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ABSTRACT

Large language models (LLMs) suffer from hallucination, where they generate
text that is not factual. Hallucinations impede many applications of LLMs in so-
ciety and industry as they make LL.Ms untrustworthy. It has been suggested that
hallucinations result from predictive uncertainty. If an LLM is uncertain about the
semantic meaning it should generate next, it is likely to start hallucinating. We
introduce Semantic-Diverse Language Generation (SDLG) to quantify predictive
uncertainty of LLMs. Our method detects if a generated text is hallucinated by
offering a precise measure of aleatoric semantic uncertainty. Experiments demon-
strate that SDLG consistently outperforms existing methods while being compu-
tationally the most efficient, setting a new standard for uncertainty estimation in
NLG.

1 INTRODUCTION

Hallucinations are fragments of a generated text that, despite appearing cohesive, are not factual.
They hinder a broad use of LLMs as they make them untrustworthy (Manakul et al., 2023). Hallu-
cinations are found to mainly arise due to the predictive uncertainty inherent to probabilistic models
(Xiao & Wang, 2021). While uncertainty estimation for classification has been developed exten-
sively (Hiillermeier & Waegeman, 2021; Gawlikowski et al., 2023), uncertainty estimation for au-
toregressive models is still a challenging problem.

Semantic-Diverse Language Generation (SDLG) seeks to improve the efficiency of uncertainty es-
timation in autoregressive natural language generation (NLG) using importance sampling. Only
semantically diverse output sequences should increase the semantic uncertainty. This involves es-
timating the probability of generating output sequences with divergent semantic meanings. SDLG
uses a proposal distribution that samples semantically diverse output sequences. A natural language
inference model is used not only to cluster generated sequences according to their semantic equiva-
lence (Kuhn et al., 2023), but also to compute the contribution of every generated token to the final
semantics. This allows for substituting the most important token to resample a sentence with a high
likelihood but different semantic meaning. Such sentences are valuable summands for estimators of
aleatoric semantic uncertainty that are not reached by multinomial sampling in practice.

2 PREDICTIVE UNCERTAINTY IN NLG

Estimating uncertainty in NLG differs from estimating uncertainty in classification tasks (see Sec. C
in the appendix) in two key aspects. First, a sequence of predictions collectively forms the final
output of a model. Second, different output sequences might be equivalent in their semantic mean-
ing. To account for the latter aspect, Kuhn et al. (2023) introduce semantic entropy. We provide a
principled derivation of this measure and discuss practical considerations of how to estimate it.

2.1 MEASURING PREDICTIVE UNCERTAINTY IN NLG

Prerequisites. Given are an autoregressive language model parametrized by w and an input se-
quence of tokens © = (z1,...,x5) With x € V. An output of the model is a sequence of to-
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kens y = (y1,...,yr) € Y with y € V. The predictive distribution at step ¢ of the output se-
quence y is conditioned on both the input sequence and all previously generated tokens, denoted
as p(y: | @, y<¢, w). The probability of an output sequence is the product of the individual token
probabilities: p(y | z,w) = Hthl (Yt | @, y<+, w). In practice, p(y | ¢, w) is often length-
normalized to not favor short sequences (Cover & Thomas, 2006; Malinin & Gales, 2021; Kuhn

et al., 2023), which results in p(y | z, w) = exp (% Zthl logp(y: | &, y<t, 'w))

Semantic cluster probability distribution. Evaluating the whole set of possible output sequences
Y is usually intractable, as it scales exponentially with the sequence length 7', thus O(|V|T). Fur-
thermore, semantic equivalences of sequences should be taken into account (Kuhn et al., 2023).
A language model generating different output sequences from the same input sequence does not
necessarily indicate high predictive uncertainty if they mean the same thing. Hence, predictive un-
certainty should be considered high only when different output sequences also exhibit semantically
diverse meanings. Instead of directly utilizing the distribution over output sequences p(y | z, w),
the distribution over semantic clusters

ple| z,w) = ZPCIy ylz,w) =) Hycc}ply|zw) (D

y

is used to derive the predictive uncertainty in the autoregressive language generation setting. It ex-
presses the probability of the language model generating an output sequence belonging to a specific
semantic cluster. The conditional probability distribution p(c | y) expresses the probability of an
output sequence y belonging to a semantic cluster ¢ € C. We assume that y belongs to a single
semantic cluster as is done in Kuhn et al. (2023). Thus, I{y € ¢} = 1 iff y belongs to semantic
cluster c. Following Kuhn et al. (2023), we employ the natural language inference model DeBERTa
(Williams et al., 2018; He et al., 2021) as a bi-directional entailment classifier. It predicts whether
two sequences entail each other, are neutral, or contradict each other. The two sequences belong to
the same semantic cluster if they entail each other in both orders.

