attention over437

full
model

w/o weight
decay

w/o action
attention

w/o selective
attention

A 99.7 ± 0.1 92.5 ± 1.8 92.2 ± 2.5 89.6 ± 3.3
B 73.5 ± 25.4 74.2 ± 12.9 73.0 ± 21.1 69.5 ± 21.8
C 99.4 ± 0.4 95.9 ± 3.0 92.9 ± 7.6 78.6 ± 17.1
D 2.2 ± 1.5 0.1 ± 0.1 0.0 ± 0.0 0.3 ± 0.6
E 97.4 ± 2.0 73.9 ± 8.2 85.7 ± 6.6 72.1 ± 2.3
F 99.1 ± 0.6 73.7 ± 7.8 80.6 ± 9.3 81.6 ± 9.9
G 0.0 ± 0.0 0.4 ± 0.2 0.0 ± 0.0 0.0 ± 0.0
H 98.4 ± 1.1 39.5 ± 14.5 23.8 ± 3.7 65.5 ± 13.1

Table 4: Exact match accuracy on gSCAN composi-
tional splits for ablated models

past steps causes the most pronounced performance 438

drops in splits E, F, and H. To compare structural 439

differences between the ablated models, we per- 440

form a neuron pruning experiment (detailed results 441

in C). For every neuron in the trained models’ final 442

hidden layer, we record the product of its activation 443

and outgoing weights at each step when processing 444

a 2% subset of the training set. We then disable 445

neurons in ascending order of contribution to the 446

models’ outputs and assess the pruned model’s ex- 447

act match accuracy. All full models require only 13 448

hidden neurons to solve all tasks. Without attention 449

over past actions, 16 neurons are needed to reach 450

the final accuracy. Models without weight decay 451

rely almost equally on all 100 neurons. Pruning 452

any of them leads to decreased performance. 453

This difference in learned representations is also 454

illustrated in Figure 3, which shows the weights be- 455

tween the agent’s past actions and the hidden layer 456

of three identically initialized models with different 457

ablations applied. The model with weight decay 458

and action attention learns the most sparse weights 459

and focuses on recent steps. The hidden model 460

without action attention has a similarly sparse hid- 461

den layer, but a longer "memory", i.e., it takes into 462

account past actions from further back in the step 463

sequence. The model without weight decay is very 464

densely connected. 465

Selective Attention: To investigate the effect of 466

selective attention, we train a soft attention version 467

of the model. Instead of the isolated feature vector 468

of the most attended grid cell, this model receives 469

the attention-weighted whole grid as input, similar 470

to the action attention mechanism. To account for 471

the higher dimensionality of the input, we increase 472

the number of neurons in the hidden units to 500. 473

The relative amount of neurons needed to reach 474

full accuracy is similar to the model without action 475

attention – around 18%. Performance-wise, the 476

ablation causes a drop-off across the board but still 477

6



Figure 3: Weights between the agent’s past actions
and the model’s hidden layer, as learned by (a) the full
model, (b) the model with weight decay but no action
attention, and (c) the model with action attention but no
weight decay

Figure 4: Sample efficiency on test splits for models
without selective attention

achieves around 90% accuracy on in-distribution478

data when trained on the full dataset. However, the479

sample efficiency is greatly reduced (see Figure 4).480

I.e., models need to have seen a greater number of481

input combinations to start generalizing. This is482

also supported by a comparison of the confusion483

matrices for models with and without selective at-484

tention via a χ2-test on split A (details in D.2).485

By far the most over-represented feature among486

misclassifications by the soft-attention model, as487

measured by standardized residuals, is the “square"488

dimension. Since squares are held out for splits489

B, C, and F, this shape is underrepresented in the490

training set. The model thus sees fewer examples491

during training, which seems to affect its ability to492

generalize to new combinations involving squares493

even for in-distribution data.494

5.5 “Spontaneous" Generalization495

During our ablation studies, we observed that gen-496

eralization to the “adverb to verb" split did occur497

Figure 5: Accuracy on split H over the course of training
for a model without action attention

