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ABSTRACT

Nowadays, neural networks are being used to solve a variety of tasks. They are
very effective when trained on large datasets. However, in continual learning,
they are trained on non-stationary stream of data, which often results in forget-
ting of the previous knowledge. In the literature, continual learning models are
exposed to a sequence of tasks, and must learn each task one by one. They are
then evaluated at the end of each learning session. This allows to measure the av-
erage accuracy over all tasks encountered so far. Recently De Lange et al. (2022)
showed that continual learning methods suffer from the Stability Gap, encoun-
tered when evaluating the model continually. Even when the performance at the
end of training is high, the worst-case performance is low, which could be a prob-
lem in applications where the learner needs to always perform greatly on all tasks
while learning the new task. In this paper, we propose to apply a refined variant
of knowledge distillation, adapted to the class-incremental learning setting, and
used in combination with replay, to improve the stability of the continual learning
algorithms. We also propose to use a distillation method derived from the Mean
teacher distillation training paradigm introduced in semi-supervised learning. We
demonstrate empirically that the use of this method enhances the stability in the
more challenging setting of online continual learning.

1 INTRODUCTION

It is more and more common to use neural networks in order to solve a variety of tasks. In fact, learn-
ing neural networks with backpropagation has proven capable of good generalization properties even
when using overparametrized networks (Krizhevsky et al., 2017). However, these good learning
properties only occur when the data is provided in an independant and identically distributed man-
ner. When learning on a stream whose distribution varies over time, neural networks suffer from
catastrophic forgetting (McCloskey & Cohen, 1989; Goodfellow et al., 2014; Kirkpatrick et al.,
2017b), they tend to forget knowledge acquired from learning experiences. This is problematic for
instance when learning large scale dataset that are acquired from continuously evolving streams of
data, since it is very expensive to store all of the data and learn from scratch when we want to incor-
porate new knowledge into the neural network. This is why the field of continual learning is trying
to tackle these issues.

A variety of benchmarks have been introduced in continual learning in order to evaluate several
aspects of the continual learning agent. Task-incremental learning (De Lange et al., 2021; van de
Ven & Tolias, 2018), and Class-incremental learning (Masana et al., 2020; Belouadah et al., 2021)
are two of the most popular continual learning settings. Both of these settings as well as most others
separate the learning into distinct tasks that are encountered sequentially by the agent. The goal of
the agent is then to accumulate knowledge from each of the new tasks without forgetting the previous
ones, under the constraint that it should store only a limited amount of past data. After learning a
task, the agent is then evaluated on all previous tasks to determine how much it has forgotten of it.

This is the classical manner of evaluating the agent. However, another way of evaluating coined
continual evaluation (De Lange et al., 2022) or anytime inference (Koh et al., 2022) has been exper-
imented with. When evaluating continually, we want the agent to perform correctly not only at task
boundaries, but also at any moment in time whenever learning a task. In (De Lange et al., 2022), the
authors noticed that it is often the case that, whenever learning a new task, the performance on pre-
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vious tasks decreases drastically before going back to normal. This behaviour is problematic, since
for many real-world applications, the agent must be applied for inference while it is learning. In this
article, we propose a method to improve the stability of continual learning algorithms, evaluate it
using the stability metrics from De Lange et al. (2022), and drastically reduce the stability gap.

Our contributions are the following:

• We identify the task gradient unbalance as probable causes for the stability gap, and find
that this imbalance could be due to the growth of the logits norm over training, resulting in
bad behaviour of the cross-entropy loss used in classification.

• To solve the latter problem, we propose a knowledge distillation process with special care
given to the handling of new class logits, that we name Elastic Distillation. We show em-
pirically that this process, combined with replay, greatly improves the stability of continual
learning algorithms. Importantly, our results also hint that the traumatic event of the stabil-
ity gap can lead to overall performance drop, and that addressing it leads to improved final
performance for continual learners.

• We show that Elastic Distillation is applicable to the boundary-free setting when used in
the Mean-Teacher distillation scheme introduced in the semi-supervised learning literature,
where it outperforms existing methods in that setting, in terms of stability and accuracy.

