
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CHAIN OF TIME: IN-CONTEXT PHYSICAL
SIMULATION WITH IMAGE GENERATION MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a novel method to improve the physical simulation ability of vision-
language models. This Chain-of-Time simulation is motivated by in-context reason-
ing in machine learning, and mental simulation in humans. The method involves
generating a series of intermediate images during a simulation. Chain of Time
is used at inference time and requires no additional fine-tuning for performance
benefits. We apply the Chain-of-Time method to synthetic and real-world domains,
including 2-D graphics simulations and natural 3-D videos. These domains test
a variety of particular physical properties, including velocity, acceleration, fluid
dynamics, and conservation of momentum. We found that using Chain-of-Time
simulation substantially improves the performance of state-of-the-art Image Gener-
ation Model. Beyond examining performance, we also analyze the specific states
of the world simulated by an image model at each time step, which sheds light on
the dynamics underlying these simulations. This analysis reveals insights that are
hidden from traditional evaluations of physical reasoning, including cases where
an Image Generation Model is able to simulate physical properties that unfold
over time, such as velocity, gravity, and collisions domain well. Our analysis
also highlights particular cases where the Image Generation Model struggles to
infer particular physical parameters from input images, despite being capable of
simulating relevant physical processes.

1 INTRODUCTION

Recent developments in Image Generation Models allow these models to generate more complex,
realistic, and coherent images Chen et al. (2025); Cao et al. (2025); Liu et al. (2023); Lu et al. (2024).
But despite their realism, these images often have distinct flaws, and may fail to capture real-world
structures that are obvious to humans. Understanding the inner workings of Vision-Language Models
(VLMs) and their internal world model representations has become a major topic in contemporary AI
research (Dang et al., 2024; Chang et al., 2024; Goh et al., 2021; Bhalla et al., 2024; Zhang et al.,
2024). In particular, there is a pressing question of how well VLMs and Image Generation Models
represent physical properties which are required to predict how world states unfold over time. In this
work, we present a method for enhancing this physical reasoning ability in Image Generation Models,
which also allows us to analyze the step-by-step process that the models use to simulate physics over
time.

Prior work has provided a number of tools for evaluating the physical reasoning abilities of VLMs.
Comprehensive benchmarks such as PhysBench (Chow et al., 2025) and WM-ABench (Gao et al.,
2025) test VLMs on a wide array of physical simulation capabilities. These evaluation benchmarks
provide valuable metrics for what VLMs are capable of. However, such benchmarks do not answer
the question of precisely how VLMs accomplish this. Our work strives to fill this gap, providing a
detailed analysis of the incremental processes underlying physical simulation ability. Beyond VLMs,
Meng et al. (2024) evaluates the extent to which text-to-image models - which generate images but
do not take images as input - can generate images matching relational and physical constraints, using
a separate VLM as an evaluator. Given the fact that the image generation models are becoming
native to the vision-language models and share the world knowledge in the vison-language models
(OpenAI, 2025), evaluating image generation models may also provide valuable insights into the
inner workings of VLMs. Our work is, to our knowledge, unique in studying physical reasoning

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

������ ��������

t1 t2 t3 t6

�������������������� ���������������
�

������������������������

�������������

�����
�������������
����	���������������������

2-D Physics

3-D Physics

������
������

t6

�������������������� ��
	
��������������
�

t1 t2 t3 t4
t5

����������������������������������
�������������

������
�����

Figure 1: (Left, Top) We study physical reasoning in multi-modal image generation models by
providing the model a sequence of input images showing a scene in subsequent time steps, and
having the model generate an image that simulates what the scene will look like some time in the
future. Accurately predicting future world states requires reasoning about physical properties. (Left,
Bottom) Our method, Chain of Time, allows these models to simulate a sequence of images in-context,
generating one image at a time, with the last image representing the final prediction of the scene.
(Right) We use four experimental domains designed to test models’ ability to reason about specific
physical properties: Velocity, Gravity, Fluid Dynamics, and Collision.

abilities of VLMs through Image Generation Model (IGMs), which take images and text as input and
generate images as output.

In this work, we adopt a theoretical framework of mental simulation from cognitive science to
understand physical reasoning and simulation abilities in Image Generation Models (Section 2).
This framework helps us understand how IGMs reason about physical processes that unfold over
time, by mapping input images to a latent state which is simulated with a Markov process to predict
future time steps. In order to both improve physical reasoning ability of IGMs and to expose an
interpretable trace of intermediate reasoning steps, we propose a novel method for in-context physical
simulation, which we call Chain of Time (Section 3, Fig. 1). We test a state-of-the-art IGM with
physical reasoning in four experimental domains, including two 2-D and two 3-D domains, which
test four sets of physical properties: motion, gravity, fluid dynamics, and object collections. We find
that Chain of Time enhances the IGM’s physical reasoning abilities, enabling it to generate images
which are more accurate across specific metrics over images. Further, we provide a novel analysis of
the step-by-step process by which an IGM simulates the physical world, and draw key insights about
what aspects of the process it succeeds and struggles with.

2 MENTAL SIMULATION IN HUMANS

People can reason efficiently about the physical dynamics of everyday objects. For example, if you
saw a pitcher full of juice begin to fall off of a table, you might quickly and intuitively predict what
sequence of events will happen next. There are many competing theories that try to explain this
‘intuitive physics’. One current proposal is that people rely on a kind of ‘internal physics engine’ to
carry out a mental simulation of a given scene (Battaglia et al., 2013; Ullman et al., 2017). While it
has its critiques (see for example Ludwin-Peery et al. (2021)), this proposal finds support in cognitive
science, computational modeling, cognitive development, and neuroscience (Fischer et al., 2016;
Gerstenberg & Stephan, 2021; Allen et al., 2021; Fischer, 2021; Bass et al., 2021; Balaban & Ullman,
2025). More recent work suggests it is likely that humans combine various computations to carry
out physical reasoning, mental simulation being just one component Hartshorne & Jing (2025); Sosa
et al. (2025); Smith et al..

Given that current research suggests that step-by-step mental simulation is an important component
in human physical reasoning, we adopt its formalism for studying and potentially improving upon
the physical reasoning of current IGM. For our purposes here, we consider a basic version of the
mental physics engine framework: Suppose that an agent observes an image I that describes a

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

“Consider the following 4 frames, which are
0.2 seconds apart and show the motion of a
red ball on a white background

Now, generate an image that simulates what
this scene would look like k seconds into
the future.”

������������ I5

step size = 3k

������������

���������
����

step size = k step size = k step size = k

����� ������ ������

I6 I7

I7

I1 I2 I3 I4

��������

Figure 2: In our paradigm, we give a IGM a sequence of input images, along with a prompt instructing
the model to simulate the scene into the future for a specified length of time (Left). As a baseline,
Direct Prediction (Middle, Top) directly predicts the final state (Right). We propose a novel method,
Chain-of-Time (Middle, Bottom), which instead generates a sequence of images corresponding to
step-by-step simulation of the scene on the way to the predicted final state, with each mid-point image
serving as input and output in mid-point computation.

scene at time t in a pixel-based format, and wants to predict the state of the scene at a later time. A
mental physics engine is a probabilistic transition function that can achieve this by composing three
sub-functions: de-renderer ϕ, simulator τ , and renderer ϕ−1. The engine takes in the current image
It, and de-renders it into the state of the world at that time, Xt. The engine then applies dynamic
update rules to that state, corresponding to a transition τ that produces a distribution over future states
of the world Xt+1. The engine may then render the state of the world back into a predicted image
It+1.

A few notes on this overall formulation: First, while de-rendering has been studied in the context
of intuitive physics in the past (e.g. Wu et al., 2017a;b; Smith et al., 2019), many other techniques
exist for going from observations to physical states, and for our purposes here the specific technique
is of less importance. Second, while the images I are pixel-based, the underlying physical state X
is not, and corresponds to the ‘game state’ that describes in a lower-dimensional way the position,
identity, and physical parameters of objects (Smith et al., 2019). Third, in computer graphics it is
not strictly necessary to render the state of the world back into an image in order to answer various
questions about the state, something that may hold for human mental physics as well (Balaban &
Ullman, 2025).