frequently in models without weight decay and ac- 498

tion attention, but not in a linear fashion. As shown 499

in Figure 5, performance on split H would spike on 500

one training batch, then fall again. Higher system- 501

atic generalization ability is not necessarily evident 502

from looking at the performance on in-distribution 503

data – two models may have the same train loss or 504

test accuracy, but very different out-of-distribution 505

accuracies. Such spurious generalization behavior 506

may also explain the variation in performance on 507

split H observed by Gao et al. (2020) and Jiang and 508

Bansal (2021). 509

One reason often cited for unstable generaliza- 510

tion is sharp local minima (Keskar et al., 2017). 511

However, a visualization of the loss landscape of 512

the models at various points during training shows 513

relatively flat planes. The landscapes for training 514

and “adverb to verb" data are simply well aligned 515

for some model-batch combinations, and less so 516

for others (see Figure 6). We also investigated 517

whether the batches used to update the models im- 518

mediately before out-of-distribution performance 519

spikes had any special properties that would fa- 520

cilitate generalization. We saved batches that pre- 521

ceded an increase on split H accuracy of at least 522

5%, injected them randomly into the training of 523

other models, and recorded the difference in perfor- 524

mance caused. However, we found no statistically 525

significant improvement over random batches, and 526

no statistically significant differences in feature or 527

label distributions of such “spike" batches. 528

We did find that batch size had an impact on the 529

likelihood of generalization spikes. We trained 10 530

models without weight decay on 5 different batch 531

sizes using a 2% subset of the training data. All 532

models were trained for the same number of ab- 533

2github.com/marcellodebernardi/
loss-landscapes
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Figure 6: Examples of loss landscapes for models
trained without weight decay, visualized with the loss-
landscapes library 3. Lower planes show the landscapes
for a random training batch of size 256. Upper planes
show the landscapes for the entire “adverb to verb" split.
For some model-batch combinations, the two align well
(left). For others, less so (right).

solute updates. For all batch sizes, the random534

initialization of the ten models used the same ran-535

dom seeds. We then sampled the models’ perfor-536

mance on split H at 50 points in regular intervals537

during training. As shown in Figure 7, generaliza-538

tion performance with smaller batches was higher539

but more volatile. Comparing the distribution of540

sampled “adverb to verb" accuracies across batch541

sizes yielded statistically significant Z-scores > 2542

between batch sizes ≤ 512 and ≥ 2048. This is543

consistent with previous findings that smaller batch544

sizes facilitate better generalization (Smith and Le,545

2018; Keskar et al., 2017; Smith et al., 2018; Hof-546

fer et al., 2017; Masters and Luschi, 2018). Details547

on statistical tests are given in E.548

6 Discussion549

The core of systematic generalization, namely,550

the ability to flexibly compose known parts, is551

not something neural networks in their pure form552

seem incapable of – as long as they receive atomic553

units as inputs that are as separated from irrelevant554

context as possible. Otherwise, they may overfit555

and learn solutions that only perform well on in-556

distribution data. Seen from this perspective, fac-557

tors identified as helpful to generalization, both in558

the literature and in this study, are all mechanisms559

that can contribute to learning atomic input units.560

Weight decay facilitates this by serving as a kind561

of inductive simplicity bias (Power et al., 2021;562

Kirk et al., 2021). So do soft attention mechanisms,563

which filter out irrelevant inputs. So does the hard564

attention bottleneck employed in this paper, by de-565

coupling content, which is only relevant for target566

identification, from location, which is only rele-567

Figure 7: Distributions of split H accuracy sampled
during training, for 5 different batch sizes