Semantic uncertainty. Adopting the definition for the predictive uncertainty of a given, pre-selected
model in the classification setting introduced by Schweighofer et al. (2023a;b), the total predictive
semantic uncertainty (see Sec. C in the appendix for details):

Eg [CE(p(c |z, w) ; p(c |z, w))] = H(p(c | z,w)) + Eu [KL(p(c | ,w) || p(c | z,w))] (2)

total aleatoric epistemic

can be additively decomposed into an aleatoric semantic and an epistemic semantic uncertainty.
Ew = Eg~p(w|p) 18 a posterior expectation. The epistemic term is again a posterior expectation,
which is particularly challenging to estimate for current language models that are in the range of
billions of parameters (Zhang et al., 2022; Touvron et al., 2023). The aleatoric term is precisely the
semantic entropy proposed by Kuhn et al. (2023). The aleatoric semantic uncertainty considers the
entropy of the semantic cluster probability distribution as of Eq. (1) under a given language model:

H(p(c| x,w)) Zlogpc|ww ple |z, w) . 3)

2.2  ESTIMATING ALEATORIC UNCERTAINTY IN NLG

Kuhn et al. (2023) proposes to approximate the semantic entropy given by Eq. (3) through Monte
Carlo (MC) sampling. The estimator is thus given by

H(p(c| =, w)) f—Zlogp EXOF )

n=1

where ¢" is sampled according to the semantic cluster probability distribution p(c | «, w). However,
we cannot directly sample from p(c | , w), but only from p(y | &, w). Therefore, it is impossible
to directly use the estimator in Eq. (4). Instead, one can first approximate

N N (n‘

1 1 n Py |xr,w
pelmw) ~ + Sy ed) = + S Wy e} )
n=1

= 5
(" | = w) ©)

n=1



Published at ICLR 2024 Workshop on Reliable and Responsible Foundation Models

through MC sampling, where y™ is sampled according to p(y | @, w) or when using importance
sampling according to a proposal distribution ¢(y | &, w). We want to utilize importance sampling,
because drawing samples from a billion-parameter model is computationally costly. Sample sizes
are typically in the low double-digit range (Malinin & Gales, 2021; Kuhn et al., 2023; Duan et al.,
2023) and only go up to a few hundred for studies conducted on large-scale compute (Kadavath
et al., 2022). We use the estimator given by Eq. (5) to approximate the aleatoric semantic uncer-
tainty defined by the semantic entropy in Eq. (3) by summing over all clusters cy, ..., cp; found in
{y"}}_, through the bi-directional entailment classifier (see Eq. (16) in the appendix). Importantly,
the quality of the approximation strongly depends on how many clusters with substantial probability
mass have been found by sampling. Our method SDLG (described in Sec. 3) is more likely to find
such clusters. SDLG implicitly constructs the proposal distribution ¢(y | &, w). It takes the form

p(y | z, w)

— (6)
p(yt | y<t,.’13,'U7)

9(y |z, w) =
where p(y: | Y<t, x, w) is the likelihood of the alternative token that is substituting a token at index
t. Intuitively, it means that we have to adjust the MC estimate in Eq. (5), because SDLG interferes in

sampling and changes y, deterministically. For more details on the assumptions and a step-by-step
derivation see Sec. D in the appendix.

3  SEMANTIC-DIVERSE LANGUAGE GENERATION

Recent work by Kuhn et al. (2023) samples the output sequences through multinomial sampling.
This naive approach, however, is inherently inefficient, as it tends to generate multiple duplicates of
likely sequences despite knowing the likelihood of generating each sequence. Furthermore, semantic
clusters may be missed, which would be important for accurately estimating the aleatoric semantic
uncertainty. On the contrary, SDLG explicitly searches for the output sequences that not only have
a high likelihood but also a high semantic diversity. It seeks to efficiently explore semantic clusters,
capturing important modes of p(c | x, w).

Semantic diversity and where to find it. Given an output sequence y that was generated by a given
language model from an input sequence x, how can we generate another output sequence that has
different semantics from y? In natural language, each sentence is composed of words that contribute
to the semantics to varying extents. Our method focuses on identifying and substituting the words
most important for the overall semantics. Thus, we score potential token substitutions based on the
impact in altering the semantics of y. To compute the scores, we utilize a ’self-loss’ L that expresses
to what degree y is semantically different from itself. L is used to calculate the gradient V,, L w.r.t.
the token embedding z; (representing y;), which quantifies the required change to alter the semantic
meaning. In the following, y; refers to a present token at position ¢ in the output sequence y, while
v; refers to an alternative token at position j in the vocabulary V.

1) Attribution score. Our first objective is to identify which present token should be changed
according to the computed gradient vector. The attribution score of y; € y

I = ||zi ® VL2 @)

is defined as the Euclidean distance || - ||2 of the gradient vector multiplied elementwise with the
embedding vector z; that represents the present token y;. Higher scores indicate a higher impact of
the token y; on altering the semantics when being changed (Adebayo et al., 2018).

