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Abstract

Training large scale Graph Neural Networks (GNNs) requires significant computational
resources, and the process is highly data-intensive. One of the most effective ways to reduce
resource requirements is minibatch training coupled with graph sampling. GNNs have the
unique property that items in a minibatch have overlapping data. However, the commonly
implemented Independent Minibatching approach assigns each Processing Element (PE, i.e.,
cores and/or GPUs) its own minibatch to process, leading to duplicated computations and
input data access across PEs. This amplifies the Neighborhood Explosion Phenomenon
(NEP), which is the main bottleneck limiting scaling. To reduce the effects of NEP in the
multi-PE setting, we propose a new approach called Cooperative Minibatching. Our approach
capitalizes on the fact that the size of the sampled subgraph is a concave function of the batch
size, leading to significant reductions in the amount of work as batch sizes increase. Hence,
it is favorable for processors equipped with a fast interconnect to work on a large minibatch
together as a single larger processor, instead of working on separate smaller minibatches,
even though global batch size is identical. We also show how to take advantage of the same
phenomenon in serial execution by generating dependent consecutive minibatches. Our
experimental evaluations show up to 4x bandwidth savings for fetching vertex embeddings,
by simply increasing this dependency without harming model convergence. Combining our
proposed approaches, we achieve up to 64% speedup over Independent Minibatching on
single-node multi-GPU systems, using same resources.

1 Introduction

Graph Neural Networks (GNNs) have become de facto deep learning models for unstructured data, achiev-
ing state-of-the-art results on various application domains involving graph data such as recommendation
systems (Wu et al., 2020; Ying et al., 2018), fraud detection (Liu et al., 2022; Patel et al., 2022), identity
resolution (Xu et al., 2019), and traffic forecasting (Jiang & Luo, 2022). However, as the usage of technology
continues to increase, the amount of data generated by these applications is growing exponentially, resulting
in large and complex graphs that are infeasible or too time-consuming to train on a single processing
element (Ying et al., 2018; Zhu et al., 2019). For example, some social media graphs are reaching billions of
vertices and trillions of interactions (Ching et al., 2015). Efficient distributed training of GNNs is essential for
extracting value from large-scale unstructured data that exceeds the cost of storing and processing such data.

∗Part of this work was done during an internship at NVIDIA Corporation in the summer of 2022.
†Amazon Web Services. This publication describes work performed at the Georgia Institute of Technology and is not

associated with AWS.
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Due to the popularity of Deep Neural Networks (DNNs) and the need to support larger models and datasets,
a great deal of research has focused on increasing the scale and efficiency of distributed DNN training.
Techniques such as data parallelism (Ginsburg et al., 2017; Goyal et al., 2018), pipelining (Narayanan et al.,
2019), and intra-layer parallelism (Dean et al., 2012) have been employed. Following the success of traditional
distributed DNN training, the same techniques have also been adapted to GNN training, such as data
parallelism (Gandhi & Iyer, 2021; Lin et al., 2020; Zheng et al., 2021; Zhu et al., 2019) and intra-layer
parallelism (Tripathy et al., 2020).

The parallelization techniques mentioned earlier are used to scale both full-batch and minibatch training in a
distributed setting. Minibatch training (Bertsekas, 1994) is the go-to method to train DNN models as it
outperforms full-batch training in terms of convergence (Allen-Zhu & Hazan, 2016; Li et al., 2014; Keskar
et al., 2016; Wilson & Martinez, 2003), and more recently has been shown to also offer the same benefit for
GNNs (Zheng et al., 2021). In the distributed setting, minibatch training for DNNs using data parallelism is
straightforward. The training samples are partitioned across the Processing Elements (PE) and they compute
the forward/backward operations on their minibatches. The only communication required is an all-reduce
operation for the gradients.

Unfortunately, minibatch training a GNN model is more challenging than a usual DNN model. GNNs turn
a given graph encoding relationships into computational dependencies. Thus in an L-layer GNN model,
each minibatch computation has a different structure as it is performed on the L-hop neighborhood of the
minibatch vertices. Real-world graphs usually are power law graphs (Artico et al., 2020) with small diameters,
thus, it is a challenge to train deep GNN models as the L-hop neighborhood grows exponentially w.r.t. L,
reaching almost the whole graph within a few hops. This is especially the case for the node classification and
link prediction scenarios where the graph can be large and a single connected component contains almost all
the data.

Very large GNN datasets necessitate storing the graph and node embeddings on slower storage mediums. To
enable GNN training efficiently in such a setting, several techniques have been proposed (Park et al., 2022;
Waleffe et al., 2022). These studies assume that the graph and its features are stored on disks or SSDs and
design their systems to reduce data transfers. The methods proposed in this paper directly apply to these
settings by reducing bandwidth requirements, as seen in Section 4.

A single epoch of full-batch GNN training requires computation proportional to the number of layers L and
the size of the graph. However, minibatch training requires more operations to process a single epoch due to
repeating calculations in the 2nd through L-th layers. As the batch size decreases, the number of repeated
calculations increases. This is because the vertices and edges have to be processed each time they appear in
the L-hop neighborhood. Thus, it is natural to conclude that using effectively larger batch sizes in GNNs
reduces the number of computations and data accesses of an epoch in contrast to regular DNN models. Our
contributions in this work utilizing this important observation can be listed as follows:

• Investigate work vs. batch size relationship and present theorems stating the cost of processing a
minibatch is a concave function of the batch size (Theorems 3.1 and 3.2).

• Utilize this relationship by combining data and intra-layer parallelism to process a minibatch across
multiple PEs for reduced work (Section 3.1), with identical global batch size. We call this new
approach Cooperative Minibatching.

• Use the same idea to generate consecutive dependent minibatches to increase temporal vertex
embedding access locality (Section 3.2). Dependent Minibatching can reduce the transfer amount of
vertex embeddings up to 4×, without harming model convergence.

• Show that the two approaches are orthogonal. When combined, they result in up to 1.64× speedup
over Independent Minibatching with identical global batch size.

• Further show the applicability of Cooperative Minibatching to the subgraph sampling methods and
prove that sampled subgraph density is a nondecreasing function of the batch size (Theorem 3.3).
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2 Background

A graph G = (V, E) consists of vertices V and edges E ⊂ V × V along with optional edge weights Ats >
0,∀(t→ s) ∈ E. Given a vertex s, the 1-hop neighborhood N(s) is defined as N(s) = {t|(t→ s) ∈ E}, and it
can be naturally expanded to a set of vertices S as N(S) = ∪s∈SN(s).

GNN models work by passing previous layer embeddings (H) from N(s) to s, and then combining them using
a nonlinear function f (l) at layer l, given initial vertex features H(0):

H(l+1)
s = f (l)(H(l)

s , {H(l)
t | t ∈ N(s)}) (1)

If the GNN model has L layers, then the loss is computed by taking the final layer L’s embeddings and
averaging their losses over the set of training vertices Vt ⊂ V for full-batch training. In L-layer full-batch
training, the total number of vertices that needs to be processed is L|V |.

2.1 Minibatching in GNNs

In minibatch training, a random subset of training vertices, called Seed Vertices, is selected, and training is
done over the (sampled) subgraph composed of L-hop neighborhood of the seed vertices. On each iteration,
minibatch training computes the loss on seed vertices, which are random subsets of the training set Vt.

Given a set of vertices S, we define l-th layer expansion set, or the l-hop neighborhood Sl as:

S0 = S, S(l+1) = Sl ∪N(Sl) (2)

For GNN computations, Sl would also denote the set of the required vertices to compute (1) at each layer l.
Using the same notation, {s}l denotes l-layer expansion set starting from single vertex s ∈ V .

