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ABSTRACT

We introduce WIRE: Wavelet-Induced Rotary Encodings. WIRE extends
Rotary Position Encodings (RoPE), a popular algorithm in LLMs and ViTs,
to graph-structured data. We demonstrate that WIRE is more general
than RoPE, recovering the latter in the special case of grid graphs. WIRE
also enjoys a host of desirable theoretical properties, including equivariance
under node ordering permutation, compatibility with linear attention,
and (under select assumptions) asymptotic dependence on graph resistive
distance. We test WIRE on a range of synthetic and real-world tasks,
including identifying monochromatic subgraphs, semantic segmentation of
point clouds, and more standard graph benchmarks. We find it to be
effective in settings where the underlying graph structure is important.

1 INTRODUCTION

Position encodings incorporate information about the respective locations of tokens into
the transformer attention mechanism (Vaswani et al., 2017). This is important because the
meaning of a sequence of words or image patches in general depends upon how they are
ordered. Likewise, the meaning of a graph depends upon how its constituent nodes are
connected. Position encodings capture these spatial and topological relationships, enabling
the network to learn expressive functions that generalise well to unseen data.

APEs and RPEs. Early transformers relied on absolute position encodings (APEs), which
add or concatenate fixed or learned embeddings to each token (Kiyono et al., 2021; Liu et
al., 2020; Wang et al., 2020). Whilst simple, these generally perform worse than relative
position encodings (RPEs), which instead modulate attention logits for each query-key pair
by a bias, taking g k; — q; k; + b;; (Li et al., 2023; Raffel et al., 2020; Shaw et al., 2018).
The bias b;; depends on the tokens’ respective positions, e.g. sequence separation in text
or shortest path distance between graph nodes. Recent years have witnessed RPEs in turn
be superseded by rotary position encodings (RoPE) (Su et al., 2024). RoPE decomposes
tokens into 2-dimensional blocks and rotates them by position-dependent angles. RoPE’s
strong empirical performance and modest computational footprint have fuelled its growing
popularity in LLMs and ViTs (Dubey et al., 2024; Gemma Team et al., 2024; Heo et al.,
2024). Moreover, it enjoys the convenient property that (as with APEs) it directly modifies
tokens, rather than the logits of query-key pairs. This makes RoPE compatible with linear
attention and KV-caching, improving scalability with respect to the number of tokens.

Position encodings for graphs. Without a simple single ‘coordinate system’, position
encodings for graphs — sets of nodes connected by edges — are more complicated. One
choice is to use the spectrum of the graph Laplacian to build APEs (Dwivedi and Bresson,
2020; Kreuzer et al., 2021). In the special case of grid graphs, this closely resembles the
sinusoidal APEs applied to text and images. Alternatively, one can compute some structural
property like the shortest path distance or effective resistance for each pair of graph nodes,
and use these quantities as RPE biases (Ying et al., 2021; Zhang et al., 2023). In this paper,
we show how RoPE can be extended to graphs, providing a competitive and scalable alter-
native. Our algorithm mitigates some of the shortcomings of APEs and bias-based RPEs,
encoding (approximate) invariances whilst preserving compatability with linear attention.
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Figure 1: WIRE schematic. WIRE constructs spectral coordinates for each node, e.g. by
computing the first few eigenvectors of the graph Laplacian. Low frequencies vary slowly
across the graph; higher frequencies oscillate sharply between adjacent nodes. The spectral
coordinates are projected down to obtain rotation angles for every query and key, applied
in a RoPE-style position encoding (Su et al., 2024). WIRE enjoys desirable theoretical
properties (Section 3.1) and is compatible with linear attention (Katharopoulos et al., 2020).

Key contributions. 1) We introduce WIRE (Wavelet-Induced Rotary Encodings), a new
RoPE-style position encoding for graph-structured data. Figure 1 gives a schematic. 2) We
show that WIRE is more general than RoPE, and that it can stochastically downweight
attention scores based on graph effective resistance. 3) We demonstrate that WIRE is
competitive in synthetic graph tasks, experiments with point clouds, and graph benchmarks.

T freq.

2 PRELIMINARIES

Consider an undirected graph G(N, &), where N := {vy,...,v5} is a set of N nodes and &
is a set of edges. (v;,v;) € & if and only if there exists an edge between v; and v; in §. The
number of nodes N is equal to the number of tokens processed using a transformer. Let

{ch}j\; . C R? denote this set of d-dimensional tokens. d is assumed to be even.

Attention. The ith query, key and value vectors are given by g, = Wz;, k; = Wz,
and v; = Wz, respectively, with W, W, ;W € R4 learned projection matrices. For
simplicity of notation we assume the single-head setting, with the understanding that all
arguments are trivially generalised to multi-head attention. The attention mechanism, one

of the fundamental computational units of the transformer, is written:
. Z], sim(q;, k;)v,
’ Z]/ Slm<qz?k]/)

Here, sim(-,-) : R? x R — R is a ‘similarity’ function that assigns a score to each query-key
pair. Standard softmax attention uses sim(qi, kzj) = exp(qiT kj), whereas linear attention
takes sim(q;, k;) = ¢/ k; (Katharopoulos et al., 2020). The former generally works better,
but the latter enables one to write a low-rank decomposition of the attention matrix, unlock-
ing O(N) scaling. Concretely, with a slight abuse of notation, with linear attention one can
take z; — q; Z], k:j'vj) /al (Zj, k:j/). The commutativity of matrix-matrix multiplication
obviates instantiating the attention matrix [sim(q;, kj))]f\fj:l € RN in memory. In the
same spirit, one can define (random) feature maps ¢(-) : R — R™ and take sim(g;, k;) =
cp(ql-)Tga(k:j), again unlocking O(N) scaling (Choromanski et al., 2020). Common choices
for ¢(-) include ReLU activations and random Laplace features (Yang et al., 2014).

(1)

xr

Rotary position encodings. Suppose that each token is equipped with a m-dimensional
coordinate r; € R™, with m = 1 for sequences, m = 2 for images and m = 3 for videos and
point clouds. Given a (projected) token z; € {q;, k;}, RoPE takes z; - RoPE(r;)z;, where:
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/2 .
ROPE(r)% = B p(6,)[2,, s, 10 P(O) = (g?j((z)) Cg;fgg?), 6, = wir. (2)

Here, € denotes the direct product, s0 each 2 x 2 matrix p(6,,) rotates a 2-element section
of the query or key. Meanwhile, {wn} . C R™ are learnable or fixed frequencies.! Using
the basic properties of 2D rotations, 1t is Stralghtforward to see that

RoPE (r;)" RoPE(r;) = RoPE(r; —r,), (3)

whereupon the joint transformation of querles and keys takes g; k —q; ROPE( Z)k:j.
Clearly, RoPE is translationally invariant,? an inductive bias that helps it generahse to new
sequence lengths and makes it effective in 3D robotics applications (Schenck et al., 2025).

Transformers for graphs. Whilst Graph Neural Networks (GNNs) have traditionally
performed best for graph-structured data, recent years have witnessed growing interest in
transformers (Miiller et al., 2023; Velickovié et al., 2017; Ying et al., 2021). A key algorithmic
challenge is to design effective position encodings that capture important structural infor-
mation about §. To this end, researchers often consider graph spectra (Chung, 1997).

