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ABSTRACT

We propose a novel method to improve the physical simulation ability of vision-
language models. This Chain-of-Time simulation is motivated by in-context reason-
ing in machine learning, and mental simulation in humans. The method involves
generating a series of intermediate images during a simulation. Chain of Time
is used at inference time and requires no additional fine-tuning for performance
benefits. We apply the Chain-of-Time method to synthetic and real-world domains,
including 2-D graphics simulations and natural 3-D videos. These domains test
a variety of particular physical properties, including velocity, acceleration, fluid
dynamics, and conservation of momentum. We found that using Chain-of-Time
simulation substantially improves the performance of state-of-the-art Image Gener-
ation Model. Beyond examining performance, we also analyze the specific states
of the world simulated by an image model at each time step, which sheds light on
the dynamics underlying these simulations. This analysis reveals insights that are
hidden from traditional evaluations of physical reasoning, including cases where
an Image Generation Model is able to simulate physical properties that unfold
over time, such as velocity, gravity, and collisions domain well. Our analysis
also highlights particular cases where the Image Generation Model struggles to
infer particular physical parameters from input images, despite being capable of
simulating relevant physical processes.

1 INTRODUCTION

Recent developments in Image Generation Models allow these models to generate more complex,
realistic, and coherent images [Chen et al.|(2025));|Cao et al.|(2025); |Liu et al.| (2023); [Lu et al.| (2024).
But despite their realism, these images often have distinct flaws, and may fail to capture real-world
structures that are obvious to humans. Understanding the inner workings of Vision-Language Models
(VLMs) and their internal world model representations has become a major topic in contemporary Al
research (Dang et al.| 2024} |Chang et al., 2024} |Goh et al., 2021} |Bhalla et al., 2024} Zhang et al.,
2024). In particular, there is a pressing question of how well VLMs and Image Generation Models
represent physical properties which are required to predict how world states unfold over time. In this
work, we present a method for enhancing this physical reasoning ability in Image Generation Models,
which also allows us to analyze the step-by-step process that the models use to simulate physics over
time.

Prior work has provided a number of tools for evaluating the physical reasoning abilities of VLMs.
Comprehensive benchmarks such as PhysBench (Chow et al.|[2025) and WM-ABench (Gao et al.
20235)) test VLMs on a wide array of physical simulation capabilities. These evaluation benchmarks
provide valuable metrics for what VLMs are capable of. However, such benchmarks do not answer
the question of precisely how VLMs accomplish this. Our work strives to fill this gap, providing a
detailed analysis of the incremental processes underlying physical simulation ability. Beyond VLMs,
Meng et al.| (2024) evaluates the extent to which text-to-image models - which generate images but
do not take images as input - can generate images matching relational and physical constraints, using
a separate VLM as an evaluator. Given the fact that the image generation models are becoming
native to the vision-language models and share the world knowledge in the vison-language models
(OpenAl, 2025), evaluating image generation models may also provide valuable insights into the
inner workings of VLMs. Our work is, to our knowledge, unique in studying physical reasoning
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Figure 1: (Left, Top) We study physical reasoning in multi-modal image generation models by
providing the model a sequence of input images showing a scene in subsequent time steps, and
having the model generate an image that simulates what the scene will look like some time in the
future. Accurately predicting future world states requires reasoning about physical properties. (Left,
Bottom) Our method, Chain of Time, allows these models to simulate a sequence of images in-context,
generating one image at a time, with the last image representing the final prediction of the scene.
(Right) We use four experimental domains designed to test models’ ability to reason about specific
physical properties: Velocity, Gravity, Fluid Dynamics, and Collision.

abilities of VLMs through Image Generation Model (IGMs), which take images and text as input and
generate images as output.

In this work, we adopt a theoretical framework of mental simulation from cognitive science to
understand physical reasoning and simulation abilities in Image Generation Models (Section 2).
This framework helps us understand how IGMs reason about physical processes that unfold over
time, by mapping input images to a latent state which is simulated with a Markov process to predict
future time steps. In order to both improve physical reasoning ability of IGMs and to expose an
interpretable trace of intermediate reasoning steps, we propose a novel method for in-context physical
simulation, which we call Chain of Time (Section 3, Fig. |I|) We test a state-of-the-art IGM with
physical reasoning in four experimental domains, including two 2-D and two 3-D domains, which
test four sets of physical properties: motion, gravity, fluid dynamics, and object collections. We find
that Chain of Time enhances the IGM’s physical reasoning abilities, enabling it to generate images
which are more accurate across specific metrics over images. Further, we provide a novel analysis of
the step-by-step process by which an IGM simulates the physical world, and draw key insights about
what aspects of the process it succeeds and struggles with.

2 MENTAL SIMULATION IN HUMANS

People can reason efficiently about the physical dynamics of everyday objects. For example, if you
saw a pitcher full of juice begin to fall off of a table, you might quickly and intuitively predict what
sequence of events will happen next. There are many competing theories that try to explain this
‘intuitive physics’. One current proposal is that people rely on a kind of ‘internal physics engine’ to
carry out a mental simulation of a given scene (Battaglia et al.| 2013} |Ullman et al.,2017). While it
has its critiques (see for example Ludwin-Peery et al.|(2021)), this proposal finds support in cognitive
science, computational modeling, cognitive development, and neuroscience (Fischer et al., 2016;
Gerstenberg & Stephanl 2021 |Allen et al.l 2021} |[Fischer, 2021} Bass et al.,[2021}; | Balaban & Ullman)
2025)). More recent work suggests it is likely that humans combine various computations to carry
out physical reasoning, mental simulation being just one component |Hartshorne & Jing| (2025); |Sosa;
et al.| (2025)); |Smith et al.|

Given that current research suggests that step-by-step mental simulation is an important component
in human physical reasoning, we adopt its formalism for studying and potentially improving upon
the physical reasoning of current IGM. For our purposes here, we consider a basic version of the
mental physics engine framework: Suppose that an agent observes an image [ that describes a
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Figure 2: In our paradigm, we give a IGM a sequence of input images, along with a prompt instructing
the model to simulate the scene into the future for a specified length of time (Left). As a baseline,
Direct Prediction (Middle, Top) directly predicts the final state (Right). We propose a novel method,
Chain-of-Time (Middle, Bottom), which instead generates a sequence of images corresponding to
step-by-step simulation of the scene on the way to the predicted final state, with each mid-point image
serving as input and output in mid-point computation.

