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Abstract

We consider the problem of exact recovery of
a k-sparse binary vector from generalized lin-
ear measurements (such as logistic regression).
We analyze the linear estimation algorithm (Plan,
Vershynin, Yudovina, 2017), and also show in-
formation theoretic lower bounds on the number
of required measurements. As a consequence
of our results, for noisy one bit quantized linear
measurements (1bCSbinary), we obtain a sample
complexity of O((k+ σ2) log n), where σ2 is the
noise variance. This is shown to be optimal due
to the information theoretic lower bound. We
also obtain tight sample complexity characteriza-
tion for logistic regression. Since 1bCSbinary is a
strictly harder problem than noisy linear measure-
ments (SparseLinearReg) because of added quan-
tization, the same sample complexity is achiev-
able for SparseLinearReg. While this sample
complexity can be obtained via the popular lasso
algorithm, linear estimation is computationally
more efficient. Our lower bound holds for any
set of measurements for SparseLinearReg (simi-
lar bound was known for Gaussian measurement
matrices) and is closely matched by the maximum-
likelihood upper bound. For SparseLinearReg, it
was conjectured in Gamarnik and Zadik, 2017
that there is a statistical-computational gap and
the number of measurements should be at least
(2k + σ2) log n for efficient algorithms to ex-
ist. It is worth noting that our results imply that
there is no such statistical-computational gap for
1bCSbinary and logistic regression.
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1. Introduction
Sparse linear regression and compressed sensing have been
a topic of intense research in statistics and signal process-
ing for the past few decades (Candès et al., 2006; Donoho,
2006; Tibshirani, 1996; Do Ba et al., 2010). The prob-
lem of binary sparse linear regression (SparseLinearReg)
considers linear measurements of an unknown binary vec-
tor, corrupted by additive Gaussian noise. Focusing on
binary signals, this particular problem has recently been
studied in (Gamarnik & Zadik, 2017a;b; 2022; Reeves
et al., 2019), mainly motivated by the question of support
recovery of sparse signals (Wainwright, 2009). Formally,
for an unknown k-sparse signal x ∈ {0, 1}n, a sensing ma-
trix A ∈ Rm×n and a noise vector z = (z1, . . . , zm) where
zis are iid N (0, σ2) for some variance σ2, we observe y
given by

y = Ax+ z. (1)

Our goal is to design the (possibly random) sensing matrix
A with a power constraint, i.e.,

E[(AT
i x)

2] ≤ k, i = 1, . . . ,m, (2)

where Ai denotes ith row of the matrix A and the expecta-
tion is over the possible randomness in A, and a decoding
algorithm ϕ such that

max
x∈{0,1}n,|x|H=k

P (ϕ(A,y) ̸= x)→ 0 as n→∞. (3)

Here, |x|H denotes the Hamming weight of x ∈ {0, 1}n.
The probability is computed over the randomness of the
sensing matrix and the (randomized) algorithm.

The problem of one bit quantized linear measurements (also
known as one bit compressed sensing (1bCSbinary)) is sim-
ilar, except that the output vector y is the sign of Ax + z
instead of the entire vector Ax+ z (Boufounos & Baraniuk,
2008). That is, we observe

y = sign(Ax+ z). (4)

Here, y = (y1, . . . , ym) is defined as yi = sign(AT
i x+ zi),

i ∈ [1 : m] where sign(a) = 1 if a ≥ 0 and sign(a) = −1
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otherwise. An algorithm ϕ′ for 1bCSbinary takes input y
and A. Again, we require that 1

max
x∈{0,1}n,|x|H=k

P (ϕ′(A,y) ̸= x)→ 0 as n→∞. (5)

Usually in 1-bit compressed sensing, the Gaussian noise
before quantization is not present. Our formulation can be
considered as a sparse “probit model” (McCullagh, 2019).

More generally, we define the problem of generalized linear
measurements (GLMs) , e.g., (Kakade et al., 2011; Plan
et al., 2017) where we assume that the observation y =
(y1, . . . , ym) is related to the sparse binary input vector x
using an “inverse link” function g such that for each i ∈ [m],

E [yi|Ai] = g
(
AT
i x
)
. (6)

That is, the expected value of the output yi is linked to Ai

only through AT
i x. For example, for SparseLinearReg

E [yi|Ai] = AT
i x,

for 1bCSbinary

E [yi|Ai] = 1− 2Φ

(
−ATi x

σ

)
where Φ is the Gaussian cumulative distribution function.

In the logistic regression model (LogisticRegression), we
observe a binary output yi ∈ {−1, 1} for each measurement
i ∈ [m]. The probability that yi takes value 1 is given by

P (y = 1) =
1

1 + e−βaTx
.

for parameter β > 0. The parameter β controls the level
of noise. When β → ∞, the model approaches noiseless
one bit compressed sensing. As β decreases, the output
becomes more noisy. When β = 0, the output is uniformly
distributed on {−1, 1} and is independent of x. In this
model,

E [yi|Ai] = tanh
βAT

i x

2
.

Our contributions. In this paper, our contributions are
the following:

• We analyze the linear estimation+projection algorithm
(Plan et al., 2017) for generalized linear measurements
of sparse binary inputs (Theorem 2.1). We also provide
an information theoretic lower bound (Theorem 2.5).

1The probability of error measured by (5) corresponds to
the ‘for each’ criterion in the one bit compressed sending litera-
ture. The ‘for all’ criterion which requires that the same sensing
matrix works for all unknown signals corresponds to showing
P (∃x such that ϕ′(A,y) ̸= x) → 0 as n → ∞.

• As corollaries, we obtain tight sample complexity
characterization for noisy one bit compressed sensing
(Corollary 2.2 and Corollary 2.6) and logistic regres-
sion (Corollary 2.4 and Corollary 2.7).

• The algorithm can be used for SparseLinearReg ei-
ther directly (Corollary 2.3) or by first quantizing the
received signal to its sign value and then using the
algorithm for 1bCSbinary. The sample complexity is
the same for both these cases. This shows that in the
regime where the number of measurements are at least
C(k+σ2) log n for some constant C, keeping only the
sign information is sufficient for SparseLinearReg.

• We provide “almost” matching information theoretic
lower (Corollary 2.8) and upper bounds (Theorem 2.9)
for exact recovery in SparseLinearReg. If the mea-
surements are Gaussian, we get slightly better lower
bounds (Theorem 2.10).

A summary of results in presented in Tables 1, 2 and 3.

1.1. Discussion of results and related works

Intuitions on lower bounds. Observe that 1bCSbinary
is a strictly more difficult problem than SparseLinearReg
in the sense that any algorithm that works for 1bCSbinary
can be used for SparseLinearReg by using only the sign
information. Thus, the sample complexity of 1bCSbinary
is at least as much as SparseLinearReg, the latter can be
much smaller in some cases. From an information theoretic
viewpoint, a randomly chosen k-sparse vector x has entropy
log
(
n
k

)
≈ k log n

k . Since each yi can give at most one bit
of information, we need at least k log n

k measurements for
1bCSbinary (See Corollary 2.6 for the exact lower bound)
to learn x. For SparseLinearReg on the other hand, the out-
put has infinite precision. In fact, we can show that in the
absence of noise, only one sample is sufficient to recover the
unknown signal (see Remark 1.1). SparseLinearReg can be
viewed as a coding problem for a Gaussian channel, where
x is the message and Ax is its corresponding codeword.
Thus, from the converse for Gaussian channel (see (Cover &
Thomas, 2006, Theorem 9.1.1)), we need at least k log(n/k)

C
samples for exact recovery. Here C is the capacity of the
Gaussian channel, which depends on SNR (a function of
Ax and σ2). Given the power constraint of Eq. (2) (which is
satisfied when entries of A are chosen iid N (0, 1)), the ca-
pacity C is 1

2 log
(
1 + k

σ2

)
, thereby showing that the lower

bound for SparseLinearReg can be much smaller.

Binary sparse linear regression. The problem of binary
sparse linear regression was introduced in (Gamarnik &
Zadik, 2017a; 2022) and was further studied in (Reeves et al.,
2019). An “all or nothing” phenomenon was shown in
(Reeves et al., 2019) for approximate recovery of binary vec-
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tors at the critical sample complexity of m∗ ≜ 2k logn/k

log(1+ k
σ2
)
,

showing that approximate recovery is possible if and only if
m ≥ m∗. It was additionally conjectured in (Gamarnik &
Zadik, 2017a) that no efficient algorithms exist in the regime
m∗ ≤ m ≤ malg ≜ (2k + σ2) log n. When m ≥ malg,
various algorithms like Lasso (Wainwright, 2009), Orthogo-
nal Matching Pursuit (OMP) (Tropp & Gilbert, 2007) and
(Ndaoud & Tsybakov, 2020) can recover the sparse vector.
It has also been shown in (Gamarnik & Zadik, 2017b) that
lasso fails to recover unknown vector x when m ≤ cmalg

for some small constant c. Outside this regime, a local
search algorithm was proposed (Gamarnik & Zadik, 2017b),
which starts with a guess of x and iteratively updates it.

