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ABSTRACT

Denoising diffusion probabilistic models (DDPMs) and their variants have
achieved strong performance across a wide range of tasks, from image restora-
tion to text-to-image generation. Despite these successes, the interplay between
timesteps and noise schedules in the diffusion process remains poorly understood.
In particular, it is unclear how these factors shape information flow and influence
the quality of the final output. This paper investigates diffusion models through
the lens of information theory. We introduce an entropy-guided noise scheduling
strategy and a mutual-information-based evaluation framework. First, leveraging
the differential entropy of Gaussian distributions, we develop a method to com-
pute entropy values of noisy images that are consistent with the diffusion process.
Building on this, we design an entropy-guided scheduling strategy to explicitly
link timesteps with noise levels during the forward process. Finally, we propose a
mutual-information-based evaluation metric to assess the image restoration ability
of DDPMs. Experiments on MNIST and Fashion-MNIST demonstrate the feasi-
bility of quantifying and guiding information flow in diffusion models.

1 INTRODUCTION

Diffusion models have become a cornerstone of modern generative modeling, achieving state-of-
the-art results in image generation, restoration, and video synthesis (Croitoru et al., 2023). These
models corrupt data through a forward noising process and then learn to reverse this process to
recover clean samples. Building on the pioneering work of (Sohl-Dickstein et al., 2015), (Ho et al.,
2020) formalized denoising diffusion probabilistic models (DDPMs), which generate high-quality
samples without relying on adversarial training.

Since then, a series of extensions have further improved efficiency and fidelity. The denoising dif-
fusion implicit model (DDIM) (Song et al., 2020) introduced a non-Markovian forward process,
enabling accelerated “jump-step” sampling. Improved DDPMs (Nichol & Dhariwal, 2021) incorpo-
rated learned variance schedules, reducing sampling complexity while enhancing likelihood perfor-
mance. Score-based generative models (Song & Ermon, 2019) refined both training and sampling
through optimized noise scaling strategies and adjusted Langevin dynamics. Together, these ad-
vances have established diffusion models as competitive tools for high-resolution image synthesis
with increasingly efficient sampling Dhariwal & Nichol (2021); Bulat et al. (2018).

Despite this progress, a fundamental question remains unresolved:

How do timesteps and noise schedules interact, and in what ways do they shape the diffusion
process and its outcomes?

Answering this question is crucial for principled noise schedule design and for rigorous evaluation
of diffusion model performance Chen (2023); Liu & Yuan (2024).

Meanwhile, concepts from information theory Shannon (1948); Cover & Thomas (2006) have be-
come deeply integrated into generative modeling, offering new ways to analyze and guide learning.
Representative examples include InfoGAN (Chen et al., 2016), which maximizes mutual informa-
tion to learn interpretable latent variables, and InfoVAE (Zhao et al., 2017), which leverages mutual
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Table 1: Noise schedules used in diffusion models.
Noise Schedule Form of Beta (βt)

Linear βt = β1 +
βT−β1

T t

Cosine βt = 1− θt
θt−1

, θt = cos2
(

t+s
T+s · π

2

)
Quadratic βt =

(√
β1 +

√
βT−

√
β1

T t
)2

Sigmoind βt =
1

1+e−bt
(βT − β1) + β1, bt = 6( 12T − 1)

information to improve posterior approximation. Furthermore, mutual information can be used
in the feature selection process Hoque et al. (2016); Sulaiman & Labadin (2015). More broadly,
entropy-based principles have been applied to conditional denoising, compression, and representa-
tion learning, underscoring the versatility of information-theoretic tools in deep generative models
(Principe, 2010; Yang & Mandt, 2023; Zheng et al., 2022; Tishby & Zaslavsky, 2015; Shwartz-Ziv
& Tishby, 2017; Kumar et al., 2025).

Motivated by these insights, this paper investigates diffusion models through an information-
theoretic lens. We propose an entropy-guided noise scheduling strategy that explicitly links
timesteps to noise levels, and we introduce a mutual-information-based evaluation framework to as-
sess the restoration capacity of DDPMs. Experiments on MNIST and Fashion-MNIST demonstrate
the effectiveness of our approach, showing that diffusion processes can be systematically analyzed
and improved by modeling their information flow.