To put it more formally, the mental simulation formalism we consider here is:

p(Xt | It) = ϕ(It) +N(0, σϕ) De-rendering
p(Xt+1 | Xt) = τ(Xt) +N(0, στ) Simulation

p(It+1 | Xt+1) = ϕ−1(Xt+1) +N(0, σϕ−1) Rendering

The noise parameters σϕ, στ , and σϕ1 account for perceptual noise in the de-rendering of I , the
cognitive complexity of mental simulation of the underlying state X , and imperfect imagery in the
rendering of the state back to an image.

Notice that the state and scene at timestep t + 1 depend only on the previous state and scene at
timestep t. In other words, the formalism defines a linearly unfolding Markov Chain, that allows us
to go from an initial observation I0 step-by-step to a final state at time T, XT , and optionally the
predicted image at that time, IT . While such step-by-step computations seem to underlying human
mental simulation, it remains unclear whether current IGMs tasked with predicting the future state of
a scene I at time T also go through a step-by-step simulation. Nevertheless, even if current models
do not do so on their own, this framework suggests a method for bringing them more in line with
human-like reasoning, which we turn to next.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 CHAIN-OF-TIME SIMULATION

I0 I1 It

X0 X1 Xt
. . .

Linit

Xt+2

Lt+2

XT
. . .

LT

Input Images

It+1 It+2 IT

Input Prompts

Output Images

ϕ-1 ϕ-1 ϕ-1

ϕ ϕ ϕ

τ τ τ τ
Xt+1τ

Figure 3: Chain-of-Time is a composition of three
components: De-rendering ϕ, Simulation τ , and
Rendering ϕ−1. De-rendering operates by con-
verting input images I0 . . . It into world states Xt,
which represent a physical simulation over time.
Chain-of-Time begins with an initial prompt Linit
and iteratively generates a sequence of in-context
output images It+1 . . . IT with follow-up prompts
Lt+1 . . . LT

Chain-of-Time Simulation is inspired by two
bodies of prior literature: the cognitive science
of mental simulation (described above in Sec-
tion 2) and in-context reasoning in LLMs. In-
context reasoning methods with LLMs coerce a
model to spell out intermediate reasoning steps
in its output stream, before giving a final answer.
This may be through prompting, as in Chain-
of-Thought reasoning (Kojima et al., 2022), or
through specialized training regimes (Guo et al.,
2025; Jaech et al., 2024). These methods can
significantly improve LLM performance on a va-
riety of tasks, extending LLMs’ ability to reason
over complex problems with many individual
steps. These reasoning chains are also distinct
from traditional LLM tasks, since intermediate
steps can be directly inspected my humans to
interpret what exactly the model is doing. Al-
though in some cases a model’s intermediate
reasoning tokens may not align with its final
answer (Turpin et al., 2023), Chain of Thought reasoning has proved a valuable tool for auditing
language model behavior. Various theories have been developed to try to explain precisely why
and how these methods work or occasionally fail (Wang et al., 2022; Merrill & Sabharwal, 2023;
Prystawski et al., 2023).

Based on these two bodies of prior literature, we propose a novel method for improving physical
reasoning with in-context simulations. We call this method Chain-of-Time Simulation (Figure 1). We
treat VLMs as a derenderer ϕ and a simulator τ , and the IGMs as a renderer ϕ−1. The basic physical
simulation task we consider is as follows: given a sequence of input images up to a given time t I0:t,
generate a new image ˆIt+k that accurately depicts what the scene will look like k time steps into the
future. Chain-of-Time Simulation involves two prompts (provided in Appendix B): first, a Simulation
Instruction prompt that, along with a sequence of input images, instructs the model to simulate an
image k seconds into the future. After the IGM generates a single image, we continue with our
Simulation Follow-up prompt, which instructs the model to generate another image simulated an
additional k seconds into the future until t + k = T . In our experiments, we use T = t + 0.8 sec
and sub-steps s ∈ {0.2 sec, 0.4 sec}. As a baseline for this task, we construct a Direct Prediction
Simulation prompt, which instructs the IGM to directly predict ˆIt+k given I0:t. Note that this is
equivalent to Chain-of-Time simulation with only a single timestep, i.e. k = 0.8 s.

3.1 PREVIOUS WORK

Prior work has proposed in-context reasoning methods for IGMs that use images instead of language
to represent individual reasoning steps. However, our method differs from these proposals in a few
critical ways. Hu et al. (2024) proposed a method to solve simple reasoning problems with a IGMs,
such as geometry and spatial reasoning, and individual steps involve interleaved images and text
outputs. (Xu et al., 2025) proposed a method for planning in which a IGMs generates sequential
images to solve tasks such as maze navigation; their approach requires additional training. By
contrast, the goal of Chain-of-Time simulation is to 1: generate the actual image, unlike the VLM that
can only generate output as language; 2: improve physical simulation with IGMs, where “steps” in a
chain correspond to segments of time. Further, unlike Hu et al. (2024), our method can be applied to
out-of-the-box IGMs with no additional training.

4 EXPERIMENTS

We hypothesize that by using Chain-of-Time, IGM models will be able to achieve better accuracy
than when using direct prediction. We will then use the frames created by IGMs using Chain-of-Time

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

simulation to reveal details about the simulation, including the initial state estimated by IGMs, the
physical interaction, and the physical motion simulated by IGMs. To examine the overall validity
and applicability of our method, we test Chain-of-Time on both 2D Physics and 3D Physics, and
four domains: 2D Motion, 2D Gravity, Fluids, and Bouncing. We analyzed our results
from three perspectives: accuracy of predicted image relative to ground truth, perceived physical
interactions and motions, and perceived physical parameters.

4.1 EXPERIMENTAL SETUP

Stimuli Design As mentioned above, we used 4 different physics domains in our stimuli: 2D
Motion, 2D Gravity, Fluids, and Bouncing. The stimuli used in 2D physics category (2D
Motion, 2D Gravity) were created in simulation environment, and resemble stimuli in previous
studies of intuitive physics Smith & Vul (2013), Bass et al. (2021) ,Gerstenberg & Stephan (2021).
The stimuli used in 3D physics category (Fluids) were borrowed from Wang & Ullman (2025).
We manipulated the physical parameters used to generate stimuli in the 2D physics category (2D
Motion, 2D Gravity) and 3D physics category (Fluids) by changing the parameters used to
simulate the stimuli. In the 3D physics category (Bouncing), we found real-world stimuli that have
different physical parameters. For the details of the design of each stimuli, please refer to Appendix
A: Specification of the Stimuli Design

Experimental Procedure We used OpenAI’s GPT4-o (gpt-image-1 1) as the Image Generation
Model model in our experiment, as of September, 2025. We also empirically tested other image
generation models including DALLE-3, but found that these models were unable to simulate images
of future world state with any reasonable accuracy. In order to analyze the content of generated
images, we use a collection of domain-specific algorithms to identify object locations, for example x,y
coordinates of generated balls, and the heights of water levels for generated fluids. These algorithms
use simple tools from classic computer vision such as Hough transforms, and are further described in
Appendix C.3.

At the start of each trial, the model was given 5 frames of a stimulus, showing the scene at 0, 0.2, 0.4,
0.6, and 0.8 seconds. Given these 5 frames, the model was asked to generate the a simulated frames
at a time in the future, following the Initial Simulation Prompt we listed in Appendix B: Prompt. If
Chain-of-Time 0.2s or Chain-of-Time 0.4s were used (see below), additional frames were generated
following the Simulation Follow-Up Prompt we listed in Appendix B: Prompt.