2) Substitution score. Identifying which present token should be changed is important but insuf-
ficient. There could be no proper substitution that alters the semantic meaning. Thus, our second
objective is to identify appropriate alternative tokens that most effectively alter the semantics when
substituting the present token. The substitution score of v; € V' \ {y;}

(zi — 2;) - Vz, L

I —
‘ zi — 2jll2 |V L[2

()

is defined as the cosine similarity sim(-,-) between the gradient vector and the difference between
the present and the alternative token’s embedding vectors z;, z;. Higher scores indicate closer align-
ment between changes in the embedding vector with changes in the semantics (Mikolov et al., 2013).
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3) Importance score. Substituting the present token with a less likely alternative token might dras-
tically reduce the overall likelihood of the output sequence. Thus, our third objective is to favor
alternative tokens that also remain a high likelihood when substituting the present token. The im-
portance score of v; € V\ {y;}

P = p(”j | y<i, @, w) 9)
is simply defined as the probability that the language model assigns to v; given the context. The
context is the input plus output sequence up to the token that is to be substituted. Higher scores
indicate a greater likelihood of substituting the present token with the alternative token.

Generation of semantic diverse sequences. For every present token y; in the given output sequence
Yy, SDLG computes three distinct scores for each alternative token v; from the vocabulary V. Sub-
sequently, the potential substitutions are ranked according to the value of each of the three distinct
scores. A new output sequence is then generated by deliberately substituting the highest-ranked
token pair. The subsequent tokens are disregarded as they get conditioned on the substituted token,
affecting their predictive probability distributions. The rest of the new output sequence is generated
by the language model with the usual sampling strategy.

4 EXPERIMENTS

Models and Data. We utilize the OPT model series (Zhang et al., 2022) throughout the experiments,
with model sizes ranging from 2.7 to 30 billion parameters. The experiments were performed on
three free-form question-answering datasets that are frequently used as benchmarks for NLG uncer-
tainty estimation. We use Truthful QA (Lin et al., 2022a) corresponding to whole sentence answers
to closed-book questions, CoQA (Reddy et al., 2019) corresponding to medium to shorter length
answers to open-book questions, and TriviaQA (Joshi et al., 2017) corresponding to short, pre-
cise answers to closed-book questions. In general, the four models and three datasets assess the
performance of NLG uncertainty estimation methods across varying model capabilities, generation
lengths, and retrieval methods from both the prompt and internal model weights.

Evaluation. The quality of an uncertainty estimator is evaluated by how well it correlates with
the respective correctness of an answer of the model; correct answers should be assigned a lower
uncertainty than incorrect answers. Following the evaluation protocol of Kuhn et al. (2023); Lin et al.
(2023); Duan et al. (2023), we utilize the statistics-based metrics Rouge-L and Rouge-1 (Lin, 2004),
together with the Transfer learning-based metric BLEURT (Sellam et al., 2020). The correctness
is evaluated on the most-likely generation, sampled using a beam search with 5 beams and also
serving as the first generation for every NLG uncertainty estimation method. AUROC is utilized as
a metric for classifying the correct vs. incorrect answers, using the respective uncertainty estimator
as a score. The higher the AUROC, the higher the correlation between the uncertainty estimator and
the correctness of the answers.

Baselines. We compare SDLG against methods directly utilizing the predictive entropy on a token
level, namely Predictive Entropy (PE), Length-Normalized Predictive Entropy (LN-PE) (Malinin &
Gales, 2021) and Shifting Attention to Relevance (SAR) (Duan et al., 2023), as well as methods uti-
lizing Semantic Entropy on a sequence level, namely Semantic Entropy with Multinomial Sampling
(SEass) (Kuhn et al., 2023) and with Diverse Beam Search (SEppg) (Vijayakumar et al., 2018).
Although DBS has not explicitly been proposed for uncertainty estimation in NLG, we use it as a
traditional sampling method enforcing generation diversity. The SE ;s temperature and the SEppg
penalty term have been optimized. All methods use 10 generations for the uncertainty estimate.

SDLG. To compute the token scores as discussed in Sec. 3, we use the same natural language in-
ference model DeBERTa (Williams et al., 2018; He et al., 2021) that we also used for determining
semantic clusters (see Sec. 2.2). To be precise, we predict the semantic similarity between the first
(most-likely) generation and itself by feeding it into the DeBERTa model twice. The resulting pre-
diction is then employed to compute the loss L to the target prediction contradiction, which
in turn is used to compute the gradient vector for the token scores. The gradient vector quantifies
the change in the token embedding that is required to push the prediction of the DeBERTa model
towards contradiction and thus alters the semantic meaning. We empirically found that the
performance of our method is quite robust with respect to the weighting of the three individual to-
ken rankings. Thus, throughout our final experiments, we simply average them to derive the final
token ranking R. Following this token ranking, nine output sequences are generated.
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Table 1: AUROC using different uncertainty measures as a score to distinguish between correct and
incorrect answers. The threshold of the correctness metric Rouge-L (F1 score) is set to 0.5 and is
computed as [max score to a true reference answer] - [max score to a false reference answer].