Graph spectra. Let A := []I(( Uy, J) € é’)] € {0,1}V*N denote the graph adjacency
i,j=

matriz, whose (i, j) entry is equal to 1 if the correspondlng edge is present in the graph and 0

otherwise. Let D := diag Zj A,; ) denote the diagonal degree matrix. The graph Laplacian

is given by L :== D — A € RV*¥ Since it is symmetric, we can write
L=UAU", A =diag(\y,-Ay_1)s (4)

with Ay < A; < ... < Ay_;. Here, U:=[ug,u,,...,uy 4] is orthonormal, with each each
eigenvector (column) u; € RN oscﬂlatlng across the graph at frequency )\ The spectrum
of L (or its normalised variant D—/2LD-Y/ 2) captures the structure of 9 U and A are
often used to construct graph transformer APEs. Here, we will use them within RoPE.

Remainder of the manuscript. In Section 3 we introduce Wavelet-Induced Rotary
Encodings (WIRE), generalising RoPE to graphs. We show that WIRE enjoys a host
of attractive theoretical properties. In Section 4, we demonstrate that WIRE performs
competitively in learning tasks with a strong structural component.

3 WIRE: WAVELET-INDUCED ROTARY ENCODINGS

We begin by defining WIRE.

Alg. 1. Wavelet-Induced Rotary Encodings (WIRE). E_

1. Compute the lowest m < N eigenvectors and eigenvalues {uk,)\k}::ol of the graph
Laplacian L, either exactly or with approximate iterative methods

2. Define spectml features for each graph node, e.g. 7, = [u[é ]] ' ¢ R™ or similar.

3. Apply rotary position encodings using these spectral features takmg z; — RoPE(r;)z;
for queries and keys z; € {q;, k;}-

Efficiency of WIRE. Once equipped with spectral coordinates, WIRE becomes extremely
efficient to compute. This is because the full RoPE matrix is blockwise 2 x 2 and thus very
sparse. Explicitly, in view of Eq (2), one can simply take:

z, — [cos(ﬂl),cos(Gl),...,cos(&;),cos(eg)] Oz

+ [— sin(6, ), sin(6,), ..., —sin(ag),sin(@)] o Pz,. (5)

'For legibility, we generally suppress the dependence of RoPE(r;) on {wn} 4/2 |» leaving it implicit.

*Given this property, some researchers taxonomise RoPE as a type of relauve position encoding
(RPE). However, we prefer to distinguish it as a separate class of PE, since PEs based on other high-
dimensional rotations in SO(d) are not necessarily translationally invariant (Schenck et al., 2025).
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d-1
Here, © denotes the Hadamard (element-wise) product. P := [5Li/2J’U/2J —(52»’]»]‘ . €
i,j=
{0,1}9*4 is the permutation that takes Pz = [z, X, T3, To, ..., T4_1, T4 o), SWapping alter-
nate vector entries. Eq. (5) only needs O(d) operations. Moreover, it does not require the
N x N attention matrix to be instantiated in memory. This is in contrast to regular bias-
based RPE methods, which are generally O(N 2) and must instantiate attention in order to

take g k), — qiTkj +b;; ¥ (i,7) € NZ3

Expressivity of WIRE. WIRE can distinguish graphs identical under the 1-dimensional
Weisfeiler-Lehman graph isomorphism heuristic (with colours replaced by node features),
because their adjacency matrices and hence node spectral coordinates differ. In this sense,
transformers equipped with WIRE are more expressive than standard GNNs, which notori-
ously fail this test (Morris et al., 2019; Xu et al., 2018).

Number of parameters. The only learnable parameters in WIRE are the frequencies
(wi)jz 21 C R™, i.e. dm/2 parameters per transformer layer. Typically m < d, so this is very
small compared to the rest of the network. For additional savings, one can share WIRE
weights between layers or heads, or even follow conventional RoPE by freezing frequencies
in an exponential decay pattern (Su et al., 2024).

Generalising WIRE. In this paper, we focus on instantiations of WIRE using spectral
features. This is found to be effective in experiments (Section 4) and admits interesting
theoretical analysis (Section 3.1) — in particular, recovering regular RoPE on grid graphs
(Theorem 1) and exhibiting asymptotic dependence on graph effective resistance (Theorem
2). However, we emphasise that WIRE-like graph position encodings can in principle be
implemented using any set of node features that capture structural information about G,
based on graph spectra, random walks or otherwise. This is important because the best
position encoding may depend on the task and dataset at hand. Provided these features
can be calculated in O(N) time, we also preserve compatability with linear attention.

WIRE and GNNs. In practice, for many graph-based tasks a combination of global
attention and message passing layers gives the best performance, rather than a pure trans-
former (Rampdsek et al., 2022; Shirzad et al., 2023). Naturally, WIRE is compatible with
such hybrid models; one simply incorporates it wherever attention is used.

3.1 PROPERTIES OF WIRE

WIRE enjoys a number of attractive theoretical properties. To start, note the following.

Remark 1. (Equivariance under node ordering permutation). WIRE is insensitive
to the choice of ordering of the nodes of the graph, up to sign flips and rotations of degenerate
subspaces..

Justification. The spectrum {uk}lk\:Ol depends on the actual underlying graph structure G;

its entries are equivariant under permutation of the node ordering. The same follows for the
WIRE transformation. Please see Section C.5 for important rebuttal clarifications.

Theorem 1. (RoPE is a type of WIRE). RoPE is a special case of WIRE, occurring
when one considers a grid graph G with specific learnable frequencies {wn}zzl.

Proof. First consider a 1D grid (formally denoted as the path Py ), with adjacency matrix
A,;; =90; j41 +9; j_q. For this specific graph, the second (first nontrivial) eigenvector of L is
given by u; = [— cos(%(i + %)w))]il\;_ol. This changes monotonically between — cos(%) at
i =0 and cos(ﬁ) at i = N — 1. This sequence of coordinates, increasing as one progresses
along Py, is completely analogous to the token position coordinates [0, 1, ..., N — 1]. They
only differ by rescaling by %, offsetting by a constant, and restricting to the range (—1,1)

by pushing through a cosine transformation. Taking w, = [0,w;,0,0,...0], we isolate the

30Of course, exactly diagonalising L is generally O(N 3). Plenty of efficient approximate alternatives
exist, e.g. the Lanczos algorithm (Lanczos, 1950). We describe our own novel variant in Section A.2.
This standard one-time precomputation cost is incurred by any spectral PE method. For our purposes,
the important takeaway is that WIRE can be used without instantiating N x N attention.
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contribution from this first nontrivial spectral coordinate and recover regular RoPE used
in LLMs, up to these simple bijective coordinate system transformations. See Figure 2 left.

Next, consider a 2 dimensional grid graph of size N, x N,. This can be expressed as the
Cartesian product graph Py x PNy7 so the spectrum factorises. Completely analogously

N-1
to the 1D case, the second and third eigenvectors are u,[i] = [— COS(NL(iE + %)W):|
i i=0

N-1 ,
and u,[i] = [— cos(Ni(iy + %)w)] , with 4, = [NLJ and i, =1 — N,i,. The order of u;
v =0 e

and uy will depend on whether N: or N, is greater, but this detail is not important for
our purposes. Taking w, = [0, Wy, Wy, 0, T, we now recover regular RoPE for ViTs. This is
equivalent to applying 1D RoPE for each axis independently. See Figure 2 centre and right.