In (Reeves et al., 2019), the information theoretic lower
bound of m∗ is shown for the case when each entry of
the sensing matrix is chosen iid N (0, 1). We consider the
exact recovery guarantee for the problem and show that
m ≥ m∗ samples are necessary even when the sensing
matrix is not Gaussian (Corollary 2.8)2. We show an almost
matching upper bound based on the Maximum Likelihood
Estimator (MLE) using a random Gaussian sensing matrix
(Theorem 2.9 and Theorem 2.10). This is along the lines of
the MLE analysis in (Reeves et al., 2019), which was done
for approximate recovery (our sample complexity for exact
recovery turns out to be slightly different).
Remark 1.1. It was observed in (Gamarnik & Zadik, 2017a)
that in the no-noise regime (σ2 = 0), one measurement is
sufficient to recover the underlying vector by brute force.
However, it is conjectured that there is no efficient algorithm
if m ≤ 2k log n. The results in (Gamarnik & Zadik, 2017a)
were shown only when the entries of the sensing matrix are
chosen iid N (0, 1) (i.e. Gaussian design). For an arbitrary
sensing matrix, an efficient way to recover x using only
one measurement is by using A = 1

2n [1, 2, 2
2, . . . , 2n−1].

Note that 2n × y in this case is the value of unknown signal
in the decimal system (base 10). It can be converted to
binary in O(n) time. This suggests that for specific non-
random constructions, there may be efficient algorithms in
the conjectured hardness regime.

Binary one-bit compressed sensing. The problem
of one bit compressed sensing has been well stud-
ied e.g. (Boufounos & Baraniuk, 2008; Jacques et al., 2013)
including greedy algorithms (e.g. (Liu et al., 2016)) and
noisy test outcomes (e.g. (Matsumoto & Mazumdar, 2024)),
and the problem of recovering binary vectors has also been
studied in (Acharya et al., 2017; Mazumdar & Pal, 2022).
However, these works do not consider the Gaussian noise
prior to quantization. The best known upper bound (O(k/ϵ)

2Our lower bounds hold for a weaker average probability of
error recovery criteria, instead of the maximum probability of error
in Eq. (3). However, for random Gaussian sensing matrix both
criterion can be shown to be equivalent.

from (Matsumoto & Mazumdar, 2022)) when specialized
to exact recovery for binary sparse vectors requires O(k3/2)
(by choosing ϵ = 1/

√
k). On the other hand, our bound

is O(k log n). This discrepancy is because the previous
models are studied for the “for all” model which is a harder
problem than our present “for each” model. The results
in (Plan et al., 2017), on the other hand, are for the “for
each” model, though their analysis is not optimal for binary
vectors (see Appendix B). The problem of noisy one bit
compressed sensing (1bCSbinary) introduced here is moti-
vated by the probit model (e.g. see a modern treatments of
the non-sparse probit model (Kuchelmeister & van de Geer,
2024)). Here we provide an information theoretic lower
bound of m ≥

(
k + σ2

)
log (n/k) and show that the afore-

mentioned efficient algorithm (Algorithm 1) works with the
same m = O((k + σ2) log n) samples and has a computa-
tional complexity of O((k + σ2)n log n). We also provide
optimal sample complexity characterization for learning
binary sparse vectors under the logistic regression model,
which was previously studied for learning real vectors (Hsu
& Mazumdar, 2024; Plan et al., 2017).

Algorithm for binary vectors. We consider a simple algo-
rithm which is equivalent to the “average algorithm” (Serve-
dio, 1999) or “linear estimator” (Plan et al., 2017), followed
by a selection of the ‘top-k’ coordinates. Regarding the intu-
ition behind the algorithm, we observe that for an unknown
signal x, the output y and ASx , the restriction of the sens-
ing matrix to columns where x is 1, are correlated whereas
y and A[1:n]\Sx

are uncorrelated. Here, A[1:n]\Sx
denotes

the restriction of the sensing matrix to columns where x
is 0. Thus, we compute the inner product between y and
each column of the sensing matrix as a proxy for correlation
between the output and the corresponding column. The
output of the algorithm is the top k-most correlated columns
(See Algorithm 1 for details.). One can also think of this
as a “one-shot” version of the popular OMP algorithm.
This algorithm requires O((k + σ2) log n) samples for
1bCSbinary and SparseLinearReg and O((k+1/β2) log n)
for LogisticRegression. It has a computation complexity of
O((k + σ2)n log n). Most of the previous algorithms, in-
cluding the one in (Plan et al., 2017), were given for the
case when the unknown signal is not necessarily binary. It
should be noted that the black-box application of the result
of (Plan et al., 2017) specialized to binary inputs will not
recover the optimal sample complexity. See Appendix B
where we show that the results in (Plan et al., 2017) imply
a sample complexity of O(k2 log (2n/k)). We provide a
simple yet optimal analysis of the sample complexity in our
special case of sparse binary signals.

We would like to emphasize that the sample complexity
of Algorithm 1 for both SparseLinearReg and 1bCSbinary
is the same (O((k + σ2) log n)). This implies that for
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SparseLinearReg, when m is outside the conjectured hard-
ness regime, we do not need the amplitude of y, only the
sign information is sufficient to recover the unknown signal.

Upper bound O
((
k + σ2

)
log (n)

)
(efficient algorithms) (Lasso, OMP and this paper)

(exact recovery)
Upper bound maxl∈[1:k]

nN(l)
1
2 log( l

2σ2
+1)

(MLE) (this paper )
(exact recovery)

Lower bound maxl∈[1:k]
nN(l)

1
2 log(1+ l

σ2
(2− l

k ))
(exact recovery) (this paper )

Upper bound 2k logn/k

log(1+ k
σ2
)

(MLE) ((Reeves et al., 2019) )
(approximate recovery)

Lower bound 2k logn/k

log(1+ k
σ2
)

(approximate recovery) ((Reeves et al., 2019) )

Table 1. The table gives the upper and lower bounds on the sam-
ple complexity of sparse linear regression. Note that N(l) :=
k
n
h2

(
l
k

)
+ (1− k

n
)h2

(
l

n−k

)
where h2(·) is the binary entropy

function.

Upper bound O
((
k + σ2

)
log (n)

)
(efficient algorithm) (this paper)

Lower bound k+σ2

2 log
(
n
k

)
(this paper )

Table 2. The table gives the upper and lower bounds on the sample
complexity of one bit compressed sensing for exact recovery.

Upper bound O
((

k + 1
β2

)
log (n)

)
(efficient algorithm) (this paper)

Lower bound 1
2

(
k + 1

β2

)
log
(
n
k

)
(this paper )

Table 3. The table gives the upper and lower bounds on the sample
complexity of logistic regression for exact recovery.

Notation. We denote the set of integers {1, 2, . . . , n} in-
terchangeably by [n] and [1 : n]. We will use boldfaced
uppercase letters like A for matrices and lowercase letters
such as x for vectors. The entry of the matrix at ith row
and jth column is denoted by Ai,j . Similarly, the ith en-
try of a vector x is denotes by xi. For any binary vector
x = (x1, . . . , xn), we denote the set of indices i where
xi = 1 by Sx ⊆ [1 : n] and we use ASx to denote the
restriction of A to the columns where x is 1. We use Ai to
denote ith row and A(i) to denote ith column. We denote
the binary entropy function by h2(·) and differential entropy

by h(·). The subgaussian norm of a random variable w is
denoted by ∥w∥ψ2

.

Organization. We present the algorithm and upper
bounds in Section 2.1. The information theoretic lower
bounds are presented in Section 2.2. In Section 2.3, we
present an upper bound for SparseLinearReg based on the
maximum likelihood estimator. We also provide a lower
bound in this section, which closely matches the upper
bound. This lower bounds does not follow as a corollary to
the general lower bound theorem for GLMs (Theorem 2.5).
It requires a separate analysis based on a conditional version
of Fano’s inequality. We provide proofs of the upper and
lower bound for GLMs (Theorems 2.1 and 2.5) in Section 3.
Remaining proofs are delegated to Appendix A. We provide
detailed comparison of our results with (Plan et al., 2017)
in Appendix B. We conclude with a discussion on open
problems in Section 4.