Dataset Model LN-PE PE SAR SE s SEpgs SEsprc
OPT-2.7b 439 517 6ll 846 686 920
OPT-6.7b 446 510 555 781 637 881
TruthfulQA by 13 676 12775 896 819 956
OPT-30b 482 542 517 864 788 927
OPT-2.7b 717 693 733 744 697 744
CoQA OPT-6.7b 728 703 748 764 714 759
OPT-13b 723 697 747 758 720 760
OPT-30b 732 698 742 767 713 768
OPT-2.7b 7769 787 785 804 808 809
TriviaQA OPT-6.7b 790 805  .804 822 823 829
OPT-13b 807 820 819 838 841 845
OPT-30b 799 812 815 831 837 840

Analysis of results. Our method largely outperforms all current methods on the three correctness
metrics Rouge-L, Rouge-1, and BLEURT, nine different thresholds, and different numbers of sam-
pled answers. The results are summarized in Tab. 1. It can be observed that simple token-level
diversity enforced by higher temperatures in multinomial sampling or by Diverse Beam Search
(Vijayakumar et al., 2018) is insufficient for capturing semantic diversity essential for uncertainty
estimation.

Semantic clusters. Our method results in at least a 19% increase of semantic clusters after the
second generation, as well as at least a 74% increase of semantic clusters after the tenth generation,
compared to multinomial sampling with the highest-performing temperature when considering all
model sizes and averaging over all CoQA instances. This is because SDLG explicitly searches
for a different semantic meaning. Compared to current methods, SDLG does not sample the same
output sequence twice. Also, unlike current methods that rely on finding the optimal sampling
temperature, SDLG does not require hyperparameter tuning as it controls the sampling process by
deterministically exchanging relevant tokens instead of relying on chance to obtain diverse samples.
Future work could consider the semantics of all previously generated output sequences or applying
SDLG recursively on those, which could lead to further improvements.

Computational expenses. SDLG requires an additional forward and backward pass through the
DeBERTa model (Williams et al., 2018; He et al., 2021) when sampling answers, compared to
multinomial sampling used by the current methods. However, the main computational effort is dur-
ing the generation of output sequences, since forward and backward passes through the DeBERTa
model with a few hundred million parameters is usually small compared to generating only a single
token using a language model with billions of parameters. Also, since our method deterministi-
cally changes a specific token within the answer, preceding tokens are not regenerated, but only
subsequent tokens. This results in SDLG requiring at least 33% fewer overall flops compared to
multinomial sampling, when averaging over all CoQA instances. The advantage of our method over
the current methods further increases with longer sequences and larger model sizes.

Experimental details, further results, and the two ablation studies are given in Sec. F in the appendix.

5 CONCLUSION

SDLG improves on uncertainty estimation in NLG by re-sampling words of the original output se-
quence that change the semantic meaning, while being likely to be generated themselves. This way
it finds likely output sequences with different semantic meanings. Our experiments on free-form
question answering show that SDLG increases the overall quality of the uncertainty estimator while
being significantly more sample efficient. This work focuses on estimating the aleatoric compo-
nent of semantic uncertainty given by Eq. (2). Future work should investigate how to effectively
assess the epistemic component. SDLG can significantly enhance the applicability of uncertainty
estimation in NLG and aids in detecting hallucinations.
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A  IMPACT STATEMENT

This work focuses on assessing the uncertainty in natural language generation using language mod-
els. Our primary goal is to increase the robustness of language models, assess the reliability of
their predicted output sequences, and detect when a language model is hallucinating. Therefore, we
contend that our work makes a positive contribution to society in several aspects:

1. Improved discernment of certainty in model predictions enhances practical application in real-
world scenarios. This can be implemented by signaling uncertainty to users, such as through
highlighting dubious sections of responses or opting not to display uncertain outputs altogether.

2. Reliable uncertainty estimates may increase the trust of the user in the language model, as it
provides a basis to gauge the quality of the answer.

However, while we expect mainly a positive impact on society, there are also potential negative
aspects:

1. Enhanced uncertainty estimation might not yield expected outcomes if users lack the necessary
training to interpret these estimates effectively.

2. While better uncertainty assessment can foster usability and user trust, it also carries the risk of
creating undue reliance on these models. It is crucial to maintain human oversight and critical
evaluation of language model outputs, as over-reliance can be detrimental.

It is important to note that our method evaluates uncertainty based on the information available to
the language model. Therefore, it may inaccurately deem a factually incorrect answer as certain if
the model’s knowledge base contains similar errors. This issue, often perceived as model "halluci-
nation’, is not a reflection of the model’s uncertainty, but rather a result of factual inaccuracies in the
underlying data that is additional to hallucinations due to uncertainty.

B RELATED WORK

Uncertainty Estimation in NLG. Several works utilized the language model itself to obtain a pre-
diction of their uncertainty, whether that be numerical or verbal (Mielke et al., 2022; Lin et al.,
2022b; Kadavath et al., 2022; Cohen et al., 2023a; Ganguli et al., 2023; Ren et al., 2023; Tian et al.,
2023). Cohen et al. (2023b) utilizes cross-examination, where one language model generates the
output sequence and the other model acts as an examiner to assess the uncertainty. Zhou et al.
(2023) investigates the behavior of language models when expressing their (un)certainty.

A large body of work focuses on sampling a set of output sequences to obtain sampling-based
uncertainty estimators. Xiao & Wang (2021); Malinin & Gales (2021); Hou et al. (2023) incorporate
both aleatoric and epistemic estimates of uncertainty, where epistemic uncertainty due to model
selection is considered. While Kuhn et al. (2023); Lin et al. (2023); Duan et al. (2023) evaluate only
aleatoric uncertainty under a single given model, they take the semantic equivalence of potential
output sequences into account. Manakul et al. (2023) also samples a set of output sequences, but
utilizes them as input to another language model to assess the uncertainty.