For a single minibatch iteration, the total number of vertices that need to be processed is
∑L

l=1 |Sl|. There
are |V |

|S0| minibatches assuming Vt = V . Since each |Sl| ≥ |S0|, and a single epoch of minibatch training needs
to go over the whole dataset, the work W (|S0|) for a single epoch is:

W (|S0|) = |V |
|S0|

L∑
l=1

E[|Sl|] ≥ |V |
|S0|

L∑
l=1
|S0| = L|V | (3)

where E[|Sl|] is the expected number of sampled vertices in layer l and |S0| is the batch size. That is, the
total amount of work to process a single epoch increases over full-batch training. The increase in work due to
minibatch training is thus encoded in the ratios E[|Sl|]

|S0| , 1 ≤ l ≤ L.

When sampling is used with minibatching, the minibatch subgraph may potentially become random. However,
the same argument for the increasing total amount of work holds for them too, as seen in Figure 3.

2.2 Graph Sampling

We focus on samplers whose expected number of sampled vertices is a function of the batch size. Neighbor
Sampling (NS) (Hamilton et al., 2017), LABOR (Balin & Çatalyürek, 2023) and RandomWalk (RW)
Sampling (Ying et al., 2018) all have this property and they are all applied recursively for GNN models with
multiple layers. Appendix A.1 describes the details of these sampling methods.

2.3 Independent Minibatching

Independent minibatching is commonly used in multi-GPU, and distributed GNN training frameworks (Cai
et al., 2023; Gandhi & Iyer, 2021; Lin et al., 2020; Zheng et al., 2021; Zhu et al., 2019) to parallelize the
training and allows scaling to larger problems. Each Processing Element (PE, e.g., GPUs, CPUs, or cores
of multi-core CPU), starts with their own S0 of size b as the seed vertices, and compute S1, . . . , SL along
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Figure 1: Minibatches of two processing elements may
share edges in the second layer and vertices starting
in the first layer. For independent minibatching, the
solid green edges shared by both processing elements
represent duplicate work, and input nodes B through
G are duplicated along with the directed endpoints of
green edges. However for cooperative minibatching,
the vertices and edges are partitioned across the PEs
with no duplication, and the edges crossing the line
between the two PEs necessitate communication.

with the sampled edges to generate minibatches (see Figure 1). Computing S1, . . . , SL depends on the
chosen sampling algorithm, such as the ones explained in Appendix A.1. It has the advantage that doing
a forward/backward pass does not involve any communication with other PEs after the initial minibatch
preparation stage at the expense of duplicate work.

3 Cooperative Minibatching

In this section, we present two theorems that show the work of an epoch will be monotonically nonincreasing
with increasing batch sizes. After that, we propose two algorithms that can take advantage of this monotonicity.
Due to lack of space, we provide their full proofs in Appendices A.2 and A.3.

Theorem 3.1. The work per epoch E[|Sl|]
|S0| required to train a GNN model using minibatch training is

monotonically nonincreasing as the batch size |S0| increases.

Proof. (Idea) Given any random S0 and l ≥ 1, we have the corresponding set Sl. We can shrink S0 by
removing random elements s ∈ S0 from it to get S0 − {s}. If we compare (S0 − {s})l to Sl, we will see that
any difference will come from elements that are contained only in {s}l. If we count such elements for each
s ∈ S0 and sum them, it will be bounded by |Sl|. More concretely if we let S′0 = S0 − {s} be a random
subset of S0 with one element missing, we have:∑

s∈S0

|Sl| − |(S0 − {s})l| ≤ |Sl| ⇐⇒ |S0||Sl| − |Sl| ≤
∑
s∈S0

|(S0 − {s})l| ⇐⇒ |Sl||S′0| ≤ |S0|E[|S′l|] (4)

Empirical evidence can be seen in Figures 3 and 6. In fact, the decrease is related to the cardinality of the
following set:

T l(S) = {w ∈ Sl | w ∈ {s}l,∃!s ∈ S0} (5)

When T (S0) is equal to Sl, the work is equal as well. In the next section, we further investigate the effect of
|T (S0)| on E[|Sl|].

In addition to the definition of T (S) above, if we define the following set T2(S):

T l
2(S) = {w ∈ Sl | w ∈ {s}l ∩ {s′}l,∃!{s, s′} ⊂ S0} (6)

Theorem 3.2. The expected subgraph size E[|Sl|] required to train a GNN model using minibatch training is
a concave function of batch size, |S0|.
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Proof. (Idea) Note that we have:

|T l(S0)| − 2|T l
2(S0)| =

∑
S′0⊂S0

|S′0|+1=|S0|

|T l(S0)| − |T l(S′0)| = |S0||T l(S0)| − |S0|E[|T l(S′0)|]

=⇒ (|S0| − 1)|T l(S0)| ≤ |S0|E[|T l(S′0)|] =⇒ |T l(S0)|
|S0|

≤ E[|T l(S′0)|]
|S′0|

We have just shown that E[|T l(S0
i )|]

i is monotonically nonincreasing as i increases. If we let S0
i denote a

random subset of S0 of size i, we have:

E[|Sl|] =
|S0|∑
i=1

E[|T l(S0
i )|]

i
(7)

As E[|Sl|] is the sum of monotonically nonincreasing parts, we conclude that it is a concave function of the
batch size, |S0|.

So, the slope of the expected number of sampled vertices flattens as batch size increases, see the last row
in Figure 3 and the first row in Figure 6. Note that this implies work monotonicity as well.

3.1 Cooperative Minibatching

As explained in Section 2, Independent Minibatching can not take advantage of the reduction in work with
increasing global batch sizes and number of PEs, because it uses separate small, local, batches of sizes b
on each PE for each step of training. On the other hand, one can also keep the global batch size constant,
bP = |S0|, and vary the number of processors P . As P increases, Independent Minibatching will perform
more and more duplicate work because the local batch size is a decreasing function, b = |S0|

P , of P .

Algorithm 1 Cooperative minibatching
Input: seed vertices S0

p for each PE p ∈ P , # layers L
for all l ∈ {0, . . . , L− 1} do {Sampling}

for all p ∈ P do in parallel
Sample next layer vertices S̃l+1

p and edges El
p for Sl

p

all-to-all to redistribute vertex ids for S̃l+1
p to get Sl+1

p

for all p ∈ P do in parallel {Feature Loading}
Load input features HL

p from Storage for vertices SL
p

all-to-all to redistribute HL
p to get H̃L

p

for all l ∈ {L− 1, . . . , 0} do {Forward Pass}
for all p ∈ P do in parallel

if l + 1 < L then
all-to-all to redistribute H l+1

p to get H̃ l+1
p

Forward pass on bipartite graph S̃l+1
p → Sl

p with edges El
p, input H̃ l+1

p and output H l
p

for all p ∈ P do in parallel
Compute the loss and initialize gradients G0

p

for all l ∈ {0, . . . , L− 1} do {Backward Pass}
for all p ∈ P do in parallel

Backward pass on bipartite graph Sl
p → S̃

(l+1)
p with edges El

p, input Gl
p and output G̃l+1

p

if l + 1 < L then
all-to-all to redistribute G̃l+1

p to get Gl+1
p

Here, we propose the Cooperative Minibatching method that will take advantage of the work reduction with
increasing batch sizes in multi-PE settings. In Cooperative Minibatching, a single global batch of size bP will
be processed by all the P PEs in parallel, eliminating any redundant work across PEs.
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We achieve this as follows: we first partition the graph in 1D fashion by logically assigning each vertex
and its incoming edges to PEs as Vp and Ep for each PE p. Next, PE p samples its batch seed vertices
Sl

p from the training vertices in Vp for l = 0 of size b. Then using any sampling algorithm, PE p samples
the incoming edges El

p from Ep for its seed vertices. Each PE then computes the set of vertices sampled
S̃l+1

p = {t | (t→ s) ∈ El
p}. Note that, S̃l+1

p has elements residing on different PEs. The PEs exchange the
vertex ids S̃l+1

p so that each PE receives the set Sl+1
p ∈ Vp. This process is repeated recursively for GNN

models with multiple layers by using Sl+1
p as the seed vertices for the next layer. The exchanged information

is cached to be used during the forward/backward passes.

