
000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

Under review as a conference paper at ICLR 2026

Rotary Position Encodings for
Graph-Structured Data

Anonymous authors
Paper under double-blind review

Abstract

We introduce WIRE: Wavelet-Induced Rotary Encodings. WIRE extends
Rotary Position Encodings (RoPE), a popular algorithm in LLMs and ViTs,
to graph-structured data. We demonstrate that WIRE is more general
than RoPE, recovering the latter in the special case of grid graphs. WIRE
also enjoys a host of desirable theoretical properties, including equivariance
under node ordering permutation, compatibility with linear attention,
and (under select assumptions) asymptotic dependence on graph resistive
distance. We test WIRE on a range of synthetic and real-world tasks,
including identifying monochromatic subgraphs, semantic segmentation of
point clouds, and more standard graph benchmarks. We find it to be
effective in settings where the underlying graph structure is important.

1 Introduction

Position encodings incorporate information about the respective locations of tokens into
the transformer attention mechanism (Vaswani et al., 2017). This is important because the
meaning of a sequence of words or image patches in general depends upon how they are
ordered. Likewise, the meaning of a graph depends upon how its constituent nodes are
connected. Position encodings capture these spatial and topological relationships, enabling
the network to learn expressive functions that generalise well to unseen data.

APEs and RPEs. Early transformers relied on absolute position encodings (APEs), which
add or concatenate fixed or learned embeddings to each token (Kiyono et al., 2021; Liu et
al., 2020; Wang et al., 2020). Whilst simple, these generally perform worse than relative
position encodings (RPEs), which instead modulate attention logits for each query-key pair
by a bias, taking 𝒒⊤

𝑖 𝒌𝑗 → 𝒒⊤
𝑖 𝒌𝑗 + 𝑏𝑖𝑗 (Li et al., 2023; Raffel et al., 2020; Shaw et al., 2018).

The bias 𝑏𝑖𝑗 depends on the tokens’ respective positions, e.g. sequence separation in text
or shortest path distance between graph nodes. Recent years have witnessed RPEs in turn
be superseded by rotary position encodings (RoPE) (Su et al., 2024). RoPE decomposes
tokens into 2-dimensional blocks and rotates them by position-dependent angles. RoPE’s
strong empirical performance and modest computational footprint have fuelled its growing
popularity in LLMs and ViTs (Dubey et al., 2024; Gemma Team et al., 2024; Heo et al.,
2024). Moreover, it enjoys the convenient property that (as with APEs) it directly modifies
tokens, rather than the logits of query-key pairs. This makes RoPE compatible with linear
attention and KV-caching, improving scalability with respect to the number of tokens.

Position encodings for graphs. Without a simple single ‘coordinate system’, position
encodings for graphs –– sets of nodes connected by edges –– are more complicated. One
choice is to use the spectrum of the graph Laplacian to build APEs (Dwivedi and Bresson,
2020; Kreuzer et al., 2021). In the special case of grid graphs, this closely resembles the
sinusoidal APEs applied to text and images. Alternatively, one can compute some structural
property like the shortest path distance or effective resistance for each pair of graph nodes,
and use these quantities as RPE biases (Ying et al., 2021; Zhang et al., 2023). In this paper,
we show how RoPE can be extended to graphs, providing a competitive and scalable alter
native. Our algorithm mitigates some of the shortcomings of APEs and bias-based RPEs,
encoding (approximate) invariances whilst preserving compatability with linear attention.

1

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

Under review as a conference paper at ICLR 2026

Figure 1: WIRE schematic. WIRE constructs spectral coordinates for each node, e.g. by
computing the first few eigenvectors of the graph Laplacian. Low frequencies vary slowly
across the graph; higher frequencies oscillate sharply between adjacent nodes. The spectral
coordinates are projected down to obtain rotation angles for every query and key, applied
in a RoPE-style position encoding (Su et al., 2024). WIRE enjoys desirable theoretical
properties (Section 3.1) and is compatible with linear attention (Katharopoulos et al., 2020).

Key contributions. 1) We introduce WIRE (Wavelet-Induced Rotary Encodings), a new
RoPE-style position encoding for graph-structured data. Figure 1 gives a schematic. 2) We
show that WIRE is more general than RoPE, and that it can stochastically downweight
attention scores based on graph effective resistance. 3) We demonstrate that WIRE is
competitive in synthetic graph tasks, experiments with point clouds, and graph benchmarks.

2 Preliminaries

Consider an undirected graph 𝒢︀(𝒩︀,ℰ︀), where 𝒩︀ ≔ {𝑣1,…, 𝑣𝑁} is a set of 𝑁 nodes and ℰ︀
is a set of edges. (𝑣𝑖, 𝑣𝑗) ∈ ℰ︀ if and only if there exists an edge between 𝑣𝑖 and 𝑣𝑗 in 𝒢︀. The
number of nodes 𝑁 is equal to the number of tokens processed using a transformer. Let
{𝒙𝑖}

𝑁
𝑖=1 ⊂ ℝ𝑑 denote this set of 𝑑-dimensional tokens. 𝑑 is assumed to be even.

Attention. The 𝑖th query, key and value vectors are given by 𝒒𝑖 = 𝐖𝑞𝒙𝑖, 𝒌𝑖 = 𝐖𝑘𝒙𝑖
and 𝒗𝑖 = 𝐖𝑣𝒙𝑖 respectively, with 𝐖𝑞,𝐖𝑘,𝐖𝑣 ∈ ℝ𝑑×𝑑 learned projection matrices. For
simplicity of notation we assume the single-head setting, with the understanding that all
arguments are trivially generalised to multi-head attention. The attention mechanism, one
of the fundamental computational units of the transformer, is written:

𝒙𝑖 →
∑𝑗 sim(𝒒𝑖, 𝒌𝑗)𝒗𝑗

∑𝑗′ sim(𝒒𝑖, 𝒌𝑗′)
. (1)

Here, sim(⋅, ⋅) : ℝ𝑑 × ℝ𝑑 → ℝ is a ‘similarity’ function that assigns a score to each query-key
pair. Standard softmax attention uses sim(𝒒𝑖, 𝒌𝑗) = exp(𝒒⊤

𝑖 𝒌𝑗), whereas linear attention
takes sim(𝒒𝑖, 𝒌𝑗) = 𝒒⊤

𝑖 𝒌𝑗 (Katharopoulos et al., 2020). The former generally works better,
but the latter enables one to write a low-rank decomposition of the attention matrix, unlock
ing 𝒪︀(𝑁) scaling. Concretely, with a slight abuse of notation, with linear attention one can

take 𝒙𝑖 → 𝒒⊤
𝑖 (∑𝑗 𝒌𝑗𝒗𝑗)/𝒒⊤

𝑖 (∑𝑗′ 𝒌𝑗′). The commutativity of matrix-matrix multiplication

obviates instantiating the attention matrix [sim(𝒒𝑖, 𝒌𝑗))]𝑁𝑖,𝑗=1 ∈ ℝ𝑁×𝑁 in memory. In the
same spirit, one can define (random) feature maps 𝜑(⋅) : ℝ𝑑 → ℝ𝑚 and take sim(𝒒𝑖, 𝒌𝑗) =
𝜑(𝒒𝑖)

⊤𝜑(𝒌𝑗), again unlocking 𝒪︀(𝑁) scaling (Choromanski et al., 2020). Common choices
for 𝜑(⋅) include ReLU activations and random Laplace features (Yang et al., 2014).

Rotary position encodings. Suppose that each token is equipped with a 𝑚-dimensional
coordinate 𝒓𝑖 ∈ ℝ𝑚, with 𝑚 = 1 for sequences, 𝑚 = 2 for images and 𝑚 = 3 for videos and
point clouds. Given a (projected) token 𝒛𝑖 ∈ {𝒒𝑖, 𝒌𝑖}, RoPE takes 𝒛𝑖 → RoPE(𝒓𝑖)𝒛𝑖, where:

2

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

Under review as a conference paper at ICLR 2026

RoPE(𝒓𝑖)𝒛𝑖 ≔ ⨁
𝑑/2

𝑛=1
𝝆(𝜃𝑛)[𝒛𝑖]2𝑛−2:2𝑛−1, 𝝆(𝜃) ≔ (cos(𝜃)

sin(𝜃)
− sin(𝜃)
cos(𝜃)), 𝜃𝑛 ≔ 𝝎⊤

𝑛𝒓𝑖. (2)

Here, ⨁ denotes the direct product, so each 2 × 2 matrix 𝝆(𝜃𝑛) rotates a 2-element section
of the query or key. Meanwhile, {𝝎𝑛}𝑑/2

𝑛=1 ⊂ ℝ𝑚 are learnable or fixed frequencies.1 Using

the basic properties of 2D rotations, it is straightforward to see that

RoPE (𝒓𝑖)
⊤ RoPE(𝒓𝑗) = RoPE(𝒓𝑗 − 𝒓𝑖), (3)

whereupon the joint transformation of queries and keys takes 𝒒⊤
𝑖 𝒌𝑗 → 𝒒⊤

𝑖 RoPE(𝒓𝑗 − 𝒓𝑖)𝒌𝑗.
Clearly, RoPE is translationally invariant,2 an inductive bias that helps it generalise to new
sequence lengths and makes it effective in 3D robotics applications (Schenck et al., 2025).

Transformers for graphs. Whilst Graph Neural Networks (GNNs) have traditionally
performed best for graph-structured data, recent years have witnessed growing interest in
transformers (Müller et al., 2023; Veličković et al., 2017; Ying et al., 2021). A key algorithmic
challenge is to design effective position encodings that capture important structural infor
mation about 𝒢︀. To this end, researchers often consider graph spectra (Chung, 1997).

Graph spectra. Let 𝐀 ≔ [𝕀((𝑣𝑖, 𝑣𝑗) ∈ ℰ︀)]𝑁
𝑖,𝑗=1

∈ {0, 1}𝑁×𝑁 denote the graph adjacency

matrix, whose (𝑖, 𝑗) entry is equal to 1 if the corresponding edge is present in the graph and 0
otherwise. Let 𝐃 ≔ diag(∑𝑗 𝐀𝑖𝑗) denote the diagonal degree matrix. The graph Laplacian

is given by 𝐋 ≔ 𝐃 − 𝐀 ∈ ℝ𝑁×𝑁 . Since it is symmetric, we can write

𝐋 = 𝐔𝚲𝐔⊤, 𝚲 = diag(𝜆0,…, 𝜆𝑁−1), (4)

with 𝜆0 ≤ 𝜆1 ≤ … ≤ 𝜆𝑁−1. Here, 𝐔 ≔ [𝒖0, 𝒖1,…, 𝒖𝑁−1]
⊤ is orthonormal, with each each

eigenvector (column) 𝒖𝑖 ∈ ℝ𝑁 oscillating across the graph at frequency 𝜆𝑖. The spectrum
of 𝐋 (or its normalised variant 𝐃−1/2𝐋𝐃−1/2) captures the structure of 𝒢︀. 𝐔 and 𝚲 are
often used to construct graph transformer APEs. Here, we will use them within RoPE.

