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Abstract

We introduce WIRE: Wavelet-Induced Rotary Encodings. WIRE extends 
Rotary Position Encodings (RoPE), a popular algorithm in LLMs and ViTs, 
to graph-structured data. We demonstrate that WIRE is more general 
than RoPE, recovering the latter in the special case of grid graphs. WIRE 
also enjoys a host of desirable theoretical properties, including equivariance 
under node ordering permutation, compatibility with linear attention, 
and (under select assumptions) asymptotic dependence on graph resistive 
distance. We test WIRE on a range of synthetic and real-world tasks, 
including identifying monochromatic subgraphs, semantic segmentation of 
point clouds, and more standard graph benchmarks. We find it to be 
effective in settings where the underlying graph structure is important.

1 Introduction

Position encodings incorporate information about the respective locations of tokens into 
the transformer attention mechanism (Vaswani et al., 2017). This is important because the 
meaning of a sequence of words or image patches in general depends upon how they are 
ordered. Likewise, the meaning of a graph depends upon how its constituent nodes are 
connected. Position encodings capture these spatial and topological relationships, enabling 
the network to learn expressive functions that generalise well to unseen data.

APEs and RPEs. Early transformers relied on absolute position encodings (APEs), which 
add or concatenate fixed or learned embeddings to each token (Kiyono et al., 2021; Liu et 
al., 2020; Wang et al., 2020). Whilst simple, these generally perform worse than relative 
position encodings (RPEs), which instead modulate attention logits for each query-key pair 
by a bias, taking 𝒒⊤

𝑖 𝒌𝑗 → 𝒒⊤
𝑖 𝒌𝑗 + 𝑏𝑖𝑗 (Li et al., 2023; Raffel et al., 2020; Shaw et al., 2018). 

The bias 𝑏𝑖𝑗 depends on the tokens’ respective positions, e.g. sequence separation in text 
or shortest path distance between graph nodes. Recent years have witnessed RPEs in turn 
be superseded by rotary position encodings (RoPE) (Su et al., 2024). RoPE decomposes 
tokens into 2-dimensional blocks and rotates them by position-dependent angles. RoPE’s 
strong empirical performance and modest computational footprint have fuelled its growing 
popularity in LLMs and ViTs (Dubey et al., 2024; Gemma Team et al., 2024; Heo et al., 
2024). Moreover, it enjoys the convenient property that (as with APEs) it directly modifies 
tokens, rather than the logits of query-key pairs. This makes RoPE compatible with linear 
attention and KV-caching, improving scalability with respect to the number of tokens.

Position encodings for graphs. Without a simple single ‘coordinate system’, position 
encodings for graphs –– sets of nodes connected by edges –– are more complicated. One 
choice is to use the spectrum of the graph Laplacian to build APEs (Dwivedi and Bresson, 
2020; Kreuzer et al., 2021). In the special case of grid graphs, this closely resembles the 
sinusoidal APEs applied to text and images. Alternatively, one can compute some structural 
property like the shortest path distance or effective resistance for each pair of graph nodes, 
and use these quantities as RPE biases (Ying et al., 2021; Zhang et al., 2023). In this paper, 
we show how RoPE can be extended to graphs, providing a competitive and scalable alter
native. Our algorithm mitigates some of the shortcomings of APEs and bias-based RPEs, 
encoding (approximate) invariances whilst preserving compatability with linear attention.

1



054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

Under review as a conference paper at ICLR 2026

Figure 1: WIRE schematic. WIRE constructs spectral coordinates for each node, e.g. by 
computing the first few eigenvectors of the graph Laplacian. Low frequencies vary slowly 
across the graph; higher frequencies oscillate sharply between adjacent nodes. The spectral 
coordinates are projected down to obtain rotation angles for every query and key, applied 
in a RoPE-style position encoding (Su et al., 2024). WIRE enjoys desirable theoretical 
properties (Section 3.1) and is compatible with linear attention (Katharopoulos et al., 2020).

Key contributions. 1) We introduce WIRE (Wavelet-Induced Rotary Encodings), a new 
RoPE-style position encoding for graph-structured data. Figure 1 gives a schematic. 2) We 
show that WIRE is more general than RoPE, and that it can stochastically downweight 
attention scores based on graph effective resistance. 3) We demonstrate that WIRE is 
competitive in synthetic graph tasks, experiments with point clouds, and graph benchmarks.

2 Preliminaries

Consider an undirected graph 𝒢︀(𝒩︀,ℰ︀), where 𝒩︀ ≔ {𝑣1,…, 𝑣𝑁} is a set of 𝑁  nodes and ℰ︀ 
is a set of edges. (𝑣𝑖, 𝑣𝑗) ∈ ℰ︀ if and only if there exists an edge between 𝑣𝑖 and 𝑣𝑗 in 𝒢︀. The 
number of nodes 𝑁  is equal to the number of tokens processed using a transformer. Let 
{𝒙𝑖}

𝑁
𝑖=1 ⊂ ℝ𝑑 denote this set of 𝑑-dimensional tokens. 𝑑 is assumed to be even.

Attention. The 𝑖th query, key and value vectors are given by 𝒒𝑖 = 𝐖𝑞𝒙𝑖, 𝒌𝑖 = 𝐖𝑘𝒙𝑖 
and 𝒗𝑖 = 𝐖𝑣𝒙𝑖 respectively, with 𝐖𝑞,𝐖𝑘,𝐖𝑣 ∈ ℝ𝑑×𝑑 learned projection matrices. For 
simplicity of notation we assume the single-head setting, with the understanding that all 
arguments are trivially generalised to multi-head attention. The attention mechanism, one 
of the fundamental computational units of the transformer, is written:

𝒙𝑖 →
∑𝑗 sim(𝒒𝑖, 𝒌𝑗)𝒗𝑗

∑𝑗′ sim(𝒒𝑖, 𝒌𝑗′)
. (1)

Here, sim(⋅, ⋅) : ℝ𝑑 × ℝ𝑑 → ℝ is a ‘similarity’ function that assigns a score to each query-key 
pair. Standard softmax attention uses sim(𝒒𝑖, 𝒌𝑗) = exp(𝒒⊤

𝑖 𝒌𝑗), whereas linear attention 
takes sim(𝒒𝑖, 𝒌𝑗) = 𝒒⊤

𝑖 𝒌𝑗 (Katharopoulos et al., 2020). The former generally works better, 
but the latter enables one to write a low-rank decomposition of the attention matrix, unlock
ing 𝒪︀(𝑁) scaling. Concretely, with a slight abuse of notation, with linear attention one can 

take 𝒙𝑖 → 𝒒⊤
𝑖 (∑𝑗 𝒌𝑗𝒗𝑗)/𝒒⊤

𝑖 (∑𝑗′ 𝒌𝑗′). The commutativity of matrix-matrix multiplication 

obviates instantiating the attention matrix [sim(𝒒𝑖, 𝒌𝑗))]𝑁𝑖,𝑗=1 ∈ ℝ𝑁×𝑁  in memory. In the 
same spirit, one can define (random) feature maps 𝜑(⋅) : ℝ𝑑 → ℝ𝑚 and take sim(𝒒𝑖, 𝒌𝑗) =
𝜑(𝒒𝑖)

⊤𝜑(𝒌𝑗), again unlocking 𝒪︀(𝑁) scaling (Choromanski et al., 2020). Common choices 
for 𝜑(⋅) include ReLU activations and random Laplace features (Yang et al., 2014).

Rotary position encodings. Suppose that each token is equipped with a 𝑚-dimensional 
coordinate 𝒓𝑖 ∈ ℝ𝑚, with 𝑚 = 1 for sequences, 𝑚 = 2 for images and 𝑚 = 3 for videos and 
point clouds. Given a (projected) token 𝒛𝑖 ∈ {𝒒𝑖, 𝒌𝑖}, RoPE takes 𝒛𝑖 → RoPE(𝒓𝑖)𝒛𝑖, where:
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RoPE(𝒓𝑖)𝒛𝑖 ≔ ⨁
𝑑/2

𝑛=1
𝝆(𝜃𝑛)[𝒛𝑖]2𝑛−2:2𝑛−1, 𝝆(𝜃) ≔ (cos(𝜃)

sin(𝜃)
− sin(𝜃)
cos(𝜃) ), 𝜃𝑛 ≔ 𝝎⊤

𝑛𝒓𝑖. (2)

Here, ⨁ denotes the direct product, so each 2 × 2 matrix 𝝆(𝜃𝑛) rotates a 2-element section 
of the query or key. Meanwhile, {𝝎𝑛}𝑑/2

𝑛=1 ⊂ ℝ𝑚 are learnable or fixed frequencies.1 Using 

the basic properties of 2D rotations, it is straightforward to see that

RoPE (𝒓𝑖)
⊤ RoPE(𝒓𝑗) = RoPE(𝒓𝑗 − 𝒓𝑖), (3)

whereupon the joint transformation of queries and keys takes 𝒒⊤
𝑖 𝒌𝑗 → 𝒒⊤

𝑖 RoPE(𝒓𝑗 − 𝒓𝑖)𝒌𝑗. 
Clearly, RoPE is translationally invariant,2 an inductive bias that helps it generalise to new 
sequence lengths and makes it effective in 3D robotics applications (Schenck et al., 2025).