Sampling Details Chain of Time generates frames at different precision, depending on a frame-rate
parameter k. We considered two versions of Chain-of-Time with k = 0.2 sec and k = 0.4 sec. Since the
final frame was 0.8 seconds into the future, ‘Chain-of-Time 0.2’ generated 4 frames (corresponding
to 0.2, 0.4, 0.6, and 0.8 seconds after the last frame provided to the model), and ‘Chain-of-Time 0.4’
generated 2 frames (corresponding to 0.4 and 0.8 seconds into the future). In addition, we had a
baseline termed ”Direct Prediction”. In this method, we asked the model to directly generate the
requested final frame, 0.8 seconds into the future.

For 2D Motion, we ran each stimulus 5 times (N=5) across all Chain-of-Time simulations and
Direct Prediction. For 2D Gravity, we ran each stimulus 20 times (N=20) across all Chain-of-
Time simulations and Direct Prediction. For Fluidsand Bouncingdomain, we ran each stimulus
10 times (N=10) across all Chain-of-Time simulations and Direct Prediction.

Metrics For all domains, we considered the same analysis metrics: ”Accuracy” and ”Perceived
Physical Motion and Physical Interaction”. For accuracy, we used the Square-Root Mean-squared
Error between the model’s prediction and the ground truth in trials.

For the ”Perceived Physical Interaction and Physical Interaction” analysis, we reveal the initial state
of the physical scene perceived by the model, focusing on physical parameters we manipulated in the
stimuli. We also reveal the intermediary states simulated by the model during the simulation process,
and whether the intermediary states reveal the critical physical phenomena corresponding to the task
by comparing them with the ground truth.

1openai.com/index/image-generation-api/

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Chain of Time 0.2sChain of Time 0.4sBaseline (0.8s)
0

100

200

Av
er

ag
e

Er
ro

r (
RM

SE
) Domain 1: 2-D Motion

Chain of Time 0.2sChain of Time 0.4sBaseline (0.8s)
0

100

200

300

400

Av
er

ag
e

Er
ro

r (
RM

SE
) Domain 2: 2-D Gravity

Chain of Time 0.2sChain of Time 0.4sBaseline (0.8s)
0

50

100

Av
er

ag
e

Er
ro

r (
RM

SE
) Domain 3: Fluids

Chain of Time 0.2sChain of Time 0.4sBaseline (0.8s)
0

50

100

150

200

Av
er

ag
e

Er
ro

r (
RM

SE
) Domain 4: Bouncing

Figure 4: Prediction errors for all four domains, averaged across all data for each domain. Prediction
error is measured by taking the average RMSE between the ground truth positions (location of
focal object, or water level) and the positions predicted by the IGM. Error bars are 95% CI. We
generally find a monotonic relationship between Chain-of-Time precision and performance. In the
case of Fluids, we observe that the initial state simulated by the IGM is inaccurate, and this error
compounds with increasing degrees of simulation, see Section 5.2.2 for detailed analysis.

5 RESULTS

5.1 ACCURACY ANALYSIS

As a reminder, we measured the IGM’s accuracy in predicting the ground-truth position of the
physical variable of interest (location of object, or height of water) under three different methods:
Chain-of-Time 0.2s, Chain-of-Time 0.4s, and Direct Prediction. As shown in Figure 4, the finer
the precision in Chain-of-Time, the better the accuracy for 3 of the 4 domains. In the 2D Motion,
Chain-of-Time 0.2s more than halves the error of Direct Prediction. The findings indicate that
Chain-of-Time can increase prediction accuracy for 2D and 3D tasks.

In Fluidstasks, Chain-of-Time was able to enable the IGM to simulate the fluid dynamics, but due
to errors in the physical parameter estimation, it failed to improve the performance. As the step-size
k of Chain-of-Time gets finer and finer, the error actually increases. We consider the potential cause
of this increase in the following section.

5.2 PHYSICAL PARAMETER AND PHYSICAL MOTION ANALYSIS

Given that in the 2D Motion, where the IMG demonstrated to ability to simulate the simplest
motion which is a forward rolling motion, as the Chain-of-Time 0.2s achieved relatively Averaging
Error (RMSE), we are interested in the performance of IMG in terms of simulating the complex
physical interactions and motions in 2D Gravity, Fluids, Bouncing.

Given the characteristics of Chain-of-Time, we have access to simulated images between the first
timestep t+ k and the final timestep T , which are It:T . As described in Section 4 that we generated
It:T using Chain-of-Time 0.2s and Chain-of-Time 0.4s, we now used these It:T to recover the
estimated physical parameters perceived by the model, the estimated physical interactions, and the
estimated physical motion simulated by the model. In each section, we use a single trial as an
example to illustrate our point, Please refer to Appendix C: Additional Analysis for the same
analysis on more stimuli in all four domains. In the following analysis, we focus specifically on
Chain-of-Time 0.2s, as it offers the highest resolution and greatest number of images. For the analysis
using Chain-of-Time 0.4s, please refer to Appendix C: Additional Analysis as well.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

5.2.1 IMAGE GENERATION MODEL IS CAPABLE OF SIMULATING BOTH COMPLEX 2D AND
3D PHYSICAL MOTIONS AND INTERACTIONS

In all these three domains, we found that the IGM using Chain-of-Time 0.2s and Chain-of-Time 0.4
was generally able to create images corresponding to a simulation of the physical motions or physical
interactions relevant to each domain.

In 2D Gravity, we investigated a IGM’s ability to simulate projectile motion, in which gravity
causes a curved trajectory. For the purposes of illustration, we selected stimuli with speed 230, launch
angle of 60 degrees, and launch position at left-bottom as an illustration. As figure 6 shows, the IGM
was able to simulate the projectile motion, signified by the plot on the left that shows the curved
trajectory of a projectile motion, and it was closely following the ground truth. Also, by breaking the
2-D trajectory down to the x and y components (plotted as x and y locations in two time-series in
Figure 6), we found that the Image Generation Model was able to correctly simulate the interaction
between the ball and gravity in Chain-of-Time 0.2s and Chain-of-Time 0.4s. The x location of the
ball in the stimuli increased linearly, while the y location dropped after reaching the top due to the
deceleration from gravity, which matches the characteristics of projectile motion under gravity.

In Fluids, we focused on whether the IGM can simulate the fluid dynamics. Although in section
5.1, we found that the average error is greater for Chain-of-time 0.2s and Chain-of-time 0.4s, we
found that the model is able to simulate the fluid dynamics, indicated by the increasing of the water
level as simulation proceeds. As figure 7 shows, the water level simulated by the model was increasing
as time step increases. We will analyze more in section 5.2.2 about why the average error increased
when Chain-of-Time simulation was used.

In Bouncing, we focused on the bouncing motion. Here we specifically consider stimuli with a
black bouncing ball that has a medium coefficient of restitution. As Figure 5 shows, the IGM was
able to simulate the bouncing motion, indicated by the y position first decreasing due to gravity, and
when the ball hits the ground and started to bounce back, y positions started to increase. Notice the
Figure shows a deviation between the ground truth y-positions and IGM-simulated y-positions, which
analyze this further in section 5.2.2.

5.2.2 IMAGE GENERATION MODEL EXHIBITS PHYSICAL PARAMETER ESTIMATION ERROR
FOR 3D PHYSICS SIMULATION

In Section 4, we observed that the Chain-of-Time 0.2 seconds, and Chain-of-Time 0.4 seconds had
a performance drop compared to that of the Direct Prediction in the fluid dynamics domain. This

Chain of Time 0.2sChain of Time 0.4sBaseline (0.8s)
0

50

100

150

200

250

300

Av
er

ag
e

Er
ro

r (
RM

SE
)

Collision Time
after
during
before

6 8 10 12 14 16
Time Step

300

400

500

600

700

800

900

Y
Lo

ca
tio

n

Ground Truth
Prediction

Figure 5: (Left) Prediction error rate across methods and time periods. In the collision domain, we
find lower error rates in image model predictions for periods before and after the bouncing collision,
compared with time periods during which the collision occurs. This disparity increases with Chain of
Time, since performance improves for the before/after periods, but error remains high for the collision
time period. (Right) Simulated ball location (orange) using Chain-of-Time 0.2s in the Bouncing
domain follow a similar U-shaped curve as the ground truth ball location (red). Ball locations are
shown here for a single video (orange), with predictions aggregated across all samples for the three
time periods (before/during/after collision).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

motivated us to analyze the model’s perception of the initial sequence of states X0:t, which includes
physical parameters like flow rate and the initial water level in the case of Fluids.