scene at time ¢ in a pixel-based format, and wants to predict the state of the scene at a later time. A
mental physics engine is a probabilistic transition function that can achieve this by composing three
sub-functions: de-renderer ¢, simulator 7, and renderer ¢_1. The engine takes in the current image
I, and de-renders it into the state of the world at that time, X;. The engine then applies dynamic
update rules to that state, corresponding to a transition 7 that produces a distribution over future states
of the world X, ;. The engine may then render the state of the world back into a predicted image

It+1'

A few notes on this overall formulation: First, while de-rendering has been studied in the context
of intuitive physics in the past (e.g. 'Wu et al.} 2017ajb; Smith et al.,[2019), many other techniques
exist for going from observations to physical states, and for our purposes here the specific technique
is of less importance. Second, while the images I are pixel-based, the underlying physical state X
is not, and corresponds to the ‘game state’ that describes in a lower-dimensional way the position,
identity, and physical parameters of objects (Smith et al.,[2019). Third, in computer graphics it is
not strictly necessary to render the state of the world back into an image in order to answer various
questions about the state, something that may hold for human mental physics as well (Balaban &
Ullman, 2025]).

To put it more formally, the mental simulation formalism we consider here is:

p(Xy | It) = (L) + N(0,04) De-rendering
p(Xeq1 | Xt) = 7(Xt) + N(0,0,) Simulation
p(Lig1 | Xeg1) = ¢ (Xig1) + N(0,04-1) Rendering

The noise parameters o4, 0, and o4 account for perceptual noise in the de-rendering of I, the
cognitive complexity of mental simulation of the underlying state X, and imperfect imagery in the
rendering of the state back to an image.

Notice that the state and scene at timestep ¢ 4+ 1 depend only on the previous state and scene at
timestep ¢. In other words, the formalism defines a linearly unfolding Markov Chain, that allows us
to go from an initial observation [, step-by-step to a final state at time T, X7, and optionally the
predicted image at that time, 7. While such step-by-step computations seem to underlying human
mental simulation, it remains unclear whether current IGMs tasked with predicting the future state of
a scene [ at time 7" also go through a step-by-step simulation. Nevertheless, even if current models
do not do so on their own, this framework suggests a method for bringing them more in line with
human-like reasoning, which we turn to next.
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answer (Turpin et al.} [2023)), Chain of Thought reasoning has proved a valuable tool for auditing
language model behavior. Various theories have been developed to try to explain precisely why
and how these methods work or occasionally fail (Wang et al.| 2022; Merrill & Sabharwall, 2023;
Prystawski et al., [2023]).

Output Images

Based on these two bodies of prior literature, we propose a novel method for improving physical
reasoning with in-context simulations. We call this method Chain-of-Time Simulation (Figure[T). We
treat VLM as a derenderer ¢ and a simulator 7, and the IGMs as a renderer ¢~ *. The basic physical
simulation task we consider is as follows: given a sequence of input images up to a given time t Iy,
generate a new image It; & that accurately depicts what the scene will look like % time steps into the
future. Chain-of-Time Simulation involves two prompts (provided in Appendix [B): first, a Simulation
Instruction prompt that, along with a sequence of input images, instructs the model to simulate an
image k seconds into the future. After the IGM generates a single image, we continue with our
Simulation Follow-up prompt, which instructs the model to generate another image simulated an
additional k seconds into the future until ¢ + k£ = 7. In our experiments, we use 7' = ¢ + 0.8 sec
and sub-steps s € {0.2 sec, 0.4 sec}. As a baseline for this task, we construct a Direct Prediction
Simulation prompt, which instructs the IGM to directly predict It;_k. given Iy.;. Note that this is
equivalent to Chain-of-Time simulation with only a single timestep, i.e. £ = 0.8 s.

3.1 PREVIOUS WORK

Prior work has proposed in-context reasoning methods for IGMs that use images instead of language
to represent individual reasoning steps. However, our method differs from these proposals in a few
critical ways. |[Hu et al.[(2024) proposed a method to solve simple reasoning problems with a IGMs,
such as geometry and spatial reasoning, and individual steps involve interleaved images and text
outputs. (Xu et al., 2025) proposed a method for planning in which a IGMs generates sequential
images to solve tasks such as maze navigation; their approach requires additional training. By
contrast, the goal of Chain-of-Time simulation is to 1: generate the actual image, unlike the VLM that
can only generate output as language; 2: improve physical simulation with IGMs, where “steps” in a
chain correspond to segments of time. Further, unlike |Hu et al.|(2024), our method can be applied to
out-of-the-box IGMs with no additional training.

4 EXPERIMENTS

We hypothesize that by using Chain-of-Time, IGM models will be able to achieve better accuracy
than when using direct prediction. We will then use the frames created by IGMs using Chain-of-Time
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simulation to reveal details about the simulation, including the initial state estimated by IGMs, the
physical interaction, and the physical motion simulated by IGMs. To examine the overall validity
and applicability of our method, we test Chain-of-Time on both 2D Physics and 3D Physics, and
four domains: 2D Motion, 2D Gravity, Fluids, and Bouncing. We analyzed our results
from three perspectives: accuracy of predicted image relative to ground truth, perceived physical
interactions and motions, and perceived physical parameters.