Remainder of the manuscript. In Section 3 we introduce Wavelet-Induced Rotary
Encodings (WIRE), generalising RoPE to graphs. We show that WIRE enjoys a host
of attractive theoretical properties. In Section 4, we demonstrate that WIRE performs
competitively in learning tasks with a strong structural component.

3 WIRE: Wavelet-Induced Rotary Encodings

We begin by defining WIRE.

Alg. 1. Wavelet-Induced Rotary Encodings (WIRE). 🧵

1. Compute the lowest 𝑚 ≤ 𝑁 eigenvectors and eigenvalues {𝒖𝑘, 𝜆𝑘}
𝑚−1
𝑘=0 of the graph

Laplacian 𝐋, either exactly or with approximate iterative methods.
2. Define spectral features for each graph node, e.g. 𝒓𝑖 = [𝒖𝑘[𝑖]]

𝑚−1
𝑘=0 ∈ ℝ𝑚 or similar.

3. Apply rotary position encodings using these spectral features, taking 𝒛𝑖 → RoPE(𝒓𝑖)𝒛𝑖
for queries and keys 𝒛𝑖 ∈ {𝒒𝑖, 𝒌𝑖}.

Efficiency of WIRE. Once equipped with spectral coordinates, WIRE becomes extremely
efficient to compute. This is because the full RoPE matrix is blockwise 2 × 2 and thus very
sparse. Explicitly, in view of Eq (2), one can simply take:

𝒛𝑖 → [cos(𝜃1), cos(𝜃1),…, cos(𝜃𝑑
2
), cos(𝜃𝑑

2
)] ⊙ 𝒛𝑖

+[− sin(𝜃1), sin(𝜃1),…,− sin(𝜃𝑑
2
), sin(𝜃𝑑

2
)] ⊙ 𝐏𝒛𝑖.

(5)

1For legibility, we generally suppress the dependence of RoPE(𝒓𝑖) on {𝝎𝑛}𝑑/2
𝑛=1, leaving it implicit.

2Given this property, some researchers taxonomise RoPE as a type of relative position encoding
(RPE). However, we prefer to distinguish it as a separate class of PE, since PEs based on other high-
dimensional rotations in SO(𝑑) are not necessarily translationally invariant (Schenck et al., 2025).

3

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

Under review as a conference paper at ICLR 2026

Here, ⊙ denotes the Hadamard (element-wise) product. 𝐏 ≔ [𝛿⌊𝑖/2⌋,⌊𝑗/2⌋ − 𝛿𝑖,𝑗]
𝑑−1

𝑖,𝑗=0
∈

{0, 1}𝑑×𝑑 is the permutation that takes 𝐏𝒙 = [𝒙1, 𝒙0, 𝒙3, 𝒙2,…, 𝒙𝑑−1, 𝒙𝑑−2], swapping alter
nate vector entries. Eq. (5) only needs 𝒪︀(𝑑) operations. Moreover, it does not require the
𝑁 × 𝑁 attention matrix to be instantiated in memory. This is in contrast to regular bias-
based RPE methods, which are generally 𝒪︀(𝑁2) and must instantiate attention in order to
take 𝒒⊤

𝑖 𝒌𝑘 → 𝒒⊤
𝑖 𝒌𝑗 + 𝑏𝑖𝑗 ∀ (𝑖, 𝑗) ∈ 𝒩︀2.3

Expressivity of WIRE. WIRE can distinguish graphs identical under the 1-dimensional
Weisfeiler-Lehman graph isomorphism heuristic (with colours replaced by node features),
because their adjacency matrices and hence node spectral coordinates differ. In this sense,
transformers equipped with WIRE are more expressive than standard GNNs, which notori
ously fail this test (Morris et al., 2019; Xu et al., 2018).

Number of parameters. The only learnable parameters in WIRE are the frequencies
(𝝎𝑖)

𝑑/2
𝑖=1 ⊂ ℝ𝑚, i.e. 𝑑𝑚/2 parameters per transformer layer. Typically 𝑚 ≪ 𝑑, so this is very

small compared to the rest of the network. For additional savings, one can share WIRE
weights between layers or heads, or even follow conventional RoPE by freezing frequencies
in an exponential decay pattern (Su et al., 2024).

Generalising WIRE. In this paper, we focus on instantiations of WIRE using spectral
features. This is found to be effective in experiments (Section 4) and admits interesting
theoretical analysis (Section 3.1) – in particular, recovering regular RoPE on grid graphs
(Theorem 1) and exhibiting asymptotic dependence on graph effective resistance (Theorem
2). However, we emphasise that WIRE-like graph position encodings can in principle be
implemented using any set of node features that capture structural information about 𝒢︀,
based on graph spectra, random walks or otherwise. This is important because the best
position encoding may depend on the task and dataset at hand. Provided these features
can be calculated in 𝒪︀(𝑁) time, we also preserve compatability with linear attention.

WIRE and GNNs. In practice, for many graph-based tasks a combination of global
attention and message passing layers gives the best performance, rather than a pure trans
former (Rampášek et al., 2022; Shirzad et al., 2023). Naturally, WIRE is compatible with
such hybrid models; one simply incorporates it wherever attention is used.

3.1 Properties of WIRE

WIRE enjoys a number of attractive theoretical properties. To start, note the following.

Remark 1. (Equivariance under node ordering permutation). WIRE is insensitive
to the choice of ordering of the nodes of the graph, up to sign flips and rotations of degenerate
subspaces..

Justification. The spectrum {𝒖𝑘}
𝑁−1
𝑘=0 depends on the actual underlying graph structure 𝒢︀;

its entries are equivariant under permutation of the node ordering. The same follows for the
WIRE transformation. Please see Section C.5 for important rebuttal clarifications.

Theorem 1. (RoPE is a type of WIRE). RoPE is a special case of WIRE, occurring

when one considers a grid graph 𝒢︀ with specific learnable frequencies {𝝎𝑛}
𝑑
2
𝑛=1.

Proof. First consider a 1D grid (formally denoted as the path 𝑃𝑁), with adjacency matrix
𝐀𝑖𝑗 = 𝛿𝑖,𝑗+1 + 𝛿𝑖,𝑗−1. For this specific graph, the second (first nontrivial) eigenvector of 𝐋 is
given by 𝒖1 = [−cos(1

𝑁 (𝑖 + 1
2)𝜋))]𝑁−1

𝑖=0 . This changes monotonically between −cos(𝜋
2𝑁) at

𝑖 = 0 and cos(𝜋
2𝑁) at 𝑖 = 𝑁 − 1. This sequence of coordinates, increasing as one progresses

along 𝑃𝑁 , is completely analogous to the token position coordinates [0, 1,…,𝑁 − 1]. They
only differ by rescaling by 𝜋

𝑁 , offsetting by a constant, and restricting to the range (−1, 1)
by pushing through a cosine transformation. Taking 𝝎𝑖 = [0, 𝜔𝑖, 0, 0,…0], we isolate the

3Of course, exactly diagonalising 𝐋 is generally 𝒪︀(𝑁3). Plenty of efficient approximate alternatives
exist, e.g. the Lanczos algorithm (Lanczos, 1950). We describe our own novel variant in Section A.2.
This standard one-time precomputation cost is incurred by any spectral PE method. For our purposes,
the important takeaway is that WIRE can be used without instantiating 𝑁 × 𝑁 attention.

4

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

Under review as a conference paper at ICLR 2026

contribution from this first nontrivial spectral coordinate and recover regular RoPE used
in LLMs, up to these simple bijective coordinate system transformations. See Figure 2 left.

Next, consider a 2 dimensional grid graph of size 𝑁𝑥 × 𝑁𝑦. This can be expressed as the
Cartesian product graph 𝑃𝑁𝑥

× 𝑃𝑁𝑦
, so the spectrum factorises. Completely analogously

to the 1D case, the second and third eigenvectors are 𝒖1[𝑖] = [− cos(1
𝑁𝑥

(𝑖𝑥 + 1
2)𝜋)]

𝑁−1

𝑖=0

and 𝒖2[𝑖] = [− cos(1
𝑁𝑦

(𝑖𝑦 + 1
2)𝜋)]

𝑁−1

𝑖=0
, with 𝑖𝑦 = ⌊ 𝑖

𝑁𝑥
⌋ and 𝑖𝑥 = 𝑖 − 𝑁𝑥𝑖𝑦. The order of 𝒖1

and 𝒖2 will depend on whether 𝑁𝑥 or 𝑁𝑦 is greater, but this detail is not important for
our purposes. Taking 𝝎𝑖 = [0, 𝜔𝑥, 𝜔𝑦, 0,…], we now recover regular RoPE for ViTs. This is
equivalent to applying 1D RoPE for each axis independently. See Figure 2 centre and right.

These arguments generalise straightforwardly to higher-dimensional grids (e.g. 3D for
video), where one considers products of a progressively greater number of path graphs. ∎

Figure 2: RoPE ⊂ WIRE. The leading elements of the Laplacian eigenvectors of grid
graphs (formally, Cartesian products of paths 𝑃𝑁) change monotonically in each direction.
If we apply WIRE using just these coordinates, we recover regular RoPE as used in LLMs
and ViTs. In this sense, RoPE is a special case of WIRE.

Further comments on Theorem 1 . There are two minor differences between WIRE on
(products of) path graphs and regular RoPE. First, as noted above, the spectral coordinates
are always normalised to the range (−1, 1), rather than taking values 0,…,𝑁 − 1. This type
of coordinate renormalisation is actually a popular trick in LLMs to improve generalisation
with respect to sequence length (Chen et al., 2023; Li et al., 2023). It is intriguing that WIRE
incorporates this regularisation automatically; we posit that it might improve generalisation
to different graph sizes. Second, since the eigenvectors of 𝑃𝑁 are only unique up to a sign,
one could equally flip the direction of all the spectral coordinates. This is not a property
exhibited by RoPE when used in LLMs – here, there is a clear sense of directionality. Parity
invariance follows from the fact that we consider undirected 𝒢︀, so it is to be expected.