Another approach to uncertainty estimation in NLG is conformal prediction (Quach et al., 2023),
where a stopping rule for generating output sequences is calibrated. Additionally, Xiao et al. (2022)
empirically analyzed how factors such as model architecture and training details influence the un-
certainty estimates in language models.

Generating diverse output sequences. Li et al. (2016) proposes an alternative training procedure
of language models to avoid generic, input-independent output sequences and increase diversity.
Diverse beam search (Vijayakumar et al., 2018) optimizes for a diversity-augmented objective across
beam groups, based on diversity heuristics. Ippolito et al. (2019) compares diversity encouraging
decoding strategies. Nucleus sampling (Holtzman et al., 2020) generates higher quality as well as
more diverse output sequences, but does not explicitly encourage semantic diversity. Contrastive
decoding (Li et al., 2023) utilizes a second, weaker language model, where the decoding algorithm
favors tokens generated by the stronger model and penalizes tokens generated by the weaker model.
Tam (2020) utilizes semantic clustering during beam search, which is used to prune beams and
diversify the remaining candidates. However, this only indirectly steers towards more diversity and
relies on the diversity of the initial beams.
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Closely related, but not directly targeting semantic diversity of output generations is the field of
(neural) controllable text generation (Prabhumoye et al., 2020). Here, the generation process of the
language model is steered by another model to e.g. adhere to a certain dialog structure, prevent toxic
answers, or play a certain persona. Keskar et al. (2019) uses control codes added to the prompt to
steer generation. Dathathri et al. (2020) propose the use of an external supervised classifier to control
the generation. Chan et al. (2021) also utilizes an external classifier, but trains in a self-supervised
setting. (Ghazvininejad et al., 2017; Holtzman et al., 2018) re-weight the probability distributions
at each step of generating the output sequence. For further work in this field see the surveys by
Prabhumoye et al. (2020); Zhang et al. (2023).

C PREDICTIVE UNCERTAINTY IN CLASSIFICATION.

We briefly revisit uncertainty estimation for classification tasks. A classification model parametrized
by w and an input vector x are given. The predictive distribution under the given model is denoted
as p(y | @, w). We assume that the dataset D is fixed and was sampled according to the predictive
distribution p(y | @, w*) under true model parameters w™*. Thus, we assume that the model class
can approximate the true distribution sufficiently well, a common and often necessary assumption
(Hiillermeier & Waegeman, 2021). The posterior distribution p(w | D) assigns a probability to
how likely w matches w*. Following Schweighofer et al. (2023a;b), the predictive uncertainty of a
given, pre-selected model parametrized by w is given by

Ey [CE(p(y | 2, w) ; p(y | z,w))] = H(p(y | 2, w)) + Ea [KL(p(y | 2, w) || p(y | z,0))]

total aleatoric epistemic

(10)

where Eg = Egppp). The total uncertainty, given by the posterior expectation of the cross-
entropy CE(- ; -), is decomposed into the aleatoric and the epistemic uncertainty. The aleatoric
uncertainty is the Shannon entropy H(-) of the predictive distribution under the given model. The
epistemic uncertainty is the posterior expectation of the Kullback-Leibler divergence KL(- || -)
between the given model and possible true models according to their posterior probability.

D ON THE PROPOSAL DISTRIBUTION INDUCED BY SDLG

In the following, we analyze the proposal distribution induced by SDLG. We consider a probabilistic
transformation of one output sequence y’ into another output sequence y, given by p(y | ¥, x, w).
This is introduced, because we have to sum over all possible output sequences y’ that we could
apply SDLG on, leading to

gy zw) = > py | = w) ply |y, @ w). (11)
y'ey

We can write p(y | ¥, &, w) as an expected value over ¢, the index where SDLG chooses a different
token:

py |y zw) =Y pt|y,zw)py|ty, zw). (12)
t=1

The construction of y from y’ only changes one element of ¢y’ at position ¢ and then generates the
postfix new. Therefore, we have p(y | t,y', x,w) = 0 for y’, # y<;. Consequently, >_ ,, p(y' |

@, w) can be reduced to Zy;¢€y>t P(Yss | y<t, z, w) p(y<: | , w) if the factor p(y | ¢, ¥/, =, w)
is present. There is only one possibility for the prefix with y_, = y.
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Using Eq. (12) in Eq. (11) leads to

q(y |z, w) = (13)
T

:Z "z, w) Zpt|y z,w)ply | t,y,z, w)
y'ey t=1
T

=> D o @ w) pt|y,z,w)py |ty = w)
t=1 y’€y
T

= Z Z Z y>t | y<t7:B U}) (y/gt | CI?,’LU) p(t ‘ y,,CT],'UJ) p<y | tvy/amvw)

t=1 y €V>y Y €V<

~

= Z Z p(y/>t | y§tax7w) p(ygt ‘ .’.U,’U)) p(t | y/>t7y<t7maw) p(y>t | y/>t7y§tax7w)
t=1 YL, €Vt