4.1 EXPERIMENTAL SETUP

Stimuli Design As mentioned above, we used 4 different physics domains in our stimuli: 2D
Motion, 2D Gravity,Fluids, and Bouncing. The stimuli used in 2D physics category (2D
Motion, 2D Gravity) were created in simulation environment, and resemble stimuli in previous
studies of intuitive physics Smith & Vul|(2013), |Bass et al.|(2021) JGerstenberg & Stephan|(2021)).
The stimuli used in 3D physics category (F1luids) were borrowed from Wang & Ullman| (2025)).
We manipulated the physical parameters used to generate stimuli in the 2D physics category (2D
Motion, 2D Gravity) and 3D physics category (Fluids) by changing the parameters used to
simulate the stimuli. In the 3D physics category (Bouncing), we found real-world stimuli that have
different physical parameters. For the details of the design of each stimuli, please refer to Appendix
A: Specification of the Stimuli Design

Experimental Procedure We used OpenAl’s GPT4-o (gpt-image-1 |') as the Image Generation
Model model in our experiment, as of September, 2025. We also empirically tested other image
generation models including DALLE-3, but found that these models were unable to simulate images
of future world state with any reasonable accuracy. In order to analyze the content of generated
images, we use a collection of domain-specific algorithms to identify object locations, for example x,y
coordinates of generated balls, and the heights of water levels for generated fluids. These algorithms
use simple tools from classic computer vision such as Hough transforms, and are further described in

Appendix

At the start of each trial, the model was given 5 frames of a stimulus, showing the scene at 0, 0.2, 0.4,
0.6, and 0.8 seconds. Given these 5 frames, the model was asked to generate the a simulated frames
at a time in the future, following the Initial Simulation Prompt we listed in Appendix B: Prompt. If
Chain-of-Time 0.2s or Chain-of-Time 0.4s were used (see below), additional frames were generated
following the Simulation Follow-Up Prompt we listed in Appendix B: Prompt.

Sampling Details Chain of Time generates frames at different precision, depending on a frame-rate
parameter k. We considered two versions of Chain-of-Time with k = 0.2 sec and k£ = 0.4 sec. Since the
final frame was 0.8 seconds into the future, ‘Chain-of-Time 0.2’ generated 4 frames (corresponding
to 0.2, 0.4, 0.6, and 0.8 seconds after the last frame provided to the model), and ‘Chain-of-Time 0.4’
generated 2 frames (corresponding to 0.4 and 0.8 seconds into the future). In addition, we had a
baseline termed “Direct Prediction”. In this method, we asked the model to directly generate the
requested final frame, 0.8 seconds into the future.

For 2D Mot ion, we ran each stimulus 5 times (N=5) across all Chain-of-Time simulations and
Direct Prediction. For 2D Gravity, we ran each stimulus 20 times (N=20) across all Chain-of-
Time simulations and Direct Prediction. For F1uidsand Bouncingdomain, we ran each stimulus
10 times (N=10) across all Chain-of-Time simulations and Direct Prediction.

Metrics For all domains, we considered the same analysis metrics: ”Accuracy” and “Perceived
Physical Motion and Physical Interaction”. For accuracy, we used the Square-Root Mean-squared
Error between the model’s prediction and the ground truth in trials.

For the “Perceived Physical Interaction and Physical Interaction” analysis, we reveal the initial state
of the physical scene perceived by the model, focusing on physical parameters we manipulated in the
stimuli. We also reveal the intermediary states simulated by the model during the simulation process,
and whether the intermediary states reveal the critical physical phenomena corresponding to the task
by comparing them with the ground truth.

1 . . . . .
openai.com/index/image—-generation-api/
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Figure 4: Prediction errors for all four domains, averaged across all data for each domain. Prediction
error is measured by taking the average RMSE between the ground truth positions (location of
focal object, or water level) and the positions predicted by the IGM. Error bars are 95% CI. We
generally find a monotonic relationship between Chain-of-Time precision and performance. In the
case of F1uids, we observe that the initial state simulated by the IGM is inaccurate, and this error
compounds with increasing degrees of simulation, see Section[5.2.2]for detailed analysis.

5 RESULTS

5.1 ACCURACY ANALYSIS

As a reminder, we measured the IGM’s accuracy in predicting the ground-truth position of the
physical variable of interest (location of object, or height of water) under three different methods:
Chain-of-Time 0.2s, Chain-of-Time 0.4s, and Direct Prediction. As shown in Figureﬂ the finer
the precision in Chain-of-Time, the better the accuracy for 3 of the 4 domains. In the 2D Motion,
Chain-of-Time 0.2s more than halves the error of Direct Prediction. The findings indicate that
Chain-of-Time can increase prediction accuracy for 2D and 3D tasks.

In Fluidstasks, Chain-of-Time was able to enable the IGM to simulate the fluid dynamics, but due
to errors in the physical parameter estimation, it failed to improve the performance. As the step-size
k of Chain-of-Time gets finer and finer, the error actually increases. We consider the potential cause
of this increase in the following section.

5.2 PHYSICAL PARAMETER AND PHYSICAL MOTION ANALYSIS

Given that in the 2D Mot ion, where the IMG demonstrated to ability to simulate the simplest
motion which is a forward rolling motion, as the Chain-of-Time 0.2s achieved relatively Averaging
Error (RMSE), we are interested in the performance of IMG in terms of simulating the complex
physical interactions and motions in 2D Gravity, Fluids, Bouncing.

Given the characteristics of Chain-of-Time, we have access to simulated images between the first
timestep ¢ + & and the final timestep 7', which are I;.7. As described in Section 4 that we generated
I;.7 using Chain-of-Time 0.2s and Chain-of-Time 0.4s, we now used these I;.7 to recover the
estimated physical parameters perceived by the model, the estimated physical interactions, and the
estimated physical motion simulated by the model. In each section, we use a single trial as an
example to illustrate our point, Please refer to Appendix C: Additional Analysis for the same
analysis on more stimuli in all four domains. In the following analysis, we focus specifically on
Chain-of-Time 0.2s, as it offers the highest resolution and greatest number of images. For the analysis
using Chain-of-Time 0.4s, please refer to Appendix C: Additional Analysis as well.
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5.2.1 IMAGE GENERATION MODEL IS CAPABLE OF SIMULATING BOTH COMPLEX 2D AND
3D PHYSICAL MOTIONS AND INTERACTIONS

In all these three domains, we found that the IGM using Chain-of-Time 0.2s and Chain-of-Time 0.4
was generally able to create images corresponding to a simulation of the physical motions or physical
interactions relevant to each domain.