These arguments generalise straightforwardly to higher-dimensional grids (e.g. 3D for
video), where one considers products of a progressively greater number of path graphs. m

1D grid, k=1 2D grid, k=1 2D grid, k=2

— FH Bl

Figure 2: RoPE C WIRE. The leading elements of the Laplacian eigenvectors of grid
graphs (formally, Cartesian products of paths Py) change monotonically in each direction.
If we apply WIRE using just these coordinates, we recover regular RoPE as used in LLMs
and ViTs. In this sense, RoPE is a special case of WIRE.

Further comments on Theorem 1 . There are two minor differences between WIRE on
(products of) path graphs and regular RoPE. First, as noted above, the spectral coordinates
are always normalised to the range (—1, 1), rather than taking values 0, ..., N — 1. This type
of coordinate renormalisation is actually a popular trick in LLMs to improve generalisation
with respect to sequence length (Chen et al., 2023; Li et al., 2023). It is intriguing that WIRE
incorporates this regularisation automatically; we posit that it might improve generalisation
to different graph sizes. Second, since the eigenvectors of Py are only unique up to a sign,
one could equally flip the direction of all the spectral coordinates. This is not a property
exhibited by RoPE when used in LLMs — here, there is a clear sense of directionality. Parity
invariance follows from the fact that we consider undirected G, so it is to be expected.

Invariances under WIRE. The commutativity and orthogonalit¥ of 2D rota-
tions make RoPE translationally invariant: that is, (RoPE(r;)q;) RoPE(r;)k; =
(RoPE(r; + ¢)g;)" RoPE(r; +¢)k; V ¢ € R™. To rephrase, the composite transformation
RoPE(r; —r;) applied to a query-key pair (implicitly in the case of linear attention)
only depends upon the tokens’ separation r; —r;, rather than their absolute positions.
This property is important in 3D robotics applications (Schenck et al., 2025). It has been
suggested to help sequence length generalisation in LLMs (Peng et al., 2023; Su et al., 2024).

WIRE automatically inherits the property described above. However, the interpretation
of translational invariance in spectral space is less clear. Invariance under shortest path
distance — a popular choice for RPE schemes made e.g. in Graphormer (Ying et al., 2021)
— might be more intuitive. A closely-related alternative to shortest path distance is the
effective resistance (Ellens et al., 2011; Velingker et al., 2023; Zhang et al., 2023), defined by

R(i,j) = L;‘ + L}j - 2L1Tj (6)

for nodes (i, j) € N2. Here L is the Laplacian pseudoinverse, which removes any diverging
component of the regular inverse in the zero eigenvalue direction. It is straightforward to
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confirm that R(i, j) is a metric on N2. It is also known that effective resistance provides a
lower bound for shortest path distance, with equality achieved for trees (Spielman, 2010).

Theorem 2. (WIRE depends on res1st1ve distance). Consider a connected graph
with spectral features r; = [uk 1/4/A ] € RV~ Suppose that we randomly sample the

WIRE frequencies w; ~ N (0,wIy_4), Wlth i=1,..,% and w € R. Given a query-key pair
(qz, k. ) € R% x R?, We have that

E[(RoPE(r,;)q;)" RoPE(r;)k;] = ] k;(1 — w?R(i,)/2) + O(w*), (7)

where R(%, j) is the effective resistance between nodes %, j € N. That is, in expectation, the
leading contribution of WIRE is to downweight query-key logits by a factor proportional to
the effective resistance.

Proof. See App. A.1. m

Comments on Theorem 2 . We stress that WIRE is not ea:actly invariant under effective
resistance for a particular draw of (w )d/ % due to (1) the O(w*) correction terms and (2)
the requirement of the expectation E(-). In practice, we do not sample and average over an
ensemble of random WIRE transformations, but instead take one learnable instantiation.
Nonetheless, Theorem 2 builds intuition for how WIRE modulates the attention between
pairs of nodes: the further apart they are, the more attention tends to be downweighted. It
is remarkable that WIRE achieves this property without needing to instantiate the attention
matriz in memory. One can (approximately) modulate the attention matrix entry qu o5

q; k;(1—w?R(i,5)/2), but without explicitly computing all N x N scores {q; k } .
i,j=

resistances {R(i, j)}V “j—1- This is of substantial interest for Performers. This type of princi-

pled ‘linear attention topological masking’ has long been a goal in the efficient transformer
research community (Chen et al., 2023; Choromanski et al., 2022; Reid et al., 2024).

Takeaways from Section 3.1. When considering the special case of grid graphs
(formally, Cartesian products of path graphs Py ), WIRE recovers regular RoPE as used
in LLMs and ViTs. If we instantiate WIRE with random weights, then the expected
limiting transformation can downweight query-key logits depending upon their effective
resistance — a lower bound to shortest path distance. Remarkably, WIRE exhibits this
behaviour without needing to explicitly instantiate the attention matrix in memory.

4 EXPERIMENTS

Here, we test WIRE on a range of graph-based tasks, training > 200 transformer models
in total. It provides a strong topological inductive bias, which often boosts performance.

4.1 SYNTHETIC TASKS: MONOCHROMATIC SUBGRAPHS AND SHORTEST PATHS

Synthetic task 1. (Monochromatic subgraphs). We begin with a synthetic task, chosen
to strongly depend upon the structural properties of §. We generate 10,000 train graphs
and 1,000 test graphs with N = 25 nodes, beginning with a 5 x 5 grid and then deleting a
randomly selected subset of edges. Every node is assigned a colour. We train a transformer to
predict the size, i.e. number of nodes, of the largest monochromatic connected subgraph(s).

0 edges 5 edges 10 edges 15 edges

b [Pl oo

10 nodes 8 nodes 5 nodes 4 nodes
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Figure 3: Subgraph size regression. Predict the number of nodes in the largest connected
monochromatic subgraph(s) (shaded). Varying numbers of edges are removed, shown above.

Choice of G. The motivation for constructing graphs as described above is that changing
the number of deleted edges allows us to interpolate between 2D grid graphs and more
complicated topologies. For grids WIRE can recover RoPE (Theorem 1), which is already
known to perform well. The setup is similar to a ViT. On the other hand, as we delete more
edges the topology becomes more complicated, testing how WIRE fares with trickier G.

Model details. For the model inputs, we use the Laplacian eigenvectors, concatenated
with node colour labels. This means that all our models include APE by default. For WIRE,
we use spectral features using variable m € {0, 3,5,10}. Clearly, m = 0 corresponds to not
using WIRE. Growing m incorporates progressively higher-frequency structural information
into the rotations. Full architecture and training details are in Section B.1, along with
visualisations of example attention patterns from the final transformer layer.

Results. Normalised test RMSEs are shown in Table 1, with standard errors in parentheses.
WIRE provides gains over the baseline model (m = 0). When § is close to a grid (Figure 3
left), low-dimensional spectral features are sufficient. In contrast, as we delete more edges
and G becomes more complicated (Figure 3 right), higher frequencies become helpful.