Il
E

D phe | y<o @ w) ply<e | @, w) p(t | yop y<t, @, w) pys: | y<r, @, w)
t=1 y/>t€y>t

~

= p(ygt ‘ wi) Z p(y/>t | y§t7w7w) p(t | y;t’ygtvwaw) p(y>t | ygtam7w)
YL E€EY>e

H
I
-

I
[M]=

p(ygt ‘ w,U)) p(t | y<t7m7w) p(y>t | y<t7w7w)

~
Il
—

Il
[M]=

p(y<t ‘ 113,’[,U) p(yt | y<t7wvw) p(t | yt7y<t7waw) p(y>t | yt7y<t7wi)

o~
Il
_

Il
M=

Pt | Yo, Y<t, T, w) p(Y<t | W) p(Y>t | Y, y<t, ¢, w) ,

t=1

where we used p(y; | y<¢, @, w) = 1, since SDLG chooses y; deterministically given y.; = y’,.
We assume that all probability mass in p(t | v+, Y<¢, 2, w) is at the actually observed ¢. This means,
given all possible y. ,, ¢ is the most probable position to induce a semantic change. This is a strong
assumption, that needs further investigation in future work. Under this assumption, the final result
in Eq. (13) reduces to

qy |z, w) = p(y<t | 2, w) p(Yy>t | Y1, y<t, T, w) . (14)

We can re-write Eq. (14) in terms of the output sequence probability distribution p(y | z, w) as

Py |z, w)

iz (15)
p(yt | Y<it, T, w)

Q(y ‘ "va) -

E DETAILS ON SEMANTIC ENTROPY ESTIMATOR

As itis unlikely that all semantic clusters C are found through clustering, it is not possible to calculate
Eq. (3) directly. Instead, one can calculate
M
H(p(c|z,w)) = = Y logp(em | 2,w) plen | z,w) . (16)
m=1

Inspecting the implementation of Kuhn et al. (2023) reveals that their estimator can be interpreted
as Eq. (5) with additional importance sampling. Formally, they utilize an empirical proposal dis-
tribution §(y | T, w) = + Zi:;l Yy = y"}, defined by the set of previously sampled output
sequences {y™}2_,. The approximation of the semantic cluster probability distribution given by
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Eq. (5) (without importance sampling) thus changes to

o) ~ L 3 1y e L L20) a”

POBEIEN W Y Gy e w)

where y” is sampled according to §(y | @, w). As this distribution is known by design and can
be enumerated, Eq. (17) simplifies to a weighted sum. The quality of this approximator strongly
depends on the empirical distribution. Therefore, Eq. (17) should only be used in favor of Eq. (5)
(without importance sampling) if {y™}2_; containts sequences that have very high probability un-
der p(y | @, w). The more these distributions differ, the higher the variance of the estimator,
therefore, the lower the approximation quality. We utilized this variation both for the baseline using
multinomial sampling, as well as in addition to the importance sampling we do with SDLG.

n=1

Furthermore, we found that the logarithm of the unnormalized probability estimator together with
normalizing the probability estimator outside the logarithm in Eq. (16) improves empirical results
for all methods that estimate the semantic entropy.

F EXPERIMENTAL DETAILS AND FURTHER EXPERIMENTS

Setup Details. To conduct the experiments, we use the over 800 closed-book questions in Truth-
fulQA (Lin et al., 2022a) corresponding to whole sentence answers, the almost 8,000 open-book
questions in the development split of CoQA (Reddy et al., 2019) corresponding to medium to shorter
length answers, and about 8,000 closed-book questions in the training split of TriviaQA (Joshi et al.,
2017) corresponding to short, precise answers. We use a 5-shot, zero-shot, and 10-shot prompt for
TruthfulQA, CoQA, and TriviaQA respectively. For computing the correctness of an answer, Turth-
fulQA provides both true and false reference answers, while CoQA and TriviaQA only provide true
reference answers.

When computing the token scores, the natural language inference model might not build upon the
same token embedding or even the same vocabulary V' as the language model. Consequently, the
embedding vectors need to be differentiably transformed to enable the computation of the gradients
w.r.t. z;. Fortunately, there exist efficient exact methods to learn the optimal linear transformation
between the two monolingual embedding spaces (Artetxe et al., 2016). We also note that substituting
present tokens not corresponding to the beginning of a word is often impractical, particularly in the
context of two monolingual embedding spaces. Consequently, we exclusively apply substitutions to
tokens at the beginning of a word.

To further reduce the computational cost of our method, we decrease the number of computed token
scores by implementing a token probability threshold of 0.001, under the rationale that tokens falling
below this probability threshold would, in any case, be assigned a low importance rank.