Transformers for graphs. Whilst Graph Neural Networks (GNNs) have traditionally 
performed best for graph-structured data, recent years have witnessed growing interest in 
transformers (Müller et al., 2023; Veličković et al., 2017; Ying et al., 2021). A key algorithmic 
challenge is to design effective position encodings that capture important structural infor
mation about 𝒢︀. To this end, researchers often consider graph spectra (Chung, 1997).

Graph spectra. Let 𝐀 ≔ [𝕀((𝑣𝑖, 𝑣𝑗) ∈ ℰ︀)]𝑁
𝑖,𝑗=1

∈ {0, 1}𝑁×𝑁  denote the graph adjacency 

matrix, whose (𝑖, 𝑗) entry is equal to 1 if the corresponding edge is present in the graph and 0 
otherwise. Let 𝐃 ≔ diag(∑𝑗 𝐀𝑖𝑗) denote the diagonal degree matrix. The graph Laplacian 

is given by 𝐋 ≔ 𝐃 − 𝐀 ∈ ℝ𝑁×𝑁 . Since it is symmetric, we can write

𝐋 = 𝐔𝚲𝐔⊤, 𝚲 = diag(𝜆0,…, 𝜆𝑁−1), (4)

with 𝜆0 ≤ 𝜆1 ≤ … ≤ 𝜆𝑁−1. Here, 𝐔 ≔ [𝒖0, 𝒖1,…, 𝒖𝑁−1]
⊤ is orthonormal, with each each 

eigenvector (column) 𝒖𝑖 ∈ ℝ𝑁  oscillating across the graph at frequency 𝜆𝑖. The spectrum 
of 𝐋 (or its normalised variant 𝐃−1/2𝐋𝐃−1/2) captures the structure of 𝒢︀. 𝐔 and 𝚲 are 
often used to construct graph transformer APEs. Here, we will use them within RoPE.

Remainder of the manuscript. In Section 3 we introduce Wavelet-Induced Rotary 
Encodings (WIRE), generalising RoPE to graphs. We show that WIRE enjoys a host 
of attractive theoretical properties. In Section 4, we demonstrate that WIRE performs 
competitively in learning tasks with a strong structural component.

3 WIRE: Wavelet-Induced Rotary Encodings

We begin by defining WIRE.

Alg. 1. Wavelet-Induced Rotary Encodings (WIRE). 🧵

1. Compute the lowest 𝑚 ≤ 𝑁  eigenvectors and eigenvalues {𝒖𝑘, 𝜆𝑘}
𝑚−1
𝑘=0  of the graph 

Laplacian 𝐋, either exactly or with approximate iterative methods.
2. Define spectral features for each graph node, e.g. 𝒓𝑖 = [𝒖𝑘[𝑖]]

𝑚−1
𝑘=0 ∈ ℝ𝑚 or similar.

3. Apply rotary position encodings using these spectral features, taking 𝒛𝑖 → RoPE(𝒓𝑖)𝒛𝑖 
for queries and keys 𝒛𝑖 ∈ {𝒒𝑖, 𝒌𝑖}.

Efficiency of WIRE. Once equipped with spectral coordinates, WIRE becomes extremely 
efficient to compute. This is because the full RoPE matrix is blockwise 2 × 2 and thus very 
sparse. Explicitly, in view of Eq (2), one can simply take:

𝒛𝑖 → [cos(𝜃1), cos(𝜃1),…, cos(𝜃𝑑
2
), cos(𝜃𝑑

2
)] ⊙ 𝒛𝑖

+[− sin(𝜃1), sin(𝜃1),…,− sin(𝜃𝑑
2
), sin(𝜃𝑑

2
)] ⊙ 𝐏𝒛𝑖.

(5)

1For legibility, we generally suppress the dependence of RoPE(𝒓𝑖) on {𝝎𝑛}𝑑/2
𝑛=1, leaving it implicit.

2Given this property, some researchers taxonomise RoPE as a type of relative position encoding 
(RPE). However, we prefer to distinguish it as a separate class of PE, since PEs based on other high-
dimensional rotations in SO(𝑑) are not necessarily translationally invariant (Schenck et al., 2025).
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Here, ⊙ denotes the Hadamard (element-wise) product. 𝐏 ≔ [𝛿⌊𝑖/2⌋,⌊𝑗/2⌋ − 𝛿𝑖,𝑗]
𝑑−1

𝑖,𝑗=0
∈

{0, 1}𝑑×𝑑 is the permutation that takes 𝐏𝒙 = [𝒙1, 𝒙0, 𝒙3, 𝒙2,…, 𝒙𝑑−1, 𝒙𝑑−2], swapping alter
nate vector entries. Eq. (5) only needs 𝒪︀(𝑑) operations. Moreover, it does not require the 
𝑁 × 𝑁  attention matrix to be instantiated in memory. This is in contrast to regular bias-
based RPE methods, which are generally 𝒪︀(𝑁2) and must instantiate attention in order to 
take 𝒒⊤

𝑖 𝒌𝑘 → 𝒒⊤
𝑖 𝒌𝑗 + 𝑏𝑖𝑗 ∀ (𝑖, 𝑗) ∈ 𝒩︀2.3

Expressivity of WIRE. WIRE can distinguish graphs identical under the 1-dimensional 
Weisfeiler-Lehman graph isomorphism heuristic (with colours replaced by node features), 
because their adjacency matrices and hence node spectral coordinates differ. In this sense, 
transformers equipped with WIRE are more expressive than standard GNNs, which notori
ously fail this test (Morris et al., 2019; Xu et al., 2018).

Number of parameters. The only learnable parameters in WIRE are the frequencies 
(𝝎𝑖)

𝑑/2
𝑖=1 ⊂ ℝ𝑚, i.e. 𝑑𝑚/2 parameters per transformer layer. Typically 𝑚 ≪ 𝑑, so this is very 

small compared to the rest of the network. For additional savings, one can share WIRE 
weights between layers or heads, or even follow conventional RoPE by freezing frequencies 
in an exponential decay pattern (Su et al., 2024).

Generalising WIRE. In this paper, we focus on instantiations of WIRE using spectral 
features. This is found to be effective in experiments (Section 4) and admits interesting 
theoretical analysis (Section 3.1) – in particular, recovering regular RoPE on grid graphs 
(Theorem 1) and exhibiting asymptotic dependence on graph effective resistance (Theorem 
2). However, we emphasise that WIRE-like graph position encodings can in principle be 
implemented using any set of node features that capture structural information about 𝒢︀, 
based on graph spectra, random walks or otherwise. This is important because the best 
position encoding may depend on the task and dataset at hand. Provided these features 
can be calculated in 𝒪︀(𝑁) time, we also preserve compatability with linear attention.

WIRE and GNNs. In practice, for many graph-based tasks a combination of global 
attention and message passing layers gives the best performance, rather than a pure trans
former (Rampášek et al., 2022; Shirzad et al., 2023). Naturally, WIRE is compatible with 
such hybrid models; one simply incorporates it wherever attention is used.

3.1 Properties of WIRE

WIRE enjoys a number of attractive theoretical properties. To start, note the following.

Remark 1. (Equivariance under node ordering permutation). WIRE is insensitive 
to the choice of ordering of the nodes of the graph, up to sign flips and rotations of degenerate 
subspaces..

Justification. The spectrum {𝒖𝑘}
𝑁−1
𝑘=0  depends on the actual underlying graph structure 𝒢︀; 

its entries are equivariant under permutation of the node ordering. The same follows for the 
WIRE transformation. Please see Section C.5 for important rebuttal clarifications.

Theorem 1. (RoPE is a type of WIRE). RoPE is a special case of WIRE, occurring 

when one considers a grid graph 𝒢︀ with specific learnable frequencies {𝝎𝑛}
𝑑
2
𝑛=1.