2. Main results
2.1. Algorithm

We analyze the simple linear estimation based algorithm
from (Plan et al., 2017) for generalized linear measurements,
specializing it for binary vectors. The algorithm (Algo-
rithm 1) takes the sensing matrix A and the output vector
y as the inputs. For each column A(i), i ∈ [1 : n] of the
sensing matrix, the algorithm computes li = ⟨y,A(i)⟩ =∑m
j=1 yjAj,i where Aj,i is the entry at jth row and ith col-

umn.

The vector l = (l1, . . . , ln) is then sorted in decreasing order.
The output of the algorithm is a set containing the indices of
the top-k elements of the sorted vector. That is, if the sorted
vector is (lα1

, lα2
, . . . , lαn) where lαi ≥ lαj for i ≤ j, then

the output of the algorithm is S = {α1, . . . , αk}.

Algorithm 1 Top-k correlated indices
Input: Sensing matrix A ∈ Rm×n and output y ∈ Rm
Output: a k-sized subset of [1 : n]
l← (0, . . . , 0), l ∈ Rn
for each i ∈ [1 : n] do

li ←
∑m
j=1 yjAj,i

end for
Sort l in decreasing order and let S be the top k indices.
Return: S

The convergence and sample complexity guarantees for the
algorithm are shown for the case when each entry of A is
chosen iid N (0, 1). Note that such a matrix satisfies the
power constraint in (2). As we argued in Section 1, for the
unknown signal x, the output y = Ax+z is correlated with
each column A(i) for i ∈ Sx and uncorrelated with A(j) for
j /∈ Sx. In particular, for large number of samples, when i ∈
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Sx, the inner product ⟨y,A(i)⟩ is close to E
[
⟨y,A(i)⟩

]
=

m (for linear regression) with high probability. On the other
hand, ⟨y,A(j)⟩ is close to 0 for j /∈ Sx. Thus, li for i ∈ Sx
will dominate over lj for j /∈ Sx. This line of argument
also works when the output is binary, though in this case
E
[
⟨y,A(i)⟩

]
for i ∈ Sx is different. This is the main idea of

Algorithm 1. We first present Theorem 2.1 for generalized
linear measurements.

Theorem 2.1 (Sample Complexity of Algorithm 1 for
GLMs). Suppose the GLM is such that for each i ∈ [m],
yi is a subgaussian random variable with subgaussian
norm given by ∥yi∥ψ2

. For any x, suppose for some L,
E
[
g′(AT

i x)
]
≥ L · ∥yi∥ψ2

for all i ∈ [m]. Algorithm 1
recovers the unknown signal with high probability if

m ≥ C

min {L,L2}
(log (k) + log (n− k)) (7)

where C is some constant.

When yj is subgaussian, yjAi,j for any i, j is a sub-
exponential random variable. This observation allows us
to use a concentration result for sub-exponential random
variables to analyse the sample complexity. See Section 3
for a detailed proof3.

As corollaries to Theorem 2.1, we obtain the fol-
lowing sample complexity bounds for 1bCSbinary and
SparseLinearReg. These corollaries are proved in Ap-
pendix A.1.

Corollary 2.2 (Sample Complexity of Algorithm 1 for
1bCSbinary). Algorithm 1 recovers the unknown sig-
nal for 1bCSbinary with high probability if m ≥
c1
(
k + σ2

)
(log (k) + log (n− k)) for some constant c1.

Corollary 2.3 (Sample Complexity of Algo-
rithm 1 for SparseLinearReg). Algorithm 1 recov-
ers the unknown signal for SparseLinearReg if
m ≥ c2

(
k + σ2

)
(log (k) + log (n− k)) for some

constant c2.

Interestingly, the sample complexity for both 1bCSbinary
and SparseLinearReg is the same. This can be explained
by similar values of L, which result in similar rates of
concentration of li’s around their expectation in both the
cases. This also implies that in the regime where m =
O((k+σ2) log(n−k)), having access to AT

i x+zi instead
of sign(AT

i x+zi), does not improve the sample complexity
beyond constants.

Using Theorem 2.1, we obtain the following corollary for
logistic regression (see proof in Appendix A.1).

3The current form of Theorem 2.1 is stated for a sensing matrix
A where each entry is chosen iid N (0, 1). However, the proof
technique can be easily generalized for other distributions.

Corollary 2.4 (Sample Complexity of Algo-
rithm 1 for LogisticRegression). Algorithm 1 recov-
ers the unknown signal for LogisticRegression if
m ≥ c3

(
k + 1/β2

)
(log k + log (n− k)) for some

constant c3.

Comparing the sample complexity bounds of 1bCSbinary
and LogisticRegression, we notice that the sample complex-
ity is similar except that the noise variance σ2 is replaced
by 1/β2. This relationship is not surprising as a similar rela-
tionship was also present in the sample complexity bounds
in (Hsu & Mazumdar, 2024) (for logistic regression) and
(Kuchelmeister & van de Geer, 2024) (for probit model).
Note that, in the noiseless case, when β →∞ (or σ = 0 for
1bCSbinary), the sample complexity is O(k log n), which is
close to the simple counting lower bound of k log n/k. On
the other hand, when β = 0 (or σ → ∞ for 1bCSbinary),
m→∞, which makes intuitive sense as very high levels of
noise render the output useless.

To compute the time complexity of the algorithm, notice that
the for loop in step 2 takes O(n×m) time and step 4 takes
O(n log n) time. Thus, the computational complexity of the
algorithm is O(nm+n log n), which is O((k+σ2)n log n)
for m = O((k+σ2) log n. To compute the time complexity
of the algorithm, notice that the for loop in step 2 takes
O(n × m) time and step 4 takes O(n log n) time. Thus,
the computational complexity of the algorithm is O(nm+
n log n), which is O((k + σ2)n log n) for m = O((k +
σ2) log n.

2.2. Lower bounds on sample complexity

We establish a lower bound for generalized linear measure-
ments using standard information-theoretic arguments based
on Fano’s inequality. While the upper bound in Theorem 2.1
is derived for the maximum probability of error over all k-
sparse vectors, the lower bound applies even in the weaker
setting of the average probability of error, where x is chosen
uniformly at random.
Theorem 2.5 (Lower bound for GLMs). Consider any sens-
ing matrix A. For a uniformly chosen k-sparse vector x, an
algorithm ϕ satisfies

P (ϕ(A,y) ̸= x) ≤ δ

only if the number of measurements

m ≥
k log

(
n
k

)
I

(
1− h2(δ) + δk log n

k log n/k

)
for some I such that I ≥ I(yi;x|A), i ∈ [m]. In particular,

when y ∈ {−1, 1}, we have E
[(
g(AT

i x)
)2] ≥ I(yi,x|A)

where the expectation is over the randomness of A and x.

The lower bound can be interpreted in terms of a commu-
nication problem, where the input message x is encoded to
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Ax. The decoding function takes in as input the encoding
map A and the output vector y in order to recover x with
high probability. For optimal recovery, one needs at least
message entropy

capacity number of measurements (follows from noisy
channel coding theorem (Cover & Thomas, 2006)). In Theo-
rem 2.5, the entropy of the message set log

(
n
k

)
≈ k log n/k

and the proxy for capacity is the upper bound on mutual
information I . We provide a detailed proof of the theorem
in Section 3.

We first present lower bounds for 1bCSbinary and
LogisticRegression. The lower bound for 1bCSbinary
is given for any sensing matrix A which satisfies the
power constraint given by (2), whereas the one for
LogisticRegression is only for the special case when each en-
try of the sensing matrix is iidN (0, 1). Recall that (2) holds
in this case. For 1bCSbinary (and LogisticRegression re-
spectively), we can use the upper bound of E

[(
g(AT

i x)
)2]

on the mutual information term. The dependence of σ2 (and
1/β2 respectively) requires careful bounding of this term,
which is done in the formal proofs in Appendix A.2.

As mentioned earlier, we need at least k log (n/k) mea-
surements for 1bCSbinaryand LogisticRegression. This is
because the entropy of a randomly chosen k-sparse vector is
approximately k log (n/k) and we learn at most one bit with
each measurement. However, due to corruption with noise,
we learn less than a bit of information about the unknown
signal with each measurement. The information gain gets
worse as the noise level increases. Our lower bounds make
this reasoning explicit.