2 CONTINUAL LEARNING AND THE STABILITY GAP

In continual classification, the learning agent must learn the parameters θ ∈ Θ of a function
f : (X ,Θ) 7→ Y from the image input space X to the label space Y . It must do so by seeing a
stream of data S = {(x1, y1), (x2, y2), ...(xn, yn)}, where x ∈ X and y ∈ Y . Each data tuple is
drawn from a time varying distribution (xt, yt) ∼ Dt. In classical machine learning the training
data distribution does not depend on time, but this is added as a constraint in continual learning. In
both cases the goal of the agent is to perform well on new samples drawn from the joint distribution
D, which is marginalized over time.

In offline training, the agent’s experience is often separated into a training phase, during which it
learns the parameters θ by seeing data samples drawn from D, followed by a testing phase, where
the agent is evaluated in order to determine how well it has matched the target distribution. In
continual learning, however, the training distribution is not entirely accessible from the start, but it
is time varying. In practice, continual learning is simplified to allow for easier analysis by studying
distributions that come from a discrete set and switch from one distribution to another. Each of such
time periods during which the distribution does not change is referred to as a task. Evaluation is then
performed at the end of learning each task on a held out test set that is gathered over the course of
training whenever encountering a new distribution. To summarize, where offline machine learning
exposes the agent to a fixed distribution over time, and a final evaluation stage, most continual
learning settings expose the agent to discretely varying distributions, and sparse evaluation.

While all of the above simplifications make sense, they are still far from what the human learning
experience is like, and from fitting the requirements of many real-world applications. In comparison
to the above, humans experience continuously time-varying distributions and continual evaluation.
In order to remedy to one of these points, De Lange et al. (2022) lay the basis and encouraged the
study of continual evaluation of neural networks. In continual evaluation, the model is continuously
evaluated during, instead of after each task. Indeed, they noticed that the performance on previous
tasks often drops at task shift before coming back to a higher value later in training, this is what they
refer to as the stability gap.

2.1 STABILITY METRICS

In this section, we present two of the metrics proposed in De Lange et al. (2022), that we use in this
article to assess the stability of the algorithms. We denote A(Ei, ft) as the accuracy of ft (model at
iteration t), on the evaluation task Ei. The minimum accuracy for task k, min-ACCTk

(see Eq. 1),
records the minimum accuracy for the task k while learning subsequent tasks. It gives a good idea of
the worst case performance of the agent on a given task. The worst-case accuracy, WC-ACCt (see
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Eq. 2), combines information from the minimum accuracy on previous tasks and the accuracy on
the current task. WC-ACCt can be seen as a trade-off between stability and plasticity, which gives
equal importance to each task.

min-ACCTk
=

1

k − 1

k−1∑
i

min
n

A(Ei, fn),∀|Ti−1| < n ≤ t (1)

WC-ACCt =
1

k
A(Ek, ft) + (1− 1

k
)min-ACCTk

(2)

2.2 ONLINE CONTINUAL LEARNING AND BOUNDARY FREE CONTINUAL LEARNING

Popular continual learning scenarios often assume that data arrive in large batches of i.i.d data,
with sharp distribution shifts happening whenever a new batch becomes available. We call this
setting boundary-aware continual learning, due to the additional information provided by the data
aggregation. Task-free continual learning (Aljundi et al., 2019b; Rao et al., 2019; Lee et al., 2020;
De Lange & Tuytelaars, 2021) removes this form of supervision by assuming a stream of small mini-
batches. This has as an effect that the granularity of the data distribution can be refined. In practice,
it is even possible to keep meta-tasks that define the granularity of the distribution, while letting the
agent assume this distribution could change at any new mini-batch, as done in (Aljundi et al., 2019a;
Hu et al., 2021). In this article, we explore this last setting which is particularly challenging for
classical continual learning methods. In particular, any method that needs to be aware of the change
in data distribution, like LwF (Li & Hoiem, 2017) or EWC (Kirkpatrick et al., 2017a), would suffer
in such a setting.