For the forward/backward passes, the same communication pattern used during cooperative sampling is used
to send and receive input and intermediate layer embeddings before each GNN layer invocation. Algorithm 1
details cooperative sampling and cooperative forward/backward passes for a single GNN training iteration.
Independent minibatching works the same except that it lacks the all-to-all operations and has Ãl+1

p = Al+1
p

for any given variable A instead. The redistribution of vertices during sampling happens according to the
initial graph partitioning and the rest of the redistribution operations follow the same communication pattern,
always converting a variable Ãl+1

p into Al+1
p during the forward pass and Al+1

p into Ãl+1
p during sampling

and the backward passes for any variable A. Cooperative Minibatching was first proposed in Balin et al.
(2022; 2023) and was later re-discovered in Polisetty et al. (2023) as Cooperative Training, which was used
during the feature loading and the forward/backward passes of their work while sampling of each minibatch
was performed on a single CPU thread and the edges were split among the GPUs. We refer the reader
to Appendix A.10 to see the relation between the approach proposed here and the work of Jia et al. (2020)
on redundancy-free GCN aggregation.

Table 1: Algorithmic complexities of different stages of GNN training at layer 0 ≤ l < L with L total layers
and batch size B = |S0| with P PEs. Note that |Sl

p(B)| = |Sl(B)| 1
P , |El

p(B)| = |El(B)| 1
P since the PEs

process the partitioned subgraphs. Feature loading happens only at layer L.

Stage Independent Cooperative

Sampling O(|Sl( B
P )| 1β ) O(|Sl

p(B)| 1β + |S̃l+1
p (B)| cα )

Feature loading O(|SL( B
P )|dρ

β ) O(|SL
p (B)|dρ

β + |S̃L
p (B)|dc

α )
Forward/Backward O(M(Sl( B

P ), El( B
P ), Sl+1( B

P )) d
γ ) O(M(Sl

p(B), El
p(B), S̃l+1

p (B)) d
γ + |S̃l+1

p (B)|dc
α )

Complexity Analysis: Let M(V1, E, V2) denote the work to process a bipartite graph V2 → V1 with edges
E for a given GNN model M . Assuming cross PE communication bandwidth α, Storage (e.g., disk, network,
or DRAM) to PE bandwidth as β and PE memory bandwidth γ, and cache miss rate ρ, we have the time
complexities given in Table 1 to perform different stages of GNN training per PE. We also use d for embedding
dimension and c < 1 for the cross edge ratio, note that c ≈ P −1

P for random partitioning, and smaller for
smarter graph partitioning with P standing for the number of PEs. Also the sizes of S̃l become smaller when
graph partitioning is used due to increased overlap.

We see that γ ≈ 2 TB/s , α ≈ 300 GB/s and β ≈ 30 GB/s in today’s modern multi-GPU systems (NVIDIA,
2020a). Due to α being relatively fast compared to γ

M and β, our approach brings performance benefits.
On newer systems, the all-to-all bandwidth continues to increase (NVIDIA, 2023), decreasing the cost of
cooperation on a global mini-batch. However, on systems where the interconnect does not provide full
bandwidth for all-to-all operations, our approach is limited in the speedup it can provide. Our approach
is most applicable for systems with relatively fast all-to-all bandwidth α

c compared to γ
M and β and large

P . In particular, starting from P = 2, cooperative starts to outperform independent even on F/B with the
mag240M dataset and the R-GCN model in Section 4.3 and Tables 4 and 5. More discussion on this topic
can be found in Appendix A.6.
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Figure 2: A smoothed dependent minibatching example for κ = 2. The middle minibatch is interpolated
between the two independent minibatches on the left and the right by interpolating the random numbers
used during sampling.

3.2 Cooperative Dependent Minibatching

Just as any parallel algorithm can be executed sequentially, we can reduce the number of distinct data
accesses by having a single PE process b-sized parts of a single κb-sized minibatch for κ iterations. In light
of Theorems 3.1 and 3.2, consider doing the following: choose κ ∈ Z+, then sample a batch S0 of size κb, i.e.,
κb = |S0| to get S0, . . . , SL. Then sample κ minibatches S0

i , of size b = |S0
i | from this batch of size κb to get

S0
i , . . . , SL

i ,∀i ∈ {0, . . . , κ− 1}. In the end, all of the input features required for these minibatches will be
a subset of the input features of the large batch, i.e. Sj

i ⊂ Sj ,∀i, j. This means that the collective input
feature requirement of these κ batches will be |SL|, the same as our batch of size κb. Hence, we can now take
advantage of the concave growth of the work in Theorem 3.2 and Figure 3.

Note that, if one does not use any sampling algorithms and proceeds to use the full neighborhoods, this
technique will not give any benefits, as by definition, the l-hop neighborhood of a batch of size κb will always
be equal to the union of the l-hop neighborhoods of batches of sizes b. However for sampling algorithms, any
overlapping vertex sampled by any two batches of sizes b might end up with different random neighborhoods
resulting in a larger number of sampled vertices. Thus, having a single large batch ensures that only a single
random set of neighbors is used for any vertex processed over a period of κ batches.

The approach described above has a nested iteration structure and the minibatches part of one κ group will
be significantly different than another group and this might slightly affect convergence. In Appendix A.7, we
propose an alternative smoothing approach that does not require two-level nesting and still takes advantage
of the same phenomenon for the NS and LABOR sampling algorithms.

The main idea of our smoothing approach is as follows: each time one samples the neighborhood of a vertex,
normally it is done independently of any previous sampling attempts. If one were to do it fully dependently,
then one would end up with an identical sampled neighborhood at each sampling attempt. What we propose
is to do something inbetween, so that the sampled neighborhood of a vertex changes slowly over time. The
speed of change in the sampled neighborhoods is 1

κ , and after every κ iterations, one gets fully independent
new random neighborhoods for all vertices, see Figure 2. We will experimentally evaluate the locality benefits
and the overall effect of this algorithm on convergence in Sections 4.2 and 4.3.1, and more details on our
smoothing approach are discussed in Appendix A.7.

3.3 Relation to subgraph sampling methods

Existing subgraph sampling methods Chiang et al. (2019); Zeng et al. (2020); Hu et al. (2020b); Zeng et al.
(2021); Fey et al. (2021); Shi et al. (2023) randomly sample a subset S of the vertices and use the same
subset for all layers of GNN training, S = S0 = · · · = SL. The edges SE used for training are obtained by
taking the vertex induced subgraph SE = {t→ s | (t→ s) ∈ E ∧ t, s ∈ S}. We utilize the same observation
as Theorems 3.1 and 3.2 and state:
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Theorem 3.3. The expected sampled subgraph density E[|SE |]
|S| is nondecreasing as the batch size |S| increases.