2 BACKGROUND

In this section, we briefly review diffusion models including the forward process and the related
noise schedules. Diffusion models are latent variable models involving two main stages: a for-
ward (noising) process and a reverse (denoising) process. In this study, we choose a foundational
class (i.e., DDPMs) within this family as a representative and briefly describe its forward diffu-
sion process from Ho et al. (2020). Given a data distribution x0 ∼ q(x0), the forward diffusion
process of DDPMs, which gradually adds Gaussian noise to the data through a variance schedule
β1, β2, . . . , βT ∈ (0, 1), can be formulated as

q(x1,x2, . . . ,xT |x0) =

T∏
t=1

q(xt|xt−1), q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI). (1)

As introduced in Ho XXX, the diffusion process admits sampling xt at an arbitrary timestep t
directly depented on the input x0, characterized as the following closed form

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), xt =

√
ᾱtx0 +

√
1− ᾱtϵ, (2)

where αt := 1 − βt, ᾱt :=
∏t

s=1 αs. From the above analysis, the noisy data at arbitrary timestep
can be measured by entropy in Information Theory.

The noise schedule has a significant impact on the training process of diffusion models, as it af-
fects both the distribution of the noisy training set and the weights of the objective function at each
noise level Chen (2023); Liu & Yuan (2024). The involved noise schedules includes Linear, Cosine,
Quadratic Nichol & Dhariwal (2021) and Sigmoid 1, listed in Table 1. Here, by setting the hyper-
parameters β1 = 0.0001, βT = 0.02, s = 0.08, the variations of β1, β2, . . . , βT at T = 300 can be
observed in Figure 1.

3 ENTROPY-GUIDED NOISE SCHEDULING

We study in this section the relationship between timestep and noise schedule in diffusion process by
introducing an entropy-guided noise scheduling. We first calculate entropy values of noisy images

1https://huggingface.co/blog/annotated-diffusion.
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Figure 1: βt by different noise schedules at T = 300

suitable for diffusion models by the differential entropy theorem of Gaussian distribution. We then
propose the entropy-guided noise scheduling to explicitly link timesteps with noise levels during the
forward process.

3.1 COMPUTING ENTROPY VALUES OF NOISY IMAGES

We now briefly recall the theoretical foundation concerning the entropy of multivariate Gaussian
distributions Cover & Thomas (2006) for computing entropy values of noisy images at each timep-
step in diffusion process. The differential entropy theorem of multivariate Gaussian distributions is
given as follows.
Theorem 3.1. Let X ∼ N (µ,Σ) denote a multivariate Gaussian distribution, where µ represents
the mean vector and Σ denotes the covariance matrix. Then, the differential entropy h(X) is defined
by the following form

h(X) :=
1

2
ln ((2πe)n|Σ|) , (3)

where n denotes the dimensionality of the random variable, and |Σ| represents the determinant of
the covariance matrix.

For an image of size K×K, the corresponding random variable has a dimensionality of n = K2. It
is evident that entropy of a multivariate Gaussian distribution depends solely on the dimensionality
of this distribution and its covariance matrix. Based on the above theorem, the following corollary
can be derived.
Corollary 3.1. Let X and X0 be n-dimensional continuous random variables. If X ∼
N (

√
αX̄0, (1− ᾱ)I), then the differential entropy h(X) is given by

H(X) :=
n

2
ln ((2πe)(1− ᾱ)) . (4)

According to equation (2) , the random variable xt at timestep t in the diffusion process is modeled
as a multivariat Gaussian distribution with mean

√
ᾱtx0 and covariance matrix (1 − ᾱt)I. In fact,

the random variable xt is typically discrete on practical applications. Consequently, wiht equations
(4 , we can calculate entropy value of xt by the following form

H(xt) ≈
n

2
ln ((2πe)(1− ᾱt)) . (5)

From the perspective of information entropy, it becomes evident that when analyzing multi-
dimensional Gaussian distributions, the mean vector does not require excessive attention. The en-
tropy can be directly derived using the covariance matrix and the dimensionality of the distribution.
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Therefore, it can be concluded that during the forward process, the image undergoes a gradual ad-
dition of Gaussian noise, resulting in a progressive increase in information entropy. As t → ∞, the
entropy value of the final noisy image xt converges to n

2 ln(2πe).