We analyzed the simulated images ˆIt:T generated by the IMG in Fluids. More specifically, we
analyzed the reported water level for stimuli with slow (25 frames / second) and fast 75 frames /
second) flow rate, and low (1/12 full and 3/12 full) and high (7/12 full and 9/12 full) initial water
levels. As Figure 7 shows, the IMG exhibited sensitivity towards initial water level, but no sensitivity
towards the change of flow rate between the stimuli, as changing the initial water level from high to
low changed the intercept of the dotted line down to the intercept of the solid line (Figure 7, left). But
the flow rate did not change the slope of both dotted and solid line (Figure 7, right).

The sensitivity to initial water level means that IMG was picking up the obvious visual cue from
the input images, but this non-sensitivity towards flow rate showed that IMG was estimating the
flow rate with great error. Flow rate is a critical physical parameter during this task, which ensures
that the glass mugs are being filled with correct amount of water at each given time. Therefore,
this analysis suggests that the estimation errors about initial state X0:t can happen, especially for
physical parameters that are more complex than the ones that can be picked up by visual cues. This
estimation error led to greater accumulated error as the timestep k becomes smaller. This explains
why Chain-of-time is worse than Direction Prediction, and why Chain-of-time 0.2s is actually worse
than Chain-of-time 0.4s in the fluid dynamics domain, and why overall Chain-of-time simulation is
worse than Direct Prediction.

0 100 200 300 400 500 600
X Position

0

100

200

300

400

500

Y
Po

sit
io

n

Ground Truth
Prediction

0 1 2 3 4 5 6 7 8
0

250

500

X
Po

sit
io

n

0 1 2 3 4 5 6 7 8
Time Step

0

200

Y
Po

sit
io

n

Predicted Ball Position in Domain 2

Figure 6: Predicted projectile position for 2D Gravityover time for a single trial using Chain-of-
Time 0.2s. Red represents the ground truth ball location and orange is the simulated ball location
at each time step, averaged across 20 samples. (Left) Projectile location in (x, y) coordinate space
(Right) Predicted x-location and y-location as a function of time.

5.0 5.5 6.0 6.5 7.0 7.5 8.0
Time Step

100

125

150

175

200

225

250

275

Pr
ed

ict
ed

 W
at

er
 L

ev
el

Sensitivity to Initial Water Level

Method
Chain of Time 0.2s
Chain of Time 0.4s

5.0 5.5 6.0 6.5 7.0 7.5 8.0
Time Step

180

200

220

240

260

Pr
ed

ict
ed

 W
at

er
 L

ev
el

Insensitive to Water Flow Rate

Figure 7: In the Fluidsdomain, we find that the IGMs are able to simulate water levels increasing
over time. Here we show water levels in generated images steadily increasing as a function of time.
(Left) The model is sensitive to initial water levels, with solid lines representing a low water level
at the initial time of simulation t and dotted lines representing a high initial water level. (Right)
However, the model is insensitive to the flow rate of water, with water level consistently increasing at
the same rate during simulations. Solid lines represent a slow flow rate and dotted lines represent a
3x faster flow rate.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Besides the flow rate parameter in Fluids, another complex parameter we controlled for is the
coefficient of restitution in Bouncing. Therefore, we are interested to see the model’s performance
on estimating coefficient of restitution.

As mentioned in Section 5.2.1, we observed deviation between ground truth positions and the
simulated positions during frame 10 and frame 16. This is the range of frames that includes the
deformation (the during partition), which the ball hits the ground, deform, and bounce back. As
shown in the 5, the slope starting at timestep 10 for the simulated y position is significantly smaller
than that of the ground truth y position, indicating that the model think the ball started to bounce back
slower than it is supposed to be. This indicates an estimation error on the coefficient of restitution.

Furthermore, as shown in Figure 5, when we expand the analysis to all the stimuli in the Bouncing,
we see that the RMSE actually increased when the IGM is simulating the deformation partition
(during), and is significantly higher than the other two partitions in Chain-of-Time 0.2 seconds and
Chain-of-Time 0.4 seconds. This further reinforces the conclusion that the IGM made an estimation
error in the coefficient of restitution when simulating the deformation phase.

6 DISCUSSION

Motivated by mental simulation in humans and in-context reasoning in Large-Language Models,
we presented a method for step-by-step physical simulation in Image Generation Models. In this
Chain-of-Time method, a prediction is sliced into finer precision, with mid-point frames being fed as
input to the next step in an unfolding systematic process. We assessed the Chain of Time method
for differing degrees of precision, across different physical domains, using different quantitative and
qualitative metrics, including overall accuracy compared to ground truth, and the recovery of physical
parameters.

Our results suggest that while an Image Generation Model may have some degree of physical
simulation ability when paired with a VLM, accuracy degenerates significantly when simulating
further into the future. Our Chain-of-Time method that inspired by the mental simulation theory in
humans seems to greatly improve this ability, particularly with long simulations. When using this
method, we will be able to access the simulated images produced by the image model, and probe
the model’s perception over critical physical parameters, physical motions, and physical interactions.
We found that the model is capable of simulating both 2D and 3D physical motions and interactions
accurately. But, they have various problems when simulating 2D and 3D physics, which they will
slow down the simulation when 2D physics is simulated, or they will estimate the wrong physical
parameters when 3D physics is simulated.

Our work is one step towards a more general method of step-by-step simulation in IGM, and many
open questions and directions of research remain. For example, while we considered several settings
of the precision (time-step k), there is a trade-off between the potential accuracy gained by better
precision, and the resulting drain on computational resources. The precision that corresponds to the
optimal trade-off is left for further exploration, and may depend on the target domain. In addition, we
found that greater precision can compound error, if the initial parameters are not correctly measured
or observed, and finding a way to assess this independently to know whether Chain-of-Time will be
beneficial is another avenue for future work. More generally, we see great value in using Chain of
Time to examine other aspects of physical reasoning not directly touched on here, including judgments
of causality and non-simulation-based physical reasoning such as heuristics and abstractions. Also,
while our work was inspired by research examining mental simulation in humans, our Chain of Time
method and the results offers suggestions in the reverse direction for further study in people. To
be specific, while much of the work on mental simulation assumes people unfold a physical scene
step-by-step, the exact step-size and its possible consequences is mostly left unexamined.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Kelsey R Allen, Kevin A Smith, Laura-Ashleigh Bird, Joshua B Tenenbaum, Tamar R Makin, and
Dorothy Cowie. Lifelong learning of cognitive strategies for physical problem-solving: the effect
of embodied experience. bioRxiv, pp. 2021–07, 2021.

Halely Balaban and Tomer D Ullman. Physics versus graphics as an organizing dichotomy in
cognition. Trends in Cognitive Sciences, 2025.

Ilona Bass, Kevin A Smith, Elizabeth Bonawitz, and Tomer D Ullman. Partial mental simulation
explains fallacies in physical reasoning. Cognitive Neuropsychology, 38(7-8):413–424, 2021.

Peter W Battaglia, Jessica B Hamrick, and Joshua B Tenenbaum. Simulation as an engine of physical
scene understanding. Proceedings of the National Academy of Sciences, 110(45):18327–18332,
2013.