Invariances under WIRE. The commutativity and orthogonality of 2D rota
tions make RoPE translationally invariant: that is, (RoPE(𝒓𝑖)𝒒𝑖)

⊤ RoPE(𝒓𝑗)𝒌𝑗 =
(RoPE(𝒓𝑖 + 𝒄)𝒒𝑖)

⊤ RoPE(𝒓𝑗 + 𝒄)𝒌𝑗 ∀ 𝒄 ∈ ℝ𝑚. To rephrase, the composite transformation
RoPE(𝒓𝒋 − 𝒓𝒊) applied to a query-key pair (implicitly in the case of linear attention)
only depends upon the tokens’ separation 𝒓𝑗 − 𝒓𝑖, rather than their absolute positions.
This property is important in 3D robotics applications (Schenck et al., 2025). It has been
suggested to help sequence length generalisation in LLMs (Peng et al., 2023; Su et al., 2024).

WIRE automatically inherits the property described above. However, the interpretation
of translational invariance in spectral space is less clear. Invariance under shortest path
distance – a popular choice for RPE schemes made e.g. in Graphormer (Ying et al., 2021)
– might be more intuitive. A closely-related alternative to shortest path distance is the
effective resistance (Ellens et al., 2011; Velingker et al., 2023; Zhang et al., 2023), defined by

𝑅(𝑖, 𝑗) ≔ 𝐋†
𝑖𝑖 + 𝐋†

𝑗𝑗 − 2𝐋†
𝑖𝑗 (6)

for nodes (𝑖, 𝑗) ∈ 𝒩︀2. Here 𝐋† is the Laplacian pseudoinverse, which removes any diverging
component of the regular inverse in the zero eigenvalue direction. It is straightforward to

5

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

Under review as a conference paper at ICLR 2026

confirm that 𝑅(𝑖, 𝑗) is a metric on 𝒩︀2. It is also known that effective resistance provides a
lower bound for shortest path distance, with equality achieved for trees (Spielman, 2010).

Theorem 2. (WIRE depends on resistive distance). Consider a connected graph

with spectral features 𝒓𝑖 = [𝒖𝑘[𝑖]/√𝜆𝑘]
𝑁−1

𝑘=1
∈ ℝ𝑁−1. Suppose that we randomly sample the

WIRE frequencies 𝝎𝑗 ∼ 𝒩︀(0, 𝜔𝐈𝑁−1), with 𝑖 = 1,…, 𝑑
2 and 𝜔 ∈ ℝ. Given a query-key pair

(𝒒𝑖, 𝒌𝑗) ∈ ℝ𝑑 × ℝ𝑑, we have that

𝔼[(RoPE(𝒓𝑖)𝒒𝑖)
⊤ RoPE(𝒓𝑗)𝒌𝑗] = 𝒒⊤

𝑖 𝒌𝑗(1 − 𝜔2𝑅(𝑖, 𝑗)/2) + 𝒪︀(𝜔4), (7)

where 𝑅(𝑖, 𝑗) is the effective resistance between nodes 𝑖, 𝑗 ∈ 𝒩︀. That is, in expectation, the
leading contribution of WIRE is to downweight query-key logits by a factor proportional to
the effective resistance.

Proof. See App. A.1. ∎
Comments on Theorem 2 . We stress that WIRE is not exactly invariant under effective
resistance for a particular draw of (𝝎𝑖)

𝑑/2
𝑖=1 due to (1) the 𝒪︀(𝜔4) correction terms and (2)

the requirement of the expectation 𝔼(⋅). In practice, we do not sample and average over an
ensemble of random WIRE transformations, but instead take one learnable instantiation.
Nonetheless, Theorem 2 builds intuition for how WIRE modulates the attention between
pairs of nodes: the further apart they are, the more attention tends to be downweighted. It
is remarkable that WIRE achieves this property without needing to instantiate the attention
matrix in memory. One can (approximately) modulate the attention matrix entry 𝒒⊤

𝑖 𝒌𝑗 ⥲
𝒒⊤

𝑖 𝒌𝑗(1 − 𝜔2𝑅(𝑖, 𝑗)/2), but without explicitly computing all 𝑁 × 𝑁 scores {𝒒⊤
𝑖 𝒌𝑗}

𝑁
𝑖,𝑗=1

 or

resistances {𝑅(𝑖, 𝑗)}𝑁
𝑖,𝑗=1. This is of substantial interest for Performers. This type of princi

pled ‘linear attention topological masking’ has long been a goal in the efficient transformer
research community (Chen et al., 2023; Choromanski et al., 2022; Reid et al., 2024).

Takeaways from Section 3.1. When considering the special case of grid graphs
(formally, Cartesian products of path graphs 𝑃𝑁), WIRE recovers regular RoPE as used
in LLMs and ViTs. If we instantiate WIRE with random weights, then the expected
limiting transformation can downweight query-key logits depending upon their effective
resistance – a lower bound to shortest path distance. Remarkably, WIRE exhibits this
behaviour without needing to explicitly instantiate the attention matrix in memory.

4 Experiments

Here, we test WIRE on a range of graph-based tasks, training > 200 transformer models
in total. It provides a strong topological inductive bias, which often boosts performance.

4.1 Synthetic tasks: monochromatic subgraphs and shortest paths

Synthetic task 1. (Monochromatic subgraphs). We begin with a synthetic task, chosen
to strongly depend upon the structural properties of 𝒢︀. We generate 10, 000 train graphs
and 1, 000 test graphs with 𝑁 = 25 nodes, beginning with a 5 × 5 grid and then deleting a
randomly selected subset of edges. Every node is assigned a colour. We train a transformer to
predict the size, i.e. number of nodes, of the largest monochromatic connected subgraph(s).

6

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

Under review as a conference paper at ICLR 2026

Figure 3: Subgraph size regression. Predict the number of nodes in the largest connected
monochromatic subgraph(s) (shaded). Varying numbers of edges are removed, shown above.

Choice of 𝓖︀. The motivation for constructing graphs as described above is that changing
the number of deleted edges allows us to interpolate between 2D grid graphs and more
complicated topologies. For grids WIRE can recover RoPE (Theorem 1), which is already
known to perform well. The setup is similar to a ViT. On the other hand, as we delete more
edges the topology becomes more complicated, testing how WIRE fares with trickier 𝒢︀.

Model details. For the model inputs, we use the Laplacian eigenvectors, concatenated
with node colour labels. This means that all our models include APE by default. For WIRE,
we use spectral features using variable 𝑚 ∈ {0, 3, 5, 10}. Clearly, 𝑚 = 0 corresponds to not
using WIRE. Growing 𝑚 incorporates progressively higher-frequency structural information
into the rotations. Full architecture and training details are in Section B.1, along with
visualisations of example attention patterns from the final transformer layer.

Results. Normalised test RMSEs are shown in Table 1, with standard errors in parentheses.
WIRE provides gains over the baseline model (𝑚 = 0). When 𝒢︀ is close to a grid (Figure 3
left), low-dimensional spectral features are sufficient. In contrast, as we delete more edges
and 𝒢︀ becomes more complicated (Figure 3 right), higher frequencies become helpful.

Table 1: Monochromatic subgraph task. Normalised test RMSEs for computing the
largest monochromatic connected subgraph. 𝑚 is the spectral coordinate dimensionality;
WIRE is used wherever 𝑚 > 0. WIRE substantially improves regression performance.

Test RMSE (↓)

Num. deleted edges

𝑚 0 5 10 15

0 (no WIRE baseline) 0.060(1) 0.087(1) 0.081(1) 0.068(2)

3 0.053(2) 0.075(2) 0.072(3) 0.064(3)

5 0.057(2) 0.075(1) 0.070(2) 0.056(4)

10 0.055(2) 0.068(5) 0.063(2) 0.058(2)

Synthetic task 2. (Shortest path distances). Next, we generate random Watts-Strogatz
graphs with 𝑁 = 10 nodes and 𝑘 = 2 neighbours, with rewiring probability 𝑝 = 0.6. Again,
we take 10, 000 training examples and 1, 000 test examples. We train transformer models,
identical to Task 1, to predict the shortest path distance (SPD) between two randomly
selected nodes. Figure 4 (left) gives three examples, with the target and source nodes
indicated in red and the corresponding SPD labelled above.

Figure 4: Example Watts-Strogatz graphs for shortest path distance prediction.
Left: Random graphs labelled with shortest path distances between target and source nodes
(red). Right: Corresponding training curves with 𝑚 ∈ {0, 3, 5, 10} spectral features.

Given WIRE’s dependence on resistive distance (Theorem 2) – a lower bound to SPD – we
expect it to provide a strong inductive bias. Table 2 confirms that this is indeed the case;
WIRE nearly halves the test RMSE compared the APE-only baseline (𝑚 = 0). Figure 4
(right) shows sample training curves. App. B.1 gives further experimental details.

7

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

Under review as a conference paper at ICLR 2026

Table 2: Shortest path distance task. WIRE provides strong improvements to trans
formers trained to predict shortest path distances on random Watts-Strogatz graphs.

Num. spectral coords, 𝑚
0 (baseline) 3 5 10

Test RMSE (↓) 0.065(5) 0.048(6) 0.038(6) 0.045(4)

Number of parameters. In all these models, the WIRE parameters constitute a tiny
fraction of the entire model: less than 1% when 𝑚 = 3. It is remarkable that they
nonetheless lead to a strong performance boost. This spectral information is already being
fed into the model as inputs. WIRE simply converts this into an additional strong structural
inductive bias, applied throughout the network at every layer and every attention head.

4.2 Point cloud transformers

Next, we consider point cloud data (Guo et al., 2021). To implement WIRE, we construct
a sparse 𝑘-nearest neighbours graphs. The input features are (𝑥, 𝑦, 𝑧) for each point. The
following remark helps motivate graph-based position encodings in this setting.

Remark 2. (Point cloud WIRE is invariant under SE(3) transformations). Triv
ially, the nearest neighbours graph 𝒢︀ is invariant under joint translation and rotation of
the point cloud data – namely, SE(3) transformations. The same follows for its spectrum,
and thus the WIRE transformation we apply to queries and keys. Conversely, this property
does not hold for RoPE transformations with 3D Cartesian coordinates, where rotation and
translation will in general modify the position encoding.