Continual evaluation fits naturally with online continual learning, since this setting assumes the
data arrives as a stream of separate mini-batches. In a real world application, we could update the
model using each new bit of available data, and then use it for inference while waiting for new data
to train on. In that case it is also important that the model exhibits stable training, which we will try
to achieve in this article.

3 UNDERSTANDING THE STABILITY GAP

To understand the root causes behind the stability gap, we propose to study the learning dynamics
immediately after a task shift. This is the crucial moment where the worst-case accuracy suddenly
drops, resulting in a drastic performance loss. After a few iterations, many continual learning meth-
ods recover the original performance (or close to it) (see Fig. 3), which indicates that the stability
gap is happening due to some fundamental qualitative changes in the learning dynamics soon after
the task shift. A fundamental quantity to study is the gradient of the loss ∇L and its norm ||∇L||.
We split the gradient into two components, as done in De Lange et al. (2022)

∇L = α∇Lstability + (1− α)∇Lplasticity, (3)
where α controls the ratio between stability and plasticity. Each of these component is dependent on
the specific continual learning method. ∇Lstability is the stability gradient, which comes from the
part of the loss that tries to prevent forgetting of previous tasks, while (∇Lplasticity) is the plasticity
gradient, which comes from part of the loss that tries to learn the task at hand. For example, in
experience replay ∇Lstability is the gradient of the cross-entropy loss on previous task samples,
while ∇Lplasticity is the gradient on new task samples.

For the most popular continual learning methods, Lstability tend to be well-behaved during training.
Typically, high values of Lstability, for example due to excessively high regularization coefficients,
will inhibit learning, while low values result in catastrophic forgetting. Either way, Lstability should
not cause the drop in performance shown by the plots in Figure 1 and 3, because if the regularization
coefficient is too small the stability gap would not be recovered in the later epochs, as we see in the
plot. Therefore, we focus our attention on ∇Lplasticity.

After a task shift, ∇Lplasticity tend to be very large, while ∇Lstability tends to be small. The
unbalance between ∇Lplasticity and ∇Lstability at the start of a new task is problematic because
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Figure 1: (Left) Close look at the task-specific gradient norm behaviour at task shift between the
two first tasks of Split-Mnist. (Right) Task 2 validation accuracy on Split-Mnist (5 tasks) for both
experience replay, and replay for which last task gradient is clipped to a low value. Mean and
Standard deviation are computed over 10 seeds

it inhibits the effect of Lstability during the first phases of learning. We illustrate the difference
between old and new task gradient in Figure 1. We see that at task shift, Task 2 gradient starts with
a higher magnitude than Task 1 gradient. This generates a response in Task 1 gradient’s magnitude,
which in turn gets large.

We verify experimentally whether ∇Lplasticity is one of the root cause of the stability gap. To
balance the two gradient contributions, we clip the norm of ∇Lplasticity to a low value, high enough
to allow some adaptation to the new task but low enough to prevent a large stability gap and to obtain
a gradient norm comparable ∇Lstability. We test this simple mitigation on MNIST. The results in
1 indicate that gradient clipping solves the stability gap since the accuracy (orange curve) does not
show the drastic drops after a task shift but remains stable throughout training. However, gradient
clipping was not found to be sufficient on more complex datasets than MNIST, and we therefore
develop several more principled techniques in the following sections.

In the remainder of this section, we show that controlling ∇Lplasticity in class-incremental scenarios
requires regularizing the logits of the units to prevent unbounded growth (Section 3.1) and we show
why popular CL methods have a large stability gap (Section 3.2).

3.1 ROLE OF LOGITS AND RECENCY BIAS

Empirically, it is well known that most continual learning methods in class-incremental setting tend
to be biased towards recent classes (Rebuffi et al., 2017; Wu et al., 2019; Hou et al., 2019). In
practice, the bias is the result of logits for new classes becoming larger on average than logits of past
classes. There are two main possibilities that give rise to this property: the average logits for new
classes become larger and larger over time, keeping the previous one mostly on the same scale; or it
might occur that new logits are on the same scale as previous ones but old logits are pushed towards
negative values. Figure 2 shows an histogram of the activations for Replay, Replay and LwF, and
Elastic Distillation (our method). Standard methods like Replay and LwF have a strong recency
bias, which gets worse over time.