Usha Bhalla, Alex Oesterling, Suraj Srinivas, Flavio Calmon, and Himabindu Lakkaraju. Interpreting
clip with sparse linear concept embeddings (splice). Advances in Neural Information Processing
Systems, 37:84298–84328, 2024.

Yuefan Cao, Xuyang Guo, Jiayan Huo, Yingyu Liang, Zhenmei Shi, Zhao Song, Jiahao Zhang, and
Zhen Zhuang. Text-to-image diffusion models cannot count, and prompt refinement cannot help.
arXiv preprint arXiv:2503.06884, 2025.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan
Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. ACM
Transactions on Intelligent Systems and Technology, 15(3):1–45, 2024.

Sixiang Chen, Jinbin Bai, Zhuoran Zhao, Tian Ye, Qingyu Shi, Donghao Zhou, Wenhao Chai, Xin
Lin, Jianzong Wu, Chao Tang, Shilin Xu, Tao Zhang, Haobo Yuan, Yikang Zhou, Wei Chow,
Linfeng Li, Xiangtai Li, Lei Zhu, and Lu Qi. An empirical study of gpt-4o image generation
capabilities, apr 2025. URL https://arxiv.org/abs/2504.05979. Version 2, revised
10 Apr 2025.

Wei Chow, Jiageng Mao, Boyi Li, Daniel Seita, Vitor Guizilini, and Yue Wang. Physbench: Bench-
marking and enhancing vision-language models for physical world understanding. arXiv preprint
arXiv:2501.16411, 2025.

Yunkai Dang, Kaichen Huang, Jiahao Huo, Yibo Yan, Sirui Huang, Dongrui Liu, Mengxi Gao, Jie
Zhang, Chen Qian, Kun Wang, et al. Explainable and interpretable multimodal large language
models: A comprehensive survey. arXiv preprint arXiv:2412.02104, 2024.

Jason Fischer. The building blocks of intuitive physics in the mind and brain, 2021.

Jason Fischer, John G Mikhael, Joshua B Tenenbaum, and Nancy Kanwisher. Functional neu-
roanatomy of intuitive physical inference. Proceedings of the national academy of sciences, 113
(34):E5072–E5081, 2016.

Qiyue Gao, Xinyu Pi, Kevin Liu, Junrong Chen, Ruolan Yang, Xinqi Huang, Xinyu Fang, Lu Sun,
Gautham Kishore, Bo Ai, et al. Do vision-language models have internal world models? towards
an atomic evaluation. In ICLR 2025 Workshop on World Models: Understanding, Modelling and
Scaling, 2025.

Tobias Gerstenberg and Simon Stephan. A counterfactual simulation model of causation by omission.
Cognition, 216:104842, 2021.

Gabriel Goh, Nick Cammarata, Chelsea Voss, Shan Carter, Michael Petrov, Ludwig Schubert, Alec
Radford, and Chris Olah. Multimodal neurons in artificial neural networks. Distill, 6(3):e30, 2021.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

10

https://arxiv.org/abs/2504.05979

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Joshua K Hartshorne and Mengguo Jing. Insights into cognitive mechanics from education, develop-
mental psychology and cognitive science. Nature Reviews Psychology, pp. 1–15, 2025.

Yushi Hu, Weijia Shi, Xingyu Fu, Dan Roth, Mari Ostendorf, Luke Zettlemoyer, Noah A Smith, and
Ranjay Krishna. Visual sketchpad: Sketching as a visual chain of thought for multimodal language
models. arXiv preprint arXiv:2406.09403, 2024.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems, 35:
22199–22213, 2022.

Qihao Liu, Adam Kortylewski, Yutong Bai, Song Bai, and Alan Yuille. Discovering failure modes of
text-guided diffusion models via adversarial search. arXiv preprint arXiv:2306.00974, 2023.

Wenquan Lu, Yufei Xu, Jing Zhang, Chaoyue Wang, and Dacheng Tao. Handrefiner: Refining
malformed hands in generated images by diffusion-based conditional inpainting. In Proceedings
of the 32nd ACM International Conference on Multimedia, pp. 7085–7093, 2024.

Ethan Ludwin-Peery, Neil R Bramley, Ernest Davis, and Todd M Gureckis. Limits on simulation
approaches in intuitive physics. Cognitive Psychology, 127:101396, 2021.

Fanqing Meng, Wenqi Shao, Lixin Luo, Yahong Wang, Yiran Chen, Quanfeng Lu, Yue Yang,
Tianshuo Yang, Kaipeng Zhang, Yu Qiao, et al. Phybench: A physical commonsense benchmark
for evaluating text-to-image models. arXiv preprint arXiv:2406.11802, 2024.

William Merrill and Ashish Sabharwal. The expressive power of transformers with chain of thought.
arXiv preprint arXiv:2310.07923, 2023.

OpenAI. Introducing 4o image generation, 2025. URL https://openai.com/index/
introducing-4o-image-generation/.

Ben Prystawski, Michael Li, and Noah Goodman. Why think step by step? reasoning emerges from
the locality of experience. Advances in Neural Information Processing Systems, 36:70926–70947,
2023.

Kevin Smith, Peter Battaglia, and Joshua Tenenbaum. Integrating heuristic and simulation-based
reasoning in intuitive physics.

Kevin Smith, Lingjie Mei, Shunyu Yao, Jiajun Wu, Elizabeth Spelke, Josh Tenenbaum, and Tomer
Ullman. Modeling expectation violation in intuitive physics with coarse probabilistic object
representations. Advances in neural information processing systems, 32, 2019.

Kevin A Smith and Edward Vul. Sources of uncertainty in intuitive physics. Topics in cognitive
science, 5(1):185–199, 2013.

Felix A Sosa, Samuel J Gershman, and Tomer D Ullman. Blending simulation and abstraction for
physical reasoning. Cognition, 254:105995, 2025.

Miles Turpin, Julian Michael, Ethan Perez, and Samuel Bowman. Language models don’t always
say what they think: Unfaithful explanations in chain-of-thought prompting. Advances in Neural
Information Processing Systems, 36:74952–74965, 2023.

Tomer D Ullman, Elizabeth Spelke, Peter Battaglia, and Joshua B Tenenbaum. Mind games: Game
engines as an architecture for intuitive physics. Trends in cognitive sciences, 21(9):649–665, 2017.

Boshi Wang, Sewon Min, Xiang Deng, Jiaming Shen, You Wu, Luke Zettlemoyer, and Huan Sun.
Towards understanding chain-of-thought prompting: An empirical study of what matters. arXiv
preprint arXiv:2212.10001, 2022.

YingQiao Wang and Tomer D Ullman. Resource bounds on mental simulations: Evidence from a
liquid-reasoning task. Journal of Experimental Psychology: General, 2025.

11

https://openai.com/index/introducing-4o-image-generation/
https://openai.com/index/introducing-4o-image-generation/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jiajun Wu, Erika Lu, Pushmeet Kohli, Bill Freeman, and Josh Tenenbaum. Learning to see physics
via visual de-animation. Advances in neural information processing systems, 30, 2017a.

Jiajun Wu, Joshua B Tenenbaum, and Pushmeet Kohli. Neural scene de-rendering. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 699–707, 2017b.

Yi Xu, Chengzu Li, Han Zhou, Xingchen Wan, Caiqi Zhang, Anna Korhonen, and Ivan Vulić. Visual
planning: Let’s think only with images. arXiv preprint arXiv:2505.11409, 2025.