3.2 SCHEDULING AND EXPERIMENTS

We propose in this section an entropy-guided noise scheduling strategy to explore the explicitly link
timesteps with noise levels during the forward process. The resulting strategy can be described as
follows

(i) Use equation (5) to calculate entropy values of noisy data yielded by different noise sched-
ules based forward process;

(ii) Find the corresponding timestep of each schedule by the same or similar entropy value;

(iii) Obtain the combination of noise schedules according to entropy value and timestep of each
schedule.

This leads to achieve the combination of different noise schedules at the corresponding timesteps,
and contributes to the efficient and reliable implementation of diffusion models. To this end, we
next conduct experiments to demonstrate the feasibility of the proposed strategy in terms of three
cases: different noise schedules at the same timesteps, noise schedule with different timesteps, and
entropy-guided inverse process. The used dataset is MNIST handwritten dataset with the size 28×28
image in this experiment. Entropy values of noise images by different noise schedules based forward
processes on this dataset is given in Figure 2.

3.2.1 DIFFERENT NOISE SCHEDULES AT THE SAME TIMESTEPS T

Figure 2: Entropy values for the MNIST handwritten digit dataset by different noise schedules at
T = 300.

Initially, a correlation is established between Linear and Cosine noise schedules under conditions of
similar entropy value variation. During the forward diffusion process, noise from Linear schedule
is applied to generate noisy images x50,x90,x150. Based on their respective entropy values, an
appropriate step size from Cosine is selected for reverse sampling, specifically corresponding to
steps 55, 96, and 155. The inverse sampling results were evaluated in terms of cosine similarity
(Similarity), mean squared error (MSE), Euclidean distance (ED), and structural similarity index
(SSIM)Wang et al. (2004) by comparing them with the original image x0. The corresponding results
are summarized in Table 2.

Subsequently, we conduct analogous analyses on Cosine and Sigmoid schedules, which exhibit no-
table differences in entropy values (Figure 2). Specifically, we select images x18,x49,x110 obtained
after applying Sigmoid noise at steps 18, 49, and 110, respectively. Corresponding to entropy values
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Table 2: Evaluation of sampling results, where FL50 represents 50 steps of the forward diffusion
based on Linear schedule, RC55 denotes 55 steps of the reverse process with Cosine.

Schedule MSE ED SSIM SIMILARITY
FL50+RC55 0.0073 0.0265 0.90498 0.9649
FL90+RC96 0.0184 0.0413 0.82312 0.9121
FL150+RC155 0.0710 0.1013 0.53299 0.7229
FL50+RL50 0.0067 0.0279 0.87162 0.9679
FL90+RL90 0.0183 0.0440 0.79427 0.9143
FL150+RL150 0.0750 0.1098 0.49374 0.7175

Table 3: Evaluation of sampling results, where FS18 represents 18 steps of the forward diffusion
using Sigmoid.

Schedule MSE ED SSIM SIMILARITY
FS18+RC50 0.0018 0.0176 0.8957 0.9913
FS49+RC100 0.0063 0.0250 0.9062 0.9702
FS110+RC150 0.0242 0.0485 0.7849 0.8885
FS18+RS18 0.0019 0.0171 0.9149 0.9910
FS49+RS49 0.0063 0.0254 0.9044 0.9698
FS110+RS110 0.0250 0.0503 0.7781 0.8877

of these noisy images, we then identify steps 50, 100, and 150 in the cosine for further comparison.
A quantitative evaluation of the inverse sampling results is presented in Table 3.

3.2.2 NOISE SCHEDULE WITH DIFFERENT TIMESTEPS T

We further investigate the potential of entropy values by conducting experiments on the same noise
schedule with different timesteps T .

We conducted comparative experimental analyses on DDPM models employing Cosine and Sigmoid
noise schedules. First, we selected images x40,x75,x150 via Sigmoid, which were generated under
T1 = 300 with steps 40, 75, and 150, respectively. Subsequently, based on the entropy values
observed at T2 = 500 and T3 = 1000, we determined the corresponding noise addition steps in the
forward process: 48, 100, 220 for T2, and 56, 137, 372 for T3. The detailed sampling performance
are summarized in Table 4.