In the previous section, we proposed the new gradient norm ∇Lplasticity as the main cause of the
stability gap. We will investigate now its role in a typical class-incremental setting. Typically,
deep neural networks for classification are trained via a cross-entropy loss computed after a softmax
computed over the logits. Due to the softmax operation, in order to increase the probability for
new units, the new logits must increase while the old logits must decrease. Without any form of
mitigation, this interaction can quickly result in catastrophic forgetting.

At the beginning of training, high logits value for old classes will result in small probabilities ynew
for new classes, close to zero, resulting in a high gradient that will quickly increase the new logits
and decrease the old ones. This is a source of instability which results in a high ∇Lplasticity. After
some iterations, the probability yi will grow and the gradient will become smaller. This is shown
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Figure 2: CIFAR10 (5 splits), Histogram of the logits norm of test set images from current task
after training each task. Three methods are compared, ER (Left), ER + LwF (Middle) and ER + ED
(Right)

in Figure 1, which clearly shows that the instability is fixed after around 50 iterations after the task
shift (iteration 300).

Therefore, in order to mitigate the stability gap, a continual learning method must limit the growth
of the logits during training. In particular, trying to control the gradient norm becomes more difficult
if the old units have large logits.

3.2 STABILITY GAP IN REPLAY AND LWF

Replay methods (Chaudhry et al., 2019; Rebuffi et al., 2017; Castro et al., 2018) like experience
replay (ER) mitigate forgetting by storing a buffer of samples from previous tasks and rehearsing
over time. In a replay method, Lstability is the loss computed over the samples in the buffer, while
Lplasticity is the loss for new samples. At the start of a new task, the model will have a high accuracy
for buffer samples, making Lstability close to zero, which means that the total loss is dominated by
Lplasticity. The magnitude of the gradient depends on the new probabilities, which will be small
due to the interaction between the new and the old logits due to the softmax, resulting in a bigger
gradient. As a result, we have an evaluation gap at the beginning of a new task due to the outsized
contribution of the new task. The gap appears to be recovered after more iterations since Lstability

will grow and start to stabilize the training.

Knowledge distillation (Hinton et al., 2014) is another popular method in continual learning. For
example, Learning without Forgetting (LwF) (Li & Hoiem, 2017) stores the model after learning
each task and uses the last copy of the model to perform distillation. LwF distills knowledge from a
previous version of the model, effectively enforcing a form of consistency of the model’s predictions
over time. Assuming the knowledge distillation loss never grows too much, temporal consistency
would guarantee the preservation of the old predictions, and therefore mitigate the stability gap.

Regarding the logits growth, in Figure 2 we can clearly see that a combination of Replay and LwF
results in a consistent growth of the logits over time. This property will results in a poorer stability
over time, with bigger stability gaps due to the increasing gradient norm.

In conclusion, while continual learning methods such as Replay and LwF can obtain a good perfor-
mance, both suffer from a stability gap because they are unable to ensure stability at the beginning
of training. Notice that our analysis can be easily generalized to other continual learning strategies.

4 METHODOLOGY

4.1 ELASTIC DISTILLATION

As stated in Sec. 3.2, using the distillation loss on it’s own or combining it naively with replay
by applying the LwF distillation loss on old logits (ER + LwF) fails to regularize the new logits
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that appear at each task in the class-incremental learning scenario. For the same reasons than the
ones explained in Sec. 3.1, this leads to a decrease in old tasks performance because of a bias in
favour of the last task. This motivates the need for a distillation method which also handles the new
logits. We propose a new distillation loss that is able to handle the new class logits, and coin it
Elastic-Distillation (ED). The difference with previous distillation techniques is that we apply the
distillation loss on all logits, including the new ones. However, we treat them apart from previous
logits by pushing new classes probability towards 0. As a result, this stability loss aims to maintain
the accuracy on previous task data, while limiting the accuracy progress from the new task. This is
counterbalanced by the cross-entropy loss, which is trying to raise the accuracy on the current task.
We find experimentally that this trade-off is beneficial to retaining old task performance, and is still
able to learn the new task satisfyingly.