In 2D Gravity, we investigated a IGM’s ability to simulate projectile motion, in which gravity
causes a curved trajectory. For the purposes of illustration, we selected stimuli with speed 230, launch
angle of 60 degrees, and launch position at left-bottom as an illustration. As figure[6|shows, the IGM
was able to simulate the projectile motion, signified by the plot on the left that shows the curved
trajectory of a projectile motion, and it was closely following the ground truth. Also, by breaking the
2-D trajectory down to the x and y components (plotted as x and y locations in two time-series in
Figure [6), we found that the Image Generation Model was able to correctly simulate the interaction
between the ball and gravity in Chain-of-Time 0.2s and Chain-of-Time 0.4s. The x location of the
ball in the stimuli increased linearly, while the y location dropped after reaching the top due to the
deceleration from gravity, which matches the characteristics of projectile motion under gravity.

In Fluids, we focused on whether the IGM can simulate the fluid dynamics. Although in section
[5.1] we found that the average error is greater for Chain-of-time 0.2s and Chain-of-time 0.4s, we
found that the model is able to simulate the fluid dynamics, indicated by the increasing of the water
level as simulation proceeds. As figure[7]shows, the water level simulated by the model was increasing
as time step increases. We will analyze more in section [5.2.2]about why the average error increased
when Chain-of-Time simulation was used.

In Bouncing, we focused on the bouncing motion. Here we specifically consider stimuli with a
black bouncing ball that has a medium coefficient of restitution. As Figure[5|shows, the IGM was
able to simulate the bouncing motion, indicated by the y position first decreasing due to gravity, and
when the ball hits the ground and started to bounce back, y positions started to increase. Notice the
Figure shows a deviation between the ground truth y-positions and IGM-simulated y-positions, which
analyze this further in section[5.2.2]

5.2.2 IMAGE GENERATION MODEL EXHIBITS PHYSICAL PARAMETER ESTIMATION ERROR
FOR 3D PHYSICS SIMULATION

In Section 4, we observed that the Chain-of-Time 0.2 seconds, and Chain-of-Time 0.4 seconds had
a performance drop compared to that of the Direct Prediction in the fluid dynamics domain. This
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Figure 5: (Left) Prediction error rate across methods and time periods. In the collision domain, we
find lower error rates in image model predictions for periods before and after the bouncing collision,
compared with time periods during which the collision occurs. This disparity increases with Chain of
Time, since performance improves for the before/after periods, but error remains high for the collision
time period. (Right) Simulated ball location (orange) using Chain-of-Time 0.2s in the Bouncing
domain follow a similar U-shaped curve as the ground truth ball location (red). Ball locations are
shown here for a single video (orange), with predictions aggregated across all samples for the three
time periods (before/during/after collision).
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motivated us to analyze the model’s perception of the initial sequence of states X.;, which includes
physical parameters like flow rate and the initial water level in the case of F1luids.

We analyzed the simulated images Ir generated by the IMG in F1luids. More specifically, we
analyzed the reported water level for stimuli with slow (25 frames / second) and fast 75 frames /
second) flow rate, and low (1/12 full and 3/12 full) and high (7/12 full and 9/12 full) initial water
levels. As Figure[/|shows, the IMG exhibited sensitivity towards initial water level, but no sensitivity
towards the change of flow rate between the stimuli, as changing the initial water level from high to
low changed the intercept of the dotted line down to the intercept of the solid line (Figure[7} left). But
the flow rate did not change the slope of both dotted and solid line (Figure (/] right).

The sensitivity to initial water level means that IMG was picking up the obvious visual cue from
the input images, but this non-sensitivity towards flow rate showed that IMG was estimating the
flow rate with great error. Flow rate is a critical physical parameter during this task, which ensures
that the glass mugs are being filled with correct amount of water at each given time. Therefore,
this analysis suggests that the estimation errors about initial state X.; can happen, especially for
physical parameters that are more complex than the ones that can be picked up by visual cues. This
estimation error led to greater accumulated error as the timestep k becomes smaller. This explains
why Chain-of-time is worse than Direction Prediction, and why Chain-of-time 0.2s is actually worse
than Chain-of-time 0.4s in the fluid dynamics domain, and why overall Chain-of-time simulation is
worse than Direct Prediction.

Predicted Ball Position in Domain 2
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Figure 6: Predicted projectile position for 2D Gravityover time for a single trial using Chain-of-
Time 0.2s. Red represents the ground truth ball location and orange is the simulated ball location
at each time step, averaged across 20 samples. (Left) Projectile location in (z,y) coordinate space
(Right) Predicted x-location and y-location as a function of time.
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Figure 7: In the F1uidsdomain, we find that the IGMs are able to simulate water levels increasing
over time. Here we show water levels in generated images steadily increasing as a function of time.
(Left) The model is sensitive to initial water levels, with solid lines representing a low water level
at the initial time of simulation ¢ and dotted lines representing a high initial water level. (Right)
However, the model is insensitive to the flow rate of water, with water level consistently increasing at
the same rate during simulations. Solid lines represent a slow flow rate and dotted lines represent a
3x faster flow rate.
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Besides the flow rate parameter in F1luids, another complex parameter we controlled for is the
coefficient of restitution in Bouncing. Therefore, we are interested to see the model’s performance
on estimating coefficient of restitution.

As mentioned in Section [5.2.1] we observed deviation between ground truth positions and the
simulated positions during frame 10 and frame 16. This is the range of frames that includes the
deformation (the during partition), which the ball hits the ground, deform, and bounce back. As
shown in the 5] the slope starting at timestep 10 for the simulated y position is significantly smaller
than that of the ground truth y position, indicating that the model think the ball started to bounce back
slower than it is supposed to be. This indicates an estimation error on the coefficient of restitution.

Furthermore, as shown in Figure[5] when we expand the analysis to all the stimuli in the Bouncing,
we see that the RMSE actually increased when the IGM is simulating the deformation partition
(during), and is significantly higher than the other two partitions in Chain-of-Time 0.2 seconds and
Chain-of-Time 0.4 seconds. This further reinforces the conclusion that the IGM made an estimation
error in the coefficient of restitution when simulating the deformation phase.