Proof. First consider a 1D grid (formally denoted as the path 𝑃𝑁), with adjacency matrix 
𝐀𝑖𝑗 = 𝛿𝑖,𝑗+1 + 𝛿𝑖,𝑗−1. For this specific graph, the second (first nontrivial) eigenvector of 𝐋 is 
given by 𝒖1 = [−cos( 1

𝑁 (𝑖 + 1
2)𝜋))]𝑁−1

𝑖=0 . This changes monotonically between −cos( 𝜋
2𝑁 ) at 

𝑖 = 0 and cos( 𝜋
2𝑁 ) at 𝑖 = 𝑁 − 1. This sequence of coordinates, increasing as one progresses 

along 𝑃𝑁 , is completely analogous to the token position coordinates [0, 1,…,𝑁 − 1]. They 
only differ by rescaling by 𝜋

𝑁 , offsetting by a constant, and restricting to the range (−1, 1) 
by pushing through a cosine transformation. Taking 𝝎𝑖 = [0, 𝜔𝑖, 0, 0,…0], we isolate the 

3Of course, exactly diagonalising 𝐋 is generally 𝒪︀(𝑁3). Plenty of efficient approximate alternatives 
exist, e.g. the Lanczos algorithm (Lanczos, 1950). We describe our own novel variant in Section A.2. 
This standard one-time precomputation cost is incurred by any spectral PE method. For our purposes, 
the important takeaway is that WIRE can be used without instantiating 𝑁 × 𝑁  attention.
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contribution from this first nontrivial spectral coordinate and recover regular RoPE used 
in LLMs, up to these simple bijective coordinate system transformations. See Figure 2 left.

Next, consider a 2 dimensional grid graph of size 𝑁𝑥 × 𝑁𝑦. This can be expressed as the 
Cartesian product graph 𝑃𝑁𝑥

× 𝑃𝑁𝑦
, so the spectrum factorises. Completely analogously 

to the 1D case, the second and third eigenvectors are 𝒖1[𝑖] = [− cos( 1
𝑁𝑥

(𝑖𝑥 + 1
2)𝜋)]

𝑁−1

𝑖=0
 

and 𝒖2[𝑖] = [− cos( 1
𝑁𝑦

(𝑖𝑦 + 1
2)𝜋)]

𝑁−1

𝑖=0
, with 𝑖𝑦 = ⌊ 𝑖

𝑁𝑥
⌋ and 𝑖𝑥 = 𝑖 − 𝑁𝑥𝑖𝑦. The order of 𝒖1 

and 𝒖2 will depend on whether 𝑁𝑥 or 𝑁𝑦 is greater, but this detail is not important for 
our purposes. Taking 𝝎𝑖 = [0, 𝜔𝑥, 𝜔𝑦, 0,…], we now recover regular RoPE for ViTs. This is 
equivalent to applying 1D RoPE for each axis independently. See Figure 2 centre and right.

These arguments generalise straightforwardly to higher-dimensional grids (e.g. 3D for 
video), where one considers products of a progressively greater number of path graphs. ∎

Figure 2: RoPE ⊂ WIRE. The leading elements of the Laplacian eigenvectors of grid 
graphs (formally, Cartesian products of paths 𝑃𝑁) change monotonically in each direction. 
If we apply WIRE using just these coordinates, we recover regular RoPE as used in LLMs 
and ViTs. In this sense, RoPE is a special case of WIRE.

Further comments on Theorem 1 . There are two minor differences between WIRE on 
(products of) path graphs and regular RoPE. First, as noted above, the spectral coordinates 
are always normalised to the range (−1, 1), rather than taking values 0,…,𝑁 − 1. This type 
of coordinate renormalisation is actually a popular trick in LLMs to improve generalisation 
with respect to sequence length (Chen et al., 2023; Li et al., 2023). It is intriguing that WIRE 
incorporates this regularisation automatically; we posit that it might improve generalisation 
to different graph sizes. Second, since the eigenvectors of 𝑃𝑁  are only unique up to a sign, 
one could equally flip the direction of all the spectral coordinates. This is not a property 
exhibited by RoPE when used in LLMs – here, there is a clear sense of directionality. Parity 
invariance follows from the fact that we consider undirected 𝒢︀, so it is to be expected.

Invariances under WIRE. The commutativity and orthogonality of 2D rota
tions make RoPE translationally invariant: that is, (RoPE(𝒓𝑖)𝒒𝑖)

⊤ RoPE(𝒓𝑗)𝒌𝑗 =
(RoPE(𝒓𝑖 + 𝒄)𝒒𝑖)

⊤ RoPE(𝒓𝑗 + 𝒄)𝒌𝑗 ∀ 𝒄 ∈ ℝ𝑚. To rephrase, the composite transformation 
RoPE(𝒓𝒋 − 𝒓𝒊) applied to a query-key pair (implicitly in the case of linear attention) 
only depends upon the tokens’ separation 𝒓𝑗 − 𝒓𝑖, rather than their absolute positions. 
This property is important in 3D robotics applications (Schenck et al., 2025). It has been 
suggested to help sequence length generalisation in LLMs (Peng et al., 2023; Su et al., 2024).

WIRE automatically inherits the property described above. However, the interpretation 
of translational invariance in spectral space is less clear. Invariance under shortest path 
distance – a popular choice for RPE schemes made e.g. in Graphormer (Ying et al., 2021) 
– might be more intuitive. A closely-related alternative to shortest path distance is the 
effective resistance (Ellens et al., 2011; Velingker et al., 2023; Zhang et al., 2023), defined by

𝑅(𝑖, 𝑗) ≔ 𝐋†
𝑖𝑖 + 𝐋†

𝑗𝑗 − 2𝐋†
𝑖𝑗 (6)

for nodes (𝑖, 𝑗) ∈ 𝒩︀2. Here 𝐋† is the Laplacian pseudoinverse, which removes any diverging 
component of the regular inverse in the zero eigenvalue direction. It is straightforward to 
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confirm that 𝑅(𝑖, 𝑗) is a metric on 𝒩︀2. It is also known that effective resistance provides a 
lower bound for shortest path distance, with equality achieved for trees (Spielman, 2010).

Theorem 2. (WIRE depends on resistive distance). Consider a connected graph 

with spectral features 𝒓𝑖 = [𝒖𝑘[𝑖]/√𝜆𝑘]
𝑁−1

𝑘=1
∈ ℝ𝑁−1. Suppose that we randomly sample the 

WIRE frequencies 𝝎𝑗 ∼ 𝒩︀(0, 𝜔𝐈𝑁−1), with 𝑖 = 1,…, 𝑑
2  and 𝜔 ∈ ℝ. Given a query-key pair 

(𝒒𝑖, 𝒌𝑗) ∈ ℝ𝑑 × ℝ𝑑, we have that

𝔼[(RoPE(𝒓𝑖)𝒒𝑖)
⊤ RoPE(𝒓𝑗)𝒌𝑗] = 𝒒⊤

𝑖 𝒌𝑗(1 − 𝜔2𝑅(𝑖, 𝑗)/2) + 𝒪︀(𝜔4), (7)

where 𝑅(𝑖, 𝑗) is the effective resistance between nodes 𝑖, 𝑗 ∈ 𝒩︀. That is, in expectation, the 
leading contribution of WIRE is to downweight query-key logits by a factor proportional to 
the effective resistance.

Proof. See App. A.1. ∎
Comments on Theorem 2 . We stress that WIRE is not exactly invariant under effective 
resistance for a particular draw of (𝝎𝑖)

𝑑/2
𝑖=1 due to (1) the 𝒪︀(𝜔4) correction terms and (2) 

the requirement of the expectation 𝔼(⋅). In practice, we do not sample and average over an 
ensemble of random WIRE transformations, but instead take one learnable instantiation. 
Nonetheless, Theorem 2 builds intuition for how WIRE modulates the attention between 
pairs of nodes: the further apart they are, the more attention tends to be downweighted. It 
is remarkable that WIRE achieves this property without needing to instantiate the attention 
matrix in memory. One can (approximately) modulate the attention matrix entry 𝒒⊤

𝑖 𝒌𝑗 ⥲
𝒒⊤

𝑖 𝒌𝑗(1 − 𝜔2𝑅(𝑖, 𝑗)/2), but without explicitly computing all 𝑁 × 𝑁  scores {𝒒⊤
𝑖 𝒌𝑗}

𝑁
𝑖,𝑗=1

 or 

resistances {𝑅(𝑖, 𝑗)}𝑁
𝑖,𝑗=1. This is of substantial interest for Performers. This type of princi

pled ‘linear attention topological masking’ has long been a goal in the efficient transformer 
research community (Chen et al., 2023; Choromanski et al., 2022; Reid et al., 2024).

Takeaways from Section 3.1. When considering the special case of grid graphs 
(formally, Cartesian products of path graphs 𝑃𝑁), WIRE recovers regular RoPE as used 
in LLMs and ViTs. If we instantiate WIRE with random weights, then the expected 
limiting transformation can downweight query-key logits depending upon their effective 
resistance – a lower bound to shortest path distance. Remarkably, WIRE exhibits this 
behaviour without needing to explicitly instantiate the attention matrix in memory.

4 Experiments

Here, we test WIRE on a range of graph-based tasks, training > 200 transformer models 
in total. It provides a strong topological inductive bias, which often boosts performance.