Table 4: Evaluation of sampling results by Sigmoid schedule with different timesteps T1 =
300, T2 = 500, T3 = 1000, where FS40+RS40(T1) denotes 40 steps of the forward and reverse
process under the timesteps T1, focusing on images generated by adding noise at a specific timesteps
T1 = 300.

Schedule MSE ED SSIM SIMILARITY
FS40+RS40 (T1) 0.0014 0.0157 0.9187 0.9931
FS75+RS75 (T1) 0.0035 0.0205 0.9193 0.9833
FS150+RS150 (T1) 0.0254 0.0510 0.7725 0.8865
FS48+RS48 (T2) 0.0016 0.0232 0.7955 0.9920
FS100+RS100 (T2) 0.0037 0.0283 0.7870 0.9818
FS220+RS220 (T2) 0.0295 0.0600 0.6803 0.8664
FS56+RS56 (T3) 0.0014 0.0153 0.9267 0.9932
FS137+RS137 (T3) 0.0034 0.0201 0.9229 0.9835
FS372+RS372 (T3) 0.0254 0.0516 0.7657 0.8868
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Additionally, we explore the application of small-step DDPMs to approximate the reverse sampling
process of large-step DDPMs. Furthermore, we investigate the feasibility of substituting these mod-
els with DDPMs employing distinct noise schemes across varying step sizes. We choose images
x167,x335,x435 by Cosine schedule at T3 = 1000 with steps 167, 335, 435, respectively. Based on
the entropy values observed at T1 = 300 and T2 = 500, we determine the corresponding steps in
the forward process: 50, 100, 130 for T1, and 85, 170, 218 for T2. Furthermore, we identify steps
76, 145, 178 in the forward process of Quadratic schedule. Inverse sampling was then performed
using these selected steps. Table 5 shows the evaluation of the above sampling results.

Table 5: Evaluation of sampling results with Cosine and Quadratic schedules, for images generated
by adding noise at a specific step of T3 = 1000.

Schedule MSE ED SSIM SIMILARITY
FC167+ RC167 (T3) 0.0046 0.0219 0.9219 0.9780
FC335+ RC335 (T3) 0.0171 0.0409 0.8189 0.9192
FC435+ RC435 (T3) 0.0603 0.0915 0.5752 0.7610
FC50+ RC50 (T1) 0.0049 0.0403 0.7049 0.9753
FC100+ RC100 (T1) 0.0169 0.0699 0.6018 0.9147
FC130+ RC130 (T1) 0.0389 0.0939 0.4782 0.8051
FC85+ RC85 (T2) 0.0047 0.0431 0.7035 0.9768
FC170+ RC170 (T2) 0.0158 0.0595 0.6290 0.9209
FC218+ RC218 (T2) 0.0438 0.0870 0.4983 0.7838
FQ76+ RQ76 (T1) 0.0049 0.0245 0.8895 0.9760
FQ145+ RQ145 (T1) 0.0190 0.0443 0.7982 0.9137
FQ178+ RQ178 (T1) 0.0564 0.0885 0.5803 0.7676

3.2.3 ENTROPY-GUIDED INVERSE PROCESS

In the previous experiments, it has been demonstrated that images corrupted with arbitrary noise
schedules or timesteps can be reconstructed through entropy value based selection to identify the
corresponding timestep in the noise schedule. This approach is independent of the specific noise
schedule or timestep configuration, and achieves performance comparable to that of the original
DDPM model with its native noise schedule and timestep.

We now investigate whether the entire reverse diffusion process can be effectively guided by en-
tropy. In particular, we examine whether a DDPM framework, employing entropy-driven selection
of hybrid noise schedules or variable noise step sizes, is capable of reconstructing handwritten digit
images from random Gaussian noise through the reverse sampling.

Figure 3: Sampling results at T = 300 by the entropy-guide schedule of Quadratic followed by
Cosine.