4.2 MEAN-TEACHER DISTILLATION

In the boundary-free setting, it is not possible to know when a distribution shift happens. For
this reason, classical distillation would fail to provide a stable teacher model. The default behaviour
for a distillation method would then be to set the teacher model to the model learned on previous
mini-batch. However, this implies that the teacher model would change every few iterations and
in effect not provide a stable training signal anymore. In order to improve the effectiveness of
knowledge distillation in that setting, we use a Temporal Ensemble (Samuli & Timo, 2017) as a
teacher model. A Temporal ensemble is an ensemble made of models taken at different points on
the training trajectory. Since such an ensemble can give only a small weight to individual models,
the function it models cannot vary drastically from one training iteration to another, making it a good
candidate for a stable teacher model. Since we don’t want the memory constraints of the algorithm to
increase too much, it seems a reasonable choice to use Mean-Teacher model (Tarvainen & Valpola,
2017), which ensembles an arbitrary amount of models from the training trajectory by averaging the
weights of the student models.

Mean teacher distillation has been proposed in Tarvainen & Valpola (2017) to improve results in
the semi-supervised learning task, in which only a fraction of training labels are available, but the
rest of the data don’t have a label. This method uses an additional model which is not trained by
gradient descent but rather built as an exponential moving average of the student model, which one
is trained by classical gradient descent. The two models interact through a knowledge distillation
Hinton et al. (2014) term added to the loss of the student, which ensures that the student’s predictions
are consistent with the ones of the teacher.

The teacher model with parameters θema, is computed as an exponential moving average of the
training model at every iteration t following equation 4, where λ is a momentum parameter, θt
the parameters of the training model at iteration t and θt−1

ema the previous parameters of the teacher
model. Distillation is then performed using the output of θtema when computing the gradient at step
t+ 1, using the following loss 5, where λ is the weight of the consistency cost.

θtema = λθt−1
ema + (1− λ)θt (4)

L = LCE(f(x; θ), y) + λ.LCE(f(x; θ), f(x, θema)) (5)

In Tarvainen & Valpola (2017), the authors noticed that their method offered no improvement when
using all of the training labels, but only offered improvement in the semi-supervised setting. This is
true in the setting where the data distribution does not change, but we demonstrate in this article that
this method can also help to improve the stability of continual learning agent in case of time-varying
training distribution. We found that when combined with replay, this method is more efficient than
classical distillation in the challenging online continual learning setting.

5 EXPERIMENTS

Scenario. We experiment on the class-incremental learning setting since this is the one that has
been found to suffer the most from the stability gap, we will refer to this first setting as the boundary-
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aware scenario. We follow the experimental setup in De Lange et al. (2022) and use experience
replay (Chaudhry et al., 2019) for all datasets, with a fixed memory size of 1000 exemplars for
CIFAR-10 and MNIST, 2000 exemplars for CIFAR-100, and 10000 exemplars for Mini-Imagenet.
Each training mini-batch is formed out of half of exemplars from previous tasks and half from
the current task. We also perform experiments in the online, boundary-free (task-free) scenario
discussed in Sec. 2.2. However, to ensure that the results are comparable to the ones of the previous
scenarios, we keep the same data splits and tasks number. In this setting, several training passes
on each mini-batch are allowed, we chose to use the same number of passes than the number of
epochs in the previous scenarios so that the total number of training iterations matches the ones of
the previous scenarios.

Methods. In the boundary-aware scenario, we compare the use of replay (ER) with its combination
with the proposed elastic distillation scheme (ER + ED). In the boudary-free scenario, we present
results for the 3 methods, replay (ER), ER + ED, and the distillation scheme that we propose to
apply in this setting, using the Mean-teacher architecture to perform distillation, ER + MT-KD.