Corollary 2.6 (1bCSbinary lower bound). Suppose, each
row Ai, i ∈ [1 : m] of the sensing matrix A satisfies the
power constraint (2). For a uniformly chosen k-sparse
vector x, an algorithm ϕ satisfies

P (ϕ(A,y) ̸= x) ≤ δ

for the problem of 1bCSbinary only if the number of mea-
surements

m ≥ k + σ2

2
log
(n
k

)(
1− h2(δ) + δk log n

k log n/k

)
.

Corollary 2.7 (LogisticRegression lower bound). Consider
a Gaussian sensing matrix A where each entry is chosen
iid N(0, 1). For a uniformly chosen k-sparse vector x, an
algorithm ϕ satisfies

P (ϕ(A,w) ̸= x) ≤ δ

for the problem of LogisticRegression only if the number of
measurements

m ≥ 1

2

(
k +

1

β2

)
log
(n
k

)(
1− h2(δ) + δk log n

k log n/k

)
.

Theorem 2.5 also implies an information theoretic lower
bound for SparseLinearReg, which is presented below and
proved in Appendix A.2. Note that the denominator term
in the bound 1

2 log
(
1 + k

σ2

)
is the capacity of a Gaussian

channel with power constraint k and noise variance σ2.

Corollary 2.8 (SparseLinearReg lower bound). Under the
average power constraint (2) on A, for a uniformly chosen
k-sparse vector x, an algorithm ϕ satisfies

P (ϕ(A,y) ̸= x) ≤ δ

only if the number of measurements

m ≥
k log

(
n
k

)
− (h2(δ) + δk log n)

1
2 log

(
1 + k

σ2

) .

2.3. Tighter upper and lower bounds for
SparseLinearReg

We present information theoretic upper and lower bounds
for SparseLinearReg in this section. Similar to Section 2.1,
our upper bound is for the maximum probability of error,
while the lower bounds hold even for the weaker criterion
of average probability of error.

We first present an upper bound based on the maximum
likelihood estimator (MLE) where we decode to x̂ if, on
output y,

x̂ = argmax
x∈{0,1}n

|x|H=k

p(y|x)

where p(y|x) denotes the probability density function of y
on input x.

Theorem 2.9 (MLE upper bound for SparseLinearReg).
Suppose entries of the measurement matrix A are i.i.d.
N (0, 1). The MLE is correct with high probability if

m ≥ max
l∈[1:k]

nN(l)
1
2 log

(
l

2σ2 + 1
) (8)

where N(l) := k
nh2

(
l
k

)
+ (1− k

n )h2

(
l

n−k

)
.

We prove the theorem in Appendix A.3. The main proof idea
involves analysing the probability that the output of the MLE
is 2l Hamming distance away from the unknown signal x
for different values of l ∈ [1 : k] (assuming k ≤ n/2).
This depends on the number of such vectors (approximately
2nN(l)) and the probability that the MLE outputs a vector
which is 2l Hamming distance away from x.

Note that when l = k
(
1− k

n

)
, nN(l) = nh2(k/n) ≈

k log n
k and log

(
k(1−k/n)

2σ2 + 1
)
≤ log

(
k

2σ2 + 1
)
. Thus,

m is at least 2k logn/k

log( k
2σ2

+1)
(see the bound for Corollary 2.8).
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Figure 1. The figure shows the plot of the MLE upper bound (8)
(given by m1) for different values of k. This is displayed in blue
color. A plot of 2nN(l)

log
(

l
2σ2

+1
) is also presented for l = k

(
1− k

n

)
in orange color, given by m2. A part of the plot is zoomed in to
emphasize the closeness between the lines. In these plots, σ2 is set
to 1, n is 50000 and k ranges from 1000 to 25000 (n/2).

It is not immediately clear if this value of l = k
(
1− k

n

)
is

the optimizer. However, for large n, this appears to be the
case numerically as shown in Plot 1.

Inspired by the MLE analysis, we derive a lower bound with
the same structure as (8). We generate the unknown signal
x using the following distribution: A vector x̃ is chosen
uniformly at random from the set of all k-sparse vectors.
Given x̃, the unknown input signal x is chosen uniformly
from the set of all k-sparse vector which are at a Hamming
distance 2l from x. The lower bound is then obtained by
computing upper and lower bounds on I(A,y;x|x̃). We
show this lower bound only for random matrices where each
entry is chosen iid N (0, 1).

Theorem 2.10 (SparseLinearReg lower bound). If each en-
try of A is chosen iid N (0, 1), then for a uniformly chosen
k-sparse vector x, an algorithm ϕ satisfies

P (ϕ(A,y) ̸= x) ≤ δ (9)

only if the number of measurements

m ≥ max
l∈[1:k]

nN(l)− 2 log n− h2(δ)− δk log n
1
2 log

(
1 + l

σ2

(
2− l

k

)) .

The proof of Theorem 2.10 is given in Appendix A.3.

If we choose l = k
(
1− k

n

)
in Theorem 2.10, we recover

corollary 2.8 for the special case of Gaussian design.

3. Proofs
Proof of Theorem 2.1. Consider any input x and a sensing
matrix A where each entry is chosen iid N (0, 1). Suppose
x is supported on S ⊆ [1 : n] where |S| = k. Let y =

(y1, . . . , ym). Consider the event

F =

{
m∑
i=1

yiAi,j >

m∑
i=1

yiAi,j′ for all j ∈ S, j′ ∈ Sc
}

It is clear that under F , the algorithm is correct. We will
compute the probability of Fc.

P (Fc) = P

⋃
j∈S

⋃
j′∈Sc

{
m∑
i=1

yiAi,j′ ≥
m∑
i=1

yiAi,j

}
≤
∑
j∈S

∑
j′∈Sc

P

(
m∑
i=1

yiAi,j′ ≥
m∑
i=1

yiAi,j

)

=
∑
j∈S

∑
j′∈Sc

P

(
m∑
i=1

(yi(Ai,j′ −Ai,j)) ≥ 0

)
(10)

For any i ∈ [1 : m], j ∈ S and j′ ∈ Sc, we first compute
E [yi(Ai,j −Ai,j′)].

E [yi(Ai,j −Ai,j′)] = E [yiAi,j ]− E [yiAi,j′ ]

(a)
= E [yiAi,j ] (11)

(b)
=

E [yiAi,S ]

k

=
E
[
yiA

T
i x
]

k

=
E
[
ATi xE

[
y1|AT

i x
]]

k

(c)
=

E
[
ATi xg

(
AT
i x
)]

k
(d)
= E

[
g′
(
AT
i x
)]

:= E (12)

where (a) follows from the fact that yi and Ai,j′ are zero
mean, independent random variables and (b) follows by
defining Ai,S =

∑
j∈S Ai,j and noticing that the random

variables yiAi,j are identically distributed for all j ∈ S , (c)
follows from (6) and (d) follows from Stein’s lemma.

P

(
m∑
i=1

(yi(Ai,j′ −Ai,j)) ≥ 0

)

= P

(
m∑
i=1

(yi(Ai,j −Ai,j′)) ≤ 0

)

= P

(
m∑
i=1

(yi(Ai,j −Ai,j′))−mE ≤ −mE

)

≤ P

(∣∣∣∣∣
m∑
i=1

(yi(Ai,j −Ai,j′))−mE

∣∣∣∣∣ ≥ mE

)
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To compute this, note that for all i ∈ [1 : m], yi is a subgaus-
sian random variable and yi (Ai,j −Ai,j′) being product of
two subgaussian random variables is a subexponential ran-
dom variable (see (Vershynin, 2018, Lemma 2.7.7)). Note
that E [

∑m
i=1 (yi(Ai,j −Ai,j′))] = mE where E was de-

fined in (12). Also,

∥yi (Ai,j −Ai,j′)− E∥ψ1

(a)

≤ C ∥yi (Ai,j −Ai,j′)∥ψ1

(b)

≤ C ∥yi∥ψ2
∥(Ai,j −Ai,j′)∥ψ2

(c)

≤ C ∥yi∥ψ2
2C ′

= C1 ∥yi∥ψ2
for some constant C1.

Here, (a) follows from (Vershynin, 2018, Exercise 2.7.10),
(b) from (Vershynin, 2018, Lemma 2.7.7) and (c) from
(Vershynin, 2018, Example 2.5.8). With this

P

(∣∣∣∣∣
m∑
i=1

(yi(Ai,j −Ai,j′))−mE

∣∣∣∣∣ ≥ mE

)
(a)

≤ 2 exp

(
−cmin

(
m2E2

mC2
1 ∥yi∥

2
ψ2

,
mE

C1 ∥yi∥ψ2

))
(b)

≤ 2 exp

(
−cmmin

(
mL2

C2
1

,
mL

C1

))
where (a) follows from (Vershynin, 2018, Theorem 2.8.1)
and (b) follows from the assumption in the lemma that
E

∥yi∥ψ2

=
E[g′(AT

i x)]
∥yi∥ψ2

≥ L. Thus, from (10),

P (Fc) ≤ k(n− k)2 exp
(
−C2mmin

(
L2, L

))
→ 0 if m ≥ C2 (log k + log (n− k))

1

min (L2, L)

for some constant C2.