Classification and segmentation. We train transformer models for classification and
semantic segmentation, on the ModelNet40 (Sun et al., 2022) and ShapeNet (Chang et al.,
2015) datasets respectively. Each example has 2048 points. We test (1) regular softmax
attention, and (2) ReLU linear attention (a ‘Performer’) (Choromanski et al., 2020). Full
details are in Section B.3. For WIRE, we use spectral features of dimensionality 𝑚 = 10. The
nearest neighbours graphs are constructed taking 𝑘 = 20, which gives connected, sparse 𝒢︀.
As baselines, we include regular transformer and Performers without any additional position
encoding (‘NoPE’), as well as regular RoPE using Cartesian coordinates (‘Cart. RoPE’).

Results. The classification test metric is the precision of the object-level predictions (top
one correctly classified). For semantic segmentation, it is the accuracy of the point-level
predictions, weighted by the number of each each type of point. Table 3 gives the results.
Runs are expensive, so following standard practice we report a single seed (Guo et al., 2021;
Qi et al., 2017). WIRE outperforms the regular PCT (NoPE) baseline for both transformers
and Performers, and often matches or surpasses Cartesian RoPE.

Table 3: PCT results. Test accuracy with different position encodings for classification
and segmentation tasks, including both regular and efficient (Performer) attention. WIRE
is consistently best (boldface) or second best (underlined), achieving greater accuracy than
the regular PCT baseline (NoPE). It performs similarly to Cartesian RoPE, using (𝑥, 𝑦, 𝑧).

Test accuracy (↑)

Classification (ModelNet40) Segmentation (ShapeNet)

PE Transformer Performer Transformer Performer

NoPE 91.8 90.1 93.1 92.8

Cart. RoPE 91.8 90.8 93.2 93.2

WIRE 93.4 90.8 93.2 93.0

4.3 WIRE Performers on benchmark tasks

Finally, we evaluate WIRE on established graph-based benchmarking tasks. To showcase
its compatability with linear attention, we mostly focus on 𝒪︀(𝑁) Performer models.

8

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

Under review as a conference paper at ICLR 2026

WIRE is a drop-in addition to existing models. For a clean, competitive implemen
tation, we incorporate WIRE into GraphGPS architectures known to perform well on each
benchmarking task (Rampášek et al., 2022). These are idiosyncratic; the best combination
of message passing, attention and MLPs depends upon the particular task at hand. We
use ReLU linear attention. Full details are in Section B.4. Remarkably, across the board,
adding WIRE – a lightweight, extra structural inductive bias – can improve performance by
multiple points. Whilst the linear variant still often performs worse than its expensive full-
rank counterpart (the price of greater efficiency), we observe that WIRE is frequently able
to substantially close this gap. For instance, on MalNet-Tiny, WIRE Performers are just as
effective as transformers, but unlike the latter we can train on a single T4 12GB GPU.

Table 4: Graph benchmark tasks. Performer test metrics with and without WIRE, on
graph benchmarks. (↑)/(↓) indicates whether higher or lower scores are better. For compar
ison, less efficient 𝒪︀(𝑁2) baselines from Rampášek et al. (2022) are also shown in gray.

Test metric

Performer 𝒪︀(𝑁) Transformer 𝒪︀(𝑁2)
Dataset Baseline WIRE Baseline

MNIST (↑) 97.56(2) 98.10(1) 98.05(4)

CIFAR10 (↑) 70.61(4) 71.15(3) 72.3(1)

PATTERN (↑) 85.71(3) 86.63(6) 86.69(2)

CLUSTER (↑) 76.90(3) 77.53(3) 78.02(6)

ogbg-molhiv (↑) 0.776(2) 0.785(2) 0.788(1)

ogbg-molpcba (↑) 0.238(3) 0.264(1) 0.291(3)

ogbg-ppa (↑) 0.8009(8) 0.804(2) 0.802(3)

ogbg-code2 (↑) 0.1731(9) 0.1733(9) 0.189(2)

Peptides-func (↑) 64.4(1) 64.9(1) 65.4(4)

Peptides-struct (↓) 0.2616(4) 0.2566(4) 0.2500(5)

PascalVOC-SP (↑) 0.367(1) 0.376(1) 0.37(1)

MalNet-Tiny (↑) 92.81(5) 93.46(2) 93.36(6)

WIRE beyond Performers. WIRE can be used within any model applying attention on
𝒢︀. For example, WIRE often also provides gains when used with 𝒪︀(𝑁2) softmax attention,
as noted in Section 4.1 and Section 4.2. We give further examples for a subset of the
GNN benchmark datasets (smaller instances, where poor scalability is not prohibitive) in
Table 8 of App. B.4. Equally, WIRE can be used within other efficient transformers like
SGFormer (Wu et al., 2023) and BigBird (Zaheer et al., 2020) (the latter combined with
GNNs within GPS), again improving test accuracy. See Table 9 in App. B.4. These short
demonstrations provide further evidence of WIRE’s broad utility. We defer exploration with
yet more variants – such as Exphormers (Shirzad et al., 2023), which use virtual global
nodes and expander graphs, and Graph Attention Networks (Veličković et al., 2017), which
use local attention – as important future work.

Takeaways from Section 4. WIRE provides a structural inductive bias the boosts the
accuracy of transformers on graph-structured data. This includes in synthetic and point
cloud settings, as well as more conventional GNN benchmarks.

5 Conclusion

We introduced Wavelet-Induced Rotary Encodings (WIRE), a new RoPE-style position
encoding for graph-structured data. WIRE injects topological information into transformers
by rotating tokens. Unlike many graph position encodings (e.g. Graphormer (Ying et al.,
2021)), it is compatible with linear attention. In experiments, we find WIRE to be effective
in tasks where a strong structural inductive bias is important.

9

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Under review as a conference paper at ICLR 2026

Reproducibility statement. We have made every effort to ensure the work’s reproducibil
ity. The core algorithm is presented clearly in Alg. 1. Theoretical results are proved with
accompanying assumptions in the main body and in App. A.1. Anonymised code is available
here: https://anonymous.4open.science/r/WIRE_Graphs-4584/. It builds upon existing
public repositories. The datasets in Section 4.2 and Section 4.3 are standard and freely
available online. Exhaustive experimental details about the training and architectures are
reported in App. B.

References

Baglama, J., and Reichel, L. Augmented implicitly restarted Lanczos bidiagonalization methods.
SIAM Journal on Scientific Computing, 27(1), 19–42, 2005.

Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., Savarese, S., Savva, M.,
Song, S., Su, H., and others. Shapenet: An information-rich 3d model repository. Arxiv Preprint
Arxiv:1512.03012, 2015.

Chen, H., Sultan, S. F., Tian, Y., Chen, M., and Skiena, S. Fast and accurate network embeddings
via very sparse random projection. Proceedings of the 28th ACM International Conference on
Information and Knowledge Management, 399–408, 2019.

Chen, S., Wong, S., Chen, L., and Tian, Y. Extending context window of large language models via
positional interpolation. Arxiv Preprint Arxiv:2306.15595, 2023.

Choromanski, K., Likhosherstov, V., Dohan, D., Song, X., Gane, A., Sarlos, T., Hawkins, P., Davis,
J., Mohiuddin, A., Kaiser, L., and others. Rethinking attention with performers. Arxiv Preprint
Arxiv:2009.14794, 2020.

Choromanski, K., Lin, H., Chen, H., Zhang, T., Sehanobish, A., Likhosherstov, V., Parker-Holder, J.,
Sarlos, T., Weller, A., and Weingarten, T. From block-toeplitz matrices to differential equations
on graphs: towards a general theory for scalable masked transformers. International Conference
on Machine Learning, 3962–3983, 2022.

Chung, F. R. Spectral graph theory (Vol. 92). American Mathematical Soc., 1997.

Dasgupta, S., and Gupta, A. An elementary proof of a theorem of Johnson and Lindenstrauss. Random
Structures & Algorithms, 22(1), 60–65, 2003.

Dehghani, M., Gritsenko, A., Arnab, A., Minderer, M., and Tay, Y. Scenic: A jax library for computer
vision research and beyond. Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 21393–21398, 2022.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle, A., Letman, A., Mathur, A., Schelten, A.,
Yang, A., Fan, A., and others. The llama 3 herd of models. Arxiv E-Prints, arXiv–2407, 2024.

Dwivedi, V. P., and Bresson, X. A generalization of transformer networks to graphs. Arxiv Preprint
Arxiv:2012.09699, 2020.

Dwivedi, V. P., Joshi, C. K., Luu, A. T., Laurent, T., Bengio, Y., and Bresson, X. Benchmarking
Graph Neural Networks. Arxiv Preprint Arxiv:2003.00982, 2020.

Dwivedi, V. P., Luu, A. T., Laurent, T., Bengio, Y., and Bresson, X. Graph neural networks with
learnable structural and positional representations. Arxiv Preprint Arxiv:2110.07875, 2021.

Dwivedi, V. P., Rampášek, L., Galkin, M., Parviz, A., Wolf, G., Luu, A. T., and Beaini, D. Long Range
Graph Benchmark. Thirty-Sixth Conference on Neural Information Processing Systems Datasets
and Benchmarks Track, 2022. https://openreview.net/forum?id=in7XC5RcjEn

Ellens, W., Spieksma, F. M., Van Mieghem, P., Jamakovic, A., and Kooij, R. E. Effective graph
resistance. Linear Algebra and Its Applications, 435(10), 2491–2506, 2011.

Freitas, S., Dong, Y., Neil, J., and Chau, D. H. A large-scale database for graph representation
learning. Arxiv Preprint Arxiv:2011.07682, 2020.

Gemma Team, Mesnard, T., Hardin, C., Dadashi, R., Bhupatiraju, S., Pathak, S., Sifre, L., Rivière, M.,
Kale, M. S., Love, J., and others. Gemma: Open models based on gemini research and technology.
Arxiv Preprint Arxiv:2403.08295, 2024.

10

https://anonymous.4open.science/r/WIRE_Graphs-4584/
https://openreview.net/forum?id=in7XC5RcjEn

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

Under review as a conference paper at ICLR 2026

Guo, M.-H., Cai, J.-X., Liu, Z.-N., Mu, T.-J., Martin, R. R., and Hu, S.-M. Pct: Point cloud
transformer. Computational Visual Media, 7(2), 187–199, 2021.

Halko, N., Martinsson, P.-G., and Tropp, J. A. Finding structure with randomness: Probabilistic
algorithms for constructing approximate matrix decompositions. SIAM Review, 53(2), 217–288,
2011.

Heo, B., Park, S., Han, D., and Yun, S. Rotary position embedding for vision transformer. European
Conference on Computer Vision, 289–305, 2024.

Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B., Catasta, M., and Leskovec, J. Open Graph
Benchmark: Datasets for Machine Learning on Graphs. Arxiv Preprint Arxiv:2005.00687, 2020.

Katharopoulos, A., Vyas, A., Pappas, N., and Fleuret, F. Transformers are rnns: Fast autoregressive
transformers with linear attention. International Conference on Machine Learning, 5156–5165,
2020.

Khang Ngo, N., Son Hy, T., and Kondor, R. Multiresolution Graph Transformers and Wavelet
Positional Encoding for Learning Hierarchical Structures. Arxiv E-Prints, arXiv–2302, 2023.

Kiyono, S., Kobayashi, S., Suzuki, J., and Inui, K. Shape: Shifted absolute position embedding for
transformers. Arxiv Preprint Arxiv:2109.05644, 2021.

Kondor, R., Son, H. T., Pan, H., Anderson, B., and Trivedi, S. Covariant compositional networks for
learning graphs. Arxiv Preprint Arxiv:1801.02144, 2018.

Kreuzer, D., Beaini, D., Hamilton, W., Létourneau, V., and Tossou, P. Rethinking graph transformers
with spectral attention. Advances in Neural Information Processing Systems, 34, 21618–21629,
2021.

Lanczos, C. An iteration method for the solution of the eigenvalue problem of linear differential and
integral operators. Journal of Research of the National Bureau of Standards, 45(4), 255–282, 1950.

Li, S., You, C., Guruganesh, G., Ainslie, J., Ontanon, S., Zaheer, M., Sanghai, S., Yang, Y., Kumar,
S., and Bhojanapalli, S. Functional interpolation for relative positions improves long context
transformers. Arxiv Preprint Arxiv:2310.04418, 2023.

Lim, D., Robinson, J., Zhao, L., Smidt, T., Sra, S., Maron, H., and Jegelka, S. Sign and basis invariant
networks for spectral graph representation learning. Arxiv Preprint Arxiv:2202.13013, 2022.

Liu, X., Yu, H.-F., Dhillon, I., and Hsieh, C.-J. Learning to encode position for transformer with
continuous dynamical model. International Conference on Machine Learning, 6327–6335, 2020.

Loshchilov, I., and Hutter, F. Decoupled Weight Decay Regularization. International Conference on
Learning Representations, 2019. https://openreview.net/forum?id=Bkg6RiCqY7

Loukas, A., and Vandergheynst, P. Spectrally approximating large graphs with smaller graphs.
International Conference on Machine Learning, 3237–3246, 2018.

Ma, G., Wang, Y., and Wang, Y. Laplacian canonization: A minimalist approach to sign and basis
invariant spectral embedding. Advances in Neural Information Processing Systems, 36, 11296–
11337, 2023.

Maron, H., Ben-Hamu, H., Shamir, N., and Lipman, Y. Invariant and equivariant graph networks.
Arxiv Preprint Arxiv:1812.09902, 2018.

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen, J. E., Rattan, G., and Grohe, M. Weisfeiler
and leman go neural: Higher-order graph neural networks. Proceedings of the AAAI Conference
on Artificial Intelligence, 33(1), 4602–4609, 2019.

Müller, L., Galkin, M., Morris, C., and Rampášek, L. Attending to graph transformers. Arxiv Preprint
Arxiv:2302.04181, 2023.

Nakatsukasa, Y. The low-rank eigenvalue problem, 2019. https://arxiv.org/abs/1905.11490

Peng, B., Quesnelle, J., Fan, H., and Shippole, E. Yarn: Efficient context window extension of large
language models. Arxiv Preprint Arxiv:2309.00071, 2023.

Qi, C. R., Su, H., Mo, K., and Guibas, L. J. Pointnet: Deep learning on point sets for 3d classification
and segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recog
nition, 652–660, 2017.

11

https://openreview.net/forum?id=Bkg6RiCqY7
https://arxiv.org/abs/1905.11490

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

Under review as a conference paper at ICLR 2026

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., and Liu,
P. J. Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of
Machine Learning Research, 21(140), 1–67, 2020.

Rampášek, L., Galkin, M., Dwivedi, V. P., Luu, A. T., Wolf, G., and Beaini, D. Recipe for a general,
powerful, scalable graph transformer. Advances in Neural Information Processing Systems, 35,
14501–14515, 2022.

Reid, I., Dubey, K. A., Jain, D., Whitney, W., Ahmed, A., Ainslie, J., Bewley, A., Jacob, M., Mehta, A.,
Rendleman, D., and others. Linear transformer topological masking with graph random features.
Arxiv Preprint Arxiv:2410.03462, 2024.

Schenck, C., Reid, I., Jacob, M. G., Bewley, A., Ainslie, J., Rendleman, D., Jain, D., Sharma, M.,
Dubey, A., Wahid, A., and others. Learning the RoPEs: Better 2D and 3D Position Encodings
with STRING. Arxiv Preprint Arxiv:2502.02562, 2025.

Shaw, P., Uszkoreit, J., and Vaswani, A. Self-attention with relative position representations. Arxiv
Preprint Arxiv:1803.02155, 2018.

Shirzad, H., Velingker, A., Venkatachalam, B., Sutherland, D. J., and Sinop, A. K. Exphormer: Sparse
transformers for graphs. International Conference on Machine Learning, 31613–31632, 2023.

Spielman, D. A. Graphs and networks. Lecture Notes, 3, 2010.

Su, J., Ahmed, M., Lu, Y., Pan, S., Bo, W., and Liu, Y. Roformer: Enhanced transformer with rotary
position embedding. Neurocomputing, 568, 127063, 2024.

Sun, J., Zhang, Q., Kailkhura, B., Yu, Z., Xiao, C., and Mao, Z. M. Modelnet40-c: A robustness
benchmark for 3d point cloud recognition under corruption. ICLR 2022 Workshop on Socially
Responsible Machine Learning, 7, 2022.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., and
Polosukhin, I. Attention is all you need. Advances in Neural Information Processing Systems,
30, 2017.

Velingker, A., Sinop, A., Ktena, I., Veličković, P., and Gollapudi, S. Affinity-aware graph networks.
Advances in Neural Information Processing Systems, 36, 67847–67865, 2023.

Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., and Bengio, Y. Graph attention
networks. Arxiv Preprint Arxiv:1710.10903, 2017.

Wang, B., Shang, L., Lioma, C., Jiang, X., Yang, H., Liu, Q., and Simonsen, J. G. On position
embeddings in bert. International Conference on Learning Representations, 2020.

Wu, Q., Zhao, W., Yang, C., Zhang, H., Nie, F., Jiang, H., Bian, Y., and Yan, J. Sgformer: Simplifying
and empowering transformers for large-graph representations. Advances in Neural Information
Processing Systems, 36, 64753–64773, 2023.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful are graph neural networks?. Arxiv Preprint
Arxiv:1810.00826, 2018.

Yang, J., Sindhwani, V., Fan, Q., Avron, H., and Mahoney, M. W. Random laplace feature maps for
semigroup kernels on histograms. Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 971–978, 2014.

Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen, Y., and Liu, T.-Y. Do transformers really
perform badly for graph representation?. Advances in Neural Information Processing Systems, 34,
28877–28888, 2021.

Zaheer, M., Guruganesh, G., Dubey, K. A., Ainslie, J., Alberti, C., Ontanon, S., Pham, P., Ravula, A.,
Wang, Q., Yang, L., and others. Big bird: Transformers for longer sequences. Advances in Neural
Information Processing Systems, 33, 17283–17297, 2020.

Zhang, B., Luo, S., Wang, L., and He, D. Rethinking the expressive power of gnns via graph
biconnectivity. Arxiv Preprint Arxiv:2301.09505, 2023.

12

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

Under review as a conference paper at ICLR 2026

A Theory

This section contains extra proofs and comments considered too long for the main text.

A.1 Proof of Theorem 2

Here, we show that randomly initialised WIRE tends to downweight attention scores,
depending upon the resistive distance between the respective nodes.

Proof. For connected graphs, 𝐋† = ∑𝑁−1
𝑘=1

1
𝜆𝑘

𝒖𝑘𝒖⊤
𝑘 since 𝜆0 = 0 but 𝜆𝑘 ≠ 0 for 𝑘 ≥ 1. It

is straightforward to see that 𝑅(𝑖, 𝑗) = ∑𝑁−1
𝑘=1

1
𝜆𝑘

(𝒖𝑘[𝑖] − 𝒖𝑘[𝑗])
2. For each node 𝑖 ∈ 𝒩︀,

we define an 𝑁 − 1-dimensional spectral feature 𝒓𝑖 = [𝒖𝑘[𝑖]/√𝜆𝑘]
𝑁−1

𝑘=1
∈ ℝ𝑁−1, whereupon

𝑅(𝑖, 𝑗) = ‖𝒓𝑖 − 𝒓𝑗‖2
2. Considering random weights4 𝝎𝑖 ∼ 𝒩︀(0, 𝜔𝐈𝑁−1),

𝔼((𝝎⊤𝒓𝑖 − 𝝎⊤𝒓𝑗)
2) = 𝜔2‖𝒓𝑖 − 𝒓𝑗‖2

2. (8)

Given a query-key pair (𝒒, 𝒌) at positions (𝒓𝑖, 𝒓𝑗),5

𝒒⊤𝒌 → 𝒒⊤RoPE(𝒓𝑖)
⊤ RoPE(𝒓𝑗)𝒌 =

∑
𝑑
2

𝑘=1
(𝒒2𝑘−2𝒌2𝑘−2 + 𝒒2𝑘−1𝒌2𝑘−1) cos(𝝎𝑇

𝑘 (𝒓𝑖 − 𝒓𝑗))

+(𝒒2𝑘−1𝒌2𝑘−2 − 𝒒2𝑘−2𝒌2𝑘−1) sin(𝝎𝑇
𝑘 (𝒓𝑖 − 𝒓𝑗)).

(9)

Taylor expanding in 𝜔 and taking the expectation,

𝔼(𝒒⊤
𝑖 𝒌𝑗) → 𝒒⊤

𝑖 𝒌𝑗(1 − 𝜔2

2
‖𝒓𝑖 − 𝒓𝑗‖2

2) + 𝒪︀(𝜔4) = 𝒒⊤
𝑖 𝒌𝑗(1 − 𝜔2

2
𝑅(𝑖, 𝑗)) + 𝒪︀(𝜔4) (10)

as claimed. Here, we used the fact that sin is an odd function to drop the 𝒪︀(𝜔3) terms. ∎

A.2 Efficient diagonalisation of the Laplacian matrix via random features

In this appendix, we describe a new stochastic approximation algorithm for computing
the leading eigenvalues and eigenvectors of the Laplacian matrix 𝐋. This is a well-studied
problem in the literature. We consider graphs 𝒢︀ defined implicitly, where the edge weights
are a function of the distance between nodes in some suitable metric space.