Jingyi Zhang, Jiaxing Huang, Sheng Jin, and Shijian Lu. Vision-language models for vision tasks: A
survey. IEEE transactions on pattern analysis and machine intelligence, 46(8):5625–5644, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A STIMULI DESIGN AND SPECIFICATION OF THE STIMULI

A.1 2D MOTION

The stimulus shows a 2D red ball being launched at the left middle of the screen on a white background.
There is no gravity or friction enabled, and no visible boundaries on the white surface. The white
surface is flat and featureless, allowing the red ball to travel without obstructions, as shown in Figure 1.
We varied the speed at which the ball rolled over the white surface with three different speeds: 100,
300, and 500 (in units of pixels/second). This gives us This gives us 3 stimuli in total. The stimuli
and the generated image from the image generation model are in the same resolution (1024*1024)
natively.

A.2 2D GRAVITY

The stimulus shows a 2D red ball being launched at various positions (left-middle, left-bottom, right-
middle, right-bottom) on a white background. There is gravity enabled, and no visible boundaries on
the white surface. The white surface is flat and featureless, allowing the red ball to travel without
obstructions, as shown in Figure 1. We varied the speed at which the ball rolled over the white surface
with three different speeds: 230, 240, and 250 (in units of pixels/second) and with three different
angles: 45◦ and 60◦. This gives us 24 stimuli in total. The stimuli and the generated image from the
image generation model are in the same resolution (1024*1024) natively.

A.3 FLUIDS

The stimulus shows a 3D glass mug being filled with water on a light sky-blue background. The
water is emitted from a dark-grey pipe into the glass mug, as shown in Figure 1. There is gravity
enabled, and the amount of water are limited within a range that it will never overflow. We varied
the flow rate: 25, 50, and 75 (in frames/second), the type of cups: small, medium, and large, and the
ground truth water levels: 1/12 full, 3/12 full, 5/12 full, 7/12 full, 9/12 full. The stimuli are cropped
to 1024*1024 resolution, keeping only the water pipe and the glass water mug. This will give us 45
stimuli in total. The generated images from the image generation model are in the same resolution
(1024*1024) natively.

A.4 BOUNCING

The stimulus shows a 3D object being launched from the top and bouncing back after hitting the
ground as shown in Figure 1. There is gravity enabled, and the objects all have specific coefficient of
restitution. We varied the coefficient of restitution of the object by including various balls made with
different materials, and the falling rate. We numbered each object from 1 to 9. Ball 1 is a transparent
toy bouncing ball; Ball 2 is a white bouncy ball; Ball 3 is a black bouncy ball; Ball 4 is a squash ball;
Ball 5 is a tennis ball; The velocity we varied for these 5 balls includes 25 and 50 (frames / second).
Ball 6 is a soccer ball; Ball 7 is a tennis ball; Ball 8 is a purple bouncy ball; Ball 9 is a tennis ball.
The velocity we varied for these 5 balls includes 10 and 15 (frames / second). We will also seperate
each stimuli into three partitions. The first partition is ”before”, which is the sequence of frames that
shows the motion of the ball right before it hits the ground and starts to deform; The second partition
is ”during”, which is the sequence of frames that shows the motion of the ball hitting the ground,
deforming, and starts to bounce back; The third partition is ”after”, which is the sequence of frames
that shows the ball bouncing back upwards. This give us 54 stimuli in total.

The resolution of the stimuli were resized to 1080*720, and the generated images from the image
generation model are in 1536*1024, and were resized into 1080*720.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

B PROMPTS

For prompt, we designed three parameters for the prompts we used in four domains.

For parameter number of seconds forward, which is k, we chose from k ∈ [0.2, 0.4, 0.8].

For parameter direction, we choose from leftbottom, leftmiddle, rightmiddle, and rightbottom.

For parameter scene content, we choose it based on the domain. In Fluids, we define the parameter
as the following: ”a glass mug being filled with water, at a constant rate”. For Bouncing, when
simulating ”before” and ”during” partitions, we define the parameters as the following: ”a bouncy
ball falling towards the ground”. When simulating ”after” partition, we define the parameters as the
following: ”a bouncy ball bouncing upward after hitting the ground”.

B.1 PROMPT FOR 2D MOTION

In the 2D Motion, for our Chain-of-Time simulation method, as well as our Direct Prediction
baseline, models are provided the following prompt, with different methods (Chain-of-Time 0.2s,
0.4s, and Direct Prediction) varying the {{number of seconds forward}} parameter:

Simulation Instruction Prompt

Consider the following 5 frames, which show the motion of a red
ball on a white background. Note that each frame is precisely .2
seconds apart.

Now, please generate an image that simulates what this scene would
look like {{number of seconds forward}} Seconds into the future.

Make sure that your image is 2d and consists of a single red circle
on a solid white background. Ensure that the circle is exactly

the same size as the input images. Assume that there is no
friction, the ground is flat, and the ball can pass through
objects.

{{image sequence}}

For Chain-of-Time, we used the following prompt to elicit subsequent simulation steps from the
IGM:

Simulation Follow-Up Prompt

Now, simulate additional {{number of seconds forward}} seconds into
the future.

B.2 PROMPTS FOR 2D GRAVITY

In the 2D Gravitydomain, for our Chain-of-Time simulation method, as well as our Direct
Prediction baseline, models are provided the following prompt, with different methods (Chain-of-Time
0.2s, 0.4s, and Direct Prediction) varying the {{direction}} and {{number of seconds
forward}} parameter:

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Simulation Instruction Prompt

Consider the following 5 frames, which show the projectile motion
of a red ball being launched from the {direction}. Each frame is
precisely 0.2 seconds apart.

You will generate an image that simulates the position of the red
ball {number of seconds forward} seconds forward into the future
after the last frame.

Assume that there is gravity and the red ball continues to follow
the projectile motion shown in the frames provided. The scene is
viewed from the side, so gravity pulls downward.

Make sure that the generated image is 2-D, that it contains a
circle exactly the same size and color as the circle in the
frames provided, and that the background color is white.\

{{image sequence}}

For Chain-of-Time, we use the following prompt to elicit subsequent simulation steps from the IGM:

Simulation Follow-Up Prompt

Generate an additional image that simulates the position of the red
ball {number of seconds forward} seconds forward into the

future after the last frame that you generated.

Assume that there is gravity and the red ball continues to follow
the projectile motion shown in the frames provided. The scene is
viewed from the side, so gravity pulls downward.

Make sure that the generated image is 2-D, that it contains a
circle exactly the same size and color as the circle in the
frames provided, and that the background color is white.\

B.3 PROMPTS FOR FLUIDSAND BOUNCING

In domains Fluidsand Bouncing, for our Chain-of-Time simulation method, as well as our Direct
Prediction baseline, models are provided the following prompt, with different methods (Chain-of-
Time 0.2s, 0.4s, and Direct Prediction) varying the {{scene content}} and {{number of
seconds forward}} parameter:

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Simulation Instruction Prompt

Consider the following sequence of 5 images, which show {
scene_content}. Each image frame video is precisely 0.2 seconds
after the last frame.

Please generate an image that continues this sequence, simulating
what the scene will look like {number of seconds forward}
seconds further into the future after the last frame. Make sure
that the generated image is from exactly the same perspective as
the input images and that the background color remains the same
color.

{{image sequence}}

For Chain-of-Time, we use the following prompt to elicit subsequent simulation steps from the IGM:

Simulation Follow-Up Prompt

Continue simulating this scene {number of seconds forward} seconds
into the future after the last frame that you generated. Make
sure that the generated image is from exactly the same
perspective as the input images and that the background color
remains the same color.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C COMPUTER VISION ALGORITHMS USED FOR OBJECT DETECTION IN ALL
FOUR DOMAINS

C.1 THE 2D MOTIONAND 2D GRAVITYDOMAINS

The CV algorithms we used to detect the red ball in the images generated by the image models are
coded by ChatGPT-5. The code description provided by the model is as follow:

Purpose. Detect the centroid of the largest red region in an image.

Steps.

1. Read the image at frame_path (BGR) and convert it to HSV, since hue-based thresholding
is more robust than RGB for color detection.