Thus, having multiple PEs cooperate and work on a larger minibatch together instead of processing independent
smaller minibatches is theoretically expected to converge faster, as the higher density leads to better
approximations. The proof of Theorem 3.3 is provided in Appendix A.4.

4 Experimental Evaluation

We first compare how the work to process an epoch changes w.r.t. to the batch size to empirically validate The-
orems 3.1 and 3.2 for different graph sampling algorithms. Next, we show how dependent batches introduced
in Section 3.2 benefits GNN training. We also show the runtime benefits of cooperative minibatching compared
to independent minibatching in the multi-GPU setting. Finally, we show that these two techniques are
orthogonal, can be combined to get multiplicative savings. Table 2 lists details of the datasets we used in
experiments. Details on our experimental setup can be found in Appendix A.5.

Table 2: Traits of datasets used in experiments: numbers of vertices, edges, avg. degree, features, cached
vertex embeddings, and training, validation and test vertex splits. Last column has # minibatches in an
epoch during model training with 1024 batch size including validation.

Dataset |V | |E| |E|
|V | # feats. cache size train - val - test (%) # minibatches

flickr 89.2K 900K 10.09 500 70k 50.00 - 25.00 - 25.00 65
yelp 717K 14.0M 19.52 300 200k 75.00 - 10.00 - 15.00 595

reddit 233K 115M 493.56 602 60k 66.00 - 10.00 - 24.00 172
papers100M 111M 3.2B 29.10 128 2M 1.09 - 0.11 - 0.19 1300
mag240M 244M 3.44B 14.16 768 2M 0.45 - 0.06 - 0.04 1215

4.1 Demonstrating monotonicity of work

We use three sampling approaches, NS, LABOR, and RW, to demonstrate that the work to process an
epoch decreases as the batch size increases for the L = 3 layer case across these three different classes of
sampling algorithms. We carried out our evaluation in two problem settings: node and edge prediction. For
node prediction, a batch of training vertices is sampled with a given batch size. Then, the graph sampling
algorithms described in Appendix A.1 are applied to sample the neighborhood of this batch. The top row
of Figure 3 shows how many input vertices is required on average to process an epoch, specifically E[|S3|]

|S0| .
For edge prediction, we add reverse edges to the graph making it undirected and sample a batch of edges.
For each of these edges a random negative edge (an edge that is not part of E) with one endpoint coinciding
with the positive edge is sampled. Then, all of the endpoints of these positive and negative edges are used as
seed vertices to sample their neighborhoods. The bottom row of Figure 3 shows E[|S3|].

We can see that in all use cases, datasets and sampling algorithms, the work to process an epoch is
monotonically decreasing as we proved in Theorem 3.1. We also see the plot of the expected number of
vertices sampled, E[|S3|], is concave with respect to batch size as we already know from Theorem 3.2.

Another observation is that the concavity characteristic of E[|S3|] seems to differ for different sampling
algorithms. In increasing order of concavity we have RW, NS, LABOR-0 and LABOR-*. The more concave a
sampling algorithm’s E[|SL|] curve is, the less it is affected from the NEP and more savings are available
through the use of the proposed methods in Sections 3.1 and 3.2. Note that the differences would grow with
a larger choice of layer count L.

4.2 Dependent Minibatches

We vary the batch dependency parameter κ introduced in Section 3.2 for the LABOR-0 sampler with a
batch size of 1024. Our expectation is that as consecutive batches become more dependent on each other,
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Figure 3: Monotonicity of the work. x-axis shows the batch size, y-axis shows E[|S3|]
|S0| (see Theorem 3.1) for

node prediction (top row) and E[|S3|] (see Theorem 3.2) for edge prediction (bottom row), where E[|S3|]
denotes the expected number of sampled vertices in the 3rd layer and |S0| denotes the batch size. RW stands
for Random Walks, NS for Neighbor Sampling, and LABOR-0/* for the two different variants of the LABOR
sampling algorithm described in Section 2.2.

Figure 4: The validation F1-score with NS sampled neighborhoods trained with the LABOR-0 sampling
algorithm with 1024 batch size and varying κ dependent minibatches, κ =∞ denotes infinite dependency,
meaning the neighborhood sampled for a vertex stays static during training. See Figure 5a for cache miss
rates. See Figure 8 for the training loss and F1-score with the dependent sampler.

the subgraphs used during consecutive steps of training would start overlapping with each other, in which
case, the vertex embedding accesses would become more localized. We attempted to capture this increase
in temporal locality in vertex embedding accesses by implementing an LRU cache to fetch them, the cache
sizes used for different datasets is given in Table 2. Note that the cache miss rate is proportional to the
amount of data that needs to be copied from the vertex embedding storage. The Figure 5a shows that as
κ increases, the cache miss rate across all datasets drops. On reddit, this is a drop from 64% to 16% on,
a 4x improvement. We also observe that the improvement is monotonically increasing as a function of |E|

|V |
given in Table 2. Table 3 and Figure 4 show that training is not negatively affected across all datasets up to
κ = 256 with less than 0.1% F1-score difference, after which point the validation F1-score with w/o sampling
starts to diverge from the κ = 1 case. Runtime benefits of this approach can be observed by comparing the
Cache and Cache, κ columns in Table 4. Appendix A.8 has additional discussion about the effect of varying
κ and the last column of Table 2 shows the number of minibatches in an epoch during training.

9



Published in Transactions on Machine Learning Research (01/2025)

Table 3: Test F1-scores at the highest validation F1-score corresponding to Figure 4, using early stopping.
Averages of 40 runs are presented.

κ reddit papers100M yelp flickr

1 96.72 ± 0.06 66.58 ± 0.17 63.40 ± 0.18 53.82 ± 0.21
4 96.71 ± 0.05 66.60 ± 0.13 63.39 ± 0.19 53.87 ± 0.18
16 96.70 ± 0.05 66.58 ± 0.20 63.42 ± 0.18 53.90 ± 0.17
64 96.67 ± 0.05 66.55 ± 0.20 63.35 ± 0.18 53.88 ± 0.20
256 96.65 ± 0.06 66.56 ± 0.14 63.35 ± 0.19 53.86 ± 0.24
∞ 95.01 ± 0.30 66.46 ± 0.15 62.88 ± 0.18 53.84 ± 0.19

(a) 1 GPU, cache sizes are listed in Table 2. (b) 4 cooperating GPUs, each having a cache of size 1M.

Figure 5: LRU-cache miss rates for LABOR-0 sampling algorithm with 1024 batch size per GPU and varying
κ dependent minibatches, κ =∞ denotes infinite dependency.

4.3 Cooperative Minibatching

We use our largest datasets, mag240M and papers100M, as distributed training is motivated by large-scale
datasets. We present our runtime results on systems equipped with NVIDIA GPUs, with 4 and 8 A100
80 GB (NVIDIA, 2021) and 16 V100 32GB (NVIDIA, 2020b), all with NVLink interconnect between the
GPUs (600 GB/s for A100 and 300 GB/s for V100). The GPUs perform all stages of GNN training and
the CPUs are only used to launch kernels for the GPUs. Feature copies are performed by GPUs as well,
accessing pinned feature tensors over the PCI-e using zero-copy access. In cooperative minibatching, both
data size and computational cost are shrinking with increasing numbers of GPUs, relative to independent
minibatching. We use the GCN model for papers100M and the R-GCN model (Schlichtkrull et al., 2017) for
mag240M. As seen in Table 4, cooperative minibatching reduces all the runtimes for different stages of GNN
training, except for the F/B (forward/backward) times on papers100M where the computational cost is not
high enough to hide the overhead of communication.