Results. Tab. 2 summarizes the results on Truthful QA, Tab. 3 the results on CoQA, and Tab. 4 the re-
sults on TriviaQA. Fig. 1 and Fig. 2 summarize the AUROC differences when sampling with SDLG
instead of multinomial sampling (MS) when using three different correctness metrics (Rouge-L,
Rouge-1, BLEURT), different thresholds for classifying answers as correct or incorrect, and a dif-
ferent number of samples without length-normalizing their probabilities. We observed that length
normalizing yields superior results across uncertainty estimation methods only for the CoQA dataset
when using a low correctness threshold. In summary, SDLG largely outperforms all other current
methods regardless of the correctness metric, threshold, or number of samples considered. This
highlights the fact that simple token-level diversity is insufficient for capturing semantic diversity,
while explicitly searching for semantic diverse output sequences is essential for uncertainty estima-
tion in NLG.

Semantic cluster ablation study. Fig. 4 shows the number of semantic clusters found when sam-
pling with SDLG instead of multinomial sampling (MS), when using a different number of samples
and averaging over all CoQA instances. SDLG samples more semantic clusters regardless of the
number of samples considered.

Computational expenses ablation study. Fig. 4 shows the number of flops required when utilizing
SDLG instead of multinomial sampling (MS) or Shifting Attention to Relevance (SAR), when using
the OPT-2.7b model and averaging over all instances of the respective datasets. SDLG is computa-
tionally lessexpensive than the current methods across all three datasets.
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Table 2: Truthful QA results: AUROC using different uncertainty measures as a score to distinguish
between correct and incorrect answers. Each method uses 10 samples without length-normalizing
probabilities. The temperature for SEj;g is set to 2.0 and the penalty term for SEppg is set to 1.0.

Metric  Model LN-PE PE SAR SEus SEpss  SEspic
Threshold > 03 05 03 05 03 05 03 05 03 05]03 05

2.7b 438 439 523 517 .604 .611 .786 .846 .647 .686 |.855 .920
Rouge-L 6.7b 470 .446 .530 .510 .570 .555 .739 .781 .621 .637 |.826 .881
(Flscore) 13b .653 .676 .693 .712 .754 775 .869 .896 .795 .819|.926 .956
30b 478 .482 .531 .542 506 .517 .828 .864 .746 .788 |.878 .927

2.7b 438 435 515 519 599 610 .774 846 .644 .689 |.850 .923
Rouge-1 6.7b 464 446 513 510 .560 .555 .717 .781 .608 .637 |.798 .881
(F1score) 13b .657 .673 .692 .709 .753 771 .872 .893 .795 .815|.928 .953
30b 482 483 .532 544 .614 .642 .827 .868 .749 .794 | .881 .930

2.7b 460 .456 .521 .535 .546 573 .687 727 .601 .643|.723 .772
6.7b 477 497 532 560 .535 .564 .674 706 .584 .623|.715 .757
13b 613 .628 .664 .686 .694 .728 .797 .836 .735 .777 | .844 .885
30b 496 .489 .553 546 .527 519 .768 .799 .693 .710|.800 .828

BLEURT

Table 3: CoQA results: AUROC using different uncertainty measures as a score to distinguish
between correct and incorrect answers. Each method uses 10 samples with length-normalized prob-
abilities. The temperature for SE ;g is set to 0.5 and the penalty term for SEppg is set to 1.0.

Metric Model LN-PE PE SAR SE s SEpgs SEsprc
Threshold > 03 05 03 05 03 05 03 05 03 05|03 05

27b 712 717 672 .693 727 733 743 744 707 .697|.749 .744
Rouge-L 6.7b 725 728 .680 .703 .747 .748 .768 .764 .731 .714|.774 .759
(Flscore) 13b 719 .723 .672 .697 .744 747 765 .758 .745 .720|.778 .760
30b 734 732 .676 .698 .738 742 779 767 .742 .713|.791 .768

27b 711 718 .669 .692 .726 .733 .742 745 707 .699 | .750 .746
Rouge-1 6.7b 726 .729 .679 .702 .747 748 771 765 .734 716 |.777 .762
(Flscore) 13b 719 723 .671 .696 .744 747 765 .759 .747 .722|.780 .762
30b 736 .734 .677 .699 .755 .754 .780 .768 .744 .716|.794 .768

2.7b 702 703 707 714 709 708 .736 .746 .736 .745|.736 .746
6.7b 707 .705 .716 .722 718 717 .746 .752 .741 .748|.746 .754
13b 705 .704 716 .720 715 .714 745 751 .744 750 |.747 .753
30b 711 711 719 .724 728 728 753 759 .752 .758 |.754 .760

BLEURT

Table 4: TriviaQA results: AUROC using different uncertainty measures as a score to distinguish
between correct and incorrect answers. Each method uses 10 samples without length-normalizing
probabilities. The temperature for SE /g is set to 0.5 and the penalty term for SEppg is set to 1.0.