vant for navigation (Heinze-Deml and Bouchacourt, 568

2020; Dubois et al., 2020). 569

7 Conclusion 570

In summary, we build on Tang et al.’s neuroevo- 571

lution approach to selective attention and embed 572

it in a hybrid model. We apply this model to the 573

task of systematic generalization in grounded in- 574

struction following and explore the effect of vari- 575

ous design decisions on out-of-distribution perfor- 576

mance. We find that weight decay and attention 577

mechanisms facilitate compositional generalization 578

by encouraging sparse representations divorced 579

from irrelevant context, and that selective atten- 580

tion dramatically improves the model’s sample effi- 581

ciency. We also find that, even without weight de- 582

cay and attention, generalization performance may 583

improve sporadically during training independent 584

of in-distribution accuracy, especially with smaller 585

batch sizes. Studies on out-of-distribution general- 586

ization should therefore employ a sufficiently high 587

number of training runs to obtain a reliable estimate 588

of a models’ generalization robustness. 589

Although our architecture is specific to the 590

dataset at hand, the factors contributing to its per- 591

formance are consistent with related work on sys- 592

tematic generalization and likely to apply to other 593

situations as well. However, compositional gener- 594

alization encompasses a wide range of skills and 595

even within systematic generalization, solving one 596

task, e.g., recombining shapes and colors, may not 597

translate to another, e.g. recombining directions. 598

Several gSCAN tasks remain unsolved and likely 599

require different inductive biases than the ones pre- 600

sented here. We hope that this closer look at the 601

minimal requirements for generalization on the var- 602

ious gSCAN test splits can inform future work on 603

this benchmark going forward. 604
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A Background on CMA-ES820

CMA-ES begins by sampling λ individual solu-821

tions x
(g+1)
1 , ..., x

(g+1
λ from a multivariate Gaus-822

sian distribution N
(
m(g), σ(g)2C(g)

)
with mean823

m(g), step size σ(g) and covariance matrix C(g).824

The initial mean, step size and covariance matrix825

are then adapted iteratively to increase the likeli-826

hood of successful solutions as evaluated by some827

function f . Mean adaptation is done by shifting m828

by the weighted average of the µ best solutions of829

generation g (Shala et al., 2020):830

m(g+1) = m(g)+cm

µ∑
i=1

wi

(
x
(g+1)
i:σ −m(g)

)
, (5)831

where cm is a learning rate. The new step size σ832

is determined as follows (Shala et al., 2020):833

σ(g+1) = σ(g)exp

(
cσ
dσ

(
∥p(g+1)

σ ∥
E∥N (0, I)∥

− 1

))
,

(6)834

where cσ is a separate learning rate, dσ is a835

damping parameter, and p
(g+1)
σ is the next gen-836

eration’s conjugate evolution path computed as837

(Hansen et al., 2003):838

p(g+1)
σ = (1− cσ) · p(g)

σ839

+
√

cσ · (2− cσ) ·
√
µ

σ(g)

(
x(g+1)
µ − x(g)µ ).

(7)

840

Finally, the covariance matrix is updated841

(Hansen et al., 2003):842

C(g+1) = (1− ccov) · C(g)843

+ ccov · p(g+1)
c

(
p(g+1)
c

)T
, (8)844

where ccov is another learning rate. For a more845

in-depth description of the CMA-ES algorithm846

please see Hansen and Ostermeier (2001).847

B Detailed Evaluation Results848

Parameter Size
Hidden layer 28,800
Layer normalization weights 100
Layer normalization biases 100
Output layer 600
Selective attention key matrix 1,024
Self-attention key matrix 4,096
Action attention key matrix 12,800
Total 47,520

Table 5: Overview of our model’s trainable parameters
(biases were only used in layer normalization)

0.01 0.02 0.1 0.5 1.0

A 0.996± 0.002 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000
B N/A N/A N/A N/A N/A
C N/A N/A N/A N/A N/A
D 0.000± 0.000 0.000± 0.000 0.034± 0.032 0.021± 0.025 0.019 ± 0.017
E 0.997± 0.001 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000
F 0.995± 0.002 1.000± 0.000 1.000± 0.000 1.000± 0.000 1.000± 0.000
G 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000 0.000± 0.000
H 0.610± 0.182 0.790± 0.165 0.999± 0.001 0.988± 0.028 0.993± 0.01

Table 6: Sequence match accuracies on gSCAN compo-
sitional splits with perfect selective attention trained on
1%, 2%, 10%, 50%, and 100% of the dataset

Att. Match Exact Match
Exact Match
if Att. Match

A 0.951± 0.015 0.925± 0.018 0.988± 0.006
B 0.786± 0.128 0.742± 0.129 0.988± 0.012
C 0.965± 0.028 0.959± 0.03 1.000± 0.000
D 0.934± 0.021 0.001± 0.001 0.001± 0.002
E 0.839± 0.109 0.739± 0.082 0.909± 0.066
F 0.878± 0.054 0.737± 0.078 0.886± 0.049
G 0.718± 0.07 0.004± 0.002 0.006± 0.003
H 0.918± 0.033 0.395± 0.145 0.441± 0.171