If we take the numbers in the Total columns from Table 4, divide independent runtimes by the corresponding
cooperative ones, then we get Table 5. We can see that the theoretical decrease in work results in increasing
speedup numbers with the increasing number of PEs, due to Theorem 3.1. We would like to point out
that E[|S3|]

|S0| curves in Figure 3 are responsible for these results. With P PEs and |S0| global batch size, the
work performed by independent minibatching vs cooperative minibatching can be compared by looking at
x = 1

P |S
0| vs x = |S0| respectively.

We also ran experiments that show that graph partitioning using METIS (Karypis & Kumar, 1998) prior to the
start of training can help the scenarios where communication overhead is significant. The forward-backward
time decreases from 13.0ms to 12.0ms on papers100M with LABOR-0 on 4 NVIDIA A100 GPUs with
partitioning due to reduced communication overhead using the same setup as Table 4.

Increasing the number of GPUs increases the advantage of cooperative minibatching compared to independent
minibatching. The forward-backward time on mag240M with LABOR-0 is 200 (same as independent baseline),
194, 187 and 183 ms with 1, 2, 3 and 4 cooperating GPUs, respectively measured on the NVIDIA DGX
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Table 4: Cooperative vs independent minibatching runtimes per minibatch (ms) on three different systems
with 4 and 8 NVIDIA A100 80 GB GPUs, and 16 NVIDIA V100 32GB GPUs. I/C denotes whether
independent or cooperative minibatching is used. Samp. is short for Graph Sampling, Feature Copy stands
for vertex embedding copies over PCI-e and Cache denotes the runtime of copies performed with a cache that
can hold 106 vertex embeddings per A100 and 5 × 105 per V100. κ denotes the use of batch dependency
κ = 64. F/B means forward/backward. Total time is computed by the fastest available Feature Copy time,
the sampling time, and the F/B time. |S0| is the global batch size and b is the the batch size per GPU. α
stands for cross GPU communication bandwidth (NVLink), β for PCI-e bandwidth and γ for GPU global
memory bandwidth. Green was used to indicate the better result between independent and cooperative
minibatching, while Bold was used to highlight the feature copy time included in the Total column.

# GPUs, γ
α, β, |S0|

Dataset
& Model Sampler I/C Samp. Feature Copy F/B Total- Cache Cache, κ

4 A100
γ = 2TB/s

α = 600GB/s
β = 64GB/s
|S0| = 212

b = 1024

papers100M
GCN

LABOR-0 Indep 21.7 18.4 16.8 11.2 8.9 41.8
Coop 17.7 14.0 10.1 5.8 13.0 36.5

NS Indep 16.1 26.5 22.1 - 10.1 48.3
Coop 11.9 21.3 12.9 - 15.0 39.8

mag240M
R-GCN

LABOR-0 Indep 26.0 57.9 56.0 41.0 199.9 266.9
Coop 20.0 51.1 36.9 23.4 183.3 226.7

NS Indep 14.4 78.0 71.2 - 223.0 308.6
Coop 12.3 73.9 47.5 - 215.6 275.4

8 A100
γ = 2TB/s

α = 600GB/s
β = 64GB/s
|S0| = 213

b = 1024

papers100M
GCN

LABOR-0 Indep 21.3 21.1 18.7 12.0 9.3 42.6
Coop 16.5 12.4 7.1 4.0 13.5 34.0

NS Indep 15.8 31.0 24.5 - 10.3 50.6
Coop 12.5 19.4 9.0 - 15.6 37.1

mag240M
R-GCN

LABOR-0 Indep 30.6 70.1 66.2 46.8 202.1 279.5
Coop 21.6 50.6 29.0 19.3 172.2 213.1

NS Indep 15.0 94.9 80.9 - 224.8 320.7
Coop 14.9 71.6 39.6 - 209.0 263.5

16 V100
γ = 0.9TB/s
α = 300GB/s
β = 32GB/s
|S0| = 213

b = 512

papers100M
GCN

LABOR-0 Indep 39.1 44.5 40.2 29.4 15.1 83.6
Coop 26.9 22.7 10.4 4.9 19.1 50.9

NS Indep 18.0 61.3 52.0 - 16.2 86.2
Coop 19.2 34.9 13.0 - 21.3 53.5

mag240M
R-GCN

LABOR-0 Indep 50.8 128.8 121.3 96.2 156.1 303.1
Coop 29.2 78.1 42.8 23.5 133.3 186.0

NS Indep 19.3 167.3 152.6 - 170.9 342.8
Coop 19.3 116.1 53.1 - 160.4 232.8

Table 5: Runtime improvements of Cooperative Minibatching over Independent Minibatching compiled
from the Total column of Table 4. This is a further improvement on top of the speedup of independent
minibatching already achieves using the same number GPUs.

Dataset & Model Sampler 4 GPUs 8 GPUs 16 GPUs

papers100M & GCN LABOR-0 15% 25% 64%
NS 21% 36% 61%

mag240M & R-GCN LABOR-0 18% 31% 63%
NS 12% 22% 47%

Station A100 machine with R-GCN. When using a different GNN model such as GATs (Veličković et al.,
2018), the forward-backward runtime is 190 ms on 1 GPU vs 172 ms on 4 GPUs on mag240M. The decrease in
runtime with increasingly cooperating GPUs is due to the decrease in redundant work they have to perform.
Even though the batch size per GPU is constant, the runtime goes down similar to the plots in the top row
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of Figure 3, except that it follows, kE[|S2|]
|S0| , the average number of edges in the 3rd layer when a sampler

with fanout k is used.

Additionally, we demonstrate that there is no significant model convergence difference between independent
vs cooperative minibatching in Appendix A.9.

4.3.1 Cooperative-Dependent Minibatching

Table 6: Runtime improvements of Dependent Minibatching, for Independent and Cooperative Minibatching
methods, compiled from the Cache, κ and Cache columns of Table 4 with LABOR-0. Making consecutive
minibatches dependent increases temporal locality, hence reducing cache misses.

Dataset & Model I/C 4 GPUs 8 GPUs 16 GPUs

papers100M & GCN Indep + Depend 50% 57% 37%
Coop + Depend 74% 78% 112%

mag240M & R-GCN Indep + Depend 37% 41% 26%
Coop + Depend 58% 50% 82%

We use the same experimental setup as Section 4.3 but vary the κ parameter to show that cooperative
minibatching can be used with dependent batches (Figure 5b). We use a cache size of 1M vertex embeddings
per GPU. Cooperative feature loading effectively increases the global cache size since each PE (GPU) caches
only the vertices assigned to them while independent feature loading can have duplicate entries across caches.
For our largest dataset mag240M, on top of 1.4× reduced work due to cooperative minibatching alone, the
cache miss rates were reduced by more than 2×, making the total improvement 3×. Runtime results for
κ ∈ {1, 256} are presented in Table 4, the Feature Copy Cache and Cache, κ columns. Table 6 summarizes
these results by dividing the runtimes in Cache by Cache, κ and reporting percentage improvements.

5 Key insights of Cooperative Minibatching

In Section 2, the work W (|S0|) to process an epoch (full pass over the dataset) for a given minibatch size |S0|
is characterized by the number of minibatches in an epoch ( |V |

|S0| ) × the amount of work to process a single
minibatch, which is approximated by the sum of the number of sampled vertices in each layer (

∑L
l=1 |Sl|).