Datasets. We perform experiments on 3 datasets. CIFAR-10 is a 10-class dataset that contains
60000 images of size 32 by 32 and 3 color channels Krizhevsky (2009). CIFAR-100 has the same
image dimensions and number of images but with 100 classes.Mini-Imagenet Vinyals et al. (2016)
is a 100-class version of ImageNet Russakovsky et al. (2015), that contains 60000 images which
are rescaled to 84 by 84. We split these datasets into 5, 5, 10 and 20 tasks respectively.

Training and Implementation Details. For the majority of the experiments, we stick to the
configuration used in De Lange et al. (2022). For CIFAR-10, and Mini-Imagenet we use a slim
version of Resnet-18, while for CIFAR-100 we use a version of Resnet-32. For all datasets we learn
for 10 epochs per task using Stochastic Gradient Descent with a momentum of 0.9, and a learning
rate of 0.1 for all datasets. With a batch size of 128 for Mini-Imagenet and CIFAR-100, and 256
for CIFAR-10. We run each experiment for 6 seeds and report the mean and standard deviation. We
make use of the Avalanche framework (Lomonaco et al., 2021) for all of our experiments. We will
make the code available on github upon acceptance.

Continual Evaluation Details. In De Lange et al. (2022), the authors choose to keep a fixed size
validation set on previous tasks and evaluate the model every ρeval iterations. In this article, we
choose to evaluate after every training iteration (ρeval = 1), and we keep a validation set of growing
size, taking 5% of the incoming data of each task as validation subset.

5.1 BOUNDARY-AWARE SCENARIOS

On CIFAR10, ER + ED drastically reduces previous tasks accuracy drop (See Fig. 3). For
the first task shift, the accuracy drop using only replay reaches 52%, while it reaches only 18%
when using ER+ED. Furthermore, for this dataset, the previous task accuracy as well as the final
average accuracy is improved when using the method, which we believe is due to a reduction of the
task-recency bias. WC-ACC is highly improved, from 18% to 29% at the end of training. Overall
average accuracy is also improved from 36% to 51% (See Tab. 1).

On CIFAR100, we observe a similar improvement in terms of accuracy drop reduction (See Fig.
3). For every task shift, the initial accuracy drop observed for replay is reduced by the addition of
elastic distillation. For this dataset, the first task accuracy even keeps growing after the first task
shift, before suffering a much smaller drop than replay at the next task shift (from 23% to 5% drop).
For this dataset, the WC-ACC is lower for ER+ED during training of the second task, this means
that for this task the distillation imposed too much stability, which could be reduced by better tuning
of the regularization parameter. However, overall, the gains in WC-ACC are the most notable for
this dataset, with a final difference of 13%, improving 10% to 23%, standing just 10% below the
average accuracy by which it is upper-bounded. The average accuracy is also increased from 28.4%
to 33.7% 1.

On Mini-Imagenet, while the accuracy of ER + ED before task shift remains close from the
one of ER (See Fig. 4) , the accuracy drops are much smaller when using elastic distillation. This
is the dataset where replay suffers the most from the stability gap. The use of ER+ED more than
doubles final WC-ACC, improving it from 5% to 11%.
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Figure 3: Boundary-Aware Scenario (Left) CIFAR10 (5 splits) (Right) CIFAR100 (10 splits), Task
1 accuracy over the course of training, for both normal experience replay (ER), and when applying
on top the proposed elastic distillation scheme (ER + ED). On the right of each plot, WC-ACCt at
each training iteration. Mean and Standard deviation are computed over 6 seeds
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Figure 4: Boundary-Aware Scenario Mini-Imagenet (20 splits), Task 2 accuracy over the course
of training, for both normal experience replay (ER), and when applying on top the proposed elastic
distillation scheme (ER + ED). On the right of each plot, WC-ACCt at each training iteration. Mean
and Standard deviation are computed over 6 seeds

Across all datasets, we notice that WC-ACC is increased by a large margin by the use of the
proposed method. Note that while it has been improved, WC-ACC remains under the average
accuracy (by which it is upper-bounded). This means that a small stability gap is still present after
the application of the method. The remaining part of the gap might be due to the fact that the gradient
of the distillation loss is low at the very beginning of training a new task, since teacher model and
student model give similar outputs at that moment, this issue has also been mentioned in De Lange
et al. (2022).