Table 7: Sequence and attention match accuracies on
gSCAN compositional splits with selective attention but
without weight decay (trained on the full dataset)

Att.
Match

Exact
Match

Exact Match
if Att. Match

A 0.947± 0.020 0.922± 0.025 0.996± 0.002
B 0.781± 0.188 0.730± 0.211 1.000± 0.000
C 0.947± 0.066 0.929± 0.076 1.000± 0.000
D 0.931± 0.027 0.000± 0.000 0.000± 0.000
E 0.901± 0.058 0.857± 0.066 0.996± 0.003
F 0.863± 0.073 0.806± 0.093 0.994± 0.005
G 0.772± 0.072 0.000± 0.000 0.000± 0.000
H 0.919 ± 0.032 0.238 ± 0.037 0.272 ± 0.034

Table 8: Sequence and attention match accuracies on
gSCAN compositional splits with selective attention but
without action attention (trained on the full dataset)
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Att. Match Exact Match
Exact Match
if Att. Match

Pull while spinning,
Push while zigzagging,
Walk hesitantly

0.982± 0.008 0.989± 0.005 0.996± 0.002

H:Adverb to verb 0.996± 0.003 0.93± 0.059 0.943± 0.055

Table 13: Sequence and attention match accuracies
on additional held-out verb-adverb combinations and
split H with selective attention and auxiliary feedback
(trained on the full dataset)

Att. Match Exact Match
Exact Match
if Att. Match

Red squares,
Yellow squares,
Green cylinders,
Blue circles

0.991± 0.013 0.987± 0.015 1.000± 0.000

B:Yellow squares 0.855± 0.144 0.829± 0.165 1.000± 0.000
C:Red squares 0.996± 0.006 0.992± 0.007 1.000± 0.000

Table 14: Sequence and attention match accuracies on
additional held-out shape-color target combinations and
splits B and C with selective attention and auxiliary
feedback (trained on the full dataset)

C Neuron pruning853

For each neuron in the final hidden layer of the854

model, we recorded its activation, multiplied by855

its outgoing weight (no biases were used in the856

model, except in the layer normalization layer).857

We then sorted neurons based on their accumulated858

contribution to the final model output and tested859

exact sequence accuracy on the gSCAN dev set860

with the top X% of neurons active. The rest were861

disabled by setting outgoing weights to 0. Detailed862

results are shown in Table 15.863

% of top hidden
neurons active

unablated
model

w/o action
attention

w/o selective
attention

w/o weight
decay

10% 0.538 ± 0.054 0.354 ± 0.096 0.576 ± 0.054 0.042 ± 0.023
11% 0.664 ± 0.111 0.442 ± 0.117 0.627 ± 0.057 0.044 ± 0.026
12% 0.855 ± 0.108 0.522 ± 0.158 0.671 ± 0.051 0.068 ± 0.027
13% 0.998 ± 0.001 0.649 ± 0.164 0.715 ± 0.045 0.073 ± 0.021
14% - 0.824 ± 0.104 0.782 ± 0.034 0.079 ± 0.025
15% - 0.876 ± 0.090 0.823 ± 0.033 0.083 ± 0.033
16% - 0.904 ± 0.029 0.867 ± 0.034 0.093 ± 0.032
17% - - 0.902 ± 0.024 0.087 ± 0.031
18% - - 0.916 ± 0.025 0.097 ± 0.053
20% - - - 0.126 ± 0.092
30% - - - 0.119 ± 0.069
40% - - - 0.263 ± 0.149
50% - - - 0.486 ± 0.231
60% - - - 0.741 ± 0.171
70% - - - 0.810 ± 0.114
80% - - - 0.874 ± 0.045
90% - - - 0.880 ± 0.048
95% - - - 0.885 ± 0.049
100% - - - 0.906 ± 0.025

Table 15: Exact match accuracy on in-distribution data
for ablated and unablated models with different percent-
ages of disabled top contributing hidden neurons

Figure 8: Confusion matrix for the agent dimension

Figure 9: Confusion matrix for the color dimensions
when color is specified in the command