Proof of Theorem 2.5. Suppose x is distributed uniformly
on the set of all k-sparse binary vectors. Then,

I(A,y;x) = H(x)−H(x|A,y)

(a)

≥ log

(
n

k

)
− h2(δ)− δ log

((
n

k

)
− 1

)
≥ k log n/k − h2(δ)− δk log (n) (13)

where (a) follows from Fano’s inequality (Cover & Thomas,
2006, Theorem 2.10.1). We also note that

I(A,y;x) = I(A;x) + I(y;x|A)

(a)
= 0 + I(y;x|A).

where (a) holds because A and x are independent. Let
yj∈[1:i−1] denote (y1, . . . , yi−1).

I(y;x|A) =

m∑
i=1

I(yi;x|A, yj∈[1:i−1])

=

m∑
i=1

(
H(yi|A, yj∈[1:i−1])

−H(yi|x,A, yj∈[1:i−1])
)

(a)

≤
m∑
i=1

(H(yi|A)−H(yi|x,A))

=

m∑
i=1

I(yi;x|A)

(b)

≤ mI (14)

where (a) follows from H(yi|A, yj∈[1:i−1]) ≤ H(yi|A)
and H(yi|x,A, yj∈[1:i−1]) = H(yi|x,A) as yi is condi-
tionally independent of yj∈[1:i−1] conditioned on x and A
and (b) follows from the assumption in the Theorem. Thus,
from (13) and (14),

mI ≥ k log (n/k)

(
1− h2(δ) + δk log (n)

k log n/k

)
This gives us the desired bound.

We can further simplify I(yi;x|A) when yi ∈ {−1, 1},

I(yi;x|A) = H(yi|A)−H(yi|x,A)

(a)

≤ 1−H(yi|x,Ai).

where (a) holds because H(yi|A) ≤ H(yi) =
1 and yi is conditionally independent of
(A1 . . . ,Ai−1,Ai+1, . . . ,Am) conditioned on Ai

and x. Here Ai, i ∈ [1 : m] denotes the ith row of the
sensing matrix A.

Suppose x is fixed and P (yi = 1) = 1
2 + t for some t ∈

[−1/2, 1/2]. Then E [yi|Ai] = 2t = g(AT
i x).

H(yi|Ai,x)
(a)
= E

[
h2

(
1

2
+ t

)]
(b)

≥ Ex

[
EA

[
4

(
1

2
+ t

)(
1

2
− t

) ∣∣∣x]]
= 1− Ex

[
E
[
(2t)

2
∣∣∣x]]

= 1− Ex

[
E
[(
g(AT

i x)
)2 ∣∣∣x]]

= 1− EA,x

[(
g(AT

i x)
)2]

where in (a), the expectation is over A and x. The inequality

8
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(b) follows from (Topsøe, 2001, Theorem 1.2)4. With this
I(yi;x|A) ≤ E

[(
g(AT

i x)
)2]

.

4. Conclusion and open problems
We analyze a simple algorithm (the “average algorithm”
from (Plan et al., 2017) followed by ‘top-k’ selection) for
recovering sparse binary vectors from generalized linear
measurements; along with an information theoretic lower
bound. This gives optimal sample complexity characteriza-
tion for 1bCSbinary and LogisticRegression. On the other
hand, the required number of measurements for the noisy
linear case (SparseLinearReg), which is O((k + σ2) log n),
is as good as the sample complexity of any other known
efficient algorithm for this problem, up to constants. An
interesting open problem is to find a design matrix and an
efficient algorithm which requires less than (k + σ2) log n
samples for SparseLinearReg. When the noise variance is
zero, we show such an algorithm in Remark 1.1.

We also present almost matching information theoretic up-
per and lower bounds for SparseLinearReg given by (8) and
(9) respectively. The bounds are in the form of an optimiza-
tion problem. While we present numerical evidence which
suggests that (8) is optimized by l = k

(
1− k

n

)
, a formal

proof is still missing. The bounds in (8) and (9) also differ
slightly by constants in the denominator, which seems to be
a persistent gap in this problem.
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A. Proofs
A.1. Missing proofs from Section 2.1

Proof of Corollary 2.2. We need to compute a lower bound L on
E[g′(AT

i x)]
∥yi∥ψ2

. Instead of computing E
[
g′(AT

i x)
]
, we will

compute E [yiAi,j ] for any j in the support of x. From (11) and (12), we note that E [yiAi,j ] = E
[
g′(AT

i x)
]
. Also note

that E [yiAi,j ] = E [Ai,jE [yi|Ai,j ]].

For any U ⊆ [1 : n], we denote
∑
l∈U Ai,l by Ai,U . For any Ai,j = a,

P (yi = 1|Ai,j = a)

= P
(
Ai,S\{j} + zi ≥ −a

)
= P

(
Ai,S\{j} + zi√
k − 1 + σ2

≥ − a√
k − 1 + σ2

)
= 1− Φ

(
− a√

k − 1 + σ2

)
where Φ(x) = 1

2π

∫ x
−∞ e−

t2

2 dt is the cumulative distribution function of the standard Gaussian distribution. Thus,

P (yi = −1|Ai,j = a) = Φ
(
− a√

k−1+σ2

)
and

E [yi|Ai,j = a] = 1− 2Φ

(
− a√

k − 1 + σ2

)
.

We are now ready to compute E [Ai,jE [yi|Ai,j ]].

E [Ai,jE [yi|Ai,j ]]

= E
[
Ai,j

(
1− 2Φ

(
− Ai,j√

k − 1 + σ2

))]
= E [Ai,j ]− 2E

[
Ai,jΦ

(
− Ai,j√

k − 1 + σ2

)]
= 0− 2E

[
Ai,jΦ

(
− Ai,j√

k − 1 + σ2

)]
(15)

E
[
Ai,jΦ

(
− Ai,j√

k − 1 + σ2

)]
=

∫ ∞

−∞
a

1√
2π

e−
a2

2

(
1√
2π

∫ − a√
k−1+σ2

−∞
e−

t2

2 dt

)
da

=
1

2π

∫ ∞

−∞

∫ − a√
k−1+σ2

−∞
ae−

a2

2 e−
t2

2 dt da

(a)
=

1

2π

∫ ∞

−∞

∫ −t
√
k−1+σ2

−∞
ae−

a2

2 e−
t2

2 da dt

=
1

2π

∫ ∞

−∞

(∫ −t
√
k−1+σ2

−∞
ae−

a2

2 da

)
e−

t2

2 dt

=
1

2π

∫ ∞

−∞

(
−e−

t2(k−1+σ2)
2

)
e−

t2

2 dt

= − 1√
2π (k + σ2)

∫ ∞

−∞

√
k + σ2

√
2π

e−
t2(k+σ2)

2 dt

= − 1√
2π (k + σ2)

(16)
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where (a) follows for change of variable formula for integration. From (15) and (16), we have

E [yiAi,j ] =

√
2

π
× 1√

(k + σ2)
. (17)

From (Vershynin, 2018, Example 2.5.8), we also note that ∥yi∥ψ2
= 1. Thus, L =

√
2
π ×

1√
(k+σ2)

and min
{
L,L2

}
= L2,

which when substituted in (7) gives the desired bound.

Proof of Corollary 2.3. We first note that
E[g′(AT

i x)]
∥yi∥ψ2

=
E[yiAi,j ]
∥yi∥ψ2

for any j in the support of x. This follows from

(11) and (12). We first compute E [yiAi,j ], which is the same as E
[(
AT
i x+ zi

)
Ai,j

]
for SparseLinearReg. Note that

E
[(
AT
i x+ zi

)
(Ai,j)

]
= E

[
A2
i,j

]
= 1. Also, from (Vershynin, 2018, Example 2.5.8)

∥∥(AT
i x+ zi

)∥∥
ψ2
≤ C

√
k + σ2

for some constants C. With this,

E
[
g′(AT

i x)
]

∥yi∥ψ2

≥ 1

C
√
k + σ2

:= L.

Note that min
{
L,L2

}
= L2, which when substituted in (7) gives the desired bound.