Table 1: Monochromatic subgraph task. Normalised test RMSEs for computing the
largest monochromatic connected subgraph. m is the spectral coordinate dimensionality;
WIRE is used wherever m > 0. WIRE substantially improves regression performance.

Test RMSE ({)
Num. deleted edges
m 0 5 10 15
0 (no WIRE baseline) | 0.060(1) 0.087(1) 0.081(1) 0.068(2)
3 0.053(2)  0.075(2) 0.072(3) 0.064(3)
5 0.057(2) 0.075(1) 0.070(2) 0.056(4)
10 0.055(2) 0.068(5) 0.063(2)  0.058(2)

Synthetic task 2. (Shortest path distances). Next, we generate random Watts-Strogatz
graphs with NV = 10 nodes and k = 2 neighbours, with rewiring probability p = 0.6. Again,
we take 10,000 training examples and 1,000 test examples. We train transformer models,
identical to Task 1, to predict the shortest path distance (SPD) between two randomly
selected nodes. Figure 4 (left) gives three examples, with the target and source nodes
indicated in red and the corresponding SPD labelled above.

Shortest path distances on Watts-Strogatz graphs Training curves
1 2 5
0.12 1 —— m=0 (baseline)
m=3

m=>5

m=10

Test RMSE
o
o
=]

I
1=
=

0 100 200
Epochs

Figure 4: Example Watts-Strogatz graphs for shortest path distance prediction.
Left: Random graphs labelled with shortest path distances between target and source nodes
(red). Right: Corresponding training curves with m € {0, 3,5, 10} spectral features.

Given WIRE’s dependence on resistive distance (Theorem 2) — a lower bound to SPD — we
expect it to provide a strong inductive bias. Table 2 confirms that this is indeed the case;
WIRE nearly halves the test RMSE compared the APE-only baseline (m = 0). Figure 4
(right) shows sample training curves. App. B.1 gives further experimental details.
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Table 2: Shortest path distance task. WIRE provides strong improvements to trans-
formers trained to predict shortest path distances on random Watts-Strogatz graphs.
Num. spectral coords, m
0 (baseline) | 3 5 10
Test RMSE ({) | 0.065(5) | 0.048(6) 0.038(6)  0.045(4)

Number of parameters. In all these models, the WIRE parameters constitute a tiny
fraction of the entire model: less than 1% when m = 3. It is remarkable that they
nonetheless lead to a strong performance boost. This spectral information is already being
fed into the model as inputs. WIRE simply converts this into an additional strong structural
inductive bias, applied throughout the network at every layer and every attention head.

4.2 POINT CLOUD TRANSFORMERS

Next, we consider point cloud data (Guo et al., 2021). To implement WIRE, we construct
a sparse k-nearest neighbours graphs. The input features are (z,y, z) for each point. The
following remark helps motivate graph-based position encodings in this setting.

Remark 2. (Point cloud WIRE is invariant under SE(3)_transformations). Triv-
ially, the nearest neighbours graph § is invariant under joint translation and rotation of
the point cloud data — namely, SE(3) transformations. The same follows for its spectrum,
and thus the WIRE transformation we apply to queries and keys. Conversely, this property
does not hold for RoPE transformations with 3D Cartesian coordinates, where rotation and
translation will in general modify the position encoding.

Classification and segmentation. We train transformer models for classification and
semantic segmentation, on the ModelNet40 (Sun et al., 2022) and ShapeNet (Chang et al.,
2015) datasets respectively. Each example has 2048 points. We test (1) regular softmax
attention, and (2) ReLU linear attention (a ‘Performer’) (Choromanski et al., 2020). Full
details are in Section B.3. For WIRE, we use spectral features of dimensionality m = 10. The
nearest neighbours graphs are constructed taking k = 20, which gives connected, sparse G.
As baselines, we include regular transformer and Performers without any additional position
encoding (‘NoPE’), as well as regular RoPE using Cartesian coordinates (‘Cart. RoPE’).

Results. The classification test metric is the precision of the object-level predictions (top
one correctly classified). For semantic segmentation, it is the accuracy of the point-level
predictions, weighted by the number of each each type of point. Table 3 gives the results.
Runs are expensive, so following standard practice we report a single seed (Guo et al., 2021;
Qi et al., 2017). WIRE outperforms the regular PCT (NoPE) baseline for both transformers
and Performers, and often matches or surpasses Cartesian RoPE.

Table 3: PCT results. Test accuracy with different position encodings for classification
and segmentation tasks, including both regular and efficient (Performer) attention. WIRE
is consistently best (boldface) or second best (underlined), achieving greater accuracy than
the regular PCT baseline (NoPE). It performs similarly to Cartesian RoPE, using (z, v, 2).

Test accuracy (1)
Classification (ModelNet40) Segmentation (ShapeNet)

PE Transformer  Performer  Transformer Performer
NoPE 91.8 90.1 93.1 92.8
Cart. RoPE 91.8 90.8 93.2 93.2
WIRE 93.4 90.8 93.2 93.0

4.3 WIRE PERFORMERS ON BENCHMARK TASKS

Finally, we evaluate WIRE on established graph-based benchmarking tasks. To showcase
its compatability with linear attention, we mostly focus on O(N) Performer models.
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WIRE is a drop-in addition to existing models. For a clean, competitive implemen-
tation, we incorporate WIRE into GraphGPS architectures known to perform well on each
benchmarking task (Rampdsek et al., 2022). These are idiosyncratic; the best combination
of message passing, attention and MLPs depends upon the particular task at hand. We
use ReLU linear attention. Full details are in Section B.4. Remarkably, across the board,
adding WIRE — a lightweight, extra structural inductive bias — can improve performance by
multiple points. Whilst the linear variant still often performs worse than its expensive full-
rank counterpart (the price of greater efficiency), we observe that WIRE is frequently able
to substantially close this gap. For instance, on MalNet-Tiny, WIRE Performers are just as
effective as transformers, but unlike the latter we can train on a single T4 12GB GPU.

Table 4: Graph benchmark tasks. Performer test metrics with and without WIRE, on
graph benchmarks. (1)/(]) indicates whether higher or lower scores are better. For compar-
ison, less efficient O(NN?) baselines from Rampagek et al. (2022) are also shown in

Test metric
Performer (V) O(N?)

Dataset Baseline WIRE
MNIST (1) 97.56(2) 98.10(1)
CIFAR10 (1) 70.61(4) 71.15(3)
PATTERN (1) 85.71(3) 86.63(6)
CLUSTER (1) 76.90(3) 77.53(3)
ogbg-molhiv (1) 0.776(2) 0.785(2)
ogbg-molpcba (1) 0.238(3) 0.264(1)
ogbg-ppa (1) 0.8009(8) 0.804(2)
ogbg-code2 (1) 0.1731(9) 0.1733(9)
Peptides-func (1) 64.4(1) 64.9(1)
Peptides-struct ({) 0.2616(4) 0.2566(4)
PascalVOC-SP (1) 0.367(1) 0.376(1)
MalNet-Tiny (1) 92.81(5) 93.46(2)

WIRE beyond Performers. WIRE can be used within any model applying attention on
G. For example, WIRE often also provides gains when used with O(N 2) softmax attention,
as noted in Section 4.1 and Section 4.2. We give further examples for a subset of the
GNN benchmark datasets (smaller instances, where poor scalability is not prohibitive) in
Table 8 of App. B.4. Equally, WIRE can be used within other efficient transformers like
SGFormer (Wu et al., 2023) and BigBird (Zaheer et al., 2020) (the latter combined with
GNNs within GPS), again improving test accuracy. See Table 9 in App. B.4. These short
demonstrations provide further evidence of WIRE’s broad utility. We defer exploration with
yet more variants — such as Exphormers (Shirzad et al., 2023), which use virtual global
nodes and expander graphs, and Graph Attention Networks (Velickovié et al., 2017), which
use local attention — as important future work.