Based on the calculated entropy values, it can be observed that for T = 300, the entropy value of
the noisy image in Cosine at step t = 130 is comparable to that of the noisy image in the Quadratic
at step t = 178. Therefore, a noise sample x∗

0 drawn from a standard Gaussian distribution is
utilized for the reverse sampling process. The original DDPM models employ Cosine and Quadratic
noise schemes individually. Specifically, the procedure first employs Quadratic schedule to perform
inverse sampling for 122 steps starting from step 300, resulting in xqua178. Subsequently, Cosine
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Figure 4: Sampling results at T = 300 using the entropy-guide schedule of Cosine followed by
Quadratic.

is applied to further conduct inverse sampling from step 130 to step 0, thereby generating the final
image (comprising a total of 252 sampling steps). The experimental results are presented in Figure 3.
Through Tables 7-6 and Figure 4, it can be observed that although the entropy-guided mixed noise
schedule in DDPM inverse sampling reduces the sampling time required to generate handwritten
digits, the generation quality is marginally inferior to that of the original DDPM models employing
Cosine and Quadratic noise schemes individually.

Table 6: The Inception Score (IS) and Fréchet Inception Distance (FID) of the DDPM-generated
results under different noise schedules at three timesteps.

Metrics Schedule T=300 T=500 T=1000

IS

Linear 1.000816 1.000850 1.001001
Cosine 1.000957 1.001039 1.000876

Quadratic 1.000860 1.000873 1.000854
Sigmoid 1.000921 1.001058 1.000865

FID

Linear 126.730 550.910 210.436
Cosine 313.253 550.054 156.361

Quadratic 138.863 134.126 155.218
Sigmoid 140.521 249.828 118.942

Table 7: Evaluation of sampling resluts by two entropy-guided reverse process at T = 300, including
Quadratic-Cosine and Cosine-Quadratic.

Metrics Schedule T=300

IS Quadratic-Cosine 1.000604
Cosine-Quadratic 1.000921

FID Quadratic-Cosine 1002.769
Cosine-Quadratic 118.455

However, it is noteworthy that when the operational order is altered—specifically, by first sampling
x∗
0 from a standard Gaussian distribution, followed by 170 reverse steps using Cosine schedule

starting from T = 300 to generate xcos
130, and subsequently applying Quadratic to reverse sample

from T = 178 to 0 to generate the final image (totaling 348 sampling steps)—the resulting outputs,
as illustrated in Figure 4. IS Reed et al. (2016) and FID Salimans et al. (2016) are listed in Table
7. These results demonstrate a performance level comparable to or slightly improved over those
obtained using individual noise schemes as summarized in Table 6.

4 MUTUAL INFORMATION EVALUATION

In this section, we develop a mutual information based evaluation method. To calculate the value
of mutual infomation, the probability density of image pixel values is estimated through the binning
histogram method, which allows for the derivation of the entropy terms H(X), H(Y ), H(X,Y ).

7
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Figure 5: Mutual information during the diffferent noise schedule based forward process at T = 500
(left) and T = 1000 (right) for MNIST dataset.

The mutual information I(X;Y ) can be computed by the following algorithm in A.2. With the
algorithm, the mutual information between the MNIST dataset and itself is measured as 1.030006.
The level of image complexity varies across different datasets, resulting in differing information
contents. For instance, the Fashion MNIST dataset, which contains more complex images compared
to MNIST, exhibits the mutual information value of 2.410689—significantly higher than that n of
MNIST.

Figure 6: Mutual information during the different noise schedules based forward process at T = 300
for MNIST (left) and Fashion MNIST datasets (right).

We first utilize various variance scheduling strategies and train the DDPM models on the MNIST
dataset. During the forward diffusion process, various variance scheduling strategies introduce noise
into the MNIST, progressively degrading the image quality. We then employ mutual information as
a quantitative criterion to systematically compare the effectiveness of Similarity, MSE, ED, and
SSIM in evaluating image restoration performance throughout the forward process for two datasets.
As illustrated in Figures 7, 8, 9, and 10, the MNIST handwritten dataset and the Fashion MNIST
dataset are presented alongside the variations of their respective evaluation metrics throughout the
forward diffusion process.

Compared with the above metrics, mutual information inherently incorporates the entropy of dataset
within its computation method. Mutual information inherently depends on the complexity of the
underlying dataset, leading to varying maximum mutual information values. Consequently, under
identical noise schemes, the image restoration performance of DDPMs can exhibit significant differ-
ences across datasets. Notably, mutual information effectively captures the inherent complexity of
images across diverse datasets through its mathematical formulation, thereby offering more effective
guidance for image restoration tasks.