4.1 Synthetic tasks: monochromatic subgraphs and shortest paths

Synthetic task 1. (Monochromatic subgraphs). We begin with a synthetic task, chosen 
to strongly depend upon the structural properties of 𝒢︀. We generate 10, 000 train graphs 
and 1, 000 test graphs with 𝑁 = 25 nodes, beginning with a 5 × 5 grid and then deleting a 
randomly selected subset of edges. Every node is assigned a colour. We train a transformer to 
predict the size, i.e. number of nodes, of the largest monochromatic connected subgraph(s).

6



324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

Under review as a conference paper at ICLR 2026

Figure 3: Subgraph size regression. Predict the number of nodes in the largest connected 
monochromatic subgraph(s) (shaded). Varying numbers of edges are removed, shown above.

Choice of 𝓖︀. The motivation for constructing graphs as described above is that changing 
the number of deleted edges allows us to interpolate between 2D grid graphs and more 
complicated topologies. For grids WIRE can recover RoPE (Theorem 1), which is already 
known to perform well. The setup is similar to a ViT. On the other hand, as we delete more 
edges the topology becomes more complicated, testing how WIRE fares with trickier 𝒢︀.

Model details. For the model inputs, we use the Laplacian eigenvectors, concatenated 
with node colour labels. This means that all our models include APE by default. For WIRE, 
we use spectral features using variable 𝑚 ∈ {0, 3, 5, 10}. Clearly, 𝑚 = 0 corresponds to not 
using WIRE. Growing 𝑚 incorporates progressively higher-frequency structural information 
into the rotations. Full architecture and training details are in Section B.1, along with 
visualisations of example attention patterns from the final transformer layer.

Results. Normalised test RMSEs are shown in Table 1, with standard errors in parentheses. 
WIRE provides gains over the baseline model (𝑚 = 0). When 𝒢︀ is close to a grid (Figure 3 
left), low-dimensional spectral features are sufficient. In contrast, as we delete more edges 
and 𝒢︀ becomes more complicated (Figure 3 right), higher frequencies become helpful.

Table 1: Monochromatic subgraph task. Normalised test RMSEs for computing the 
largest monochromatic connected subgraph. 𝑚 is the spectral coordinate dimensionality; 
WIRE is used wherever 𝑚 > 0. WIRE substantially improves regression performance.

Test RMSE (↓)

Num. deleted edges

𝑚 0 5 10 15

0 (no WIRE baseline) 0.060(1) 0.087(1) 0.081(1) 0.068(2)

3 0.053(2) 0.075(2) 0.072(3) 0.064(3)

5 0.057(2) 0.075(1) 0.070(2) 0.056(4)

10 0.055(2) 0.068(5) 0.063(2) 0.058(2)

Synthetic task 2. (Shortest path distances). Next, we generate random Watts-Strogatz 
graphs with 𝑁 = 10 nodes and 𝑘 = 2 neighbours, with rewiring probability 𝑝 = 0.6. Again, 
we take 10, 000 training examples and 1, 000 test examples. We train transformer models, 
identical to Task 1, to predict the shortest path distance (SPD) between two randomly 
selected nodes. Figure 4 (left) gives three examples, with the target and source nodes 
indicated in red and the corresponding SPD labelled above.

Figure 4: Example Watts-Strogatz graphs for shortest path distance prediction. 
Left: Random graphs labelled with shortest path distances between target and source nodes 
(red). Right: Corresponding training curves with 𝑚 ∈ {0, 3, 5, 10} spectral features.

Given WIRE’s dependence on resistive distance (Theorem 2) – a lower bound to SPD – we 
expect it to provide a strong inductive bias. Table 2 confirms that this is indeed the case; 
WIRE nearly halves the test RMSE compared the APE-only baseline (𝑚 = 0). Figure 4 
(right) shows sample training curves. App. B.1 gives further experimental details.
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Table 2: Shortest path distance task. WIRE provides strong improvements to trans
formers trained to predict shortest path distances on random Watts-Strogatz graphs.

Num. spectral coords, 𝑚
0 (baseline) 3 5 10

Test RMSE (↓) 0.065(5) 0.048(6) 0.038(6) 0.045(4)

Number of parameters. In all these models, the WIRE parameters constitute a tiny 
fraction of the entire model: less than 1% when 𝑚 = 3. It is remarkable that they 
nonetheless lead to a strong performance boost. This spectral information is already being 
fed into the model as inputs. WIRE simply converts this into an additional strong structural 
inductive bias, applied throughout the network at every layer and every attention head.

4.2 Point cloud transformers

Next, we consider point cloud data (Guo et al., 2021). To implement WIRE, we construct 
a sparse 𝑘-nearest neighbours graphs. The input features are (𝑥, 𝑦, 𝑧) for each point. The 
following remark helps motivate graph-based position encodings in this setting.

Remark 2. (Point cloud WIRE is invariant under SE(3) transformations). Triv
ially, the nearest neighbours graph 𝒢︀ is invariant under joint translation and rotation of 
the point cloud data – namely, SE(3) transformations. The same follows for its spectrum, 
and thus the WIRE transformation we apply to queries and keys. Conversely, this property 
does not hold for RoPE transformations with 3D Cartesian coordinates, where rotation and 
translation will in general modify the position encoding.

Classification and segmentation. We train transformer models for classification and 
semantic segmentation, on the ModelNet40 (Sun et al., 2022) and ShapeNet (Chang et al., 
2015) datasets respectively. Each example has 2048 points. We test (1) regular softmax 
attention, and (2) ReLU linear attention (a ‘Performer’) (Choromanski et al., 2020). Full 
details are in Section B.3. For WIRE, we use spectral features of dimensionality 𝑚 = 10. The 
nearest neighbours graphs are constructed taking 𝑘 = 20, which gives connected, sparse 𝒢︀. 
As baselines, we include regular transformer and Performers without any additional position 
encoding (‘NoPE’), as well as regular RoPE using Cartesian coordinates (‘Cart. RoPE’).

Results. The classification test metric is the precision of the object-level predictions (top 
one correctly classified). For semantic segmentation, it is the accuracy of the point-level 
predictions, weighted by the number of each each type of point. Table 3 gives the results. 
Runs are expensive, so following standard practice we report a single seed (Guo et al., 2021; 
Qi et al., 2017). WIRE outperforms the regular PCT (NoPE) baseline for both transformers 
and Performers, and often matches or surpasses Cartesian RoPE.

Table 3: PCT results. Test accuracy with different position encodings for classification 
and segmentation tasks, including both regular and efficient (Performer) attention. WIRE 
is consistently best (boldface) or second best (underlined), achieving greater accuracy than 
the regular PCT baseline (NoPE). It performs similarly to Cartesian RoPE, using (𝑥, 𝑦, 𝑧).

Test accuracy (↑)

Classification (ModelNet40) Segmentation (ShapeNet)

PE Transformer Performer Transformer Performer

NoPE 91.8 90.1 93.1 92.8

Cart. RoPE 91.8 90.8 93.2 93.2

WIRE 93.4 90.8 93.2 93.0

4.3 WIRE Performers on benchmark tasks

Finally, we evaluate WIRE on established graph-based benchmarking tasks. To showcase 
its compatability with linear attention, we mostly focus on 𝒪︀(𝑁) Performer models.
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WIRE is a drop-in addition to existing models. For a clean, competitive implemen
tation, we incorporate WIRE into GraphGPS architectures known to perform well on each 
benchmarking task (Rampášek et al., 2022). These are idiosyncratic; the best combination 
of message passing, attention and MLPs depends upon the particular task at hand. We 
use ReLU linear attention. Full details are in Section B.4. Remarkably, across the board, 
adding WIRE – a lightweight, extra structural inductive bias – can improve performance by 
multiple points. Whilst the linear variant still often performs worse than its expensive full-
rank counterpart (the price of greater efficiency), we observe that WIRE is frequently able 
to substantially close this gap. For instance, on MalNet-Tiny, WIRE Performers are just as 
effective as transformers, but unlike the latter we can train on a single T4 12GB GPU.

Table 4: Graph benchmark tasks. Performer test metrics with and without WIRE, on 
graph benchmarks. (↑)/(↓) indicates whether higher or lower scores are better. For compar
ison, less efficient 𝒪︀(𝑁2) baselines from Rampášek et al. (2022) are also shown in gray.