Takeaways from Section 4. WIRE provides a structural inductive bias the boosts the
accuracy of transformers on graph-structured data. This includes in synthetic and point
cloud settings, as well as more conventional GNN benchmarks.

5 CONCLUSION

We introduced Wavelet-Induced Rotary Encodings (WIRE), a new RoPE-style position
encoding for graph-structured data. WIRE injects topological information into transformers
by rotating tokens. Unlike many graph position encodings (e.g. Graphormer (Ying et al.,
2021)), it is compatible with linear attention. In experiments, we find WIRE to be effective
in tasks where a strong structural inductive bias is important.
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Reproducibility statement. We have made every effort to ensure the work’s reproducibil-
ity. The core algorithm is presented clearly in Alg. 1. Theoretical results are proved with
accompanying assumptions in the main body and in App. A.1. Anonymised code is available
here: https://anonymous.4open.science/r/WIRE_Graphs-4584/. It builds upon existing
public repositories. The datasets in Section 4.2 and Section 4.3 are standard and freely
available online. Exhaustive experimental details about the training and architectures are
reported in App. B.
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A THEORY

This section contains extra proofs and comments considered too long for the main text.

A.1 PROOF OF THEOREM 2

Here, we show that randomly initialised WIRE tends to downweight attention scores,
depending upon the resistive distance between the respective nodes.

Proof. For connected graphs, LT = Zi\[:_ll )\Luku; since \y =0 but A\, #0 for k> 1. It
is straightforward to see that R(i,j) = Zk;ll /\lk(uk[z] — wy[4])°. For each node i€ XV,

we define an N — 1-dimensional spectral feature r, = [uk[i]/\/kk] R € RN, whereupon
-1

R(i,j) = |r; —7; |2. Considering random weights? w; ~ N (0,wIy_;),

E((wTri — wTrj)Q) = w?r; — 7,3 (8)

Given a query-key pair (q, k) at positions (r;,7;),’

q"k — q'RoPE(r;)" RoPE(r;)k =

wla,

(@or_2Kor_o + Qop_1Kap_1) cos(wi (r; — Tj)) (9)
-

1
+(Qok 1Kok 9 — Qok_okay,_1) sin(wi (r; — rj))'

Taylor expanding in w and taking the expectation,
T T w? 2 4 T w? 4
E(q; kj) —q; k| 1— 7”7"1 —ril5 | +O(w*) =q/k;| 1— ER(%]) +0(w?) (10)
as claimed. Here, we used the fact that sin is an odd function to drop the O(w?) terms. m

A.2 EFFICIENT DIAGONALISATION OF THE LAPLACIAN MATRIX VIA RANDOM FEATURES

In this appendix, we describe a new stochastic approximation algorithm for computing
the leading eigenvalues and eigenvectors of the Laplacian matrix L. This is a well-studied
problem in the literature. We consider graphs G defined implicitly, where the edge weights
are a function of the distance between nodes in some suitable metric space.

Recall that the (unnormalised) Laplacian is defined by

L=D-A. (11)
Suppose the adjacency matrix A = [a, ;] € RV*N is defined by a;; = f5(|lv; — vj||22r7 with
fo is some (potentially learnable) function. The diagonal matrix D satisfies d;; = >_ “a,

j=0 i
Graph nodes are associated with coordinates in R%, e.g. d = 3 for point clouds. For instance,
for e-ball graphs, one would take

fe(””i - Uj”z) = ]I(”Uz' - Uj”z) <e), (12)

with I(-) the indicator function. Denote g(z) = f(|z|). We can rewrite g as follows, for
i2=—1:

g(z)=/ exp(—2miw' 2)7(w)dw, (13)
R4

*This is nothing other than the celebrated Johnson-Lindenstrauss transformation (Dasgupta and
Gupta, 2003), a random projection that preserves vector norms and distances in expectation.

°In Eq. (9), we drop the i and j suffixes on the queries and keys for compactness, freeing it up to
represent the coordinate k € {0, ...,d — 1}.
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where 7 is the inverse Fourier Transform of g defined by:
7(w) = / exp(2miz ' w)g(x)dw. (14)
R4

., we can rewrite:

Thus, taking: z = v, —v,,

a;;=C Epy) [exp(—2miw v;) exp(2miw v;)], (15)

where p(w) is the probability distribution with density proportional to 7(w) and C =
fR , T(w)dw.% The ability to efficiently (potentially approximately) sample from p(w) unlocks

the following low-rank decomposition:
-
a; ; ~ A (v;) (A% (vy)) (16)

where for wy, ..., w, are sampled independently at random from p(w), with r € N the number
of random features. In particular, we take

Al(v) = \/g(exp(—QmwlT'v), <oy €xp(—2miw v)), (17)

A2(v) =4/ g(exp(Zﬂ'iwlT'U), <oy €xp(2miw, v)). (18)
r
It follows that we can unbiasedly approximate L as:
L~XYT, (19)

for matrices X, Y € RV*V+7) with rows X (i) and Y (i) given as follows:
X(i) = 771'(\/ dii) & Al (v;), (20)
Y(i)= Ui(\/ dii) ® (—A%(v;)). (21)

Here, & denotes concatentation of the respective vectors, and n;(z) is a one-hot vector
whose ith element is equal to x.

To reduce the dimensionality of the features, we can then apply standard Johnson-Linden-
strauss transformation (JLT). We unbiasedly approximate XY by X’(Y’ )T, where the
matrices X', Y’ € RVX™ are given by:

1 1
= ——XG,Y = ——=YG. 22
\/ﬁ ) ﬁ ( )

The entries of the Gaussian matrix G € RINT7)*™ are drawn independently at random from
the Gaussian distribution with mean p = 0 and standard deviation o = 1.

X/

We conclude that the Laplacian matrix L can be unbiasedly approximated as:
L=X(Y)" (23)
For m « N, this provides a computationally-efficient low-rank approximation.

Finally, applying results by Nakatsukasa (2019), we can efficiently compute the eigenvalues
and eigenvectors of X’(Y’)" by diagonalising the smaller matrix (Y’)'X’ € R™*™_ This
operation only takes O(N) time, so it scales gracefully to very large graphs. It could be
applied e.g. to the point cloud experiments described in Section 4.2, providing an alternative
spectral approximation to the Lanczos algorithm. It may be of independent interest.

“We assume that this integral is well-defined.
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B EXTRA EXPERIMENTAL DETAILS

In this appendix, we provide extra experimental details to supplement Section 4.