Proof of Corollary 2.4. We will first compute g(AT
i x) = E

[
yi|AT

i x
]

for LogisticRegression.

g(AT
i x) = E

[
yi|AT

i x
]

=
1

1 + e−βA
T
i x
− e−βA

T
i x

1 + e−βA
T
i x

=
1− e−βA

T
i x

1 + e−βA
T
i x

(a)
= tanh

(
βAT

i x

2

)

where (a) uses the definition of tanh. Then

E
[
g′(AT

i x)
]
=

β

2
E

 1

cosh2
(
βAT

i x

2

)


(c)

≥ β

2
E

[
e−

(βATi x)
2

4

]

where (c) follows from the inequality cosh(t) ≤ et
2/2 (see (Vershynin, 2018, Exercise 2.2.3)).

Now, we need to compute E

[
e−

(βATi x)
2

4

]
where AT

i x ∼ N(0, k). Let σ1 := 1
β2

2 + 1
k

. Then

12



Exact recovery of sparse binary vectors from generalized linear measurements

E

[
e−

(βATi x)
2

4

]
=

∫ ∞

−∞

1√
2πk

e−β
2a2/4e−a

2/2kda

=

√
σ1

k

∫ ∞

−∞

1√
2πσ1

e−x
2/2σ1da

=

√
σ1

k

=

√
2

2 + β2k
(18)

Thus,

E
[
g′(AT

i x)
]
≥ β

2

√
2

2 + β2k

=
1

2

√
2

2/β2 + k
.

From (Vershynin, 2018, Example 2.5.8), we also note that ∥yi∥ψ2
= 1. Thus, L = 1

2

√
2

2/β2+k and min
(
L,L2

)
= L2,

which gives the desired bound.

A.2. Missing proofs from Section 2.2

Proof of Corollary 2.6. Consider a sensing matrix A which satisfies the power constraint (2).

Here Ai, i ∈ [1 : m] denotes the ith row of the sensing matrix A. Let Q(·) be the Gaussian Q function. For any realization
b ∈ R of AT

i x,

P(yi = 1|AT
i x = b) = P(zi ≥ −b) = P

(
zi
σ
≥ −b

σ

)
=

1− sign(b)

2
+ sign(b)Q

(
|b|
σ

)
.

For a > 0, let R(a) := 1√
2π

∫ a
0
e−u

2/2du. Then Q(a) = 1
2 −R(a). Suppose x is fixed. Then,

g(AT
i x) = E [yi|A] = E

[
yi|AT

i x
]

=
1− sign(AT

i x)

2
+ sign(AT

i x)Q

(
|AT

i x|
σ

)
−
(
1−

(
1− sign(AT

i x)

2
+ sign(AT

i x)Q

(
|AT

i x|
σ

)))
= sign(AT

i x)

(
1− 2Q

(
|AT

i x|
σ

))
= sign(AT

i x)

(
2R

(
|AT

i x|
σ

))
For any a > 0,

R (a) =
1√
2π

∫ a

0

e−u
2/2du

≤ 1√
2π

∫ a

0

1du =
a√
2π

.

13



Exact recovery of sparse binary vectors from generalized linear measurements

Thus,

E
[(

g
(
AT
i x
)2)]

= E

[(
2R

(
|AT

i x|
σ

))2
]

≤ E

[
4

(
AT
i x√
2πσ

)2
]

(a)

≤ 2k

πσ2

where (a) follows from the power constraint E
[(
AT
i x
)2] ≤ k (see (2)). This holds for any x, including a randomly chosen

sparse vector. Thus,

m ≥ πσ2

2k
k log (n/k)

(
1− h2(δ) + δk log (n)

k log n/k

)
≥ σ2 log (n/k)

(
1− h2(δ) + δk log (n)

k log n/k

)
(19)

On the other hand, I(yi;x|A) ≤ 1. Thus,

k log (n/k)

(
1− h2(δ) + δk log (n)

k log n/k

)
≤

m∑
i=1

I(yi;x|A) ≤
m∑
i=1

H(yi|A)

≤ m. (20)

Combining (19) and (20), we get the desired bound.

Proof of Corollary 2.7. Consider a Gaussian sensing matrix A. Suppose x is distributed uniformly on the set of all k-sparse
binary vectors.

Suppose t = 1
2 tanh

βAT
i x
2

(
= (1−e−βA

T
i x

2
(
1+e−βA

T
i

x
)
)

. Then,

1

1 + e−βA
T
i x

=
1

2
+ t and

1− 1

1 + e−βA
T
i x

=
1

2
− t

With this,

E
[(

g
(
AT
i x
)2)]

= E
[
4t2
]

= E

[(
tanh

βAT
i x

2

)2
]

Note that,

E

[(
tanh

βAT
i x

2

)2
]
= 1− E

[(
sech

βAT
i x

2

)2
]

14
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and

E

[(
sech

βAT
i x

2

)2
]
= E

 1(
coshβA

T
i x

2

)2


(a)

≥ E
[
e−(βA

T
i x/2)

2]
(b)
=

√
1

1 + β2k/2

(c)

≥ 1− β2k

2

where (a) follows from the inequality cosh(t) ≤ et
2/2 (see (Vershynin, 2018, Exercise 2.2.3)), (b) follows from (18) and (c)

holds because 1− x
2 ≤

1√
1+x

for any x ≥ 0. Thus,

E
[(

g
(
AT
i x
)2)] ≤ β2k

2
.

This implies that

m
β2k

2
≥ k log (n/k)

(
1− h2(δ) + δk log (n)

k log n/k

)
Thus,

m ≥ 2

β2
log (n/k)

(
1− h2(δ) + δk log (n)

k log n/k

)
≥ 1

β2
log (n/k)

(
1− h2(δ) + δk log (n)

k log n/k

)
(21)

We also know that for any i, I(yi;x|A) ≤ H(yi|A) ≤ 1. Thus, we also obtain that

m ≥ k log (n/k)

(
1− h2(δ) + δk log (n)

k log n/k

)
(22)

Combining (21) and (22), we get the desired bound.

Proof of Corollary 2.8. Suppose x is generated uniformly at random from the set of all k-sparse vectors and A is any
sensing matrix which satisfies the power constraint given by (2). Then,

I(yi;x|A) = h(yi|A)− h(yi|x,A)

≤
(
h(yi)− h(AT

i x+ zi|x,A)
)

= h(yi)− h(zi)

≤ (h(wi)− h(zi))

where in the last inequality, wi ∼ N
(
0, σ2

w

)
where Var(yi) ≤ σ2

w. We will now compute an upper bound on Var(yi).

Var(yi) ≤ E
[(
AT
i x+ zi

)2]
= E

[(
AT
i x
)2]

+ σ2

≤ k + σ2

Thus, we have

(h(wi)− h(zi)) =
1

2
log

(
k

σ2
+ 1

)
. (23)

15
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With this, we conclude that

m ≥
2k log

(
n
k

)
− h2(δ)− δk log n

1
2 log

(
k
σ2 + 1

) .

A.3. Missing proofs from Section 2.3

Proof of Theorem 2.9. We consider a sensing matrix A where each entry is chosen iid N (0, 1). let Xk denote the set of all
k-sparse binary vectors. That is Xk = {x′ ∈ {0, 1}n : |x|H = k}. We decode to x̂ if, on output y,

x̂ = argmax
x′∈Xk

p(y|x′)

where p(y|x′) is the probability density function of y on input x′. We assume that k ≤ n/2. Suppose unknown signal is x.
The error event E is

E = {y : ∃x̃ ̸= x such that p(y|x̃) > p(y|x)}

Then

P(E) ≤
k∑
l=1

∑
x̃∈Xk:

dH(x,x̃)=2l

P (p(y|x̃) > p(y|x))

Suppose x has support on S ⊂ [1 : n], |S| = k and x̃ has support on U ⊂ [1 : n], |U| = k. Then, conditioned on x,
yr is generated from

∑
i∈S Ar,i which we denote by Ar,S . That is, yr = Ar,S + zr where Ar,S ∼ N (0, k). Similarly,

conditioned on x̃, yr = Ar,U + zr for Ar,U :=
∑
i∈U Ar,i where Ar,U ∼ N (0, k). For any l ∈ [1 : k], computing

P (p(y|x̃) > p(y|x)), we have

P(p(y|x̃) > p(y|x))

= P
(
log

p(y|x̃)
p(y|x)

> 0

)
= P

(
m∑
r=1

log
p(yr|Ar,U )
p(yr|Ar,S)

> 0

)
(a)
= P

(
m∑
r=1

− (yr −Ar,U )
2

2σ2
+

(yr −Ar,S)
2

2σ2
> 0

)