This can be seen in Equation (3).

Equation (3) only considers the number of processed vertices and it is good enough for our purposes. Since all
the sampling algorithms we consider in Section 2.2 have fanout parameters k, the number of edges sampled
for each seed vertex has an upper bound k. So, given vertices Sl for the lth layer, the number of sampled
edges in that same layer will be ≤ k|Sl|. Clearly for almost any GNN model, the runtime complexity to
process layer l is linearly increasing w.r.t. the number of vertices (|Sl|) and edges (≤ k|Sl|) processed, so the
runtime complexity is O(|Sl|+ k|Sl|) = O(|Sl|).

A more comprehensive analysis of the runtime complexities of Cooperative and Independent Minibatching
approaches is provided in Appendix A.6, taking into account the exact numbers of sampled vertices (|Sl|),
edges (|El|), and various communication bandwidths (α, γ, β) and even graph partition quality c and cache
misses ρ.

As Cooperative Minibatching considers a single minibatch of size B for all P PEs, the growth of the number of
sampled vertices and edges is characterized by B as the minibatch size. In contrast, Independent Minibatching
assigns different minibatches of sizes B

P to each PE, so the growth of the sampled vertices and edges is
characterized by B

P as the minibatch size. Due to Theorems 3.1 and 3.2, the work W (B) with respect to a
minibatch size B is a concave function, we have W (B) ≤ PW ( B

P ), meaning that Cooperative Minibatching is
theoretically faster than Independent Minibatching, if communication between PEs is infinitely fast. For
empirical data, one can look at the first-row of Figure 3 at the x-axis B for Cooperative and B

P for Independent,
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due to:

W (B) ≤ PW (B

P
) ⇐⇒ W (B)

B
≤

W ( B
P )

B
P

as proven by Theorem 3.1. As E[|S3|]
|S0| curves in Figure 3 are decreasing, the work of Cooperative Minibatching

is significantly less than Independent Minibatching. Finally, modern multi-GPU computer systems have very
fast inter-GPU communication bandwidths, e.g. NVLink, which is why we are able to show favorable results
compared to Independent Minibatching despite performing seemingly unnecessary communication.

6 Conclusions

In this paper, we experimentally and theoretically demonstrated that the cost of processing a minibatch is a
concave function of batch size in GNNs, unlike DNNs where the cost scales linearly. We then proposed two
approaches to take advantage of cost concavity. The first approach, which we call cooperative minibatching
proposes to partition a minibatch between multiple PEs and process it cooperatively. This is in contrast
to existing practice of having independent minibatches per PE, and avoids duplicate work that is a result
of vertex and edge repetition across PEs. The second approach proposes the use of consecutive dependent
minibatches, through which the temporal locality of vertex and edge accesses is manipulated. As batches get
more dependent, the locality increases. We demonstrated this increase in locality by employing an LRU-cache
for vertex embeddings on GPUs. Finally, we showed that these approaches can be combined without affecting
convergence, and speed up multi-GPU GNN training by up to 64%.
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A Appendix

A.1 Graph Sampling

Below, we review three different sampling algorithms for minibatch training of GNNs. Our focus in this work
is samplers whose expected number of sampled vertices is a function of the batch size. All these methods are
applied recursively for GNN models with multiple layers.

A.1.1 Neighbor Sampling (NS)

Given a fanout parameter k and a batch of seed vertices S0, NS by (Hamilton et al., 2017) samples the
neighborhoods of vertices randomly. Given a batch of vertices S0, a vertex s ∈ S0 with degree ds = |N(s)|, if
ds ≤ k, NS uses the full neighborhood N(s), otherwise it samples k random neighbors for the vertex s.

A.1.2 LABOR Sampling

Given a fanout parameter k and a batch of seed vertices S0, LABOR-0 (Balin & Çatalyürek, 2023) samples
the neighborhoods of vertices as follows. First, each vertex rolls a uniform random number 0 ≤ rt ≤ 1. Given
batch of vertices S0, a vertex s ∈ S0 with degree ds = |N(s)|, the edge (t→ s) is sampled if rt ≤ k

ds
. Since

different seed vertices ∈ S0 end up using the same random variate rt for the same source vertex t, LABOR-0
samples fewer vertices than NS in expectation.

The LABOR-* algorithm is the importance sampling variant of LABOR-0 and samples an edge (t → s)
if rt ≤ csπt, where π is importance sampling probabilities optimized to minimize the expected number
of sampled vertices and cs is a normalization factor. LABOR-* samples fewer vertices than LABOR-0 in
expectation.

Note that, choosing k ≥ maxs∈V ds corresponds to training with full neighborhoods for both NS and LABOR
methods.

A.1.3 RandomWalk (RW) Sampling

Given a walk length o, a restart probability p, number of random walks a, a fanout k, and a batch of vertices
S0, a vertex s ∈ S0, a Random Walk (Ying et al., 2018) starts from s and each step picks a random neighbor
s′ from N(s). For the remaining o− 1 steps, the next neighbor is picked from N(s′) with probability 1− p,
otherwise it is picked from N(s). This process is repeated a times for each seed vertex and lastly, the top k
visited vertices become the neighbors of s for the current layer.

Notice that random walks correspond to weighted neighbor sampling from a graph with adjacency matrix
Ã =

∑o
i=1 Ai, where the weights of Ã depend on the parameters a, p and k. Random walks give us the ability

to sample from Ã without actually forming Ã.

A.2 Work Monotonicity Theorem

Theorem A.1. The work per epoch required to train a GNN model using minibatch training is monotonically
nonincreasing as the batch size increases.

Proof. Given any n ≥ 2, let’s say we uniform randomly sample without replacement S0 ⊂ V , where n = |S0|.
Now note that for any S′0 ⊂ S0, using the definition in (2), we have S′l ⊂ Sl,∀l. We will take advantage of
that and define S′0 = S0 \ {s} in following expression.
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∑
s∈S0

S′0=S0\{s}

|Sl| − |S′l| =
∑
s∈S0

S′0=S0\{s}

∑
w∈Sl

1[w /∈ S′l]

=
∑
s∈S0

S′0=S0\{s}

∑
w∈{s}l

1[w /∈ S′l]

=
∑
s∈S0

S′0=S0\{s}

∑
w∈{s}l

1[w /∈ {s′}l,∀s′ ∈ S′0]

=
∑

w∈Sl

∑
s∈S0

w∈{s}l

1[w /∈ {s′}l,∀s′ ∈ S0 \ {s}]

(8)

In the last expression, for a given w ∈ Sl, if there are two different elements s, s′ ∈ S0 such that w ∈ {s}l

and w ∈ {s′}l, then the indicator expression will be 0. It will be 1 only if w ∈ {s}l for a unique s ∈ S0. So:

∑
w∈Sl

∑
s∈S0

w∈{s}l

1[w /∈ {s′}l,∀s′ ∈ S0 \ {s}] =
∑

w∈Sl

∃!s∈S0,w∈{s}l

1

= |{w ∈ Sl | w ∈ {s}l,∃!s ∈ S0}| ≤ |Sl|

(9)

Using this, we can get:

∑
S′0⊂S0

|S′0|+1=|S0|

|Sl| − |S′l| ≤ |Sl|

⇐⇒ |S0||Sl| −
∑

S′0⊂S0

|S′0|+1=|S0|

|S′l| ≤ |Sl|

⇐⇒ |Sl|(|S0| − 1) ≤
∑

S′0⊂S0

|S′0|+1=|S0|

|S′l|

⇐⇒ |Sl|(|S0| − 1) ≤ |S0|E[|S′l|]

⇐⇒ |Sl|
|S0|

≤ E[S′l]
|S′0|

Since S0 was uniformly randomly sampled from V , its potential subsets S′0 are also uniformly randomly
picked from V as a result. Then, taking an expectation for the random sampling of S0 ⊂ V , we conclude
that E[|Sl|]

|S0| ≤
E[|S′l|]

|S′0| , i.e., the expected work of batch size n is not greater than the work of batch of size
n− 1. This implies that the work with respect to batch size is a monotonically nonincreasing function.