Test metric

Performer 𝒪︀(𝑁) Transformer 𝒪︀(𝑁2)
Dataset Baseline WIRE Baseline

MNIST (↑) 97.56(2) 98.10(1) 98.05(4)

CIFAR10 (↑) 70.61(4) 71.15(3) 72.3(1)

PATTERN (↑) 85.71(3) 86.63(6) 86.69(2)

CLUSTER (↑) 76.90(3) 77.53(3) 78.02(6)

ogbg-molhiv (↑) 0.776(2) 0.785(2) 0.788(1)

ogbg-molpcba (↑) 0.238(3) 0.264(1) 0.291(3)

ogbg-ppa (↑) 0.8009(8) 0.804(2) 0.802(3)

ogbg-code2 (↑) 0.1731(9) 0.1733(9) 0.189(2)

Peptides-func (↑) 64.4(1) 64.9(1) 65.4(4)

Peptides-struct (↓) 0.2616(4) 0.2566(4) 0.2500(5)

PascalVOC-SP (↑) 0.367(1) 0.376(1) 0.37(1)

MalNet-Tiny (↑) 92.81(5) 93.46(2) 93.36(6)

WIRE beyond Performers. WIRE can be used within any model applying attention on 
𝒢︀. For example, WIRE often also provides gains when used with 𝒪︀(𝑁2) softmax attention, 
as noted in Section 4.1 and Section 4.2. We give further examples for a subset of the 
GNN benchmark datasets (smaller instances, where poor scalability is not prohibitive) in 
Table 8 of App. B.4. Equally, WIRE can be used within other efficient transformers like 
SGFormer (Wu et al., 2023) and BigBird (Zaheer et al., 2020) (the latter combined with 
GNNs within GPS), again improving test accuracy. See Table 9 in App. B.4. These short 
demonstrations provide further evidence of WIRE’s broad utility. We defer exploration with 
yet more variants – such as Exphormers (Shirzad et al., 2023), which use virtual global 
nodes and expander graphs, and Graph Attention Networks (Veličković et al., 2017), which 
use local attention – as important future work.

Takeaways from Section 4. WIRE provides a structural inductive bias the boosts the 
accuracy of transformers on graph-structured data. This includes in synthetic and point 
cloud settings, as well as more conventional GNN benchmarks.

5 Conclusion

We introduced Wavelet-Induced Rotary Encodings (WIRE), a new RoPE-style position 
encoding for graph-structured data. WIRE injects topological information into transformers 
by rotating tokens. Unlike many graph position encodings (e.g. Graphormer (Ying et al., 
2021)), it is compatible with linear attention. In experiments, we find WIRE to be effective 
in tasks where a strong structural inductive bias is important.
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Reproducibility statement. We have made every effort to ensure the work’s reproducibil
ity. The core algorithm is presented clearly in Alg. 1. Theoretical results are proved with 
accompanying assumptions in the main body and in App. A.1. Anonymised code is available 
here: https://anonymous.4open.science/r/WIRE_Graphs-4584/. It builds upon existing 
public repositories. The datasets in Section 4.2 and Section 4.3 are standard and freely 
available online. Exhaustive experimental details about the training and architectures are 
reported in App. B.
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A Theory

This section contains extra proofs and comments considered too long for the main text.

A.1 Proof of Theorem 2

Here, we show that randomly initialised WIRE tends to downweight attention scores, 
depending upon the resistive distance between the respective nodes.

Proof. For connected graphs, 𝐋† = ∑𝑁−1
𝑘=1

1
𝜆𝑘

𝒖𝑘𝒖⊤
𝑘  since 𝜆0 = 0 but 𝜆𝑘 ≠ 0 for 𝑘 ≥ 1. It 

is straightforward to see that 𝑅(𝑖, 𝑗) = ∑𝑁−1
𝑘=1

1
𝜆𝑘

(𝒖𝑘[𝑖] − 𝒖𝑘[𝑗])
2. For each node 𝑖 ∈ 𝒩︀, 

we define an 𝑁 − 1-dimensional spectral feature 𝒓𝑖 = [𝒖𝑘[𝑖]/√𝜆𝑘]
𝑁−1

𝑘=1
∈ ℝ𝑁−1, whereupon 

𝑅(𝑖, 𝑗) = ‖𝒓𝑖 − 𝒓𝑗‖2
2. Considering random weights4 𝝎𝑖 ∼ 𝒩︀(0, 𝜔𝐈𝑁−1),

𝔼((𝝎⊤𝒓𝑖 − 𝝎⊤𝒓𝑗)
2) = 𝜔2‖𝒓𝑖 − 𝒓𝑗‖2

2. (8)

Given a query-key pair (𝒒, 𝒌) at positions (𝒓𝑖, 𝒓𝑗),5

𝒒⊤𝒌 → 𝒒⊤RoPE(𝒓𝑖)
⊤ RoPE(𝒓𝑗)𝒌 =

∑
𝑑
2

𝑘=1
(𝒒2𝑘−2𝒌2𝑘−2 + 𝒒2𝑘−1𝒌2𝑘−1) cos(𝝎𝑇

𝑘 (𝒓𝑖 − 𝒓𝑗))

+(𝒒2𝑘−1𝒌2𝑘−2 − 𝒒2𝑘−2𝒌2𝑘−1) sin(𝝎𝑇
𝑘 (𝒓𝑖 − 𝒓𝑗)).

(9)

Taylor expanding in 𝜔 and taking the expectation,

𝔼(𝒒⊤
𝑖 𝒌𝑗) → 𝒒⊤

𝑖 𝒌𝑗(1 − 𝜔2

2
‖𝒓𝑖 − 𝒓𝑗‖2

2) + 𝒪︀(𝜔4) = 𝒒⊤
𝑖 𝒌𝑗(1 − 𝜔2

2
𝑅(𝑖, 𝑗)) + 𝒪︀(𝜔4) (10)

as claimed. Here, we used the fact that sin is an odd function to drop the 𝒪︀(𝜔3) terms. ∎

A.2 Efficient diagonalisation of the Laplacian matrix via random features

In this appendix, we describe a new stochastic approximation algorithm for computing 
the leading eigenvalues and eigenvectors of the Laplacian matrix 𝐋. This is a well-studied 
problem in the literature. We consider graphs 𝒢︀ defined implicitly, where the edge weights 
are a function of the distance between nodes in some suitable metric space.

Recall that the (unnormalised) Laplacian is defined by

𝐋 = 𝐃 − 𝐀. (11)
Suppose the adjacency matrix 𝐀 = [𝑎𝑖,𝑗] ∈ ℝ𝑁×𝑁  is defined by 𝑎𝑖𝑗 = 𝑓𝜃(‖𝒗𝑖 − 𝒗𝑗‖2), with 
𝑓𝜃 is some (potentially learnable) function. The diagonal matrix 𝐃 satisfies 𝑑𝑖𝑖 = ∑𝑁−1

𝑗=0 𝑎𝑖𝑗. 

Graph nodes are associated with coordinates in ℝ𝑑, e.g. 𝑑 = 3 for point clouds. For instance, 
for 𝜀-ball graphs, one would take

𝑓𝜃(‖𝒗𝑖 − 𝒗𝑗‖2) = 𝕀(‖𝒗𝑖 − 𝒗𝑗‖2) ≤ 𝜀), (12)

with 𝕀(⋅) the indicator function. Denote 𝑔(𝒛) = 𝑓(|𝒛|). We can rewrite 𝑔 as follows, for 
𝑖2 = −1:

𝑔(𝒛) = ∫
ℝ𝑑

exp(−2𝜋𝑖𝜔⊤𝒛)𝜏(𝜔)𝑑𝜔, (13)

4This is nothing other than the celebrated Johnson-Lindenstrauss transformation (Dasgupta and 
Gupta, 2003), a random projection that preserves vector norms and distances in expectation.

5In Eq. (9), we drop the 𝑖 and 𝑗 suffixes on the queries and keys for compactness, freeing it up to 
represent the coordinate 𝑘 ∈ {0,…, 𝑑 − 1}.
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where 𝜏  is the inverse Fourier Transform of 𝑔 defined by:

𝜏(𝜔) = ∫
ℝ𝑑

exp(2𝜋𝑖𝒙⊤𝜔)𝑔(𝒙)𝑑𝒙. (14)

Thus, taking: 𝒛 = 𝒗𝑖 − 𝒗𝑗, we can rewrite:

𝑎𝑖,𝑗 = 𝐶 ⋅ 𝔼𝑝(𝜔)[exp(−2𝜋𝑖𝜔⊤𝒗𝑖) exp(2𝜋𝑖𝜔⊤𝒗𝑗)], (15)

where 𝑝(𝜔) is the probability distribution with density proportional to 𝜏(𝜔) and 𝐶 =
∫

ℝ𝑑 𝜏(𝜔)𝑑𝜔.6 The ability to efficiently (potentially approximately) sample from 𝑝(𝜔) unlocks 

the following low-rank decomposition:

𝑎𝑖,𝑗 ≈ Λ1(𝒗𝑖)(Λ2(𝒗𝑗))
⊤, (16)

where for 𝜔1,…, 𝜔𝑟 are sampled independently at random from 𝑝(𝜔), with 𝑟 ∈ ℕ the number 
of random features. In particular, we take

Λ1(𝒗) = √𝐶
𝑟

(exp(−2𝜋𝑖𝜔⊤
1 𝒗),…, exp(−2𝜋𝑖𝜔⊤

𝑟 𝒗)), (17)

Λ2(𝒗) = √𝐶
𝑟

(exp(2𝜋𝑖𝜔⊤
1 𝒗),…, exp(2𝜋𝑖𝜔⊤

𝑟 𝒗)). (18)

It follows that we can unbiasedly approximate 𝐋 as:

𝐋 ≈ 𝐗𝐘⊤, (19)

for matrices 𝐗,𝐘 ∈ ℝ𝑁×(𝑁+𝑟) with rows 𝑋(𝑖) and 𝑌 (𝑖) given as follows:

𝑋(𝑖) = 𝜂𝑖(√𝑑𝑖𝑖) ⊕ Λ1(𝒗𝑖), (20)

𝑌 (𝑖) = 𝜂𝑖(√𝑑𝑖𝑖) ⊕ (−Λ2(𝒗𝑖)). (21)

Here, ⊕ denotes concatentation of the respective vectors, and 𝜂𝑖(𝑥) is a one-hot vector 
whose 𝑖th element is equal to 𝑥.