B.1 SYNTHETIC EXPERIMENTS: MONOCHROMATIC SUBGRAPHS AND SHORTEST PATHS

Models and training. For both tasks, we use a standard 4 layer transformer with model
and MLP dimensionality 32. For simplicity, the attention is single-head. We train for 250
epochs with batch size 16, with a learning rate of 2 x 10~* obeying a cosine decay schedule
(o =0.01). We train using the Adam optimiser with weight decay 1 x 10~*. Dropout is
applied at a rate of 0.2 to attention and the MLP outputs. Graph embeddings are obtained
by mean pooling over node embeddings, and a dense layer projects the result to a scalar
prediction for (1) the size of the largest monochromatic connected subgraph and (2) the
shortest path distance between a target and source node (identified at the model inputs).
Both datasets have 10, 000 training examples and 1,000 test examples. We report the lowest
test root mean squared error obtained during training, normalised by graph size. Standard
errors are computed over 4 runs per setting.

Ablation: WIRE attention patterns. To better understand WIRE, we can also examine
the activations of a trained model. For instance, Figure 5 shows rescaled attention scores
at the final layer of the network. We take identical optimised weights, with WIRE either
switched on as during training (centre) or off (right). With WIRE, we see that nodes
attend within the biggest monochromatic subgraph. The pattern disappears when WIRE
is removed. This suggests that the network does indeed learn to use query-key rotations to
carry structural information about .

Node labels WIRE att. pattern '"WIRE-less' att. pattern

ittt

Figure 5: Example attention patterns with WIRE. Random choice of model input
(left), and example attention patterns for a trained model with (centre) and without (right)
WIRE. WIRE helps nodes attend to other nearby nodes with the same label.

B.2 WIRE AND PERFORMERS
Recall that, for O(N) Performer attention, we take:
> 0(a:) o(k;)v;
" >, e(a) (k)

where g; = Wz;, k; = Wz, and v; = Wz, respectively, with W, W, W, € R%*4 Jearned
projection matrices. () : R — R™ is a (random) feature map, common choices for which

include ReLU activations and random Laplace features (Yang et al., 2014).

(24)

There are two obvious manners in which one could incorporate WIRE:

1. Directly modulating the queries and keys. z; — RoPE(r;)z, for z, € {q;, k;}.

2. Modulating the features. ¢(z;) — RoPE(r;)p(z;) for 2z, € {q;, k;}.

The benefit of (1) is that, for suitable choices of maps ¢(-) like ReLU, we have that

(p(ROPE(ri)qi)Tcp(RoPE<rj)kj) > 0. (25)
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The attention scores all remain positive, which avoids instabilities caused by the denomi-
nator changing sign. Conversely, the advantage of (2) is that

(RoPE(r;)¢(q;)) ' (RoPE(r;)¢(k;)) = ¢(q;) ' RoPE(r; —r;)¢(k;), (26)

which gives the invariance properties we discuss in Section 3.1. But now modulated attention
scores can be negative which can in general cause instabilities — something that Su et al.
(2024) sidestep by only applying RoPE to the numerator (see Eq. 19 of their paper).

In Performer experiments, we find (1) to work well in practice, so tend to adopt this
approach.

B.3 POINT CLOUD TRANSFORMERS

For classification, we consider the ModelNet40 dataset (Sun et al., 2022). Each includes
2048 points and and belongs to one of 40 object classes, including ‘airplane’, ‘chair’ and
‘sofa’. The goal is to predict these labels. Meanwhile, for semantic segmentation we consider
ShapeNet (Chang et al., 2015). Each point has an associated ‘part label’, breaking the
object up into between 2 and 6 smaller semantically-meaningful sections — e.g. the legs or
seat of a chair. The goal is to predict the class labels of each point.

Models and training. Building on the Scenic codebase (Dehghani et al., 2022),” we use
a 4-layer transformer with hidden and MLP dimensions 128 and 512 respectively, trained
for 10,000 epochs with batch size 1024. We experiment with incorporating WIRE into
only a subset of layers, anticipating that early layers that capture geometric information
will benefit more from improved position encodings than the later semantic layers. This
hyperparameter is optimised by a sweep. As baselines, we include regular transformer and
Performers without any additional position encoding (NoPE), as well as regular RoPE using
Cartesian coordinates (c.f. spectral). We train with the Adam optimiser, with weight decay
0.01. The learning rate schedule is compound (constant, cosine decay and linear warmup)
with 10,000 warmup steps and a base rate of 5 x 1076.

B.4 GNN BENCHMARK HYPERPARAMETERS

In this section, we provide training details and hyperparameters for the GNN experiments
reported in Section 4.3. We follow the setup of Rampések et al. (2022). We choose MNIST,
CIFAR-10, PATTERN and CLUSTER from ‘benchmarking GNNs’ (Dwivedi et al., 2020),
Peptides-func, Peptides-struct and PascalVOC from the Long Range Graph Benchmark
(Dwivedi et al., 2022), and ogbg-molhiv, oghg-molpcba, oghg-ppa and ogbg-code2 from the
OGB datasets (Hu et al., 2020). We also consider MalNet-Tiny (Freitas et al., 2020). We
provide the statistics for each dataset in Table 5.

Table 5: Graph benchmark datasets. Statistics of the datasets considered in Section 4.3.

Dataset # Graphs Avg. nodes Avg. edges Dir. Level / Task Metric
MNIST 70,000 70.6 564.5 Yes Graph, 10-class cls. Accuracy
CIFARI10 60,000 117.6 941.1 Yes Graph, 10-class cls. Accuracy
PATTERN 14,000 118.9 3,039.3 No Inductive node, binary cls.  Accuracy
CLUSTER 12,000 117.2 2,150.9 No Inductive node, 6-class cls.  Accuracy
ogbg-molhiv 41,127 25.5 27.5 No Graph, binary cls. AUROC
ogbg-molpcba 437,929 26.0 28.1 No Graph, 128-task cls. Avg. Precision
MalNet-Tiny 5,000 1,410.3 2,859.9 Yes Graph, 5-class cls. Accuracy
Pascal VOC-SP 11,355 479.4 2,710.5 No Inductive node, 21-class cls. F1 score
Peptides-func 15,535 150.9 307.3 No Graph, 10-task cls. Avg. Precision
Peptides-struct 15,535 150.9 307.3 No Graph, 11-task regression MAE

We follow the standard train/validation/test split in each case. For all datasets in
‘benchmarking GNNs’ and OGB — namely, MNIST, CIFAR-10, PATTERN, CLUSTER,

"See especially https://github.com/google-research/scenic/tree/main/scenic/projects/
pointcloud.
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ogbg-molhiv, ogbg-ppa and ogbg-molpcba — we run 10 seeds. Since MalNet-Tiny runs are
expensive, we run 3 seeds. Likewise, the LRGB datasets — Peptides-func, Peptides-struct
and Pascal VOC-SP — are replicated 4 times. Lastly, all ogbg-code2 runs were repeated with
6 seeds. We use the AdamW optimiser (Loshchilov and Hutter, 2019) for all our experiments.

Our code is based on PyTorch Geometric. All experiments are run on a T4 GPU, with the
exception of ogbg-ppa and ogbg-code2. The latter two datasets are much more compute
intensive, and were run on an NVIDIA A100 (80GB) GPU. The results for the baseline dense
transformer are taken from Rampések et al. (2022), while the results for all other baselines
are obtained from our own runs. The RoPE computation in Equation (25) is implemented
using a learnable linear layer, transforming the spectral coordinates to dimensionality d/2.
We control the scale of its initialisation with an additional hyperparameter.