A.3 Overlap monotonicity

Theorem A.2. The expected subgraph size E[|Sl|] required to train a GNN model using minibatch training is
a concave function of batch size, |S0|.

Proof. Given any n ≥ 2, let’s say we uniformly randomly sample without replacement S0 ⊂ V of size n. Note
that we use the T l and T l

2 as defined in Equations (5) and (6).
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|T l(S0)| − 2|T l
2(S0)| =

∑
S′0⊂S0

|S′0|+1=|S0|

|T l(S0)| − |T l(S′0)|

= |S0||T l(S0)| − |S0|E[|T l(S′0)|]
⇐⇒ (|S0| − 1)|T l(S0)| = |S0|E[|T l(S′0)|]− 2|T l

2(S0)|

⇐⇒ |T l(S0)|
|S0|

= E[|T l(S′0)|]
|S′0|

− 2|T l
2(S0)|

|S′0||S0|

=⇒ |T l(S0)|
|S0|

≤ E[|T l(S′0)|]
|S′0|

(10)

where the first equality above is derived similar to Equations (8) and (9). Overall, this means that the overlap
between vertices increases as the batch size increases. Utilizing our finding from Equations (8) and (9), we
have:

∑
S′0⊂S0

|S′0|+1=|S0|

|Sl| − |S′l| = |T l(S0)|

=⇒ |S0||Sl| − |S0|E[|S′l|] = |T l(S0)|

=⇒ |Sl| = E[|S′l|] + |T
l(S0)|
|S0|

=⇒ E[|Sl|] = E[|S′l|] + E[|T l(S0)|]
|S0|

(11)

Note that the last step involved taking expectations for the random sampling of S0. See the recursion
embedded in the equation above, the expected size of the subgraph Sl with batch size |S0| depends on the
expected size of the subgraph S′l with batch size |S0| − 1. Expanding the recursion, we get:

E[|Sl|] =
|S0|∑
i=1

E[|T l(S0
i )|]

i
(12)

where S0
i is a random subset of S0 of size i. Since E[|T l(S0

i )|]
i is monotonically nonincreasing as i increases as

we showed in (10), we conclude that E[|Sl|] is a concave function of the batch size, |S0|.

A.4 Subgraph density monotonicity

Theorem A.3. The expected sampled subgraph density E[|SE |]
|S| is nondecreasing as the batch size |S| increases.

Proof. Given n ≥ 1 and any probability distribution p on V such that ps denotes the probability of including
s in our minibatch S of size |S| = n, the probability of including the edge t→ s becomes ptps. Since ps(n) is
linear as a function of n, ∀s ∈ V , it can be decomposed as ps(n) = p′

sn.

E[|SE |]
|S|

= 1
|S|

∑
(t→s)∈E

P(t ∈ S ∧ s ∈ S) = 1
|S|

∑
(t→s)∈E

ptps = 1
n

∑
(t→s)∈E

p′
tnp′

sn = n
∑

(t→s)∈E

p′
tp

′
s (13)

We can see that the expected sampled subgraph density is a linear function of the batch size |S| = n and this
implies that it is nondecreasing as the batch size |S| increases.
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Figure 6: Monotonicity of the work. x axis shows the batch size, y axis shows E[|S3|] for node prediction (top
row) and E[|S3|]

|S0| for edge prediction (bottom row), where E[|S3|] denotes the expected number of vertices
sampled in the 3rd layer and |S0| denotes the batch size. RW stands for Random Walks, NS stands for
Neighbor Sampling, and LABOR-0/* stand for the two different variants of the LABOR sampling algorithm
described in Section 2.2. Completes Figure 3.

A.5 Experimental Setup

Setup: In our experiments, we use the following datasets: reddit (Hamilton et al., 2017), papers100M (Hu
et al., 2020a), mag240M (Hu et al., 2021), yelp and flickr (Zeng et al., 2020), and their details are given
in Table 2. We use Neighbor Sampling (NS) (Hamilton et al., 2017), LABOR Sampling (Balin & Çatalyürek,
2023) and Random Walks (RW) (Ying et al., 2018) to form minibatches. We used a fanout of k = 10 for
the samplers. In addition, Random Walks used length of o = 3, restart probability p = 0.5 and number of
random walks from each seed a = 100. All our experiments involve a GCN model with L = 3 layers (Hamilton
et al., 2017), with 1024 hidden dimension for mag240M and papers100M and 256 for the rest. Additionally,
papers100M and mag240M datasets were made undirected graphs for all experiments and this is reflected in
the reported edge counts in Table 2. Input features of mag240M are stored with the 16-bit floating point
type. We use the Adam optimizer (Kingma & Ba, 2014) with 10−3 learning rate in all the experiments.

Implementation: We implemented 12 our experimental code using C++ and Python in the DGL frame-
work (Wang et al., 2019) with the Pytorch backend (Paszke et al., 2019). All our experiments were repeated
50 times and averages are presented. Early stopping was used during model training runs. So as we go to the
right along the x-axis, the variance of our convergence plots increases because the number of runs that were
ongoing is decreasing.

A.6 Complexity Analysis (cont.)

Our goal in this section is to empirically show the work reduction enjoyed by cooperative minibatching
over independent minibatching by reporting the number of vertices and edges processed per PE. We also
report the number of vertices that are communicated for cooperative minibatching during its all-to-all calls
in Algorithm 1 and Figure 7b. The results are given in Table 7.

Looking at Tables 1 and 7, we make the following observations:
1Source code is available at https://github.com/GT-TDAlab/dgl-coop/tree/dist_graph_squashed_wip_cache
2Cooperative and dependent minibatching are also available in the GraphBolt GNN dataloading library.

20

https://github.com/GT-TDAlab/dgl-coop/tree/dist_graph_squashed_wip_cache
https://www.dgl.ai/dgl_docs/generated/dgl.graphbolt.LayerNeighborSampler.html


Published in Transactions on Machine Learning Research (01/2025)

Forward 
L2

Backward 
L1

Update

PE 0

PE 1

Forward 
L1

Backward 
L2

Forward 
L2

Backward 
L1

Update
Forward 

L1
Backward 

L2

Sto
rage to

 C
o

m
p

u
te C

lu
ster C

o
n

n
ectio

n

Compute Cluster Interconnect

Communication 
Volume Relative 

to L2 input nodes, 
𝑆2

(a) Independent Minibatching

Forward 
L2

Backward 
L1

Update

PE 0

PE 1

Forward 
L1

Backward 
L2

Forward 
L2

Backward 
L1

Update
Forward 

L1
Backward 

L2

Sto
rage to

 C
o

m
p

u
te C

lu
ster C

o
n

n
ectio

n

Communication 
Volume Relative 

to L2 input nodes, 
𝑆2

Compute Cluster Interconnect

Communication 
Volume Relative to 
L1 input nodes, 𝑆1

Communication 
Volume Relative to 
L2 input nodes, 𝑆2

(b) Cooperative Minibatching

Figure 7: A comparison of Independent and Cooperative Minibatching approaches in the feature loading and
forward-backward GNN stages. The thickness of the red arrows indicates the data volume. Due to redundant
vertices across PEs, Independent Minibatching wastes (PCI-e) bandwidth for vertex embedding copies from
Storage. Moreover, the PEs perform identical computations for redundant edges across PEs in Independent
Minibatching.