To reduce the dimensionality of the features, we can then apply standard Johnson-Linden
strauss transformation (JLT). We unbiasedly approximate 𝐗𝐘⊤ by 𝐗′(𝐘′)⊤, where the 
matrices 𝐗′,𝐘′ ∈ ℝ𝑁×𝑚 are given by:

𝐗′ = 1√
𝑚

𝐗𝐆,𝐘′ = 1√
𝑚

𝐘𝐆. (22)

The entries of the Gaussian matrix 𝐆 ∈ ℝ(𝑁+𝑟)×𝑚 are drawn independently at random from 
the Gaussian distribution with mean 𝜇 = 0 and standard deviation 𝜎 = 1.
We conclude that the Laplacian matrix 𝐋 can be unbiasedly approximated as:

𝐋 = 𝐗′(𝐘′)⊤. (23)

For 𝑚 ≪ 𝑁 , this provides a computationally-efficient low-rank approximation.

Finally, applying results by Nakatsukasa (2019), we can efficiently compute the eigenvalues 
and eigenvectors of 𝐗′(𝐘′)⊤ by diagonalising the smaller matrix (𝐘′)⊤𝐗′ ∈ ℝ𝑚×𝑚. This 
operation only takes 𝒪︀(𝑁) time, so it scales gracefully to very large graphs. It could be 
applied e.g. to the point cloud experiments described in Section 4.2, providing an alternative 
spectral approximation to the Lanczos algorithm. It may be of independent interest.

6We assume that this integral is well-defined.
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B Extra experimental details

In this appendix, we provide extra experimental details to supplement Section 4.

B.1 Synthetic experiments: monochromatic subgraphs and shortest paths

Models and training. For both tasks, we use a standard 4 layer transformer with model 
and MLP dimensionality 32. For simplicity, the attention is single-head. We train for 250 
epochs with batch size 16, with a learning rate of 2 × 10−4 obeying a cosine decay schedule 
(𝛼 = 0.01). We train using the Adam optimiser with weight decay 1 × 10−4. Dropout is 
applied at a rate of 0.2 to attention and the MLP outputs. Graph embeddings are obtained 
by mean pooling over node embeddings, and a dense layer projects the result to a scalar 
prediction for (1) the size of the largest monochromatic connected subgraph and (2) the 
shortest path distance between a target and source node (identified at the model inputs). 
Both datasets have 10, 000 training examples and 1, 000 test examples. We report the lowest 
test root mean squared error obtained during training, normalised by graph size. Standard 
errors are computed over 4 runs per setting.

Ablation: WIRE attention patterns. To better understand WIRE, we can also examine 
the activations of a trained model. For instance, Figure 5 shows rescaled attention scores 
at the final layer of the network. We take identical optimised weights, with WIRE either 
switched on as during training (centre) or off (right). With WIRE, we see that nodes 
attend within the biggest monochromatic subgraph. The pattern disappears when WIRE 
is removed. This suggests that the network does indeed learn to use query-key rotations to 
carry structural information about 𝒢︀.

Figure 5: Example attention patterns with WIRE. Random choice of model input 
(left), and example attention patterns for a trained model with (centre) and without (right) 
WIRE. WIRE helps nodes attend to other nearby nodes with the same label.

B.2 WIRE and Performers

Recall that, for 𝒪︀(𝑁) Performer attention, we take:

𝒙𝑖 →
∑𝑗 𝜑(𝒒𝑖)

⊤𝜑(𝒌𝑗)𝒗𝑗

∑𝑗′ 𝜑(𝒒𝑖)
⊤𝜑(𝒌𝑗′)

, (24)

where 𝒒𝑖 = 𝐖𝑞𝒙𝑖, 𝒌𝑖 = 𝐖𝑘𝒙𝑖 and 𝒗𝑖 = 𝐖𝑣𝒙𝑖 respectively, with 𝐖𝑞,𝐖𝑘,𝐖𝑣 ∈ ℝ𝑑×𝑑 learned 
projection matrices. 𝜑(⋅) : ℝ𝑑 → ℝ𝑚 is a (random) feature map, common choices for which 
include ReLU activations and random Laplace features (Yang et al., 2014).

There are two obvious manners in which one could incorporate WIRE:

1. Directly modulating the queries and keys. 𝒛𝒊 → RoPE(𝒓𝑖)𝒛𝑖 for 𝒛𝑖 ∈ {𝒒𝑖, 𝒌𝑖}.
2. Modulating the features. 𝜑(𝒛𝑖) → RoPE(𝒓𝑖)𝜑(𝒛𝑖) for 𝒛𝑖 ∈ {𝒒𝑖, 𝒌𝑖}.
The benefit of (1) is that, for suitable choices of maps 𝜑(⋅) like ReLU, we have that

𝜑(RoPE(𝒓𝑖)𝒒𝑖)
⊤𝜑(RoPE(𝒓𝑗)𝒌𝑗) ≥ 0. (25)
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The attention scores all remain positive, which avoids instabilities caused by the denomi
nator changing sign. Conversely, the advantage of (2) is that

(RoPE(𝒓𝑖)𝜑(𝒒𝑖))
⊤(RoPE(𝒓𝑗)𝜑(𝒌𝑗)) = 𝜑(𝒒𝑖)

⊤ RoPE(𝒓𝑗 − 𝒓𝑖)𝜑(𝒌𝑗), (26)

which gives the invariance properties we discuss in Section 3.1. But now modulated attention 
scores can be negative which can in general cause instabilities – something that Su et al. 
(2024) sidestep by only applying RoPE to the numerator (see Eq. 19 of their paper).

In Performer experiments, we find (1) to work well in practice, so tend to adopt this 
approach.

B.3 Point cloud transformers

For classification, we consider the ModelNet40 dataset (Sun et al., 2022). Each includes 
2048 points and and belongs to one of 40 object classes, including ‘airplane’, ‘chair’ and 
‘sofa’. The goal is to predict these labels. Meanwhile, for semantic segmentation we consider 
ShapeNet (Chang et al., 2015). Each point has an associated ‘part label’, breaking the 
object up into between 2 and 6 smaller semantically-meaningful sections – e.g. the legs or 
seat of a chair. The goal is to predict the class labels of each point.

Models and training. Building on the Scenic codebase (Dehghani et al., 2022),7 we use 
a 4-layer transformer with hidden and MLP dimensions 128 and 512 respectively, trained 
for 10, 000 epochs with batch size 1024. We experiment with incorporating WIRE into 
only a subset of layers, anticipating that early layers that capture geometric information 
will benefit more from improved position encodings than the later semantic layers. This 
hyperparameter is optimised by a sweep. As baselines, we include regular transformer and 
Performers without any additional position encoding (NoPE), as well as regular RoPE using 
Cartesian coordinates (c.f. spectral). We train with the Adam optimiser, with weight decay 
0.01. The learning rate schedule is compound (constant, cosine decay and linear warmup) 
with 10, 000 warmup steps and a base rate of 5 × 10−6.

B.4 GNN benchmark hyperparameters

In this section, we provide training details and hyperparameters for the GNN experiments 
reported in Section 4.3. We follow the setup of Rampášek et al. (2022). We choose MNIST, 
CIFAR-10, PATTERN and CLUSTER from ‘benchmarking GNNs’ (Dwivedi et al., 2020), 
Peptides-func, Peptides-struct and PascalVOC from the Long Range Graph Benchmark 
(Dwivedi et al., 2022), and ogbg-molhiv, ogbg-molpcba, ogbg-ppa and ogbg-code2 from the 
OGB datasets (Hu et al., 2020). We also consider MalNet-Tiny (Freitas et al., 2020). We 
provide the statistics for each dataset in Table 5.

Table 5: Graph benchmark datasets. Statistics of the datasets considered in Section 4.3.