B.4.1 GRAPHGPS EXPERIMENTS: EXTRA DETAILS

In this subsection, we provide further implementation details for all experiments using
GraphGPS (Rampések et al., 2022).

The ReLU-Performer model is described in Section B.2. For all our experiments, we
default to the hyperparameters used by Rampések et al. (2022). It is well established that
performance is highly sensitive to the choice of hyperparameters for each dataset. For ogbg-
ppa and ogbg-code2, all the hyperparameter settings were identical to (Rampések et al.,
2022, Table A.3), with optional 16 Laplacian positional encoding dimension for the WIRE
Performer. We give details in Table 6.

Table 6: GraphGPS Experiments with Performer Attention. Hyperparameters used
for our GraphGPS Experiments

Hyperparame- MNIST CIFAR-10 PATTERN CLUSTER Peptides-  Peptides- Pascal-Voc Ma?Net» ogbg.—mol—
ters struct func Tiny hiv
Hidden Dim 64 64 64 48 96 96 96 64 64
Heads 4 4 4 8 4 4 8 4 4
Attention 5 5 5 5 5 5 5 5 5
Dropout
MPNN GINE GatedGCN  GINE  GatedGCN GatedGCN GatedGCN GatedGCN GatedGCN  GINE
# Layers 3 3 6 16 4 4 4 6 10
GNN Dropout 1 0. 0. 1 1 1 1 0. 0.
Learning Rate ~ 0.0001 .001 0.0005 0.0005 .0003 .0003 .0005 .001 .0001
‘Weight Decay le-4 le-5 le-5 le-5 0. le-5 0. le-5 le-4
#  Laplacian ¢ 8 16 10 10 10 10 16 8
Eigenvectors
# RWSE Fea- 8 ) 16 ) ) ) ) 8 8

tures
Scheduler ~ ReduceLR cos decay cos decay cos decay cos decay cos decay cos decay  cos decay ReduceLR

Batch Size 64 64 32 32 128 128 32 4 32
Laplacian Po-
sition ~ Encod- - 16 - 16 16 16 16 - -
ing Dim
Epochs 150 150 100 100 200 150 300 150 100

Finally, following standard practice, for datasets like MNIST, PATTERN, MalNet-Tiny
and ogbg-molhiv, we use random walks to provide global structural information. We use
16 walks for MalNet-Tiny and MNIST, and 20 walks for PATTERN and ogbg-molhiv. We
also experiment with regular softmax and BigBird attention (Zaheer et al., 2020). In these
cases, we again use the same hyperparameters. Details are provided below.

B.4.2 SGFORMER EXPERIMENTAL DETAILS

SGFormer is another efficient transformer architecture, based upon a single linear attention
layer and a single message passing layer (Wu et al., 2023). In contrast to our other Performer
experiments, SGFormer takes the nonlinearity ¢(-) to be the identity map. For message
passing, we use a GCN. As usual, WIRE is injected into the attention mechanism of the
transformer. Again, we mostly revert to the GraphGPS hyperparameters, avoiding extensive
tuning to ensure our results are robust. Table 7 gives details.
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Table 7: SGFormer Experiments. Hyperparameters used for the SGFormer Experiments.

Hyperparameters MNIST CIFAR-10 PATTERN

Hidden Dim 128 256 128
Heads 2 1 8
Attention Dropout .5 b .5
# GNN Layers 3 2 3
GNN Dropout 1 1 1
Learning Rate 0.001 .001 0.0005
Weight Decay le-5 0 le-5
# WIRE Features 16 8 10
Scheduler ReduceLR cosine decay cosine decay
Epochs 150 100 150
Batch Size 32 64 32

B.5 EXTRA RESULTS FOR OTHER ATTENTION MECHANISMS ON GNN BENCHMARKS

Here, we report extra WIRE results with different (non-Performer) architectures, referenced
in Section 4.3 of the main text. Specifically, we report results with regular softmax attention,
SGFormer (Wu et al., 2023), and BigBird (Zaheer et al., 2020).

The SGFormer architecture is described above in Section B.4.2. Meanwhile, BigBird (Zaheer
et al., 2020) combines local and global attention. It uses a small fixed number of global
tokens that attend to all N tokens. Remaining tokens attend to their neighbours. Table 8
and Table 9 shows that WIRE can be easily integrated these attention mechanisms, boosting
the respective baselines.

Table 8: WIRE results on softmax transformers. Ablation results for WIRE on
O(N?) regular transformer architectures, on smaller datasets where poor scalability is
not a problem. As observed in Section 4.1 and Section 4.2, our algorithm still improves
performance.

Test metric
Dataset Variant Baseline WIRE
MNIST (1) Softmax transformer 98.05(4) 98.46(3)
CIFAR-10 (1) Softmax transformer 72.3(1) 73.48(7)
PATTERN (1) | Softmax transformer 86.69(2) 86.75(2)
CLUSTER (1) | Softmax transformer 78.02(6) 78.19(2)
ogbg-molhiv (1) | Softmax transformer 0.788(1) 0.798(2)

Table 9: WIRE results on extra efficient transformers. Ablation results for WIRE on
different O(N) transformer architectures: namely, SGFormer (Wu et al., 2023) and BigBird
(Zaheer et al., 2020). Once more, WIRE can provide gains.

Test metric
Dataset Variant Baseline WIRE
MNIST (1) SGFormer 96.78(4) 97.3(1)
CIFAR-10 (1) SGFormer 60.43(8) 61.36(6)
PATTERN (1) SGFormer 85.2(1) 85.9(1)
MNIST (1) BigBird 97.20 98.04
CIFARIO (1) BigBird 85.04 85.86
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C ADDITIONS DURING REBUTTALS

C.1 RWPE-WIRE

In the paragraph beginning ‘generalising WIRE’ (line 180), we noted that one need not
necessarily use the Laplacian eigenvectors to compute the features {rz}i\i . C R™ fed into
RoPE. One could use other node features the capture the graph structure, such as random
walk position encodings (RWPESs).

RWPEs. Considering an adjacency matrix A and a degree matrix D, the random walk
transition matrix is P := D7'A. The RWPE feature for node i is

RWPE(U'L) = []?117 ]?1%7 :Pz§7 s Pj] € Rkv (27)
computing the probability of a random walk returning to node v, after {1,2,...,k} steps.
RWPEs are popular in the literature (Dwivedi et al., 2021; Rampasek et al., 2022). One
can use RWPEs as rotational features for RoPE. Table 10 shows corresponding results
(analagous to Table 2) for shortest path prediction, training with a single seed for 100
epochs. WIRE using graph spectra tends to perform better (and is in general more expen-
sive), but we also observe a gain over the no-WIRE baseline using RWPEs. As in
the main text, RWPEs are additionally provided as APEs, isolating the gains from RoPE
rotations.