Metric Model LN-PE PE SAR SEA[S SEDBS SESDLG
Threshold > 05 1.0 05 10 05 10 05 10 05 10|05 1.0

27b 769 775 787 813 .785 .800 .804 .831 .808 .831|.809 .846
Rouge-L 6.7b 790 .792 805 .823 .804 .811 .822 .833 .823 .833|.829 .854
(Flscore) 13b .807 .810 .820 .836 .819 .828 .838 .849 .841 .849 |.845 .868
30b .799 .795 .812 .820 .815 .816 .831 .834 .837 .835|.840 .853

27b 769 775 786 812 785 .800 .803 .830 .807 .831|.808 .845
Rouge-1 6.7b 790 .792 .804 .823 .804 .811 .821 .833 .823 .832|.829 .853
(F1score) 13b .807 .810 .819 .836 .819 .828 .837 .848 .841 .849|.843 .868
30b 799 .796 .811 .820 .814 .815 .830 .833 .836 .835|.838 .853

2.7b 750 758 793 799 771 780 .813 817 .817 .818|.827 .833
6.7b 770 770 .807 .803 .788 .788 .822 .815 .823 .814 |.839 .835
13b 787 775 820 .806 .804 .792 .837 .819 .840 .819 |.853 .840
30b 776 .762 .806 .789 .796 .779 .823 .801 .828 .800 |.839 .818

BLEURT
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Figure 1: Turthful QA dataset: AUROC difference when sampling with SDLG instead of multinomial
sampling (MS), averaged over correctness metrics Rouge-L, Rouge-1, and BLEURT (values in that
order). Positive values (blue) indicate higher average performance of SDLG.
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Figure 2: TriviaQA dataset: AUROC difference when sampling with SDLG instead of multinomial
sampling (MS), averaged over correctness metrics Rouge-L, Rouge-1, and BLEURT (values in that
order). Positive values (blue) indicate higher average performance of SDLG.
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Figure 3: CoQA dataset: Average number of semantic clusters across instances. SDLG finds more
semantic clusters than multinomial sampling (MS).
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Figure 5: Standard multinomial sampling relies on chance to obtain semantically diverse output
sequences, thus is prone to miss them. SDLG specifically searches for likely, but semantically diverse
output sequences.
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Figure 6: Illustrative example of applying SDLG.

G INSIGHTS INTO SDLG

Illustrative example. Fig. 6 considers the input sequence "Who proposed the theory of relativity?”
with the given output sequence ”Albert Einstein did.”. When investigating the alternative tokens it
becomes clear that not every substitution leads to a change in semantic meaning. It is important to
substitute tokens that also receive a high score for altering the semantics. In this example, it is the
present token corresponding to “Einstein” and the alternative token corresponding to ’Schweitzer”.
Yet, this alone does not directly indicate a high level of uncertainty about the output sequence.
High uncertainty should be attributed only if the new output sequence is completed and still has a
different semantic meaning. If the language model is uncertain about the originator of the theory
of relativity, it completes the new output sequence like ”Albert Schweitzer proposed the theory of
relativity.”. This would suggest a high uncertainty estimate. However, if the language model is
confident about the originator of the theory of relativity, it completes the new output sequence like
”Albert Schweitzer didn’t, but Albert Einstein did.”. It is in favor of a low uncertainty estimate, since
the model reinforces the original semantics. This illustrates that solely considering the predictive
uncertainty on a token level is insufficient. Steering the generation towards a different semantics and
then continuing the usual generation can be viewed as stress testing the language model.
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Algorithm 1 Semantic-Diverse Language Generation

Output: Semantically diverse output sequences S
Input: Input sequence x, generative language model g(-),
vocabulary V), language inference model e(-, -),
cross-entropy loss function /, number of generations NV
Initialize set of output sequences S < ()
Generate most likely output sequence y' < g(x)
S+ Su{y'}
Get ranked token indices for replacement R < Alg. 2
forn =2to N do
Select token indices for replacement (i, j) < R,
Construct new input sequence " <+ x & yiz @ v;
Finish new generation yi, < g(x™)
Construct new full sequence y™ + yL, ® v; & yi,
S+ Su{y"}
: end for
: return S

A S o

P
N2

Algorithm 2 Token Ranking by Semantic Impact

Output: Set of token pairs R ranked by semantic impact
Input: see Alg. 1
1: Initialize set of token scores R < ()

Compute entailment ¢ + e(y, y)
Compute loss to contradiction L <— I(¢, Ccontradiction)
for y, € y do

Compute gradient V. L < gT,Li

Get attribution score I; + ||z; ® V., L||2

forv; e V\{y;} do

Get substitution score I;; < sim(z; — z;, V,L)

9: Get importance score P;; < p(v; | y<i, €, w)
10: R(—RU{(I“LJ,P”)}
11:  end for
12: end for
13: Rank token indices based on scores R < Rank(R)
14: return R

Algorithm. SDLG generates a new output sequence by deliberately substituting a token pair that
has the best chance of altering the semantic meaning of a given output sequence y (see Alg. 1).
To determine which token pair should be substituted, three distinct scores are computed for every
present token in the given output sequence y and each alternative token from the vocabulary V. The
attribution score defined in Eq. (7) is identical for all alternative tokens associated with the same
present token. The substitution score defined in Eq. (8) and the importance score defined in Eq. (9)
are different for every alternative token. The potential substitutions are ranked according to the value
of each of the three distinct scores (see Alg. 2).

Computational flow of calculating token scores. Fig. 7 shows the computational flow of how the
three scores Importance, Substitution, and Attribution are computed for one specific token pair.
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Figure 7: Visualization of how the three scores Importance, Substitution, and Attribution are com-
puted for one specific token pair.
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