6 DISCUSSION

Motivated by mental simulation in humans and in-context reasoning in Large-Language Models,
we presented a method for step-by-step physical simulation in Image Generation Models. In this
Chain-of-Time method, a prediction is sliced into finer precision, with mid-point frames being fed as
input to the next step in an unfolding systematic process. We assessed the Chain of Time method
for differing degrees of precision, across different physical domains, using different quantitative and
qualitative metrics, including overall accuracy compared to ground truth, and the recovery of physical
parameters.

Our results suggest that while an Image Generation Model may have some degree of physical
simulation ability when paired with a VLM, accuracy degenerates significantly when simulating
further into the future. Our Chain-of-Time method that inspired by the mental simulation theory in
humans seems to greatly improve this ability, particularly with long simulations. When using this
method, we will be able to access the simulated images produced by the image model, and probe
the model’s perception over critical physical parameters, physical motions, and physical interactions.
We found that the model is capable of simulating both 2D and 3D physical motions and interactions
accurately. But, they have various problems when simulating 2D and 3D physics, which they will
slow down the simulation when 2D physics is simulated, or they will estimate the wrong physical
parameters when 3D physics is simulated.

Our work is one step towards a more general method of step-by-step simulation in IGM, and many
open questions and directions of research remain. For example, while we considered several settings
of the precision (time-step k), there is a trade-off between the potential accuracy gained by better
precision, and the resulting drain on computational resources. The precision that corresponds to the
optimal trade-off is left for further exploration, and may depend on the target domain. In addition, we
found that greater precision can compound error, if the initial parameters are not correctly measured
or observed, and finding a way to assess this independently to know whether Chain-of-Time will be
beneficial is another avenue for future work. More generally, we see great value in using Chain of
Time to examine other aspects of physical reasoning not directly touched on here, including judgments
of causality and non-simulation-based physical reasoning such as heuristics and abstractions. Also,
while our work was inspired by research examining mental simulation in humans, our Chain of Time
method and the results offers suggestions in the reverse direction for further study in people. To
be specific, while much of the work on mental simulation assumes people unfold a physical scene
step-by-step, the exact step-size and its possible consequences is mostly left unexamined.
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A STIMULI DESIGN AND SPECIFICATION OF THE STIMULI

A.1 2D MoTION

The stimulus shows a 2D red ball being launched at the left middle of the screen on a white background.
There is no gravity or friction enabled, and no visible boundaries on the white surface. The white
surface is flat and featureless, allowing the red ball to travel without obstructions, as shown in Figure[]
We varied the speed at which the ball rolled over the white surface with three different speeds: 100,
300, and 500 (in units of pixels/second). This gives us This gives us 3 stimuli in total. The stimuli
and the generated image from the image generation model are in the same resolution (1024%1024)
natively.

A.2 2D GRAVITY

The stimulus shows a 2D red ball being launched at various positions (left-middle, left-bottom, right-
middle, right-bottom) on a white background. There is gravity enabled, and no visible boundaries on
the white surface. The white surface is flat and featureless, allowing the red ball to travel without
obstructions, as shown in Figure[I} We varied the speed at which the ball rolled over the white surface
with three different speeds: 230, 240, and 250 (in units of pixels/second) and with three different
angles: 45° and 60°. This gives us 24 stimuli in total. The stimuli and the generated image from the
image generation model are in the same resolution (1024*1024) natively.

A3 FLuips

The stimulus shows a 3D glass mug being filled with water on a light sky-blue background. The
water is emitted from a dark-grey pipe into the glass mug, as shown in Figure[I] There is gravity
enabled, and the amount of water are limited within a range that it will never overflow. We varied
the flow rate: 25, 50, and 75 (in frames/second), the type of cups: small, medium, and large, and the
ground truth water levels: 1/12 full, 3/12 full, 5/12 full, 7/12 full, 9/12 full. The stimuli are cropped
to 1024*1024 resolution, keeping only the water pipe and the glass water mug. This will give us 45
stimuli in total. The generated images from the image generation model are in the same resolution
(1024*1024) natively.

A.4 BOUNCING

The stimulus shows a 3D object being launched from the top and bouncing back after hitting the
ground as shown in Figure[I} There is gravity enabled, and the objects all have specific coefficient of
restitution. We varied the coefficient of restitution of the object by including various balls made with
different materials, and the falling rate. We numbered each object from 1 to 9. Ball 1 is a transparent
toy bouncing ball; Ball 2 is a white bouncy ball; Ball 3 is a black bouncy ball; Ball 4 is a squash ball;
Ball 5 is a tennis ball; The velocity we varied for these 5 balls includes 25 and 50 (frames / second).
Ball 6 is a soccer ball; Ball 7 is a tennis ball; Ball 8 is a purple bouncy ball; Ball 9 is a tennis ball.
The velocity we varied for these 5 balls includes 10 and 15 (frames / second). We will also seperate
each stimuli into three partitions. The first partition is ’before”, which is the sequence of frames that
shows the motion of the ball right before it hits the ground and starts to deform; The second partition
is ”during”, which is the sequence of frames that shows the motion of the ball hitting the ground,
deforming, and starts to bounce back; The third partition is "after”, which is the sequence of frames
that shows the ball bouncing back upwards. This give us 54 stimuli in total.

The resolution of the stimuli were resized to 1080%720, and the generated images from the image
generation model are in 1536%1024, and were resized into 1080%720.
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B PROMPTS

For prompt, we designed three parameters for the prompts we used in four domains.
For parameter number of seconds forward, which is &, we chose from & € [0.2,0.4,0.8].
For parameter direction, we choose from leftbottom, leftmiddle, rightmiddle, and rightbottom.

For parameter scene content, we choose it based on the domain. In F1uids, we define the parameter
as the following: “a glass mug being filled with water, at a constant rate”. For Bouncing, when
simulating “before” and “during” partitions, we define the parameters as the following: a bouncy
ball falling towards the ground”. When simulating "after” partition, we define the parameters as the
following: ~a bouncy ball bouncing upward after hitting the ground”.