Dataset # Graphs Avg. nodes Avg. edges Dir. Level / Task Metric

MNIST 70,000 70.6 564.5 Yes Graph, 10-class cls. Accuracy

CIFAR10 60,000 117.6 941.1 Yes Graph, 10-class cls. Accuracy

PATTERN 14,000 118.9 3,039.3 No Inductive node, binary cls. Accuracy

CLUSTER 12,000 117.2 2,150.9 No Inductive node, 6-class cls. Accuracy

ogbg-molhiv 41,127 25.5 27.5 No Graph, binary cls. AUROC

ogbg-molpcba 437,929 26.0 28.1 No Graph, 128-task cls. Avg. Precision

MalNet-Tiny 5,000 1,410.3 2,859.9 Yes Graph, 5-class cls. Accuracy

PascalVOC-SP 11,355 479.4 2,710.5 No Inductive node, 21-class cls. F1 score

Peptides-func 15,535 150.9 307.3 No Graph, 10-task cls. Avg. Precision

Peptides-struct 15,535 150.9 307.3 No Graph, 11-task regression MAE

We follow the standard train/validation/test split in each case. For all datasets in 
‘benchmarking GNNs’ and OGB – namely, MNIST, CIFAR-10, PATTERN, CLUSTER, 

7See especially https://github.com/google-research/scenic/tree/main/scenic/projects/
pointcloud.
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ogbg-molhiv, ogbg-ppa and ogbg-molpcba – we run 10 seeds. Since MalNet-Tiny runs are 
expensive, we run 3 seeds. Likewise, the LRGB datasets – Peptides-func, Peptides-struct 
and PascalVOC-SP – are replicated 4 times. Lastly, all ogbg-code2 runs were repeated with 
6 seeds. We use the AdamW optimiser (Loshchilov and Hutter, 2019) for all our experiments.

Our code is based on PyTorch Geometric. All experiments are run on a T4 GPU, with the 
exception of ogbg-ppa and ogbg-code2. The latter two datasets are much more compute 
intensive, and were run on an NVIDIA A100 (80GB) GPU. The results for the baseline dense 
transformer are taken from Rampášek et al. (2022), while the results for all other baselines 
are obtained from our own runs. The RoPE computation in Equation (25) is implemented 
using a learnable linear layer, transforming the spectral coordinates to dimensionality 𝑑/2. 
We control the scale of its initialisation with an additional hyperparameter.

B.4.1 GraphGPS experiments: extra details

In this subsection, we provide further implementation details for all experiments using 
GraphGPS (Rampášek et al., 2022).

The ReLU-Performer model is described in Section B.2. For all our experiments, we 
default to the hyperparameters used by Rampášek et al. (2022). It is well established that 
performance is highly sensitive to the choice of hyperparameters for each dataset. For ogbg-
ppa and ogbg-code2, all the hyperparameter settings were identical to (Rampášek et al., 
2022, Table A.3), with optional 16 Laplacian positional encoding dimension for the WIRE 
Performer. We give details in Table 6.

Table 6: GraphGPS Experiments with Performer Attention. Hyperparameters used 
for our GraphGPS Experiments

Hyperparame

ters
MNIST CIFAR-10 PATTERN CLUSTER

Peptides-

struct

Peptides-

func
Pascal-Voc

MalNet-

Tiny

ogbg-mol

hiv

Hidden Dim 64 64 64 48 96 96 96 64 64

Heads 4 4 4 8 4 4 8 4 4

Attention 

Dropout
.5 .5 .5 .5 .5 .5 .5 .5 .5

MPNN GINE GatedGCN GINE GatedGCN GatedGCN GatedGCN GatedGCN GatedGCN GINE

# Layers 3 3 6 16 4 4 4 6 10

GNN Dropout .1 0. 0. .1 .1 .1 .1 0. 0.

Learning Rate 0.0001 .001 0.0005 0.0005 .0003 .0003 .0005 .001 .0001

Weight Decay 1e-4 1e-5 1e-5 1e-5 0. 1e-5 0. 1e-5 1e-4

# Laplacian 

Eigenvectors
16 8 16 10 10 10 10 16 8

# RWSE Fea

tures
8 - 16 - - - - 8 8

Scheduler ReduceLR cos decay cos decay cos decay cos decay cos decay cos decay cos decay ReduceLR

Batch Size 64 64 32 32 128 128 32 4 32

Laplacian Po

sition Encod

ing Dim

- 16 - 16 16 16 16 - -

Epochs 150 150 100 100 200 150 300 150 100

Finally, following standard practice, for datasets like MNIST, PATTERN, MalNet-Tiny 
and ogbg-molhiv, we use random walks to provide global structural information. We use 
16 walks for MalNet-Tiny and MNIST, and 20 walks for PATTERN and ogbg-molhiv. We 
also experiment with regular softmax and BigBird attention (Zaheer et al., 2020). In these 
cases, we again use the same hyperparameters. Details are provided below.

B.4.2 SGFormer experimental details

SGFormer is another efficient transformer architecture, based upon a single linear attention 
layer and a single message passing layer (Wu et al., 2023). In contrast to our other Performer 
experiments, SGFormer takes the nonlinearity 𝜑(⋅) to be the identity map. For message 
passing, we use a GCN. As usual, WIRE is injected into the attention mechanism of the 
transformer. Again, we mostly revert to the GraphGPS hyperparameters, avoiding extensive 
tuning to ensure our results are robust. Table 7 gives details.
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Table 7: SGFormer Experiments. Hyperparameters used for the SGFormer Experiments.

Hyperparameters MNIST CIFAR-10 PATTERN

Hidden Dim 128 256 128

Heads 2 1 8

Attention Dropout .5 .5 .5

# GNN Layers 3 2 3

GNN Dropout .1 .1 .1

Learning Rate 0.001 .001 0.0005

Weight Decay 1e-5 0 1e-5

# WIRE Features 16 8 10

Scheduler ReduceLR cosine decay cosine decay

Epochs 150 100 150

Batch Size 32 64 32

B.5 Extra results for other attention mechanisms on GNN benchmarks

Here, we report extra WIRE results with different (non-Performer) architectures, referenced 
in Section 4.3 of the main text. Specifically, we report results with regular softmax attention, 
SGFormer (Wu et al., 2023), and BigBird (Zaheer et al., 2020).

The SGFormer architecture is described above in Section B.4.2. Meanwhile, BigBird (Zaheer 
et al., 2020) combines local and global attention. It uses a small fixed number of global 
tokens that attend to all 𝑁  tokens. Remaining tokens attend to their neighbours. Table 8 
and Table 9 shows that WIRE can be easily integrated these attention mechanisms, boosting 
the respective baselines.

Table 8: WIRE results on softmax transformers. Ablation results for WIRE on 
𝒪︀(𝑁2) regular transformer architectures, on smaller datasets where poor scalability is 
not a problem. As observed in Section 4.1 and Section 4.2, our algorithm still improves 
performance.

Test metric

Dataset Variant Baseline WIRE

MNIST (↑) Softmax transformer 98.05(4) 98.46(3)

CIFAR-10 (↑) Softmax transformer 72.3(1) 73.48(7)

PATTERN (↑) Softmax transformer 86.69(2) 86.75(2)

CLUSTER (↑) Softmax transformer 78.02(6) 78.19(2)

ogbg-molhiv (↑) Softmax transformer 0.788(1) 0.798(2)

Table 9: WIRE results on extra efficient transformers. Ablation results for WIRE on 
different 𝒪︀(𝑁) transformer architectures: namely, SGFormer (Wu et al., 2023) and BigBird 
(Zaheer et al., 2020). Once more, WIRE can provide gains.

Test metric

Dataset Variant Baseline WIRE

MNIST (↑) SGFormer 96.78(4) 97.3(1)

CIFAR-10 (↑) SGFormer 60.43(8) 61.36(6)

PATTERN (↑) SGFormer 85.2(1) 85.9(1)

MNIST (↑) BigBird 97.20 98.04

CIFAR10 (↑) BigBird 85.04 85.86
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C Additions During Rebuttals

C.1 RWPE-WIRE

In the paragraph beginning ‘generalising WIRE’ (line 180), we noted that one need not 
necessarily use the Laplacian eigenvectors to compute the features {𝒓𝑖}

𝑁
𝑖−1 ⊂ ℝ𝑚 fed into 

RoPE. One could use other node features the capture the graph structure, such as random 
walk position encodings (RWPEs).

RWPEs. Considering an adjacency matrix 𝐀 and a degree matrix 𝐃, the random walk 
transition matrix is 𝐏 ≔ 𝐃−1𝐀. The RWPE feature for node 𝑖 is

RWPE(𝑣𝑖) ≔ [𝐏𝑖𝑖, 𝐏2
𝑖𝑖 , 𝐏3

𝑖𝑖 ,…,𝐏𝑘
𝑖𝑖 ] ∈ ℝ𝑘, (27)

computing the probability of a random walk returning to node 𝑣𝑖 after {1, 2,…, 𝑘} steps. 
RWPEs are popular in the literature (Dwivedi et al., 2021; Rampášek et al., 2022). One 
can use RWPEs as rotational features for RoPE. Table 10 shows corresponding results 
(analagous to Table 2) for shortest path prediction, training with a single seed for 100 
epochs. WIRE using graph spectra tends to perform better (and is in general more expen
sive), but we also observe a gain over the no-WIRE baseline using RWPEs. As in 
the main text, RWPEs are additionally provided as APEs, isolating the gains from RoPE 
rotations.