2. Define two HSV ranges for red (red wraps around the hue wheel), covering low hue (0–10)
and high hue (170–180) with saturation/value floors to avoid dark or washed-out pixels:

lower red1 = (0, 70, 50), upper red1 = (10, 255, 255),

lower red2 = (170, 70, 50), upper red2 = (180, 255, 255).

3. Threshold the HSV image with both intervals and OR the results to obtain a binary mask of
red pixels.

4. Find external contours on the mask. If none are found, return (None,None).

5. Select the largest contour by area (assumes the main red target is the biggest red blob in
view).

6. Compute spatial moments for that contour. If m00 = 0 (degenerate area), return
(None,None); otherwise compute the centroid:

cx =
m10

m00
, cy =

m01

m00
.

7. Return (cx, cy) as integer pixel coordinates. If no valid region exists, return (None,None).

Returns. (int, int) or (None,None): the centroid of the largest red region, or None/None when no
suitable red region is found.

And figure 8 are examples of the algorithm detecting the red ball in images generated in 2D Motion,
and 2D Gravity.

C.2 THE FLUIDSDOMAIN

The CV algorithms we used to detect the water blob and water level in the images generated by the
image generation models are coded by ChatGPT-5. The code description provided by the model is as
follow:

Detect the water “blob” inside a glass mug and report its top/bottom y.

Inputs

• img path: path to RGB/RGBA image.

• y cut: only analyze rows y ≥ y cut (ignore the upper part of the image).

• alpha thresh: pixels with alpha ≤ this are treated as transparent (ignored).

• hsv lower / hsv upper: HSV thresholds for sky-blue liquid (OpenCV H ∈ [0, 179]).

• erode iters, close kernel: morphology parameters to suppress thin rims/stream
and fill gaps.

• coverage main / coverage fallback: minimum horizontal coverage (fraction of
bbox width) required for a row to be considered liquid; a fallback is used if the main
threshold yields none.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

• ignore top rows: discard the first N rows inside the ROI to avoid picking the crop
boundary.

Steps

1. Read the image with cv2.IMREAD UNCHANGED so the alpha channel (if present) is
preserved.

2. Build an alpha mask: alpha mask = (α > alpha thresh). If no alpha channel exists, use an
all-ones mask (all pixels opaque).

3. Crop to the region of interest (ROI): rows y ≥ y cut. Crop the alpha mask the same way.
4. Convert the ROI to HSV and threshold with [hsv lower,hsv upper] to obtain a binary

color mask for the sky-blue liquid.
5. AND the color mask with the alpha mask to suppress fully/mostly transparent background.
6. Morphological cleanup:

• Erode (erode iters times) to remove thin bright rims and the pouring stream.

Figure 8: Examples of the algorithm detecting the red ball for stimuli used in 2D Motion, and 2D
Gravity.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

• Close (kernel size = close kernel) to reconnect the eroded blob and fill small
holes.

7. Find connected components (external contours) and select the largest-area component as the
liquid blob.

8. Compute the blob’s bounding box (x, y, w, h) in ROI coordinates. Inside this box:
• For each row, count foreground pixels (row counts).
• Mark rows as liquid if row counts ≥ coverage main× w.
• If none qualify, relax to coverage fallback× w.
• Discard candidate rows whose index < ignore top rows.

9. Determine water-level bounds:
• Top y (global) = y cut + y +min(valid row indices) if valid rows exist; otherwise
y cut+min(contour y).

• Bottom y (global) = y cut+y+max(valid row indices) if valid rows exist; otherwise
y cut+max(contour y).

10. Optional visualization:
• Red rectangle: blob bounding box.
• Green line: top y.
• Blue line: bottom y.

Notes

Figure 9: Examples of the algorithm detecting the water level for stimuli used in Fluids.

Figure 10: Examples of the algorithm detecting the ball used in Bouncing.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

• HSV bounds are intentionally broad; tune to lighting and hue variations.

• Erosion suppresses 1–2 px rims and stream artifacts that otherwise bias the “top” level.

• The row-coverage rule prefers rows where a substantial horizontal span is filled, making the
estimate robust to foam/splash highlights.

• Complexity is approximately O(HW) per frame (thresholding + morphology + a single
bbox scan).

And figure 9 is an example of the algorithm detecting the water level in images generated in Fluids.

C.3 THE BOUNCINGDOMAIN

The CV algorithms we used to detect the ball in the images generated by the image models are coded
by ChatGPT-5. The code description provided by the model is as follow:

We detect a single ball in an RGB image using a two-stage strategy: (i) a Hough transform for circles
on a contrast-enhanced, downscaled grayscale image; and (ii) a fallback based on contour circularity
if no reliable Hough detection is found. The routine computes both a bounding box and a center,
clamps the box to image bounds, and returns the center.

Inputs. An image I∈RH×W×3 (BGR order as in OpenCV).

Outputs. Center (cx, cy) in original-image pixel coordinates. (Note: the code also computes a
bounding box (x, y, w, h) but, as written, returns only the center.)

Preprocessing.

1. Downscale I by 2× (area interpolation) to reduce noise and speed up detection.

2. Convert to grayscale and apply CLAHE (clip limit = 2.0, tile size 8× 8) for local contrast
amplification, followed by Gaussian blur (kernel 7× 7, σ ≈ 1.5) to suppress noise.

Stage 1: Hough circle detection.

• Apply HoughCircles (gradient method) with parameters:

dp = 1.2, minDist = 50, param1 = 100, param2 = 18, r ∈ [15, 200].

• If one or more circles are found, choose the one with the strongest edge response. For
each candidate (c̃x, c̃y, r̃), compute a thin ring mask and measure the mean Canny edge
magnitude within the ring; select the circle with the maximal mean.

• Rescale (c̃x, c̃y, r̃) by factor 2 back to original resolution: (cx, cy, r) = (2c̃x, 2c̃y, 2r̃).

• Define a square bounding box centered at (cx, cy) with side length 2r: (x, y, w, h) =
(cx − r, cy − r, 2r, 2r).

Stage 2 (fallback): contour circularity.

1. If Hough detection fails, convert the original image to grayscale, blur (Gaussian 7× 7), and
compute Canny edges.

2. Morphological close with a 5× 5 kernel to connect fragmented edges.

3. Extract external contours and filter:

• Reject small contours: area A < 300 px.
• Compute perimeter P and circularity

C = 4πA

P 2 + ϵ
, ϵ = 10−6;

keep contours with C ≥ 0.7.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

4. For each remaining contour, compute the axis-aligned bounding box (x, y, w, h) and score
it by C ·A; take the maximum-scoring contour as the ball.

5. Set center (cx, cy) = (x+ ⌊w/2⌋, y+ ⌊h/2⌋) and approximate radius r = ⌊max(w, h)/2⌋.

Post-processing. Clamp (x, y, w, h) to image bounds: x ← max(0, x), y ← max(0, y), w ←
min(w,W − x), h←min(h,H − y). Return the integer center (cx, cy).

Notes and implementation details.

• Contrast-limited histogram equalization (CLAHE) improves robustness to faint or low-
contrast balls.

• The edge-strength tie-breaker favors circles with sharper boundaries rather than merely high
accumulator votes.

• The circularity threshold C ≥ 0.7 trades off recall vs. precision; higher values reject more
elongated shapes.

• If no suitable contour is found, the routine raises an exception (‘‘Ball not found’’).
• Docstring mismatch: the docstring claims to return both bounding box and center, but the

function currently returns only the center; adjust as needed.

And figure 10 is an example of the algorithm detecting the ball in images generated in Bouncing.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

D ADDITIONAL ANALYSIS

D.1 THE 2D GRAVITYDOMAIN

Here are the additional analysis for stimuli with speed 230 pixels/second, angle 60◦, and launching
position left-bottom. We present the result generated by Chain-of-time 0.4s on the same stimuli. We
can see that we observed the deceleration on the y-axis due to gravity, and we can see the projectile
motion like curve on the left plot of the figure 11, matching the conclusion we reached in section
5.2.2.