B.1 PROMPT FOR 2D MOTION

In the 2D Motion, for our Chain-of-Time simulation method, as well as our Direct Prediction
baseline, models are provided the following prompt, with different methods (Chain-of-Time 0.2s,
0.4s, and Direct Prediction) varying the {{number of seconds forward}} parameter:

Simulation Instruction Prompt

Consider the following 5 frames, which show the motion of a red
ball on a white background. Note that each frame is precisely .2
seconds apart.

Now, please generate an image that simulates what this scene would
look like {{number of seconds forward}} Seconds into the future.

Make sure that your image is 2d and consists of a single red circle
on a solid white background. Ensure that the circle is exactly
the same size as the input images. Assume that there is no
friction, the ground is flat, and the ball can pass through
objects.

{{image sequence}}

For Chain-of-Time, we used the following prompt to elicit subsequent simulation steps from the
IGM:

Simulation Follow-Up Prompt

Now, simulate additional {{number of seconds forward}} seconds into
the future.

B.2 PROMPTS FOR 2D GRAVITY

In the 2D Gravitydomain, for our Chain-of-Time simulation method, as well as our Direct
Prediction baseline, models are provided the following prompt, with different methods (Chain-of-Time
0.2s, 0.4s, and Direct Prediction) varying the {{direction}} and {{number of seconds
forward}} parameter:
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Simulation Instruction Prompt

Consider the following 5 frames, which show the projectile motion
of a red ball being launched from the {direction}. Each frame is
precisely 0.2 seconds apart.

You will generate an image that simulates the position of the red
ball {number of seconds forward} seconds forward into the future
after the last frame.

Assume that there is gravity and the red ball continues to follow
the projectile motion shown in the frames provided. The scene is
viewed from the side, so gravity pulls downward.

Make sure that the generated image is 2-D, that it contains a

circle exactly the same size and color as the circle in the
frames provided, and that the background color is white.\

{{image sequence}}

For Chain-of-Time, we use the following prompt to elicit subsequent simulation steps from the IGM:

Simulation Follow-Up Prompt

Generate an additional image that simulates the position of the red
ball {number of seconds forward} seconds forward into the
future after the last frame that you generated.

Assume that there is gravity and the red ball continues to follow
the projectile motion shown in the frames provided. The scene is
viewed from the side, so gravity pulls downward.

Make sure that the generated image is 2-D, that it contains a
circle exactly the same size and color as the circle in the
frames provided, and that the background color is white.\

B.3 PROMPTS FOR FLUIDSAND BOUNCING

In domains F1uidsand Bouncing, for our Chain-of-Time simulation method, as well as our Direct
Prediction baseline, models are provided the following prompt, with different methods (Chain-of-
Time 0.2s, 0.4s, and Direct Prediction) varying the {{scene content}} and {{number of
seconds forward}} parameter:
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Simulation Instruction Prompt

Consider the following sequence of 5 images, which show {
scene_content}. Each image frame video is precisely 0.2 seconds
after the last frame.

Please generate an image that continues this sequence, simulating
what the scene will look like {number of seconds forward}
seconds further into the future after the last frame. Make sure
that the generated image is from exactly the same perspective as

the input images and that the background color remains the same
color.

{{image sequence}}

For Chain-of-Time, we use the following prompt to elicit subsequent simulation steps from the IGM:

Simulation Follow-Up Prompt

Continue simulating this scene {number of seconds forward} seconds
into the future after the last frame that you generated. Make
sure that the generated image is from exactly the same
perspective as the input images and that the background color
remains the same color.
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C COMPUTER VISION ALGORITHMS USED FOR OBJECT DETECTION IN ALL
FOUR DOMAINS

C.1 THE 2D MOTIONAND 2D GRAVITYDOMAINS

The CV algorithms we used to detect the red ball in the images generated by the image models are
coded by ChatGPT-5. The code description provided by the model is as follow:
Purpose. Detect the centroid of the largest red region in an image.
Steps.
1. Read the image at frame_path (BGR) and convert it to HSV, since hue-based thresholding
is more robust than RGB for color detection.

2. Define two HSV ranges for red (red wraps around the hue wheel), covering low hue (0-10)
and high hue (170-180) with saturation/value floors to avoid dark or washed-out pixels:

lower_red; = (0,70,50), upper_red, = (10, 255,255),
lower_reds = (170, 70,50), upper_red, = (180, 255,255).

3. Threshold the HSV image with both intervals and OR the results to obtain a binary mask of
red pixels.
4. Find external contours on the mask. If none are found, return (None, None).

5. Select the largest contour by area (assumes the main red target is the biggest red blob in

view).
6. Compute spatial moments for that contour. If myy = 0 (degenerate area), return
(None, None); otherwise compute the centroid:
mig mo1
Cp = —, Cy = —.
Moo Mmoo

7. Return (¢, ¢y) as integer pixel coordinates. If no valid region exists, return (None, None).
Returns. (int, int) or (None, None): the centroid of the largest red region, or None /None when no
suitable red region is found.

And figure[§|are examples of the algorithm detecting the red ball in images generated in 2D Mot ion,
and 2D Gravity.

C.2 THEFLuiDpsDOMAIN

The CV algorithms we used to detect the water blob and water level in the images generated by the
image generation models are coded by ChatGPT-5. The code description provided by the model is as
follow:

Detect the water “blob” inside a glass mug and report its top/bottom y.

Inputs

* img_path: path to RGB/RGBA image.

e y_cut: only analyze rows y > y_cut (ignore the upper part of the image).

* alpha_thresh: pixels with alpha < this are treated as transparent (ignored).

* hsv_lower /hsv_upper: HSV thresholds for sky-blue liquid (OpenCV H € [0,179]).

* erode_iters, close_kernel: morphology parameters to suppress thin rims/stream
and fill gaps.

* coveragemain/coverage_fallback: minimum horizontal coverage (fraction of
bbox width) required for a row to be considered liquid; a fallback is used if the main
threshold yields none.
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* ignore_top.rows: discard the first N rows inside the ROI to avoid picking the crop
boundary.

Steps
1. Read the image with cv2.IMREAD_UNCHANGED so the alpha channel (if present) is

preserved.