Recall that the (unnormalised) Laplacian is defined by

𝐋 = 𝐃 − 𝐀. (11)
Suppose the adjacency matrix 𝐀 = [𝑎𝑖,𝑗] ∈ ℝ𝑁×𝑁 is defined by 𝑎𝑖𝑗 = 𝑓𝜃(‖𝒗𝑖 − 𝒗𝑗‖2), with
𝑓𝜃 is some (potentially learnable) function. The diagonal matrix 𝐃 satisfies 𝑑𝑖𝑖 = ∑𝑁−1

𝑗=0 𝑎𝑖𝑗.

Graph nodes are associated with coordinates in ℝ𝑑, e.g. 𝑑 = 3 for point clouds. For instance,
for 𝜀-ball graphs, one would take

𝑓𝜃(‖𝒗𝑖 − 𝒗𝑗‖2) = 𝕀(‖𝒗𝑖 − 𝒗𝑗‖2) ≤ 𝜀), (12)

with 𝕀(⋅) the indicator function. Denote 𝑔(𝒛) = 𝑓(|𝒛|). We can rewrite 𝑔 as follows, for
𝑖2 = −1:

𝑔(𝒛) = ∫
ℝ𝑑

exp(−2𝜋𝑖𝜔⊤𝒛)𝜏(𝜔)𝑑𝜔, (13)

4This is nothing other than the celebrated Johnson-Lindenstrauss transformation (Dasgupta and
Gupta, 2003), a random projection that preserves vector norms and distances in expectation.

5In Eq. (9), we drop the 𝑖 and 𝑗 suffixes on the queries and keys for compactness, freeing it up to
represent the coordinate 𝑘 ∈ {0,…, 𝑑 − 1}.

13

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

Under review as a conference paper at ICLR 2026

where 𝜏 is the inverse Fourier Transform of 𝑔 defined by:

𝜏(𝜔) = ∫
ℝ𝑑

exp(2𝜋𝑖𝒙⊤𝜔)𝑔(𝒙)𝑑𝒙. (14)

Thus, taking: 𝒛 = 𝒗𝑖 − 𝒗𝑗, we can rewrite:

𝑎𝑖,𝑗 = 𝐶 ⋅ 𝔼𝑝(𝜔)[exp(−2𝜋𝑖𝜔⊤𝒗𝑖) exp(2𝜋𝑖𝜔⊤𝒗𝑗)], (15)

where 𝑝(𝜔) is the probability distribution with density proportional to 𝜏(𝜔) and 𝐶 =
∫

ℝ𝑑 𝜏(𝜔)𝑑𝜔.6 The ability to efficiently (potentially approximately) sample from 𝑝(𝜔) unlocks

the following low-rank decomposition:

𝑎𝑖,𝑗 ≈ Λ1(𝒗𝑖)(Λ2(𝒗𝑗))
⊤, (16)

where for 𝜔1,…, 𝜔𝑟 are sampled independently at random from 𝑝(𝜔), with 𝑟 ∈ ℕ the number
of random features. In particular, we take

Λ1(𝒗) = √𝐶
𝑟

(exp(−2𝜋𝑖𝜔⊤
1 𝒗),…, exp(−2𝜋𝑖𝜔⊤

𝑟 𝒗)), (17)

Λ2(𝒗) = √𝐶
𝑟

(exp(2𝜋𝑖𝜔⊤
1 𝒗),…, exp(2𝜋𝑖𝜔⊤

𝑟 𝒗)). (18)

It follows that we can unbiasedly approximate 𝐋 as:

𝐋 ≈ 𝐗𝐘⊤, (19)

for matrices 𝐗,𝐘 ∈ ℝ𝑁×(𝑁+𝑟) with rows 𝑋(𝑖) and 𝑌 (𝑖) given as follows:

𝑋(𝑖) = 𝜂𝑖(√𝑑𝑖𝑖) ⊕ Λ1(𝒗𝑖), (20)

𝑌 (𝑖) = 𝜂𝑖(√𝑑𝑖𝑖) ⊕ (−Λ2(𝒗𝑖)). (21)

Here, ⊕ denotes concatentation of the respective vectors, and 𝜂𝑖(𝑥) is a one-hot vector
whose 𝑖th element is equal to 𝑥.

To reduce the dimensionality of the features, we can then apply standard Johnson-Linden
strauss transformation (JLT). We unbiasedly approximate 𝐗𝐘⊤ by 𝐗′(𝐘′)⊤, where the
matrices 𝐗′,𝐘′ ∈ ℝ𝑁×𝑚 are given by:

𝐗′ = 1√
𝑚

𝐗𝐆,𝐘′ = 1√
𝑚

𝐘𝐆. (22)

The entries of the Gaussian matrix 𝐆 ∈ ℝ(𝑁+𝑟)×𝑚 are drawn independently at random from
the Gaussian distribution with mean 𝜇 = 0 and standard deviation 𝜎 = 1.
We conclude that the Laplacian matrix 𝐋 can be unbiasedly approximated as:

𝐋 = 𝐗′(𝐘′)⊤. (23)

For 𝑚 ≪ 𝑁 , this provides a computationally-efficient low-rank approximation.

Finally, applying results by Nakatsukasa (2019), we can efficiently compute the eigenvalues
and eigenvectors of 𝐗′(𝐘′)⊤ by diagonalising the smaller matrix (𝐘′)⊤𝐗′ ∈ ℝ𝑚×𝑚. This
operation only takes 𝒪︀(𝑁) time, so it scales gracefully to very large graphs. It could be
applied e.g. to the point cloud experiments described in Section 4.2, providing an alternative
spectral approximation to the Lanczos algorithm. It may be of independent interest.

6We assume that this integral is well-defined.

14

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

Under review as a conference paper at ICLR 2026

B Extra experimental details

In this appendix, we provide extra experimental details to supplement Section 4.

B.1 Synthetic experiments: monochromatic subgraphs and shortest paths

Models and training. For both tasks, we use a standard 4 layer transformer with model
and MLP dimensionality 32. For simplicity, the attention is single-head. We train for 250
epochs with batch size 16, with a learning rate of 2 × 10−4 obeying a cosine decay schedule
(𝛼 = 0.01). We train using the Adam optimiser with weight decay 1 × 10−4. Dropout is
applied at a rate of 0.2 to attention and the MLP outputs. Graph embeddings are obtained
by mean pooling over node embeddings, and a dense layer projects the result to a scalar
prediction for (1) the size of the largest monochromatic connected subgraph and (2) the
shortest path distance between a target and source node (identified at the model inputs).
Both datasets have 10, 000 training examples and 1, 000 test examples. We report the lowest
test root mean squared error obtained during training, normalised by graph size. Standard
errors are computed over 4 runs per setting.

Ablation: WIRE attention patterns. To better understand WIRE, we can also examine
the activations of a trained model. For instance, Figure 5 shows rescaled attention scores
at the final layer of the network. We take identical optimised weights, with WIRE either
switched on as during training (centre) or off (right). With WIRE, we see that nodes
attend within the biggest monochromatic subgraph. The pattern disappears when WIRE
is removed. This suggests that the network does indeed learn to use query-key rotations to
carry structural information about 𝒢︀.

Figure 5: Example attention patterns with WIRE. Random choice of model input
(left), and example attention patterns for a trained model with (centre) and without (right)
WIRE. WIRE helps nodes attend to other nearby nodes with the same label.

B.2 WIRE and Performers

Recall that, for 𝒪︀(𝑁) Performer attention, we take:

𝒙𝑖 →
∑𝑗 𝜑(𝒒𝑖)

⊤𝜑(𝒌𝑗)𝒗𝑗

∑𝑗′ 𝜑(𝒒𝑖)
⊤𝜑(𝒌𝑗′)

, (24)

where 𝒒𝑖 = 𝐖𝑞𝒙𝑖, 𝒌𝑖 = 𝐖𝑘𝒙𝑖 and 𝒗𝑖 = 𝐖𝑣𝒙𝑖 respectively, with 𝐖𝑞,𝐖𝑘,𝐖𝑣 ∈ ℝ𝑑×𝑑 learned
projection matrices. 𝜑(⋅) : ℝ𝑑 → ℝ𝑚 is a (random) feature map, common choices for which
include ReLU activations and random Laplace features (Yang et al., 2014).

There are two obvious manners in which one could incorporate WIRE:

1. Directly modulating the queries and keys. 𝒛𝒊 → RoPE(𝒓𝑖)𝒛𝑖 for 𝒛𝑖 ∈ {𝒒𝑖, 𝒌𝑖}.
2. Modulating the features. 𝜑(𝒛𝑖) → RoPE(𝒓𝑖)𝜑(𝒛𝑖) for 𝒛𝑖 ∈ {𝒒𝑖, 𝒌𝑖}.
The benefit of (1) is that, for suitable choices of maps 𝜑(⋅) like ReLU, we have that

𝜑(RoPE(𝒓𝑖)𝒒𝑖)
⊤𝜑(RoPE(𝒓𝑗)𝒌𝑗) ≥ 0. (25)

15

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

Under review as a conference paper at ICLR 2026

The attention scores all remain positive, which avoids instabilities caused by the denomi
nator changing sign. Conversely, the advantage of (2) is that

(RoPE(𝒓𝑖)𝜑(𝒒𝑖))
⊤(RoPE(𝒓𝑗)𝜑(𝒌𝑗)) = 𝜑(𝒒𝑖)

⊤ RoPE(𝒓𝑗 − 𝒓𝑖)𝜑(𝒌𝑗), (26)

which gives the invariance properties we discuss in Section 3.1. But now modulated attention
scores can be negative which can in general cause instabilities – something that Su et al.
(2024) sidestep by only applying RoPE to the numerator (see Eq. 19 of their paper).

In Performer experiments, we find (1) to work well in practice, so tend to adopt this
approach.