= P

(
m∑
r=1

(Ar,U −Ar,S)yr >

m∑
r=1

(Ar,U −Ar,S)
(Ar,U +Ar,S)

2

)

16
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where in (a), we used the Gaussian density formula which states that for any r and V , p(yr|Ar,V) = 1√
2πσ2

e−
(yr−Ar,V)

2

2σ2 .
Using the fact that yr = Ar,S\U +Ar,S∩U + zr, we have

P (p(y|x̃) > p(y|x))

= P
( m∑
r=1

(Ar,U\S −Ar,S\U )(Ar,S\U +Ar,S∩U + zr) >

m∑
r=1

(Ar,U\S −Ar,S\U )
Ar,U\S +Ar,S\U + 2Ar,U∩S

2

)
= P

( m∑
r=1

(Ar,U\S −Ar,S\U )zr) >

m∑
r=1

A2
r,U\S

2
−

A2
r,S\U

2
−Ar,U\SAr,S\U +A2

r,S\U

)
= P

(
m∑
r=1

(Ar,U\S −Ar,S\U )zr) >∑m
r=1

(
Ar,U\S −Ar,S\U

)2
2

)

= P

( ∑m
r=1(Ar,U\S −Ar,S\U )zr√∑m
r=1

(
Ar,U\S −Ar,S\U

)2
σ
)

>

√∑m
r=1

(
Ar,U\S −Ar,S\U

)2
2σ

)
.

Let br = Ar,U\S − Ar,S\U . Note that br ∼ N (0, 2l). Let b = (b1, . . . , bm). Let e = (e1, . . . , em) denote the realization
of b. Then,

P

 ∑m
r=1(Ar,U\S −Ar,S\U )zr√∑m
r=1

(
Ar,U\S −Ar,S\U

)2
σ

>

√∑m
r=1

(
Ar,U\S −Ar,S\U

)2
2σ


= P

 ∑m
r=1 brzr√∑m
r=1 (br)

2
σ
) >

√∑m
r=1 (br)

2

2σ


(a)
=

∫
pb(e)P

 ∑m
r=1 erzr√∑m
r=1 (er)

2
σ
) >

√∑m
r=1 (er)

2

2σ

 de

=

∫
pb(e)Q


√∑m

r=1 (er)
2

2σ

 de

17
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where in (a), pb(e) denotes the density of b at e and de is shorthand for de1de2 . . . dem. To analyse this further, we use the
upper bound Q(x) ≤ 1

2e
−x2/2.

∫
pb(e)Q


√∑m

r=1 (er)
2

2σ

 de

=

∫
1

(2π · 2l)m/2
2

(
−

∑m
r=1 e

2
r

2l

)
2

(
−

∑m
r=1 er

2

8σ2

)
de

=

∫
1

(2π · 2l)m/2
2(−

∑m
r=1 e

2
r( 1

2l+
1

8σ2
))de

=
1(

1
2l +

1
8σ2

)m/2
(2l)

m/2∫
1

(2π)
m/2

(
1

2l
+

1

8σ2

)m/2
2(−

∑m
r=1 e

2
r( 1

2l+
1

8σ2
))de

=

(
1

1 + l
2σ2

)m/2
= 2(−

m
2 log(1+ l

2σ2
))

Next, we observe that

|{x′ ∈ Xk : dH(x,x
′) = 2l}| =

(
k

l

)(
n− k

l

)
(a)

≤ 2kh2( lk )2(n−k)h2( l
n−k )

= 2n(
k
nh2( lk )+

(n−k)
n h2( l

(n−k) ))

= 2nN(l).

where (a) uses the inequality
(
n
k

)
≤ 2nh2(k/n) ((Cover & Thomas, 2006, Theorem 11.1.3)). Then,

P(E) ≤
k∑
l=1

2nN(l)2(−
m
2 log(1+ l

2σ2
))

→ 0 if m ≥ max
l

2nN(l)

log
(
1 + l

2σ2

)

Proof of Theorem 2.10. We consider a joint distribution given by the following process. x̃ is generated uniformly at random
from the set of all k-sparse vectors. Given x̃, the unknown signal x is chosen uniformly at random from the set of all vectors
which are at a Hamming distance 2l from x̃ for some l ∈ [1 : k] (assuming k ≤ n/2). We will denote the realization of x̃ by
x̄ and the realization of x by x̂. With this, given x̃ = x̄,

P (x = x̂|x̃ = x̄) =
1(

k
l

)(
n−k
l

) .
Note that the marginal distribution of x is uniform over the set of all k-sparse vectors.

We will be using the below set of equations in our further analysis. For x = (x1, . . . , xn), any j, l ∈ Sx̃ where j ̸= l, we

18
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have

P (xj = 1|x̃ = x̄) =

(
k−1
l

)(
n−k
l

)(
k
l

)(
n−k
l

) =
k − l

k
, and (24)

P (xj = xl = 1|x̃ = x̄) =

(
k−2
l

)(
n−k
l

)(
k
l

)(
n−k
l

) =

(
k − l

k

)(
k − l − 1

k − 1

)
, (25)

For any sensing matrix A, output vector y and an unknown signal x generated from x̃ using the above process, we have

I(A,y;x|x̃) = H(x|x̃)−H(x|A,y, x̃)

≥ H(x|x̃)−H(x|A,y)

(a)

≥ H(x|x̃)− h2(δ)− δ log

(
n

k

)
=
∑
x̃

P (x̃ = x̄)H(x|x̃ = x̄)− h2(δ)− δ log

(
n

k

)
(b)

≥
∑
x̃

P (x̃ = x̄) log

(
k

l

)(
n− k

l

)
− h2(δ)− δk log n

(c)

≥ kh2

(
l

k

)
+ (n− k)h2

(
l

n− k

)
− log (k + 1)

− log (n− k + 1)− h2(δ)− δk log n

(d)

≥ nN(l)− 2 log n− h2(δ)− δk log n (26)

where (a) follows from (Cover & Thomas, 2006, Theorem 2.10.1), (b) follows from
(
n
k

)
≤ nk, (c) follows from

(
n
k

)
≥

1
n+12

nh2(k/n) ((Cover & Thomas, 2006, Theorem 11.1.3)) where h2 is the binary entropy function and (d) follows by

defining N(l) = k
nh2

(
l
k

)
+ (1− k

n )h2

(
l

n−k

)
.

Next, we will compute an upper bound on I(A,y;x|x̃).

I(A,y;x|x̃) = I(A;x|x̃) + I(y;x|A, x̃)

(a)
= 0 + I(y;x|A, x̃)

(b)
=

m∑
i=1

I(yi;x|A, yj∈[1:i−1], x̃)

where (a) follows because A is independent of both x and x̃. In particular, A is conditionally independent of x conditioned
on x̃. Here, (b) follows from chain rule for mutual information where yj∈[1:i−1] denotes (y1, . . . , yi−1).

Suppose h(·) denotes the differential entropy of a continuous random variable. For any i ∈ [1 : m],

I(yi;x|A, yj∈[1:i−1], x̃)

= h(yi|A, yj∈[1:i−1], x̃)− h(yi|x,A, yj∈[1:i−1], x̃)

(a)

≤ h(yi|Ai,j∈Sx̃
, x̃)− h(AT

i x+ zi|A,x, Y i−1, x̃)

= h(yi|Ai,j∈Sx̃
, x̃)− h(zi)

= h(yi|Ai,j∈Sx̃
, x̃)− 1

2
log
(
2πeσ2

)
where in (a), we use Ai,j∈Sx̃

to denote the set of elements Ai,j for j ∈ Sx̃. Conditioned on x̃ = x̄ and Ai,j∈Sx̃
= ai,j∈Sx̃

,
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h(yi|x̃ = x̄,Ai,j∈Sx̃
= ai,j∈Sx̃

)

(a)
= h

(
yi − E [yi|x̃ = x̄,Ax̃ = ai,j∈Sx̃

]
∣∣∣x̃ = x̄,Ax̃ = ai,j∈Sx̃

)
(b)

≤ h(Wai,j∈Sx̃
)

where (a) follows by noting that differential entropy does not change by centering ((Cover & Thomas, 2006, Theorem 8.6.3))
and (b) follows for Wi,x̃ ∼ N

(
0, σ2

w

)
where σ2

w ≤ Var(yi−E [yi|x̃ = x̄,Ai,j∈Sx̃
= ai,j∈Sx̃

]
∣∣∣x̃ = x̄,Ai,j∈Sx̃

= ai,j∈Sx̃
)

from the fact that for the same variance a Gaussian random variable maximizes the differential entropy and it increasing
with increasing variance ((Cover & Thomas, 2006, Theorem 8.6.5 and Example 8.1.2)).