2. Build an alpha mask: alpha_mask = (« > alpha_thresh). If no alpha channel exists, use an
all-ones mask (all pixels opaque).

3. Crop to the region of interest (ROI): rows y > y_cut. Crop the alpha mask the same way.

4. Convert the ROI to HSV and threshold with [hsv_lower, hsv_upper] to obtain a binary
color mask for the sky-blue liquid.

5. AND the color mask with the alpha mask to suppress fully/mostly transparent background.
6. Morphological cleanup:

* Erode (erode_iters times) to remove thin bright rims and the pouring stream.

center=(206,510), r=78

center=(332,466), r=30

Figure 8: Examples of the algorithm detecting the red ball for stimuli used in 2D Motion, and 2D
Gravity.
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10.

Notes

¢ Close (kernel size = close_kernel) to reconnect the eroded blob and fill small
holes.

. Find connected components (external contours) and select the largest-area component as the

liquid blob.

. Compute the blob’s bounding box (z, y, w, k) in ROI coordinates. Inside this box:

* For each row, count foreground pixels (row_counts).
* Mark rows as liquid if row_counts > coverage_main X w.
* If none qualify, relax to coverage_fallback x w.
* Discard candidate rows whose index < ignore_top_rows.
Determine water-level bounds:
* Top y (global) = y_cut 4+ y + min(valid_row_indices) if valid rows exist; otherwise
y-_cut + min(contour.y).
* Bottom y (global) = y_cut+ y+ max(valid_row_indices) if valid rows exist; otherwise
y_cut + max(contour_y).
Optional visualization:

* Red rectangle: blob bounding box.
* Green line: top y.
* Blue line: bottom y.

Top y=480

Bottom y=701

Figure 9: Examples of the algorithm detecting the water level for stimuli used in F1uids.

Frame 2: (x=718.2, y=321.0), r=251.0 via OpenCV HoughCircles

Figure 10: Examples of the algorithm detecting the ball used in Bouncing.
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* HSV bounds are intentionally broad; tune to lighting and hue variations.
* Erosion suppresses 1-2 px rims and stream artifacts that otherwise bias the “top” level.

* The row-coverage rule prefers rows where a substantial horizontal span is filled, making the
estimate robust to foam/splash highlights.

» Complexity is approximately O(HW) per frame (thresholding + morphology + a single
bbox scan).

And figure[J]is an example of the algorithm detecting the water level in images generated in Fluids.

C.3 THE BouNcINGDOMAIN

The CV algorithms we used to detect the ball in the images generated by the image models are coded
by ChatGPT-5. The code description provided by the model is as follow:

We detect a single ball in an RGB image using a two-stage strategy: (i) a Hough transform for circles
on a contrast-enhanced, downscaled grayscale image; and (ii) a fallback based on contour circularity
if no reliable Hough detection is found. The routine computes both a bounding box and a center,
clamps the box to image bounds, and returns the center.

Inputs. An image I€ R”*W*3 (BGR order as in OpenCV).

Outputs. Center (c, c,) in original-image pixel coordinates. (Note: the code also computes a
bounding box (x,y,w, h) but, as written, returns only the center.)

Preprocessing.

1. Downscale I by 2x (area interpolation) to reduce noise and speed up detection.

2. Convert to grayscale and apply CLAHE (clip limit = 2.0, tile size 8 x 8) for local contrast
amplification, followed by Gaussian blur (kernel 7 x 7, 0 ~ 1.5) to suppress noise.

Stage 1: Hough circle detection.

* Apply HoughCircles (gradient method) with parameters:
dp=1.2, minDist =50, paraml =100, param2 =18, r € [15,200].

* If one or more circles are found, choose the one with the strongest edge response. For
each candidate (¢, ¢y, ), compute a thin ring mask and measure the mean Canny edge
magnitude within the ring; select the circle with the maximal mean.

* Rescale (¢, &y, 7) by factor 2 back to original resolution: (¢, ¢y, r) = (285,28, 27).

* Define a square bounding box centered at (cg,c,) with side length 2r: (z,y,w,h) =
(cz — 7, ¢y — 1, 2r, 27).

Stage 2 (fallback): contour circularity.
1. If Hough detection fails, convert the original image to grayscale, blur (Gaussian 7 x 7), and
compute Canny edges.
2. Morphological close with a 5 x 5 kernel to connect fragmented edges.
3. Extract external contours and filter:

* Reject small contours: area A < 300 px.
* Compute perimeter P and circularity

47 A

C=—
P2+€

e=10"9,

keep contours with C > 0.7.
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4.

5.

For each remaining contour, compute the axis-aligned bounding box (z, y, w, h) and score
it by C - A; take the maximum-scoring contour as the ball.

Set center (cg, ¢y) = (x+ |w/2], y+ |h/2]) and approximate radius r = [max(w, h)/2].

Post-processing. Clamp (z,y,w, h) to image bounds: = < max(0,z), y + max(0,y), w «
min(w, W — z), h<min(h, H — y). Return the integer center (cy, ¢, ).

Notes and implementation details.

Contrast-limited histogram equalization (CLAHE) improves robustness to faint or low-
contrast balls.

The edge-strength tie-breaker favors circles with sharper boundaries rather than merely high
accumulator votes.

The circularity threshold C > 0.7 trades off recall vs. precision; higher values reject more
elongated shapes.

If no suitable contour is found, the routine raises an exception (* *‘Ball not found’’).

Docstring mismatch: the docstring claims to return both bounding box and center, but the
function currently returns only the center; adjust as needed.