Table 10: Shortest path distance task with RWPEs. WIRE provides improvements to
transformers trained to predict shortest path distances on random Watts-Strogatz graphs,
using RWPEs instead of spectral features.
Num. spectral coords, m
0 (baseline) | 3 5 10
Test RMSE ({) | 0.061(1) | 0.060(1)  0.059(1)  0.055(2)

This demonstrates that WIRE is still an effective algorithm if graph spectra are not
accessible. Investigating further features that are effective within WIRE is an interesting
direction for future work.

C.2 EXTRA GNN BENCHMARKS

We have added results for the large-scale graph benchmarks oghg-ppa and ogbg-code2 to
Table 4. Note that the gains for ogbg-code2 are very strong, with Performer + WIRE
achieving greater test accuracy than the softmax transformer baseline.

C.3 CLARIFICATION: DISTINGUISHING ISOSPECTRAL BUT NON-ISOMORPHIC GRAPHS

Isospectral but non-isomorphic graphs will have the same eigenvalues, but different eigen-
vectors. Since WIRE by default uses the eigenvectors (see Alg. 1), the WIRE transformation
— and thus the transformer output — will be different. As such, WIRE can distinguish
isospectral but non-isomorphic graphs.

C.4 EFFICIENT DIAGONALISATION AND EXTRA DETAILS FOR SECTION A.2

Time complexity of precomputation. Below, we summarise the time complexity of
common efficient diagonalisation algorithms used in the literature.

1. Coarsening (Loukas and Vandergheynst, 2018). These methods coarsen the graph (reduce
N to N’ <« N), compute eigenvectors on the small graph, and lift them back to the original
graph. This is extremely fast for the lowest frequencies (smooth eigenvectors), and achieves
good performance. It unlocks sub-linear time complexity relative to the original N (after
coarsening).
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2. Lanczos (Baglama and Reichel, 2005; Lanczos, 1950). Once can compute the m extreme
eigenvalues using only matrix-vector multiplications. For sparse graphs, this is linear in the
number of nodes N for a fixed number of iterations. Modern improvements based on low-
dimensional subspaces further improve efficiency.

3. Other proxies. More pragmatically, trading approximating eigenvectors with more general
graph-based node features, one can compute other WIRE features in O(N) time using
random walk position encodings (Section C.1) or using recent @(N) sparse methods like
FastRP (Chen et al., 2019).

Halko et al. (2011) provides a detailed overview of other efficient randomised methods for
computing low-rank decompositions of matrices like the graph Laplacian, also applicable
to WIRE.

Lastly, we emphasise that some kind of structural feature is often already computed to be
used as an absolute position embedding. In this case, one can also apply it via WIRE at
essentially no extra cost.

Time complexity of WIRE itself. The time complexity of WIRE itself is O(Nmd) to
project the features to dimensionality d/2 and O(Nd) to apply the sparse rotations. This
is not observable in experiment wall-clock time, compared to the attention mechanism and
MLPs. The memory footprint is tiny.

Timing plots. Figure 6 gives some example wall clock times for transformer forward
passes with varying m, for the shortest path prediction task in Section 4.1. We use the
same model hyperparameters as previously. Since the time complexity of projecting m-
dimensional inputs to d/2-dimensional rotation angles for each token is O(Nmd), the plot
is roughly linear in m (deviating slightly due to hardware details and noise). We see that
little cost is incurred by increasing m.

Note that we chose this toy example to show how the time complexity depends on m. In
practical applications where N and d are much bigger (e.g. Section 4.3), the time incurred
by applying RoPE rotations tends to be small compared to the attention and MLPs, as
widely reported in the literature (Schenck et al., 2025; Su et al., 2024).

WIRE wall clock times (toy task)
0.00035

o
" 0.00034

0.00033 1

Figure 6: Example attention patterns with WIRE. Random choice of model input
(left), and example attention patterns for a trained model with (centre) and without (right)
WIRE. WIRE helps nodes attend to other nearby nodes with the same label.

C.5 EXTRA COMMENTS ON INVARIANCE AND EQUIVARIANCE

Note that, for the simplest instantiation of WIRE using the Laplacian eigenvectors, Remark
1 only holds up to sign flips and rotations of degenerate subspaces. Such transformations give
vectors which are still eigenvectors of L, but clearly the corresponding WIRE transformation
can in general be different.

This is easily remedied by applying extra transformations to the spectral features to ensure
that they are invariant under these transformations — for instance, maximal axis projection
(Ma et al., 2023), sign flipping heuristics, or SignNet (Lim et al., 2022). In practice, we find
that these additions make very little difference to our algorithm’s empirical performance.
We achieve our most competitive results (e.g. Table 4) using unmodified graph spectra.
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Intuition and asymptotic equivariance. To understand this behaviour, we note that
Theorem 2 still holds under random sign flips and basis transformations of the eigenvectors.
Note that the leading term in Eq. (10) depends upon |r; —;|3, which is unmodified
when these modifications are applied to {ri}ij\i L The fundamental asymptotic behaviour of
(random) WIRE does not depend upon these ambiguities in basis and sign. It is intrinsically
gauge invariant.

C.6 WAVEPE-WIRE

To complement Section C.1, we can also use WavePE features (Khang Ngo et al., 2023) as
rotational inputs to WIRE. These spectrum-based features use graph wavelets to capture
multi-scale information.

Constructing WavePE features. Recall that we write the spectral decomposition of the
Lapalcian as

L=UAU", A =diag(\y,- Ay_1)s (28)
where U are the eigenvectors and ()\i)i]\gl are the eigenvalues. We will consider a heat kernel
filter function

g(s\) = e, (29)

which is applied to the eigenvalues to create localised wavelents. For some scale s € R, the
corresponding wavelet operator is

¢(s) = Ug(sA)UT, (30)
where ¢ is applied to each of the diagonal entries of the eigenvalue matrix. Concatenating
a set of k different scales (s;), ', we obtain the multi-scale diffusion tensor

— k-1 NxNxk
\I’ - [SO(S’L>]2:O € R e . (31)

Further permutation-equivariant encodings are applied to map this to a set of m-dimensional
features needed for WIRE. Many such transformations exist (Kondor et al., 2018; Maron
et al., 2018), but in the interests of keeping the model lightweight we simply take:

r, = concat <\Il[z, i,:], Z Wi, j, ]) eR?* je{l,..,N} (32)
J

concatenating the diagonal entries of the tensor (self-diffusion) with its row sum (global-
diffusion). As usual, these features are also linearly projected when passed to WIRE. Tt is
straightforward to see that these features are natively equivariant, without any additional
transformations.

Empirical results. One can directly replace WIRE’s default spectral coordinates with the
WavePE features defined in Eq. (32), e.g. for the shortest path prediction task. Trading
our theoretical guarantees for these more empirical multi-scale features, we again see good
performance in experiments; like its regular counterpart, WIRE with WavePE con-
sistently provides gains over the baseline. Table 11 shows the results (companion to
Table 2), ablating the dimension of the rotational features m. Note that, in this experiment,
WavePE is only provided via WIRE, rather than as an APE. Given time constraints, we
train for 100 epochs (c.f. Table 2).

Table 11: Shortest path distance task with WavePE-WIRE. Using WavePEs instead
of raw eigenvectors as input features to WIRE also provides gains over the APE-only
baseline.
Num. spectral coords, m
0 (baseline) | 3 5 10
Test RMSE ({) | 0.080(1) | 0.077(2)  0.073(1)  0.071(1)
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