Table 7: Average number of vertices and edges sampled in different layers with LABOR-0 per PE, reduced
by taking the maximum over 4 PEs (All the numbers are in thousands, lower is better) with batch size
|S0| = 1024. c|S̃l| shows the number of vertices communicated at layer l. Papers and mag were used as short
versions of papers100M/GCN and mag240M/R-GCN dataset model pairs respectively. Last column shows
forward-backward (F/B) runtime in ms.

Dataset Part. I/C |S3| c|S̃3| |S̃3| |E2| |S2| c|S̃2| |S̃2| |E1| |S1| F/B

papers
random Indep 463 0 463 730 74.8 0 74.8 93.6 9.63 8.9
random Coop 318 311 463 608 62.4 56.8 82.8 89.9 9.28 13.0
metis Coop 328 179 402 615 63.1 34.0 73.8 90.8 9.35 12.0

mag
random Indep 443 0 443 647 67.9 0 67.9 82.0 8.78 199.9
random Coop 324 310 459 566 59.8 53.1 77.3 80.4 8.62 183.3
metis Coop 334 178 419 576 60.6 31.0 71.3 81.8 8.80 185.1

1. All runtime complexities for cooperative minibatching scales with |Sl
p(B)| = |Sl(B)| 1

P and |El
p(B)| =

|El(B)| 1
P ≤ |S

l(B)| kP and for independent minibatching with |Sl( B
P )| and |El( B

P )| ≤ |Sl( B
P )|k, for a

sampler with fanout k. Since E[|Sl(B)|] is a concave function, E[|Sl(B)|] 1
P ≤ E[|Sl(B

P )|], and this
corresponds to looking at Figure 3 first row with x = B for coop and x = B

P for independent if one
wanted to guess how their runtime would change with changing B and P . For an example, all the
runtime numbers we have provided in the Table 4 are for 4 GPUs. Going from 4 to 8 would increase
the edge of cooperative over independent even more, see Table 5.

2. Sampling and Feature loading over PCI-e requires α ≫ β for cooperative to get a speedup over
independent.

3. In order for cooperative F/B to improve against independent, we need that α
c > γ

M .

4. Cross edge ratio c reduces all communication between PEs. In particular, graph partitioning will
lower both c and |S̃l

p(B)|, lowering the communication overhead, see c|S̃l| columns in Table 7.

5. The model complexity M is small for the GCN model (papers100M) but large for the R-GCN model
(mag240M), as shown by the F/B runtime numbers in Table 2. Also, the communication overhead
between the two scenarios is similar, meaning communication can take from upto 30% to less than a
few percent depending on M . For the papers100M dataset, communication makes up more of the
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runtime, so graph partitioning helps bring the F/B runtime down. However, the load imbalance
caused by graph partitioning slows down the F/B runtime despite lowered communication costs for
the mag240M dataset.

A.7 Smoothed Dependent Minibatching

As described in Section 2, NS algorithm works by using the random variate rts for each edge (t→ s). Being
part of the same minibatch means that a single random variate rts will be used for each edge. To generate
these random variates, we initialize a Pseudo Random Number Generator (PRNG) with a random seed z
along with t and s to ensure that the first rolled random number rts from the PRNG stays fixed when the
random seed z is fixed. Given random seeds z1 and z2, let’s say we wanted to use z1 for the first κ iterations
and would later switch to the seed z2. This switch can be made smoothly by interpolating between the
random seeds z1 and z2 while ensuring that the resulting sampled random numbers are uniformly distributed.
If we are processing the batch number i < κ in the group of κ batches, then we want the contribution of z2 to
be c = i

κ , while the contribution of z1 is 1− c. We can sample n1
ts ∼ N (0, 1) with seed z1 and n2

ts ∼ N (0, 1)
with seed z2. Then we combine them as

nts(c) = cos(cπ

2 )n1
ts + sin(cπ

2 )n2
ts

note that nts(0) = n1
ts, nts(1) = n2

ts and nts(c) ∼ N (0, 1),∀c ∈ R also, then we can set rts = Φ(nts(c)), where
Φ(x) = P(Z ≤ x) for Z ∼ N (0, 1), to get rts ∼ U(0, 1) that the NS algorithm can use. Dropping s from all
the notation above gives the version for LABOR. In this way, the random variates change slowly as we are
switching from one group of κ batches to another. When i = κ, we let z1 ← z2 and initialize z2 with another
random seed. To use this approach, only the random variate generation logic needs modification, making
its implementation for any sampling algorithm straightforward compared to the nested approach initially
described. Figure 2 shows an example of this approach for κ = 2.

A.8 Dependent batches (cont.)

Looking at the training loss and validation F1-score with sampling curves in Figure 8, we notice that the
performance gets better as κ is increased. This is due to the fact that a vertex’s neighborhood changes slower
and slower as κ is increased, the limiting case being κ =∞, in which case the sampled neighborhoods are
unchanging. This makes training easier so κ =∞ case leads the pack in the training loss and validation F1-
score with sampling curves.

A.9 Comparing a single batch vs P independent batches convergence

We investigate whether training with a single large batch in P -GPU training shows any convergence differences
to the current approach of using P separate batches for each of the GPUs. We use a global batch size of
4096 and divide a batch into P ≤ 8 independent batches, with each batch having a size of 4096

P . We use NS
and LABOR-0 samplers with fanouts of k = 10 for each of the 3 layers. Figure 9 shows that there are no
significant differences between the two approaches, we present the results averaged over the samplers to save
space.

A.10 Redundancy Free GCN aggregation

Jia et al. (2020) proposes a method of reducing processing during neighborhood aggregation by finding
common sub-neighborhoods among aggregated vertices, whether using full-batch or minibatch training. That
is, if two vertices have the neighborhoods {A, B, C} and {B, C, D}, and a summation operator is used for
aggregation, then instead of computing four additions: A + B + C and B + C + D concurrently, the three
additions BC = B + C, A + BC, and BC + D can be computed. This approach is orthogonal to the
approaches proposed in Section 3 in that it reduces redundant aggregation steps, whereas our approach
reduces redundant input nodes and edges in parallel computations. As such, the two approaches could be
employed together.
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Figure 8: LABOR-0 sampling algorithm with 1024 batch size and varying κ dependent minibatches, κ =∞
denotes infinite dependency, meaning the neighborhood sampled for a vertex stays static during training.
The first row shows the training F1-score with the dependent sampler. The second row shows the training
loss curve. Completes Figure 4.

Figure 9: Convergence difference between cooperative vs independent minibatching with a global batch size
of 4096 averaged over Neighbor and LABOR-0 samplers.

A.11 Limitations

Our proposed Cooperative Minibatching approach requires a relatively fast interconnect between the Processing
Elements. Modern multi-GPU systems usually have such interconnect between the GPUs. Nowadays, such fast
interconnects are being extended to the multi-node setting, for up to 72 GPUs connected via NVLink (NVIDIA,
2024).
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On distributed training, each computing node equipped with multiple cores and/or GPUs, the interconnect
between cores and/or GPUs of the same node, are also relatively much faster than the interconnect among
nodes.

The proposed dependent minibatching approach does not have any such limitation.
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