And figure[I0]is an example of the algorithm detecting the ball in images generated in Bouncing.
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D ADDITIONAL ANALYSIS

D.1 THE 2D GravITYDOMAIN

Here are the additional analysis for stimuli with speed 230 pixels/second, angle 60°, and launching
position left-bottom. We present the result generated by Chain-of-time 0.4s on the same stimuli. We
can see that we observed the deceleration on the y-axis due to gravity, and we can see the projectile
motion like curve on the left plot of the figure [TT} matching the conclusion we reached in section

500 1 s S
—
-E 500 c/‘
4001 8 —
5 c x ole—""
-2 300 /./ 0 2 4 6 8
v
(o]
S 2001 /0 c
1001 o —— Ground Truth :% 2501 ./0/° -
/ Prediction S /0/
() = . . . > 0+-e . . . .
0 200 400 600 0 2 4 6 8
Time Step

X Position

Figure 11: Predicted projectile position for 2D Gravityover time for a single trial using Chain-of-
Time 0.4s. Red represents the ground truth ball location and orange is the simulated ball location
at each time step, averaged across 20 samples. (Left) Projectile location in (z, y) coordinate space
(Right) Predicted x-location and y-location as a function of time.
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Here are the additional analysis for stimuli with speed 240 pixels/second, angle 60°, and launching
position left-bottom. We present the result generated by Chain-of-Time 0.2s on the same stimuli. We
can see that we observed the deceleration on the y-axis due to gravity, and we can see the projectile
motion like curve on the left plot of the figure [I2] matching the conclusion we reached in section
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Figure 12: Predicted projectile position for 2D Gravityover time for a single trial using Chain-of-
Time 0.2s. Red represents the ground truth ball location and orange is the simulated ball location
at each time step, averaged across 20 samples. (Left) Projectile location in (z, y) coordinate space
(Right) Predicted x-location and y-location as a function of time.
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Here are the additional analysis for stimuli with speed 240 pixels/second, angle 60°, and launching
position left-bottom. We present the result generated by Chain-of-Time 0.4s on the same stimuli. We
can see that we observed the deceleration on the y-axis due to gravity, and we can see the projectile
motion like curve on the left plot of the figure [I3] matching the conclusion we reached in section
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Figure 13: Predicted projectile position for 2D Gravityover time for a single trial using Chain-of-
Time 0.2s. Red represents the ground truth ball location and orange is the simulated ball location
at each time step, averaged across 20 samples. (Left) Projectile location in (z, y) coordinate space
(Right) Predicted x-location and y-location as a function of time.
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Here are the additional analysis for stimuli with speed 220 pixels/second, angle 60°, and launching
position right-middle. We present the result generated by Chain-of-Time 0.2s on the same stimuli. We
can see that we observed the deceleration on the y-axis due to gravity, and we can see the projectile
motion like curve on the left plot of the figure [T4] matching the conclusion we reached in section
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Figure 14: Predicted projectile position for 2D Gravityover time for a single trial using Chain-of-
Time 0.2s. Red represents the ground truth ball location and orange is the simulated ball location
at each time step, averaged across 20 samples. (Left) Projectile location in (z, y) coordinate space
(Right) Predicted x-location and y-location as a function of time.
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Figure 15: Simulated ball location (orange) using Chain-of-Time 0.4s in the Bouncing domain follow
a similar U-shaped curve as the ground truth ball location (red). Ball locations are shown here for
a single video (orange), with predictions aggregated across all samples for the three time periods
(before/during/after collision).

D.2 THE BouncINGDOMAIN

Here are the additional analysis on data generated by Chain-of-Time 0.2s and 0.4s for ball 2 at
velocity 50 frames/second. This is the result generated by Chain-of-Time 0.4s simulation. We can
see that the bouncing motion is shown by the deep V shaped curved, and the IGM underestimated the
coefficient of restitution, since IGM thinks the ball is bouncing back slower, which the conclusion
matches with the conclusion we reached in section[3.2.2]
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Here are the additional analysis on data generated by Chain-of-Time 0.2s and 0.4s for ball 4 at
velocity 50 frames/second. We can see that the bouncing motion is shown by the deep V shaped
curved, and the IGM underestimated the coefficient of restitution in Chain-of-Time 0.4s, since IGM
thinks the ball is bouncing back slower.
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Figure 16: Simulated ball location (orange) using Chain-of-Time 0.2s in the Bouncing domain follow
a similar U-shaped curve as the ground truth ball location (red). Ball locations are shown here for
a single video (orange), with predictions aggregated across all samples for the three time periods
(before/during/after collision).
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Figure 17: Simulated ball location (orange) using Chain-of-Time 0.4s in the Bouncing domain follow
a similar U-shaped curve as the ground truth ball location (red). Ball locations are shown here for
a single video (orange), with predictions aggregated across all samples for the three time periods
(before/during/after collision).
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Here are the additional analysis on data generated by Chain-of-Time 0.2s and 0.4s for ball 7 at velocity
15 frames/second. We can see that the bouncing motion is shown by the deep V shaped curved, and
the IGM underestimated the coefficient of restitution, since IGM thinks the ball is bouncing back
slower.
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Figure 18: Simulated ball location (orange) using Chain-of-Time 0.2s in the Bouncing domain follow
a similar U-shaped curve as the ground truth ball location (red). Ball locations are shown here for
a single video (orange), with predictions aggregated across all samples for the three time periods
(before/during/after collision).
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Figure 19: Simulated ball location (orange) using Chain-of-Time 0.4s in the Bouncing domain follow
a similar U-shaped curve as the ground truth ball location (red). Ball locations are shown here for
a single video (orange), with predictions aggregated across all samples for the three time periods
(before/during/after collision).
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Here are the additional analysis on data generated by Chain-of-Time 0.2s and 0.4s for ball 9 at velocity
10 frames/second. We can see that the bouncing motion is shown by the deep V shaped curved, and
the IGM underestimated the coefficient of restitution, since IGM thinks the ball is bouncing back

slower.
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Figure 20: Simulated ball location (orange) using Chain-of-Time 0.2s in the Bouncing domain follow
a similar U-shaped curve as the ground truth ball location (red). Ball locations are shown here for
a single video (orange), with predictions aggregated across all samples for the three time periods
(before/during/after collision).
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Figure 21: Simulated ball location (orange) using Chain-of-Time 0.4s in the Bouncing domain follow
a similar U-shaped curve as the ground truth ball location (red). Ball locations are shown here for
a single video (orange), with predictions aggregated across all samples for the three time periods
(before/during/after collision).

29



Under review as a conference paper at ICLR 2026

E LANGUAGE MODEL STATEMENT

LLMs were used in this work for literature review and for coding assistance with constructing
computer vision algorithms described in Appendix [C.3]
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