Table 10: Shortest path distance task with RWPEs. WIRE provides improvements to 
transformers trained to predict shortest path distances on random Watts-Strogatz graphs, 
using RWPEs instead of spectral features.

Num. spectral coords, 𝑚
0 (baseline) 3 5 10

Test RMSE (↓) 0.061(1) 0.060(1) 0.059(1) 0.055(2)

This demonstrates that WIRE is still an effective algorithm if graph spectra are not 
accessible. Investigating further features that are effective within WIRE is an interesting 
direction for future work.

C.2 Extra GNN benchmarks

We have added results for the large-scale graph benchmarks ogbg-ppa and ogbg-code2 to 
Table 4. Note that the gains for ogbg-code2 are very strong, with Performer + WIRE 
achieving greater test accuracy than the softmax transformer baseline.

C.3 Clarification: distinguishing isospectral but non-isomorphic graphs

Isospectral but non-isomorphic graphs will have the same eigenvalues, but different eigen
vectors. Since WIRE by default uses the eigenvectors (see Alg. 1), the WIRE transformation 
– and thus the transformer output – will be different. As such, WIRE can distinguish 
isospectral but non-isomorphic graphs.

C.4 Efficient diagonalisation and extra details for Section A.2

Time complexity of precomputation. Below, we summarise the time complexity of 
common efficient diagonalisation algorithms used in the literature.

1. Coarsening (Loukas and Vandergheynst, 2018). These methods coarsen the graph (reduce 
𝑁  to 𝑁 ′ ≪ 𝑁), compute eigenvectors on the small graph, and lift them back to the original 
graph. This is extremely fast for the lowest frequencies (smooth eigenvectors), and achieves 
good performance. It unlocks sub-linear time complexity relative to the original 𝑁  (after 
coarsening).
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2. Lanczos (Baglama and Reichel, 2005; Lanczos, 1950). Once can compute the 𝑚 extreme 
eigenvalues using only matrix-vector multiplications. For sparse graphs, this is linear in the 
number of nodes 𝑁  for a fixed number of iterations. Modern improvements based on low-
dimensional subspaces further improve efficiency.

3. Other proxies. More pragmatically, trading approximating eigenvectors with more general 
graph-based node features, one can compute other WIRE features in 𝒪︀(𝑁) time using 
random walk position encodings (Section C.1) or using recent 𝒪︀(𝑁) sparse methods like 
FastRP (Chen et al., 2019).

Halko et al. (2011) provides a detailed overview of other efficient randomised methods for 
computing low-rank decompositions of matrices like the graph Laplacian, also applicable 
to WIRE.

Lastly, we emphasise that some kind of structural feature is often already computed to be 
used as an absolute position embedding. In this case, one can also apply it via WIRE at 
essentially no extra cost.

Time complexity of WIRE itself. The time complexity of WIRE itself is 𝒪︀(𝑁𝑚𝑑) to 
project the features to dimensionality 𝑑/2 and 𝒪︀(𝑁𝑑) to apply the sparse rotations. This 
is not observable in experiment wall-clock time, compared to the attention mechanism and 
MLPs. The memory footprint is tiny.

Timing plots. Figure 6 gives some example wall clock times for transformer forward 
passes with varying 𝑚, for the shortest path prediction task in Section 4.1. We use the 
same model hyperparameters as previously. Since the time complexity of projecting 𝑚-
dimensional inputs to 𝑑/2-dimensional rotation angles for each token is 𝒪︀(𝑁𝑚𝑑), the plot 
is roughly linear in 𝑚 (deviating slightly due to hardware details and noise). We see that 
little cost is incurred by increasing 𝑚.

Note that we chose this toy example to show how the time complexity depends on 𝑚. In 
practical applications where 𝑁  and 𝑑 are much bigger (e.g. Section 4.3), the time incurred 
by applying RoPE rotations tends to be small compared to the attention and MLPs, as 
widely reported in the literature (Schenck et al., 2025; Su et al., 2024).

0 2 4 6 8 10
m

0.00033

0.00034

0.00035

t (
s)

WIRE wall clock times (toy task)

Figure 6: Example attention patterns with WIRE. Random choice of model input 
(left), and example attention patterns for a trained model with (centre) and without (right) 
WIRE. WIRE helps nodes attend to other nearby nodes with the same label.

C.5 Extra comments on invariance and equivariance

Note that, for the simplest instantiation of WIRE using the Laplacian eigenvectors, Remark 
1 only holds up to sign flips and rotations of degenerate subspaces. Such transformations give 
vectors which are still eigenvectors of 𝐋, but clearly the corresponding WIRE transformation 
can in general be different.

This is easily remedied by applying extra transformations to the spectral features to ensure 
that they are invariant under these transformations – for instance, maximal axis projection 
(Ma et al., 2023), sign flipping heuristics, or SignNet (Lim et al., 2022). In practice, we find 
that these additions make very little difference to our algorithm’s empirical performance. 
We achieve our most competitive results (e.g. Table 4) using unmodified graph spectra.
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Intuition and asymptotic equivariance. To understand this behaviour, we note that 
Theorem 2 still holds under random sign flips and basis transformations of the eigenvectors. 
Note that the leading term in Eq. (10) depends upon ‖𝒓𝑖 − 𝒓𝑗‖2

2, which is unmodified 
when these modifications are applied to {𝒓𝑖}

𝑁
𝑖=1. The fundamental asymptotic behaviour of 

(random) WIRE does not depend upon these ambiguities in basis and sign. It is intrinsically 
gauge invariant.

C.6 WavePE-WIRE

To complement Section C.1, we can also use WavePE features (Khang Ngo et al., 2023) as 
rotational inputs to WIRE. These spectrum-based features use graph wavelets to capture 
multi-scale information.

Constructing WavePE features. Recall that we write the spectral decomposition of the 
Lapalcian as

𝐋 = 𝐔𝚲𝐔⊤, 𝚲 = diag(𝜆0,…, 𝜆𝑁−1), (28)

where 𝐔 are the eigenvectors and (𝜆𝑖)
𝑁−1
𝑖=0  are the eigenvalues. We will consider a heat kernel 

filter function

𝑔(𝑠𝜆) = 𝑒−𝑠𝜆, (29)

which is applied to the eigenvalues to create localised wavelents. For some scale 𝑠 ∈ ℝ, the 
corresponding wavelet operator is

𝜑(𝑠) = 𝐔𝑔(𝑠𝚲)𝐔⊤, (30)

where 𝑔 is applied to each of the diagonal entries of the eigenvalue matrix. Concatenating 
a set of 𝑘 different scales (𝑠𝑖)

𝑘−1
𝑖=0 , we obtain the multi-scale diffusion tensor

𝚿 = [𝜑(𝑠𝑖)]
𝑘−1
𝑖=0 ∈ ℝ𝑁×𝑁×𝑘. (31)

Further permutation-equivariant encodings are applied to map this to a set of 𝑚-dimensional 
features needed for WIRE. Many such transformations exist (Kondor et al., 2018; Maron 
et al., 2018), but in the interests of keeping the model lightweight we simply take:

𝒓𝑖 = concat(𝚿[𝑖, 𝑖, :],∑
𝑗

𝚿[𝑖, 𝑗, :]) ∈ ℝ2𝑘, 𝑖 ∈ {1,…,𝑁} (32)

concatenating the diagonal entries of the tensor (self-diffusion) with its row sum (global-
diffusion). As usual, these features are also linearly projected when passed to WIRE. It is 
straightforward to see that these features are natively equivariant, without any additional 
transformations.

Empirical results. One can directly replace WIRE’s default spectral coordinates with the 
WavePE features defined in Eq. (32), e.g. for the shortest path prediction task. Trading 
our theoretical guarantees for these more empirical multi-scale features, we again see good 
performance in experiments; like its regular counterpart, WIRE with WavePE con
sistently provides gains over the baseline. Table 11 shows the results (companion to 
Table 2), ablating the dimension of the rotational features 𝑚. Note that, in this experiment, 
WavePE is only provided via WIRE, rather than as an APE. Given time constraints, we 
train for 100 epochs (c.f. Table 2).

Table 11: Shortest path distance task with WavePE-WIRE. Using WavePEs instead 
of raw eigenvectors as input features to WIRE also provides gains over the APE-only 
baseline.

Num. spectral coords, 𝑚
0 (baseline) 3 5 10

Test RMSE (↓) 0.080(1) 0.077(2) 0.073(1) 0.071(1)
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