0 200 400 600
X Position

0

100

200

300

400

500

Y
P

os
it

io
n

Ground Truth

Prediction

0 2 4 6 8
0

500

X
P

os
it

io
n

0 2 4 6 8
Time Step

0

250

Y
P

os
it

io
n

Figure 11: Predicted projectile position for 2D Gravityover time for a single trial using Chain-of-
Time 0.4s. Red represents the ground truth ball location and orange is the simulated ball location
at each time step, averaged across 20 samples. (Left) Projectile location in (x, y) coordinate space
(Right) Predicted x-location and y-location as a function of time.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Here are the additional analysis for stimuli with speed 240 pixels/second, angle 60◦, and launching
position left-bottom. We present the result generated by Chain-of-Time 0.2s on the same stimuli. We
can see that we observed the deceleration on the y-axis due to gravity, and we can see the projectile
motion like curve on the left plot of the figure 12, matching the conclusion we reached in section
5.2.2.

0 200 400 600
X Position

0

100

200

300

400

500

Y
P

os
it

io
n

Ground Truth

Prediction

0 2 4 6 8
0

500

X
P

os
it

io
n

0 2 4 6 8
Time Step

0

250

Y
P

os
it

io
n

Figure 12: Predicted projectile position for 2D Gravityover time for a single trial using Chain-of-
Time 0.2s. Red represents the ground truth ball location and orange is the simulated ball location
at each time step, averaged across 20 samples. (Left) Projectile location in (x, y) coordinate space
(Right) Predicted x-location and y-location as a function of time.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Here are the additional analysis for stimuli with speed 240 pixels/second, angle 60◦, and launching
position left-bottom. We present the result generated by Chain-of-Time 0.4s on the same stimuli. We
can see that we observed the deceleration on the y-axis due to gravity, and we can see the projectile
motion like curve on the left plot of the figure 13, matching the conclusion we reached in section
5.2.2.

0 200 400 600
X Position

0

100

200

300

400

500

Y
P

os
it

io
n

Ground Truth

Prediction

0 2 4 6 8
0

500

X
P

os
it

io
n

0 2 4 6 8
Time Step

0

250

Y
P

os
it

io
n

Figure 13: Predicted projectile position for 2D Gravityover time for a single trial using Chain-of-
Time 0.2s. Red represents the ground truth ball location and orange is the simulated ball location
at each time step, averaged across 20 samples. (Left) Projectile location in (x, y) coordinate space
(Right) Predicted x-location and y-location as a function of time.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Here are the additional analysis for stimuli with speed 220 pixels/second, angle 60◦, and launching
position right-middle. We present the result generated by Chain-of-Time 0.2s on the same stimuli. We
can see that we observed the deceleration on the y-axis due to gravity, and we can see the projectile
motion like curve on the left plot of the figure 14, matching the conclusion we reached in section
5.2.2.

0 200 400 600
X Position

0

100

200

300

400

500

Y
P

os
it

io
n

Ground Truth

Prediction

0 2 4 6 8
0

500

X
P

os
it

io
n

0 2 4 6 8
Time Step

0

250

Y
P

os
it

io
n

Figure 14: Predicted projectile position for 2D Gravityover time for a single trial using Chain-of-
Time 0.2s. Red represents the ground truth ball location and orange is the simulated ball location
at each time step, averaged across 20 samples. (Left) Projectile location in (x, y) coordinate space
(Right) Predicted x-location and y-location as a function of time.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 15: Simulated ball location (orange) using Chain-of-Time 0.4s in the Bouncing domain follow
a similar U-shaped curve as the ground truth ball location (red). Ball locations are shown here for
a single video (orange), with predictions aggregated across all samples for the three time periods
(before/during/after collision).

D.2 THE BOUNCINGDOMAIN

Here are the additional analysis on data generated by Chain-of-Time 0.2s and 0.4s for ball 2 at
velocity 50 frames/second. This is the result generated by Chain-of-Time 0.4s simulation. We can
see that the bouncing motion is shown by the deep V shaped curved, and the IGM underestimated the
coefficient of restitution, since IGM thinks the ball is bouncing back slower, which the conclusion
matches with the conclusion we reached in section 5.2.2

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Here are the additional analysis on data generated by Chain-of-Time 0.2s and 0.4s for ball 4 at
velocity 50 frames/second. We can see that the bouncing motion is shown by the deep V shaped
curved, and the IGM underestimated the coefficient of restitution in Chain-of-Time 0.4s, since IGM
thinks the ball is bouncing back slower.

Figure 16: Simulated ball location (orange) using Chain-of-Time 0.2s in the Bouncing domain follow
a similar U-shaped curve as the ground truth ball location (red). Ball locations are shown here for
a single video (orange), with predictions aggregated across all samples for the three time periods
(before/during/after collision).

Figure 17: Simulated ball location (orange) using Chain-of-Time 0.4s in the Bouncing domain follow
a similar U-shaped curve as the ground truth ball location (red). Ball locations are shown here for
a single video (orange), with predictions aggregated across all samples for the three time periods
(before/during/after collision).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Here are the additional analysis on data generated by Chain-of-Time 0.2s and 0.4s for ball 7 at velocity
15 frames/second. We can see that the bouncing motion is shown by the deep V shaped curved, and
the IGM underestimated the coefficient of restitution, since IGM thinks the ball is bouncing back
slower.

Figure 18: Simulated ball location (orange) using Chain-of-Time 0.2s in the Bouncing domain follow
a similar U-shaped curve as the ground truth ball location (red). Ball locations are shown here for
a single video (orange), with predictions aggregated across all samples for the three time periods
(before/during/after collision).

Figure 19: Simulated ball location (orange) using Chain-of-Time 0.4s in the Bouncing domain follow
a similar U-shaped curve as the ground truth ball location (red). Ball locations are shown here for
a single video (orange), with predictions aggregated across all samples for the three time periods
(before/during/after collision).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Here are the additional analysis on data generated by Chain-of-Time 0.2s and 0.4s for ball 9 at velocity
10 frames/second. We can see that the bouncing motion is shown by the deep V shaped curved, and
the IGM underestimated the coefficient of restitution, since IGM thinks the ball is bouncing back
slower.

Figure 20: Simulated ball location (orange) using Chain-of-Time 0.2s in the Bouncing domain follow
a similar U-shaped curve as the ground truth ball location (red). Ball locations are shown here for
a single video (orange), with predictions aggregated across all samples for the three time periods
(before/during/after collision).

Figure 21: Simulated ball location (orange) using Chain-of-Time 0.4s in the Bouncing domain follow
a similar U-shaped curve as the ground truth ball location (red). Ball locations are shown here for
a single video (orange), with predictions aggregated across all samples for the three time periods
(before/during/after collision).

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

E LANGUAGE MODEL STATEMENT

LLMs were used in this work for literature review and for coding assistance with constructing
computer vision algorithms described in Appendix C.3

30

	Introduction
	Mental Simulation in Humans
	Chain-of-Time Simulation
	previous work

	Experiments
	Experimental Setup

	Results
	Accuracy Analysis
	Physical Parameter and Physical Motion Analysis
	Image Generation Model Is Capable of Simulating Both Complex 2D and 3D Physical Motions and Interactions
	Image Generation Model Exhibits Physical Parameter Estimation Error For 3D Physics Simulation

	Discussion
	Stimuli Design and Specification of the Stimuli
	2D Motion
	2D Gravity
	Fluids
	Bouncing

	Prompts
	Prompt for 2D Motion
	prompts for 2D Gravity
	Prompts for Fluidsand Bouncing

	Computer Vision Algorithms Used for Object Detection in All Four Domains
	The 2D Motionand 2D GravityDomains
	The FluidsDomain
	The BouncingDomain

	Additional Analysis
	The 2D GravityDomain
	The BouncingDomain

	Language Model Statement