8
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Figure 7: MSE during the forward process under different noise schedules on the MNIST (left) and
Fashion MNIST datasets (right).

Figure 8: ED during the forward process under different noise schedules on the MNIST (left) and
Fashion MNIST datasets (right).

5 CONCLUSION

This work investigated the information flow in diffusion models by introducing an entropy-guided
noise scheduling strategy and developing a mutual-information-based evaluation method. Exper-
iments were conducted to examine the relationship between noise schedules and timesteps, and
the results indicated that combining different noise schedules at corresponding timesteps was both
feasible and effective. In evaluating the restoration capacity of DDPMs, the proposed mutual-
information-based metric demonstrated greater sensitivity than conventional measures, particularly
in capturing complexity variations across different datasets.
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A APPENDIX

A.1 EXPERIMENTAL SETUP AND PARAMETER CONFIGURATION

This experiment was carried out on a system featuring dual NVIDIA RTX 4090 GPUs, 128GB
of RAM, and an Intel i7-13900K processor. The DDPM implementation was based on the deep
learning code repositories for research papers LabML.ai (2024) provided by LabML.ai on GitHub.
Furthermore, the model underwent fine-tuning based on the DDPM course implementation provided
by Hugging Face Hugging Face (2025).The implementation of information entropy and mutual in-
formation in the experiment was developed in accordance with the respective procedural steps.

The experimental data employed in this study is the MNIST handwritten digit dataset, which consists
of 70, 000 grayscale images representing digits from 0 to 9. Each image has a resolution of 28x28
pixels and is encoded using grayscale intensity values within the normalized range [0, 1], where 0
corresponds to black, 1 corresponds to white, and intermediate values denote varying shades of gray.

The DDPM model in this experiment employs the variance schedules described in the previous
chapter, including linear noise, cosine noise, square root linear interpolation noise, and Sigmoid
variance. The hyperparameters remain consistent with the specified values: β0 = 0.0001, βT =
0.02, s = 0.08. The DDPM models trained under different noise schemes maintain structural con-
sistency. The total time steps (T) are configured based on specific experimental objectives. For
grayscale image processing, all models are trained for a fixed duration of 1000 epochs, with a stan-
dardized batch size of 128.

A.2 MUTUAL INFORMATION ALGORITHM AND EXPERIMENTS

Algorithm 1 Compute the Mutual Information
1: Input: Dataset X = {x1, x2, . . . , xN} and Y = {y1, y2, . . . , yN}
2: Output: Mutual information I(X;Y )
3: Partition X into m intervals, obtaining the count Cj for each bin (j = 1, 2, . . . ,m)
4: Compute the marginal probability distribution:

p(xj) =
Cj

N
;

5: Similarly, partition Y into m intervals and compute the marginal probability distribution:

p(yj) =
Cj

N
;

6: Construct the joint histogram by counting Cij for each pair (xi, yj), where i, j = 1, 2, . . . ,m.
The joint probability distribution is:

p(xi, yj) =
Cij

N
;

7: Compute the entropies:

H(X) = −
m∑
i=1

p(xi) log p(xi), H(X,Y ) = −
m∑
i=1

m∑
j=1

p(xi, yj) log p(xi, yj);

8: Calculate the mutual information:

I(X;Y ) = H(X) +H(Y )−H(X,Y ).

B REPRODUCIBILITY STATEMENT

We provide all necessary details to support reproducibility. All experiments are conducted on pub-
licly available datasets, and the model architectures, hyperparameters, training protocols, and evalu-
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Figure 9: Cosine similarity during the forward process under different noise schedules on the
MNIST (left) and Fashion MNIST datasets (right).

Figure 10: SSIM during the forward process under different noise schedules on the MNIST (left)
and Fashion MNIST datasets (right).

ation metrics are specified in the paper. We will release our codebase, training scripts, and pretrained
checkpoints on GitHub upon acceptance.

C THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models only for light editorial assistance during manuscript preparation
(grammar and wording refinement, minor style/formatting suggestions). No LLMs were used for
research ideation, dataset curation, modeling, experiment design, analysis, or drafting substantive
sections.
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