B.3 Point cloud transformers

For classification, we consider the ModelNet40 dataset (Sun et al., 2022). Each includes
2048 points and and belongs to one of 40 object classes, including ‘airplane’, ‘chair’ and
‘sofa’. The goal is to predict these labels. Meanwhile, for semantic segmentation we consider
ShapeNet (Chang et al., 2015). Each point has an associated ‘part label’, breaking the
object up into between 2 and 6 smaller semantically-meaningful sections – e.g. the legs or
seat of a chair. The goal is to predict the class labels of each point.

Models and training. Building on the Scenic codebase (Dehghani et al., 2022),7 we use
a 4-layer transformer with hidden and MLP dimensions 128 and 512 respectively, trained
for 10, 000 epochs with batch size 1024. We experiment with incorporating WIRE into
only a subset of layers, anticipating that early layers that capture geometric information
will benefit more from improved position encodings than the later semantic layers. This
hyperparameter is optimised by a sweep. As baselines, we include regular transformer and
Performers without any additional position encoding (NoPE), as well as regular RoPE using
Cartesian coordinates (c.f. spectral). We train with the Adam optimiser, with weight decay
0.01. The learning rate schedule is compound (constant, cosine decay and linear warmup)
with 10, 000 warmup steps and a base rate of 5 × 10−6.

B.4 GNN benchmark hyperparameters

In this section, we provide training details and hyperparameters for the GNN experiments
reported in Section 4.3. We follow the setup of Rampášek et al. (2022). We choose MNIST,
CIFAR-10, PATTERN and CLUSTER from ‘benchmarking GNNs’ (Dwivedi et al., 2020),
Peptides-func, Peptides-struct and PascalVOC from the Long Range Graph Benchmark
(Dwivedi et al., 2022), and ogbg-molhiv, ogbg-molpcba, ogbg-ppa and ogbg-code2 from the
OGB datasets (Hu et al., 2020). We also consider MalNet-Tiny (Freitas et al., 2020). We
provide the statistics for each dataset in Table 5.

Table 5: Graph benchmark datasets. Statistics of the datasets considered in Section 4.3.

Dataset # Graphs Avg. nodes Avg. edges Dir. Level / Task Metric

MNIST 70,000 70.6 564.5 Yes Graph, 10-class cls. Accuracy

CIFAR10 60,000 117.6 941.1 Yes Graph, 10-class cls. Accuracy

PATTERN 14,000 118.9 3,039.3 No Inductive node, binary cls. Accuracy

CLUSTER 12,000 117.2 2,150.9 No Inductive node, 6-class cls. Accuracy

ogbg-molhiv 41,127 25.5 27.5 No Graph, binary cls. AUROC

ogbg-molpcba 437,929 26.0 28.1 No Graph, 128-task cls. Avg. Precision

MalNet-Tiny 5,000 1,410.3 2,859.9 Yes Graph, 5-class cls. Accuracy

PascalVOC-SP 11,355 479.4 2,710.5 No Inductive node, 21-class cls. F1 score

Peptides-func 15,535 150.9 307.3 No Graph, 10-task cls. Avg. Precision

Peptides-struct 15,535 150.9 307.3 No Graph, 11-task regression MAE

We follow the standard train/validation/test split in each case. For all datasets in
‘benchmarking GNNs’ and OGB – namely, MNIST, CIFAR-10, PATTERN, CLUSTER,

7See especially https://github.com/google-research/scenic/tree/main/scenic/projects/
pointcloud.

16

https://github.com/google-research/scenic/tree/main/scenic/projects/pointcloud
https://github.com/google-research/scenic/tree/main/scenic/projects/pointcloud

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

Under review as a conference paper at ICLR 2026

ogbg-molhiv, ogbg-ppa and ogbg-molpcba – we run 10 seeds. Since MalNet-Tiny runs are
expensive, we run 3 seeds. Likewise, the LRGB datasets – Peptides-func, Peptides-struct
and PascalVOC-SP – are replicated 4 times. Lastly, all ogbg-code2 runs were repeated with
6 seeds. We use the AdamW optimiser (Loshchilov and Hutter, 2019) for all our experiments.

Our code is based on PyTorch Geometric. All experiments are run on a T4 GPU, with the
exception of ogbg-ppa and ogbg-code2. The latter two datasets are much more compute
intensive, and were run on an NVIDIA A100 (80GB) GPU. The results for the baseline dense
transformer are taken from Rampášek et al. (2022), while the results for all other baselines
are obtained from our own runs. The RoPE computation in Equation (25) is implemented
using a learnable linear layer, transforming the spectral coordinates to dimensionality 𝑑/2.
We control the scale of its initialisation with an additional hyperparameter.

B.4.1 GraphGPS experiments: extra details

In this subsection, we provide further implementation details for all experiments using
GraphGPS (Rampášek et al., 2022).

The ReLU-Performer model is described in Section B.2. For all our experiments, we
default to the hyperparameters used by Rampášek et al. (2022). It is well established that
performance is highly sensitive to the choice of hyperparameters for each dataset. For ogbg-
ppa and ogbg-code2, all the hyperparameter settings were identical to (Rampášek et al.,
2022, Table A.3), with optional 16 Laplacian positional encoding dimension for the WIRE
Performer. We give details in Table 6.

Table 6: GraphGPS Experiments with Performer Attention. Hyperparameters used
for our GraphGPS Experiments

Hyperparame

ters
MNIST CIFAR-10 PATTERN CLUSTER

Peptides-

struct

Peptides-

func
Pascal-Voc

MalNet-

Tiny

ogbg-mol

hiv

Hidden Dim 64 64 64 48 96 96 96 64 64

Heads 4 4 4 8 4 4 8 4 4

Attention

Dropout
.5 .5 .5 .5 .5 .5 .5 .5 .5

MPNN GINE GatedGCN GINE GatedGCN GatedGCN GatedGCN GatedGCN GatedGCN GINE

Layers 3 3 6 16 4 4 4 6 10

GNN Dropout .1 0. 0. .1 .1 .1 .1 0. 0.

Learning Rate 0.0001 .001 0.0005 0.0005 .0003 .0003 .0005 .001 .0001

Weight Decay 1e-4 1e-5 1e-5 1e-5 0. 1e-5 0. 1e-5 1e-4

Laplacian

Eigenvectors
16 8 16 10 10 10 10 16 8

RWSE Fea

tures
8 - 16 - - - - 8 8

Scheduler ReduceLR cos decay cos decay cos decay cos decay cos decay cos decay cos decay ReduceLR

Batch Size 64 64 32 32 128 128 32 4 32

Laplacian Po

sition Encod

ing Dim

- 16 - 16 16 16 16 - -

Epochs 150 150 100 100 200 150 300 150 100

Finally, following standard practice, for datasets like MNIST, PATTERN, MalNet-Tiny
and ogbg-molhiv, we use random walks to provide global structural information. We use
16 walks for MalNet-Tiny and MNIST, and 20 walks for PATTERN and ogbg-molhiv. We
also experiment with regular softmax and BigBird attention (Zaheer et al., 2020). In these
cases, we again use the same hyperparameters. Details are provided below.

B.4.2 SGFormer experimental details

SGFormer is another efficient transformer architecture, based upon a single linear attention
layer and a single message passing layer (Wu et al., 2023). In contrast to our other Performer
experiments, SGFormer takes the nonlinearity 𝜑(⋅) to be the identity map. For message
passing, we use a GCN. As usual, WIRE is injected into the attention mechanism of the
transformer. Again, we mostly revert to the GraphGPS hyperparameters, avoiding extensive
tuning to ensure our results are robust. Table 7 gives details.

17

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

Under review as a conference paper at ICLR 2026

Table 7: SGFormer Experiments. Hyperparameters used for the SGFormer Experiments.

Hyperparameters MNIST CIFAR-10 PATTERN

Hidden Dim 128 256 128

Heads 2 1 8

Attention Dropout .5 .5 .5

GNN Layers 3 2 3

GNN Dropout .1 .1 .1

Learning Rate 0.001 .001 0.0005

Weight Decay 1e-5 0 1e-5

WIRE Features 16 8 10

Scheduler ReduceLR cosine decay cosine decay

Epochs 150 100 150

Batch Size 32 64 32

B.5 Extra results for other attention mechanisms on GNN benchmarks

Here, we report extra WIRE results with different (non-Performer) architectures, referenced
in Section 4.3 of the main text. Specifically, we report results with regular softmax attention,
SGFormer (Wu et al., 2023), and BigBird (Zaheer et al., 2020).

The SGFormer architecture is described above in Section B.4.2. Meanwhile, BigBird (Zaheer
et al., 2020) combines local and global attention. It uses a small fixed number of global
tokens that attend to all 𝑁 tokens. Remaining tokens attend to their neighbours. Table 8
and Table 9 shows that WIRE can be easily integrated these attention mechanisms, boosting
the respective baselines.

Table 8: WIRE results on softmax transformers. Ablation results for WIRE on
𝒪︀(𝑁2) regular transformer architectures, on smaller datasets where poor scalability is
not a problem. As observed in Section 4.1 and Section 4.2, our algorithm still improves
performance.

Test metric

Dataset Variant Baseline WIRE

MNIST (↑) Softmax transformer 98.05(4) 98.46(3)

CIFAR-10 (↑) Softmax transformer 72.3(1) 73.48(7)

PATTERN (↑) Softmax transformer 86.69(2) 86.75(2)

CLUSTER (↑) Softmax transformer 78.02(6) 78.19(2)

ogbg-molhiv (↑) Softmax transformer 0.788(1) 0.798(2)

Table 9: WIRE results on extra efficient transformers. Ablation results for WIRE on
different 𝒪︀(𝑁) transformer architectures: namely, SGFormer (Wu et al., 2023) and BigBird
(Zaheer et al., 2020). Once more, WIRE can provide gains.

Test metric

Dataset Variant Baseline WIRE

MNIST (↑) SGFormer 96.78(4) 97.3(1)

CIFAR-10 (↑) SGFormer 60.43(8) 61.36(6)

PATTERN (↑) SGFormer 85.2(1) 85.9(1)

MNIST (↑) BigBird 97.20 98.04

CIFAR10 (↑) BigBird 85.04 85.86

18

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

Under review as a conference paper at ICLR 2026

C Additions During Rebuttals

C.1 RWPE-WIRE

In the paragraph beginning ‘generalising WIRE’ (line 180), we noted that one need not
necessarily use the Laplacian eigenvectors to compute the features {𝒓𝑖}

𝑁
𝑖−1 ⊂ ℝ𝑚 fed into

RoPE. One could use other node features the capture the graph structure, such as random
walk position encodings (RWPEs).