Recall that each entry of A is chosen iid N (0, 1). In that case, Var (yi − E [yi|x̃ = x̄,Ai,j∈Sx̃
= ai,j∈Sx̃

]) conditioned on

x̃ = x̄ and Ax̃ = ai,j∈Sx̃
is given by E

[
(yi)

2 |x̃ = x̄,Ai,j∈Sx̃
= ai,j∈Sx̃

]
− (E [yi|x̃ = x̄,Ai,j∈Sx̃

= ai,j∈Sx̃
])
2. We first

analyse the first term.

E
[
(yi)

2 |x̃ = x̄,Ai,j∈Sx̃
= ai,j∈Sx̃

]
= E

[
E
[(
AT
i x+ zi

)2 |x̃ = x̄,Ai,j∈Sx̃
= ai,j∈Sx̃

,x
]]

For any x = x̂,

E
[(
AT
i x+ zi

)2 |x̃ = x̄,Ax̃ = ai,j∈Sx̃
,x = x̂

]
(a)
= l + σ2 + (ai,Sx∩Sx̃

)
2

where (a) holds because conditioned on Ax̃ = ai,j∈Sx̃
and x = x̂, the random variable AT

i x+zi = Ai,Sx\Sx̃
+ai,Sx∩Sx̃

+zi
and |Sx \ Sx̃| = l.

Similarly, we can analyze the second term.

E [yi|x̃ = x̄,Ai,j∈Sx̃
= ai,j∈Sx̃

]

= E
[
AT
i x+ zi|x̃ = x̄,Ai,j∈Sx̃

= ai,j∈Sx̃

]
= E

[
E
[
AT
i x+ zi|x̃ = x̄,Ai,j∈Sx̃

= ai,j∈Sx̃
,x
]]

For any x = x̂,

E
[
AT
i x+ zi|x̃ = x̄,Ai,j∈Sx̃

= ai,j∈Sx̃
,x = x̂

]
= ai,Sx∩Sx̃

and

E [E [Ax+ zi|x̃ = x̄,Ai,j∈Sx̃
= ai,j∈Sx̃

,x]] = E [E [ai,Sx∩Sx̃
|x̃ = x̄,Ai,j∈Sx̃

= ai,j∈Sx̃
,x]]

(a)
=

k − l

k
ai,Sx̃

where (a) follows from (24).

(E [yi|x̃ = x̄,Ai,j∈Sx̃
= ai,j∈Sx̃

])
2

=

(
k − l

k

)2

∑
j∈Sx̃

a2i,j + 2
∑
j,l∈Sx̃
j ̸=l

ai,jai,l


20
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On the other hand,

E
[
(yi)

2 |x̃ = x̄,Ax̃ = ai,j∈Sx̃

]
= Ex

[
l + σ2 + (ai,Sx∩Sx̃

)
2
]

(a)
= l + σ2 +

(
k−1
k−l−1

)(
k
k−l
) ∑

j∈Sx̃

a2i,j + 2

(
k−2
k−l−2

)(
k
k−l
) ∑

j,l∈Sx̃
j ̸=l

ai,jai,l

= l + σ2 +
k − l

k

∑
j∈Sx̃

a2i,j + 2

(
k − l

k

)(
k − l − 1

k − 1

) ∑
j,l∈Sx̃
j ̸=l

ai,jai,l

where (a) follows from (24) and (25). Thus,

Var
(
yi − E [yi|x̃ = x̄,Ai,j∈Sx̃

= ai,j∈Sx̃
]
∣∣∣x̃ = x̄,Ai,j∈Sx̃

= ai,j∈Sx̃

)

= l + σ2 +
k − l

k

∑
j∈Sx̃

a2i,j + 2

(
k − l

k

)(
k − l − 1

k − 1

) ∑
j,l∈Sx̃
j ̸=l

ai,jai,l −
(
k − l

k

)2

∑
j∈Sx̃

a2i,j + 2
∑
j,l∈Sx̃
j ̸=l

ai,jai,l


= l + σ2 +

(
k − l

k

)(
l

k

) ∑
j∈Sx̃

a2i,j − 2
k − l

k

l

k (k − 1)

∑
j,l∈Sx̃
j ̸=l

ai,jai,l

Thus,

h(yi|Ai,j∈Sx̃
, x̃ = x̃) =

∫
pA(a)h(yi|x̃ = x̄,Ai,j∈Sx̃

= ai,j∈Sx̃
)da

≤
∫

pA(a)
1

2
log

2πe

l + σ2 +

(
k − l

k

)(
l

k

) ∑
j∈Sx̃

a2i,j − 2
k − l

k

l

k (k − 1)

∑
j,l∈Sx̃
j ̸=l

ai,jai,l


 da

(a)

≤ 1

2
log

2πe

l + σ2 +

∫ pA(a)

(
k − l

k

)(
l

k

)∑
j∈Sx̃

a2i,j − 2
k − l

k

l

k (k − 1)

∑
j,l∈Sx̃
j ̸=l

ai,jai,l

 da





(b)
=

1

2
log

(
2πe

(
l + σ2 +

(
k − l

k

)
l

))

where (a) follows from Jensen’s inequality and (b) follows by noting that E
[
A2
i,j

]
= 1 and E [Ai,jAi,l] = 0 for any i and

j, l, where j ̸= l and x̃ is k-sparse.

Thus,
m∑
i=1

I(yi;x|A, yj∈[1:i−1], x̃) ≤ m
1

2
log

(
2πe

(
l + σ2 +

(
k − l

k

)
l

))
− 1

2
log
(
2πeσ2

)
=

m

2
log

(
1 +

l

σ2

(
2− l

k

))
Using this and (26), we conclude that

m ≥ nN(l)− 2 log n− h2(δ)− δk log n
1
2 log

(
1 + l

σ2

(
2− l

k

)) .
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B. Comparison with (Plan et al., 2017)
Algorithm 1 is similar to the two step estimation procedure outlined in (Plan et al., 2017) which was given to estimate the
unknown signal within a two norm guarantee. Computing the vector l = (l1, . . . , ln) is the same as the first step of the
procedure in (Plan et al., 2017, Section 1.2) where a linear estimator is computed. The second step of our algorithm (sorting
and keeping the top-k indices) can be thought of as a projection on a feasible set (Plan et al., 2017, Section 1.3). However,
this requires the estimation error to be small enough for the exact recovery of a binary vector.

The setup in (Plan et al., 2017) is for the recovery of an unknown signal with small two-norm error, whereas our problem of
exact recovery of a sparse binary vector is more suited for recovery under infinity norm. This results in weak bounds (m ≈
O(k2)) when we specialize various results in (Plan et al., 2017) to our case. We first note that we require E

∥∥∥ x̂
∥x̂∥2

− x̄
∥∥∥
2
<√

2
k for exact recovery. Otherwise, there exist two binary k-sparse vectors which have hamming distance at least two.

We first consider the 1-bit compressed sensing result in Section 3.5 (page 13). Setting the LHS to
√

2
k , we get√

2

k
≤ C

√
k log (2n/k)

m
.

This implies that m ≈ C1k
2 log (2n/k) for some constant C1.

Next, we consider (Plan et al., 2017, Theorem 9.1). Note that for 1-bit compressed sensing η2 = 1 and

µ = E [s1⟨a1, x̄⟩]
= E [s1⟨a1, x⟩]

(a)
=

1√
k

√
2

π
× k√

(k + σ2)

=

√
2

π
×

√
k√

(k + σ2)
.

where (a) follows from (17). Then,

∥x− µx̄∥2 =

∥∥∥∥∥x−
√

2

π
×

√
k√

(k + σ2)

x√
k

∥∥∥∥∥
2

=

∥∥∥∥∥x−
√

2

π
× x√

(k + σ2)

∥∥∥∥∥
2

We require ∥x− µx̄∥2 < 2√
π(k+σ2)

in order to exactly recover the unknown signal x.

We assume that K is also a closed cone in Rn. Then, by (Plan et al., 2017, Section 2.4), wt(K) = tw1(K) ≤
tC
√
k log (2n/k) ((Plan et al., 2017, Section 2.4)). We choose s = w1(K). Substituting the bound for LHS and

taking the limit t→ 0, we get

2√
π (k + σ2)

≤
8C
√

k log (2n/k)√
m

.

Thus, m ≈ 4C(k + σ2)k log (2n/k).
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