5.2 BOUNDARY-FREE SCENARIOS

On CIFAR10 , ER+ED provides a slight improvement over ER, and it results in a 2.6% improve-
ment in final average accuracy (See Tab. 1), and overall a better worst-case accuracy (See Fig. 5).
ER + MT -ED yields a significant improvement in both the accuracy (+ 9.9% compared to ER)
and WC-ACC. Notice in particular how the accuracy drop is made smoother by ER+MT -ED at
the last task shift (Left plot of 5).

On CIFAR100 , ER + ED fails to improve both accuracy and worst-case accuracy as expected
given the unstable nature of the teacher model used for distillation, but ER + MT -ED improves
both accuracy by 5.3% (See Tab. 1) and more than doubles worst-case accuracy (See Fig. 5). This
dataset is again the one where the gains in WC-ACC are the most important.

On Mini-Imagenet , ER + ED offers particularly surprising improvements over ER without the
use of mean-teacher. We think this might be due to the high number of exemplars used with this
dataset that renders the multiple training pass training more efficient. On this dataset, ER+MT -ED
does not give significant improvements over the latter.
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Figure 5: Boundary-Free Scenario, (Left) CIFAR10 (5 splits) (Right) CIFAR100 (10 splits), Task
1 accuracy over the course of training, for both replay (ER), when applying on top the proposed
elastic distillation scheme (ER+ED), and when additionally using the mean-teacher for distillation
(ER + MT -ED). On the right of each plot, WC-ACCt at each training iteration. Mean and
Standard deviation are computed over 6 seeds
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Figure 6: Boundary-Free Scenario, Mini-Imagenet (20 splits), Task 2 accuracy over the course of
training, for both replay (ER), when applying on top the proposed elastic distillation scheme (ER +
ED), and when additionally using the mean-teacher for distillation (ER + MT-ED) . On the right of
each plot, WC-ACCt at each training iteration. Mean and Standard deviation are computed over 6
seeds.

Overall, ER+MT -ED helps palliate the lack of stability obtained with ER+ED in the boundary-
free scenario, offering significant gains over this method when it fails to improve the stability on its
own. Again in this setting, improvements in stability are often accompanied with improvements in
final performance.

Dataset CIFAR10 CIFAR100 Mini-Imagenet
ER 37.8 ± 1.4 27.2 ± 1.3 25.5 ± 1.7
ER+ED 40.4 ± 2.6 26.2 ± 2.1 26.4 ± 1.7
ER+MT -ED 47.7 ± 2.1 32.5 ± 0.83 26.3 ± 2.8

Dataset CIFAR10 CIFAR100 Mini-Imagenet
ER 36.7 ± 1.2 28.4 ± 0.7 24.4 ± 2.7
ER+ED 51.4 ± 1.5 33.7 ± 1.5 24.4 ± 2.8

Table 1: Final average accuracy for the two proposed methods and the replay baseline in the
boundary-free (Left) and boundary-aware (Right) setting

6 CONCLUSION

We identified the gradient unbalance towards the last task as a cause of the stability gap in continual
evaluation. We argued that the continuous growth of logits values is partially responsible for this gra-
dient unbalance. Our proposed elastic distillation method helps to tackle the gradient unbalance by
limiting the logits growth for new tasks. Furthermore, we show that applying the Mean-Teacher dis-
tillation scheme helps to reduce the stability gap in the challenging boundary-free setting. We hope
that the analysis and methods discusses in this paper will help to further motivate the development
of new techniques that intend to mitigate the stability gap in online continual learning. We demon-
strated that addressing the stability gap can also improve overall performance, and thus encourage
further research to not overlook the continual evaluation aspect of learning, even in situations where
stability is not needed.
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REPRODUCIBILITY STATEMENT

We will release our source code on github upon acceptance. All of our experiments are based on
the Avalanche library Lomonaco et al. (2021), a continual learning library based on Pytorch Paszke
et al. (2019). Additionnaly, we will provide configuration files and instructions to reproduce every
experiment.
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