RWPEs. Considering an adjacency matrix 𝐀 and a degree matrix 𝐃, the random walk
transition matrix is 𝐏 ≔ 𝐃−1𝐀. The RWPE feature for node 𝑖 is

RWPE(𝑣𝑖) ≔ [𝐏𝑖𝑖, 𝐏2
𝑖𝑖 , 𝐏3

𝑖𝑖 ,…,𝐏𝑘
𝑖𝑖] ∈ ℝ𝑘, (27)

computing the probability of a random walk returning to node 𝑣𝑖 after {1, 2,…, 𝑘} steps.
RWPEs are popular in the literature (Dwivedi et al., 2021; Rampášek et al., 2022). One
can use RWPEs as rotational features for RoPE. Table 10 shows corresponding results
(analagous to Table 2) for shortest path prediction, training with a single seed for 100
epochs. WIRE using graph spectra tends to perform better (and is in general more expen
sive), but we also observe a gain over the no-WIRE baseline using RWPEs. As in
the main text, RWPEs are additionally provided as APEs, isolating the gains from RoPE
rotations.

Table 10: Shortest path distance task with RWPEs. WIRE provides improvements to
transformers trained to predict shortest path distances on random Watts-Strogatz graphs,
using RWPEs instead of spectral features.

Num. spectral coords, 𝑚
0 (baseline) 3 5 10

Test RMSE (↓) 0.061(1) 0.060(1) 0.059(1) 0.055(2)

This demonstrates that WIRE is still an effective algorithm if graph spectra are not
accessible. Investigating further features that are effective within WIRE is an interesting
direction for future work.

C.2 Extra GNN benchmarks

We have added results for the large-scale graph benchmarks ogbg-ppa and ogbg-code2 to
Table 4. Note that the gains for ogbg-code2 are very strong, with Performer + WIRE
achieving greater test accuracy than the softmax transformer baseline.

C.3 Clarification: distinguishing isospectral but non-isomorphic graphs

Isospectral but non-isomorphic graphs will have the same eigenvalues, but different eigen
vectors. Since WIRE by default uses the eigenvectors (see Alg. 1), the WIRE transformation
– and thus the transformer output – will be different. As such, WIRE can distinguish
isospectral but non-isomorphic graphs.

C.4 Efficient diagonalisation and extra details for Section A.2

Time complexity of precomputation. Below, we summarise the time complexity of
common efficient diagonalisation algorithms used in the literature.

1. Coarsening (Loukas and Vandergheynst, 2018). These methods coarsen the graph (reduce
𝑁 to 𝑁 ′ ≪ 𝑁), compute eigenvectors on the small graph, and lift them back to the original
graph. This is extremely fast for the lowest frequencies (smooth eigenvectors), and achieves
good performance. It unlocks sub-linear time complexity relative to the original 𝑁 (after
coarsening).

19

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

Under review as a conference paper at ICLR 2026

2. Lanczos (Baglama and Reichel, 2005; Lanczos, 1950). Once can compute the 𝑚 extreme
eigenvalues using only matrix-vector multiplications. For sparse graphs, this is linear in the
number of nodes 𝑁 for a fixed number of iterations. Modern improvements based on low-
dimensional subspaces further improve efficiency.

3. Other proxies. More pragmatically, trading approximating eigenvectors with more general
graph-based node features, one can compute other WIRE features in 𝒪︀(𝑁) time using
random walk position encodings (Section C.1) or using recent 𝒪︀(𝑁) sparse methods like
FastRP (Chen et al., 2019).

Halko et al. (2011) provides a detailed overview of other efficient randomised methods for
computing low-rank decompositions of matrices like the graph Laplacian, also applicable
to WIRE.

Lastly, we emphasise that some kind of structural feature is often already computed to be
used as an absolute position embedding. In this case, one can also apply it via WIRE at
essentially no extra cost.

Time complexity of WIRE itself. The time complexity of WIRE itself is 𝒪︀(𝑁𝑚𝑑) to
project the features to dimensionality 𝑑/2 and 𝒪︀(𝑁𝑑) to apply the sparse rotations. This
is not observable in experiment wall-clock time, compared to the attention mechanism and
MLPs. The memory footprint is tiny.

Timing plots. Figure 6 gives some example wall clock times for transformer forward
passes with varying 𝑚, for the shortest path prediction task in Section 4.1. We use the
same model hyperparameters as previously. Since the time complexity of projecting 𝑚-
dimensional inputs to 𝑑/2-dimensional rotation angles for each token is 𝒪︀(𝑁𝑚𝑑), the plot
is roughly linear in 𝑚 (deviating slightly due to hardware details and noise). We see that
little cost is incurred by increasing 𝑚.

Note that we chose this toy example to show how the time complexity depends on 𝑚. In
practical applications where 𝑁 and 𝑑 are much bigger (e.g. Section 4.3), the time incurred
by applying RoPE rotations tends to be small compared to the attention and MLPs, as
widely reported in the literature (Schenck et al., 2025; Su et al., 2024).

0 2 4 6 8 10
m

0.00033

0.00034

0.00035

t (
s)

WIRE wall clock times (toy task)

Figure 6: Example attention patterns with WIRE. Random choice of model input
(left), and example attention patterns for a trained model with (centre) and without (right)
WIRE. WIRE helps nodes attend to other nearby nodes with the same label.

C.5 Extra comments on invariance and equivariance

Note that, for the simplest instantiation of WIRE using the Laplacian eigenvectors, Remark
1 only holds up to sign flips and rotations of degenerate subspaces. Such transformations give
vectors which are still eigenvectors of 𝐋, but clearly the corresponding WIRE transformation
can in general be different.

This is easily remedied by applying extra transformations to the spectral features to ensure
that they are invariant under these transformations – for instance, maximal axis projection
(Ma et al., 2023), sign flipping heuristics, or SignNet (Lim et al., 2022). In practice, we find
that these additions make very little difference to our algorithm’s empirical performance.
We achieve our most competitive results (e.g. Table 4) using unmodified graph spectra.

20

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

Under review as a conference paper at ICLR 2026

Intuition and asymptotic equivariance. To understand this behaviour, we note that
Theorem 2 still holds under random sign flips and basis transformations of the eigenvectors.
Note that the leading term in Eq. (10) depends upon ‖𝒓𝑖 − 𝒓𝑗‖2

2, which is unmodified
when these modifications are applied to {𝒓𝑖}

𝑁
𝑖=1. The fundamental asymptotic behaviour of

(random) WIRE does not depend upon these ambiguities in basis and sign. It is intrinsically
gauge invariant.

C.6 WavePE-WIRE

To complement Section C.1, we can also use WavePE features (Khang Ngo et al., 2023) as
rotational inputs to WIRE. These spectrum-based features use graph wavelets to capture
multi-scale information.

Constructing WavePE features. Recall that we write the spectral decomposition of the
Lapalcian as

𝐋 = 𝐔𝚲𝐔⊤, 𝚲 = diag(𝜆0,…, 𝜆𝑁−1), (28)

where 𝐔 are the eigenvectors and (𝜆𝑖)
𝑁−1
𝑖=0 are the eigenvalues. We will consider a heat kernel

filter function

𝑔(𝑠𝜆) = 𝑒−𝑠𝜆, (29)

which is applied to the eigenvalues to create localised wavelents. For some scale 𝑠 ∈ ℝ, the
corresponding wavelet operator is

𝜑(𝑠) = 𝐔𝑔(𝑠𝚲)𝐔⊤, (30)

where 𝑔 is applied to each of the diagonal entries of the eigenvalue matrix. Concatenating
a set of 𝑘 different scales (𝑠𝑖)

𝑘−1
𝑖=0 , we obtain the multi-scale diffusion tensor

𝚿 = [𝜑(𝑠𝑖)]
𝑘−1
𝑖=0 ∈ ℝ𝑁×𝑁×𝑘. (31)

Further permutation-equivariant encodings are applied to map this to a set of 𝑚-dimensional
features needed for WIRE. Many such transformations exist (Kondor et al., 2018; Maron
et al., 2018), but in the interests of keeping the model lightweight we simply take:

𝒓𝑖 = concat(𝚿[𝑖, 𝑖, :],∑
𝑗

𝚿[𝑖, 𝑗, :]) ∈ ℝ2𝑘, 𝑖 ∈ {1,…,𝑁} (32)

concatenating the diagonal entries of the tensor (self-diffusion) with its row sum (global-
diffusion). As usual, these features are also linearly projected when passed to WIRE. It is
straightforward to see that these features are natively equivariant, without any additional
transformations.

Empirical results. One can directly replace WIRE’s default spectral coordinates with the
WavePE features defined in Eq. (32), e.g. for the shortest path prediction task. Trading
our theoretical guarantees for these more empirical multi-scale features, we again see good
performance in experiments; like its regular counterpart, WIRE with WavePE con
sistently provides gains over the baseline. Table 11 shows the results (companion to
Table 2), ablating the dimension of the rotational features 𝑚. Note that, in this experiment,
WavePE is only provided via WIRE, rather than as an APE. Given time constraints, we
train for 100 epochs (c.f. Table 2).

Table 11: Shortest path distance task with WavePE-WIRE. Using WavePEs instead
of raw eigenvectors as input features to WIRE also provides gains over the APE-only
baseline.

Num. spectral coords, 𝑚
0 (baseline) 3 5 10

Test RMSE (↓) 0.080(1) 0.077(2) 0.073(1) 0.071(1)

21

	1 Introduction
	2 Preliminaries
	3 WIRE: Wavelet-Induced Rotary Encodings
	3.1 Properties of WIRE

	4 Experiments
	4.1 Synthetic tasks: monochromatic subgraphs and shortest paths
	4.2 Point cloud transformers
	4.3 WIRE Performers on benchmark tasks

	5 Conclusion
	References
	A Theory
	A.1 Proof of
	A.2 Efficient diagonalisation of the Laplacian matrix via random features

	B Extra experimental details
	B.1 Synthetic experiments: monochromatic subgraphs and shortest paths
	B.2 WIRE and Performers
	B.3 Point cloud transformers
	B.4 GNN benchmark hyperparameters
	B.4.1 GraphGPS experiments: extra details
	B.4.2 SGFormer experimental details

	B.5 Extra results for other attention mechanisms on GNN benchmarks

	C Additions During Rebuttals
	C.1 RWPE-WIRE
	C.2 Extra GNN benchmarks
	C.3 Clarification: distinguishing isospectral but non-isomorphic graphs
	C.4 Efficient diagonalisation and extra details for
	C.5 Extra comments on invariance and equivariance
	C.6 WavePE-WIRE