D Error analyses 864

D.1 Confusion matrices 865

We collected the feature vectors for the grid cells 866

that were most attended to by the models trained 867

with selective attention, but without auxiliary feed- 868

back. We also collected the feature vectors of the 869

actual target objects. We then created confusion 870

matrices for the parts of the feature vector relat- 871

ing to the agent, to color, to size, and to shape 872

(shown in Figures 8 - 13). For color and size, we 873

distinguish between situations where the attribute 874

is mentioned in the command and those where it is 875

not. 876
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Figure 10: Confusion matrix for the color dimensions
when color is not specified in the command

Figure 11: Confusion matrix for the color dimensions
when size is specified in the command

Figure 12: Confusion matrix for the color dimensions
when size is not specified in the command

Figure 13: Confusion matrix for the shape dimensions
(always specified in the command)

D.2 Ablated selective attention 877

We use a chi-squared test to compare the kind of tar- 878

get features that models tend to mis-identify when 879

they are trained with vs. without selective attention. 880

Figure 14 shows the test’s standardized residuals 881

for the model trained without selective attention, 882

i.e., the strength of the difference between observed 883

and expected values. Squares, the color yellow, and 884

small object sizes are especially over-represented 885

in the model’s incorrect target predictions. 886

E “Spontaneous" generalization 887

E.1 “Spike" batches 888

To test if the batches used to update the model 889

before a spike in performance on split H had any 890

special properties, we trained a model with batch 891

size 256 without action attention for 50 epochs 892

and saved any batches that preceded at least a 5% 893

increase in exact match accuracy on a 2% subset 894

of split H. We then trained 10 additional models 895

(with the same random seeds as used in the batch 896

size experiments) and injected one of the “good" 897

batches during training with a chance of 10%. We 898

recorded the difference to the performance on the 899

split H dev set before the batch update. A com- 900

parison of the distributions of split H performance 901

differences after an update with “good" batch vs. a 902

normal batch yields a Z-statistic of 0.665, which is 903

not significant at the 0.05 level. 904

Injecting “good" batches also does not seem to 905

increase the overall likelihood of higher perfor- 906

mance on split H during training. We compared 907

the distributions of split H accuracies sampled after 908

each epoch for the models trained with and without 909

“good" batch injections in the course of training. 910
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(a) dev set (b) test set

Figure 14: Plots of the standardized residuals of a Chi-
square test comparing the wrong predictions of mod-
els trained with vs. without selective attention, on in-
distribution data. We ran this test both on the dev set
(14a) and the test set (14b) with similar results. Circle
color represents absolute value of the residuals. Red in-
dicates that a feature is over-represented, blue indicates
a feature is under-represented. Circle size represents the
number of occurrences in the tested set.

A two-sample Kolmogorov-Smirnov test yielded a911

p-value of 0.413, which is well above the threshold912

of 0.05 and indicates there is no difference between913

the distributions. Finally, we compare the distribu-914

tion of labels in the “good" batches vs. the normal915

batches with a chi-squared test that yields a p-value916

of 0.445 – again, indicating little to no difference917

between the distributions.918

Batch size 1 Batch size 2 Z-score
256 512 1.35
256 1024 1.03
256 2048 3
256 4096 4.09
512 256 -1.35
512 1024 -0.09
512 2048 2.33
512 4096 3.95

1024 256 -1.03
1024 512 0.09
1024 1024 1.68
1024 4096 2.74
2048 256 -3
2048 512 -2.33
2048 1024 -1.68
2048 4096 1.77
4096 256 -4.09
4096 512 -3.95
4096 1024 -2.74
4096 2048 -1.77

Table 16: Pairwise comparison of distributions of split
H performance sampled during training, for 5 differ-
ent batch sizes. Statistically significant scores (≥ |2|)
marked in bold.

E.2 Effect of batch size 919

We trained 10 models without weight decay on a 920

2% subset of the training data with batch sizes 256, 921

512, 1024, 2048, and 4096. The number of epochs 922

was adjusted for each batch size so that all models 923

were trained for the same number of absolute up- 924

dates. For all batch sizes, the random initialization 925

of the ten models used the same random seeds. We 926

then sampled the models’ performance on split H 927

at 50 points in regular intervals during training and 928

compared Z-scores for the resulting distributions. 929

Results are given in Table 16 930
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